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Abstract— End-to-end autoencoder (AE) learning has the
potential of exceeding the performance of human-engineered
transceivers and encoding schemes, without a priori knowledge
of communication-theoretic principles. In this work, we aim to
understand to what extent and for which scenarios this claim
holds true when comparing with fair benchmarks. Our particular
focus is on memoryless multiple-input multiple-output (MIMO)
and multi-user (MU) systems. Four case studies are considered:
two point-to-point (closed-loop and open-loop MIMO) and two
MU scenarios (MIMO broadcast and interference channels). For
the point-to-point scenarios, we explain some of the performance
gains observed in prior work through the selection of improved
baseline schemes that include geometric shaping as well as bit and
power allocation. For the MIMO broadcast channel, we demon-
strate the feasibility of a novel AE method with centralized
learning and decentralized execution. Interestingly, the learned
scheme performs close to nonlinear vector-perturbation pre-
coding and significantly outperforms conventional zero-forcing.
Lastly, we highlight potential pitfalls when interpreting learned
communication schemes. In particular, we show that the AE for
the considered interference channel learns to avoid interference,
albeit in a rotated reference frame. After de-rotating the learned
signal constellation of each user, the resulting scheme corresponds
to conventional time sharing with geometric shaping.

Index Terms— Autoencoders, deep learning, digital signal
processing, end-to-end learning, interference channel, machine
learning, MIMO broadcast, wireless communications.

I. INTRODUCTION

DEMAND for higher data rates has led to the con-
tinued development of ever more performant wireless
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communication systems. One of the most important devel-
opments has been multiple-input multiple-output (MIMO)
transmission [1], where information across multiple antenna
elements is encoded using spatial-multiplexing or spatial-
diversity schemes to enhance throughput and reliability of
communication systems. Conventional MIMO communication
systems are often classified as closed-loop or open-loop.
In open-loop systems, channel state information (CSI) is only
available at the receiver, while in closed-loop systems, the
transmitter also has access to CSI (either through explicit feed-
back or via channel reciprocity). Several approaches have been
used for both open-loop and closed-loop systems, including
maximum-likelihood detection, zero-forcing (ZF) precoding,
minimum mean-square-error (MMSE) equalization, space-
time block coding, and singular value decomposition (SVD)
with waterfilling [2, Chapter 11].

Recent years have witnessed a resurgence of interest in
machine-learning (ML) techniques for communication sys-
tems. Most work has focused on supervised learning for
specific functional blocks such as modulation recognition [3],
MIMO detection [4]–[7], MIMO channel estimation [8], and
channel decoding [9], [10]. These ML-based methods have led
to algorithms that often perform better or exhibit lower com-
plexity than model-based algorithms. In contrast to focusing
on specific functional blocks, end-to-end learning has been
proposed to optimize the transmitter and receiver jointly [11].
The workhorse of end-to-end learning is the autoencoder
(AE), which employs two neural networks (NNs) to encode
and decode messages into a learned latent representation
which passes through a physical communication channel. This
method has been successfully applied to a wide variety of
channels, including, e.g., linear wireless [12], [13], and non-
linear optical [14], [15] ones. In cases where no differentiable
channel model is available, a surrogate channel can first be
learned [16], [17] or the transmitter can be designed as a
reinforcement-learning agent [18], which can be trained even
with limited reward feedback [19].

In this paper, we consider the application of end-to-end
learning to MIMO systems assuming both point-to-point and
multi-user (MU) transmission scenarios. For these applica-
tions, there has been limited treatment of AEs. In [20], open-
loop and closed-loop MIMO were studied, leading to better
performance than the selected benchmark methods. In the
extension [21], finite quantization of the CSI was considered,
which was demonstrated to further improve performance under
some conditions. While [20], [21] have shown promising
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TABLE I

OVERVIEW OF THE CONSIDERED SCENARIOS, BEST-PERFORMING BASELINE SCHEMES, AND HIGH-LEVEL CONCLUSIONS IN THIS AND PREVIOUS
WORKS. (AE: AUTOENCODER, STBC: SPACE-TIME BLOCK CODE, SVD: SINGULAR VALUE DECOMPOSITION, GS: GEOMETRIC SHAPING)

performance of AE-based MIMO communication, the pro-
posed systems were trained under some nonstandard assump-
tions, specifically regarding CSI availability at the receiver and
power normalization at the transmitter, as explained in more
detail below. Besides [20], [21], MIMO AEs were also studied
in [23], [24] for the noncoherent case, where neither the
transmitter nor the receiver has access to CSI. Regarding MU
communication, the authors in [11] have shown that the AE
framework can be extended to include multiple transmitter–
receiver pairs. They considered a conventional Gaussian inter-
ference channel and showed that the learned communication
scheme achieves better performance than the selected time-
sharing baseline.

In this paper, we build on the approaches proposed in [11],
[20], [21] with the aim to better understand what performance
gains can be achieved by AE-based MIMO and MU systems
under more realistic training assumptions when compared to
fair benchmarks. To that end, the channel models considered
are assumed to be memoryless, as in [11], [20], [21]. More-
over, we also provide additional interpretations of the learned
communication schemes. A particular emphasis in this work is
placed on selecting baseline schemes with geometric shaping
(GS), see, e.g., [25]. Shaped modulation formats for Gaussian
channels are also readily available in open databases [26]. Our
main contributions in this work are as follows:

• For the MIMO systems in [20], [21], we analyze and eval-
uate the corresponding AEs under more standard training
assumptions. In particular, while CSI in [20], [21] was
assumed to be estimated at the receiver, it was not actually
used as a receiver input. Moreover, power normaliza-
tion was applied after the channel-matrix multiplication
(cf. [21, Eqs. (2), (3)]), which cannot be done in practical
systems. By contrast, our AEs always use the CSI as
an additional receiver input and power normalization is
performed prior to the channel. Additionally, reproducible
open-source implementations of our AEs and benchmark
schemes are also provided.1

• We then explain some of the performance gains obtained
by the trained AEs through the selection of improved
baseline schemes compared to [20], [21]. In particular,
for open-loop MIMO, we show that previously observed

1The complete source code to reproduce all results in this paper is available
at https://github.com/JSChalmers/DeepLearning_MIMO.git

performance gains can be partially attributed to an
implicit GS of the underlying signal constellation. For
closed-loop MIMO, we use an SVD-based benchmark
similar to [20], [21], but augment it through GS as well
as additional bit and power allocation. This closes the
performance gap to the AE, indicating that the ML-based
solution learns to implement similar functionalities in a
data-driven fashion.

• We then propose and analyze a novel AE system for a
MIMO broadcast scenario, where a single multi-antenna
transmitter sends information to multiple single-antenna
users.2 For such a system, we extend the training method-
ology in [21] to account for the joint loss function of all
users. The resulting AE is shown to provide performance
between nonlinear vector-perturbation precoding [27] and
conventional transmitter ZF, significantly outperforming
the latter over a wide range of signal-to-noise ratios
(SNRs). In parallel to our work, a similar scenario was
also recently considered in [22]. This work is discussed
in more detail in Sec. V-C.

• Lastly, we revisit the interference-channel scenario in [11]
where significant performance gains were demonstrated
by AE-based communication compared to the considered
time-sharing baseline scheme. After augmenting the time-
sharing scheme with a geometrically-shaped signal con-
stellation, we find that the improved baseline performs
similarly to (and in some cases even better than) the
AE. The improved baseline also allows us to provide
an additional theoretical interpretation of the learned AE
scheme in terms of a “rotated” time-sharing scheme.

An overview of the considered scenarios including the best-
performing baseline schemes and high-level conclusions can
be found in Table I. We note that the underlying assumptions
for each scenario (e.g., the fading model or the number
of transmit/receive antennas) are consistent with prior work,
which allows us to make direct comparisons to the correspond-
ing results. We comment on some of the limitations of these
assumptions in Sec. VII.

The remainder of the paper is structured as follows.
In Sec. II, a brief introduction to AE-based communication
is given. The four scenarios listed in Table I are then studied
in Secs. III (open-loop MIMO), IV (closed-loop MIMO),

2This scenario was suggested as a possible extension in [21, Sec. V].
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V (MIMO broadcast), and VI (interference channel), where
each section contains a detailed description of the baseline
scheme(s), AE implementation, as well as numerical results
and a discussion. Finally, the paper is concluded in Sec. VII.

Notation: Z, R, and C denote the sets of integers, real
numbers, and complex numbers, respectively. We use boldface
letters to denote vectors and matrices (e.g., x and A). (·)T and
(·)H denote transpose and conjugate transpose, respectively.
For a vector x = [x1, . . . , xn]T, [x]i = xi returns the
i-th element of x, ‖x‖2 =

∑n
i=1 |xi|2 denotes the squared

Euclidean norm, and diag(x) is the matrix whose diagonal
entries are the elements of x. A matrix X is converted
to a vector by stacking the columns, which is denoted by
vec(X). In is the n×n identity matrix. [a, b]M is the M -fold
Cartesian product of the interval [a, b]. CN (x; μ,Σ) denotes
the distribution of a proper complex Gaussian random vector
with mean μ and covariance matrix Σ, evaluated at x (x may
be omitted to represent the entire distribution). Lastly, E{·}
denotes expected value.

II. AUTOENCODER-BASED COMMUNICATION SYSTEMS

In this section, we start by briefly reviewing AE-based
communication assuming transmission over the memoryless
(complex-valued) additive white Gaussian noise (AWGN)
channel

yk = xk + nk, (1)

where xk, yk ∈ CNB are the channel input and output
vector in the k-th transmission block, NB denotes the number
of channel uses per block, and nk ∼ CN (0, N0INB ) is
independent and identically distributed (i.i.d.) Gaussian noise.
The specific AE implementations for the considered MIMO
and MU scenarios are then described in detail in the following
sections.

A. Transmitter and Receiver Design

AE-based end-to-end learning was originally proposed
in [11]. The general idea is to reinterpret the design of a
communication system as a reconstruction task that jointly
optimizes parameterized transmitters and receivers. To that
end, the transceiver for the AWGN channel (1) can be imple-
mented by a pair of NNs fτ : M → CNB and fρ : CNB →
[0, 1]M , where M = {1, 2, . . . , M} is the message set and
τ and ρ are the transmitter and receiver NN parameters,
respectively. More precisely, a message mk ∈ M is first
encoded as an M -dimensional “one-hot” vector, where the
mk-th element is 1 and all the others are 0. This vector is
then used as the input to the transmitter NN.3 The NN is
assumed to have 2NB output neurons, which form the real and
imaginary part of the unnormalized transmit vector denoted by
x̃k = f̃τ (mk) ∈ CNB . The average transmit power is defined
as PT = E{‖xk‖2}/NB and enforced by a normalization layer
such as

xk =
x̃k

√
NBPT√

1
M

∑M
i=1 ‖f̃τ (i)‖2

, (2)

3In principle, other message encodings can also be used, see [11] for details,
which are particularly important for large message sets.

where xk = fτ (mk) denotes the entire transmitter mapping.
The vector xk is then sent over the channel (1) and the
receiver NN processes the received vector yk by generating
an M -dimensional probability vector qk = fρ(yk), where the
components of qk can be interpreted as the estimated posterior
probabilities of the messages. Finally, the transmitted message
is estimated according to m̂k = arg maxm[qk]m.

B. End-to-End Training Procedure

To optimize the transmitter and receiver parameters, it is
important to have a suitable optimization criterion. Due to the
fact that optimization relies on the empirical computation of
gradients, a criterion like block error rate (BLER) Pr{m̂k �=
mk} cannot be used directly. Instead, a commonly used
criterion is the categorical cross-entropy loss function [11]
defined by

JCE(τ, ρ) = −E{log[fρ(yk)]mk
}, (3)

where the dependence of JCE(τ, ρ) on τ is implicit through
the distribution of the channel output yk, which is a function
of the channel input fτ (mk). This loss function is also adopted
for all scenarios in this paper, either directly or in the form
of a weighted average (for cases involving multiple users),
as explained in detail below. In practice, JCE is usually
approximated via Monte Carlo estimation. More specifically,
a batch (or minibatch) of B samples is randomly chosen in
each gradient step and JCE is approximated according to

ĴCE = − 1
B

B∑
k=1

log[fρ(yk)]mk
. (4)

Optimization of the NNs can be performed by minimizing ĴCE

through the widely used Adam optimizer [28], or a variety of
similar stochastic gradient descent optimizers.

III. OPEN-LOOP MIMO

In this section, we consider an open-loop MIMO system
where a transmitter with NT antennas sends sequences of
messages to a transmitter with NR antennas. We note that
for all scenarios in this paper, the information rate is always
assumed to be fixed and forward error correcting coding is not
considered.

A. Background and Baseline Schemes

The channel matrix at discrete time k is denoted by Hk ∈
CNR×NT . The channel is drawn from a stationary distribution
and is assumed to be block fading with duration NB ≥ NT .
In open-loop systems, CSI is available at the receiver but
not at the transmitter. Conventional transmit approaches for
open-loop MIMO systems include space-time block codes
(STBCs) [29]–[31], which are described next.

The transmitter generates L messages, maps each message
to a data symbol sk,l ∈ Ω from a complex signal constellation
Ω ⊂ C, and then encodes sk = [sk,1, . . . , sk,L]T using
a STBC with rate L/NB ≤ 1. The resulting NB coded
vectors of length NT are denoted by Xk = [xk,1, . . . , xk,NB ],
with the property that E{XH

k Xk} = PT INB , where PT is
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Fig. 1. Open-loop MIMO channel AE, where the transmitter learns a rate
L/NB code without CSI, while the receiver learns a decoder in the presence
of CSI. The channel is drawn i.i.d. from the underlying distribution.

the total average transmit power, summed over all transmit
antennas. If each of the L complex data symbols corresponds
to log2(M) bits (i.e., one message), then the total bit rate is
r = L log2(M)/NB . The receiver observes

Y k = HkXk + Nk, (5)

where vec(Nk) ∼ CN (0, N0INRNB ) is i.i.d. Gaussian noise.
The receiver then applies maximum-likelihood detection to
Y k = [yk,1, . . . , yk,NB

] according to

ŝk = arg min
sk∈ΩL

‖vec(Y k − HkXk)‖2, (6)

which can be achieved through low-complexity linear process-
ing [31]. Other (less complex) receiver approaches for open-
loop MIMO include ZF and MMSE detection, which are not
considered here as they are suboptimal.

In this paper, we restrict ourselves to the Alamouti
STBC [29], where NT = 2, NB = 2, L = 2, with r =
log2(M). As an example, the Alamouti STBC for NR = 1 is
defined by the mapping

xk,1 = [sk,1, sk,2]T, (7)

xk,2 = [−s∗k,2, s
∗
k,1]

T. (8)

At the receiver, one may first form a combination of the two
received symbols Y k = [yk,1, yk,2] according to

s̃k,1 = h∗
k,1yk,1 + hk,2y

∗
k,2, (9)

s̃k,2 = h∗
k,2yk,1 − hk,1y

∗
k,2, (10)

where Hk = [hk,1, hk,2] is the 1 × 2 channel matrix in this
case. An optimal decision can then be made separately based
on s̃k,1 and s̃k,2.

B. Autoencoder Design and Training

For an open-loop MIMO system with CSI available to
the receiver, the AE implementation is visualized in Fig. 1.
The transmitter fτ : ML → CNT ×NB maps L consecutive
messages mk = [m1, . . . , mL]T ∈ ML to NB coded vectors
according to

Xk = [xk,1, . . . , xk,NB ] = fτ (mk), (11)

where xk,p, p = 1, . . . , NB , is a column vector of
length NT . An average power constraint according to∑NB

p=1 E{‖xk,p‖2} = NBPT is enforced through a nor-
malization layer similar to (2). Inside fτ (·), an encoding
of mk to an ML-dimensional one-hot vector is used. The
receiver fρ : CNR×NB × CNR×NT → [0, 1]M

L

observes

TABLE II

NN PARAMETERS FOR (I) OPEN-LOOP MIMO, (II) CLOSED-LOOP MIMO,
(III) MIMO BROADCAST, AND (IV) INTERFERENCE CHANNEL

TABLE III

TRAINING PARAMETERS FOR (I) OPEN-LOOP MIMO, (II) CLOSED-LOOP

MIMO, (III) MIMO BROADCAST, AND (IV) INTERFERENCE CHANNEL

Y k = [yk,1, · · ·yk,NB
] as in (5) and generates a probability

vector qk ∈ [0, 1]M
L

according to

qk = fρ(Y k, Hk), (12)

in which both the CSI Hk and the observation matrix Y k are
provided to the receiver. In our implementation, the CSI is first
converted to a real-valued vector of length 2NRNT and then
concatenated to the observation matrix, which is also converted
to a real-valued vector. Finally, an estimate of the transmitted
message vector m̂k can be obtained based on argmaxm[qk]m
by inverting the one-hot encoding.

C. Numerical Results and Discussion

The channel is assumed to be Rayleigh fading,
i.e., vec(Hk) ∼ CN (0, INRNT ). The system performance
is measured in terms of the BLER = Pr{m̂k �= mk} as
a function of the average SNR = PT /(NT N0). We use
the parameters NT = 2, NR = 1, NB = 2, L = 2, and
M ∈ {4, 16}. In this paper, all AEs are implemented as
multi-layer fully-connected NNs, where the rectified linear
unit (ReLU) is chosen as the activation function. To optimize
the number of hidden layers and the number of neurons per
layer, several AEs with different sizes are trained for each of
the considered scenarios, and we then choose the AEs with
the best performance. The resulting NN parameters for all
scenarios are summarized in Table II.4 Moreover, all AEs

4We remark that the NN parameters used in this paper are not guaranteed
to be fully optimal, though further optimization of the NN parameters are not
expected to improve the AE performance significantly.
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Fig. 2. BLER of the open-loop MIMO AE and the baseline scheme
consisting of standard M -QAM signal constellations, an Alamouti STBC,
and a maximum-likelihood receiver. The improved baselines for M = 16
use geometrically-shaped signal constellations in two and four dimensions,
respectively.

are trained by using the Adam optimizer [28], where the
learning rate, batch size, and the number of gradient steps
are summarized in Table III. In particular, i.i.d. training
samples are randomly generated in each training iteration,
and the total number of samples used for training each of the
considered AEs is B × G, where G denotes the number of
gradient steps. For the performance evaluation, independent
testing data are continuously generated until at least 5 × 105

errors are counted for each considered SNR.
Fig. 2 shows the achieved BLER over a range of SNRs

(red triangles). As a reference, the performance of the baseline
Alamouti scheme with M -QAM constellations is also shown
(blue squares). For M = 4, the AE achieves very similar
performance to the baseline scheme, indicating that the com-
bination of a QPSK constellation and Alamouti STBC is near-
optimal in this case. For M = 16, the AE outperforms the
baseline scheme at medium-to-high SNRs by about 0.6 dB
when standard 16-QAM is used as the signal constellation.
In order to improve the baseline for M = 16, we also used two
geometrically-shaped (GS) signal constellations, which were
obtained by training a standard AE over an AWGN channel.5

The first constellation has 16 points in two dimensions and
is shown in the inset figure in Fig. 2. Its performance sits
approximately halfway between the AE and the STBC with
16-QAM. The second constellation has M2 = 256 points in
four dimensions. In this case, the constellation is first mapped
to sk = [sk,1, sk,2]T, after which the standard Alamouti code
can be applied. When this four-dimensional constellation is
used instead, the baseline scheme has essentially the same
performance as the AE-based approach.6

5To obtain each of the GS signal constellations, we trained several pairs of
AEs over the AWGN channel at different SNRs and then chose the one with
the best performance.

6Note that the four-dimensional format does not necessarily admit a low-
complexity detection separately based on s̃k,1 and s̃k,2. In our implementa-
tion, the decoding is instead performed using (6), where the optimization is
over all 256 constellation points.

Fig. 3. Learned transmitted symbols of the open-loop MIMO AE for M = 4.
(a) first antenna at time slot 1, (b) second antenna at time slot 1, (c) first
antenna at time slot 2 and (d) second antenna at time slot 2. Constellation
points for 4 out of 16 messages are highlighted with colored markers.

The results presented here do not confirm the preliminary
results presented in [21], where it was found that the AE
outperforms the Alamouti scheme at high SNR. One potential
reason for this discrepancy could be the different power
normalization that is used in [21] after applying the channel
matrix (cf. [21, Eq. (2)]). Instead, our results indicate that
the AE learns to perform a joint optimization over the signal
constellation and STBC, where the AE recovers the well-
known Alamouti code for the considered scenario. To further
support this observation, Fig. 3 visualizes the learned trans-
mitted symbols for M = 4 after applying a 2-dimensional
rotation to the symbols. Particularly, the constellation points
for 4 out of ML = 16 individual messages are highlighted
by different markers. From these plots, one can observe that
the learned constellation follows a very similar pattern as the
Alamouti scheme, in the sense that the symbols in the upper
left subplot (a) are symmetric with respect to the ones in the
lower right (d) subplot along the x-axis, while the symbols in
the upper right subplot (b) are symmetric with respect to the
ones in the lower left subplot (c) along the y-axis.

IV. CLOSED-LOOP MIMO

In closed-loop MIMO systems, the CSI is available at both
the transmitter and receiver. The most common approach in
this case is SVD-based transmission, which we describe in the
next subsection.

A. Background and Baseline Schemes

Both the transmitter and receiver compute the SVD

Hk = UkΣkV H
k , (13)
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Fig. 4. Closed-loop MIMO AE, in which both the transmitter and receiver
have access to CSI.

where Σk = diag[σk,1, . . . , σk,RH ], σk,1 ≥ σk,2 ≥ · · · ≥
σk,RH > 0 and RH is the rank of Hk. Correspondingly,
Uk ∈ CNR×RH and V k ∈ CNT×RH are truncated unitary
matrices. For each singular value σk,i, the transmitter chooses
a constellation Ωi from a set of available constellations, as well
as a transmit power PT,i ≥ 0. This selection can be based on
the total BLER according to

minimize
Ωi,PT,i

1 − ∏RH

i=1(1 − Pe(Ωi, γi)) (14a)

s.t.
∏RH

i=1|Ωk,i| = M, (14b)∑RH

i=1PT,i ≤ PT , (14c)

γi =
σ2

k,iPT,i

N0
, (14d)

where Pe(Ω, γ) is the symbol error probability of constellation
Ω under the specific SNR γ. Hence, the rate is fixed to
r = log2(M). The corresponding symbol vector sk =
[sk,0, sk,1, · · · , sk,RH ]T is precoded by V k, so that xk =
V ksk is sent over the channel, where E{‖xk‖2|Hk} = PT .
The receiver observes yk = Hkxk + nk and applies the
combiner UH

k , leading to the observation

ŷk = UH
k HkV ksk + UH

knk = Σksk + UHnk. (15)

Maximum-likelihood recovery of the transmitted messages is
straightforward since Σk is a diagonal matrix.

B. Autoencoder Design and Training

The AE for a closed-loop MIMO system is implemented
as shown in Fig. 4. To provide the transmitter with CSI, the
corresponding NN is of the form fτ : M × CNR×NT →
CNT×1, yielding complex transmit vectors xk = fτ (mk, Hk).
As before, a one-hot encoding is used to map the message
mk to a vector of length M , which is then concatenated with
the vectorized real and imaginary parts of the channel matrix.
To enforce the power constraint E{‖xk‖2|Hk} = PT , the
normalization layer is defined by

xk =
x̃k

√
PT√

1
M

∑M
i=1 ‖f̃τ (i, Hk)‖2

, (16)

where x̃k = f̃τ (mk, Hk) is the unnormalized NN output.
Thus, even though xk is a function of the (random) channel
realization Hk, the expectation E{‖xk‖2|Hk} is performed
only over the messages. This ensures that the AE output is
always normalized, even if the actual channel distribution
deviates from the distribution used for training.

Finally, the receiver fρ : CNR×1 × CNR×NT → [0, 1]M

observes yk = Hkxk + nk and, similarly to the open-
loop MIMO case, the transmitted message is estimated as

Fig. 5. BLER of the closed-loop MIMO AE for M = 16 and the baseline
scheme consisting of a QPSK constellation, SVD-based signal processing, and
a maximum-likelihood receiver. The improved baseline uses bit and power
allocation.

m̂k = argmaxm[qk]m, where qk = fρ(yk, Hk) is a prob-
ability vector obtained in the same way as in (12).

To generate a minibatch (of size B) for the Monte Carlo
approximation of the cross-entropy loss (3), we first randomly
generate B/M i.i.d. channel realizations. Then, for each
channel realization all distinct M messages are assumed to be
transmitted. Compared to the approach of generating random
messages and channel realizations for each data sample, this
has the advantage that the normalization factor in the denomi-
nator of (16) can be applied to M messages at once and does
not need to be computed for every data sample in the batch.
The same approach is used to generate the testing data.

C. Numerical Results and Discussion

We consider Rayleigh fading and use the parameters
NT = 2, NR = 2, and M = 16, corresponding to rate
r = 4. In this case, BLER = Pr{m̂k �= mk} and SNR =
PT /(NT N0). The NN and training parameters are shown in
Tabs. II and III, respectively. Compared to the open-loop case,
we noticed that more data samples are required for converging
to a good solution. Moreover, varying the SNR throughout the
training was found to improve performance, which was not
observed for the open-loop case. In particular, we train the
AE consecutively at 5 dB → 10 dB → 15 dB → 12 dB, where
each SNR is kept fixed for 5 × 105 iterations, giving 2 × 106

training iterations in total.
The BLER achieved by the trained AE is shown in Fig. 5

(red triangles). As a baseline, we simulate the performance of
the SVD-based approach, in which the 2 × 2 MIMO channel
is parallelized into two subchannels. We first consider the
same baseline as in [21], where equal power is used at each
antenna and both streams use QPSK modulation (blue squares
in Fig. 5). Similarly to what was observed in [21], the AE
achieves significantly better performance than the SVD-based
approach with QPSK and equal power allocation. However,
depending on the channel realization, the two individual sub-
channels will have different link quality, and bit and power
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Fig. 6. BLER for the closed-loop MIMO system at SNR = 12 dB over
channel matrices with fixed singular values (without retraining). The value of
the second singular value is σk,2 = 0.5. The dotted lines correspond to the
SVD-based baseline with fixed bit allocation for the two parallel channels.

allocation are usually used to improve the overall system
performance. To that end, an improved baseline scheme was
simulated by solving (14) using exhaustive search assum-
ing that the set of available signal constellations is BPSK,
QPSK, c2_8 [26], and c2_16 [26], where the latter two are
geometrically-shaped 2-dimensional constellations with 8 and
16 points, respectively.7 As can be seen in Fig. 5, this improved
baseline provides slightly better BLER than the AE at low
SNR. At high SNR, the baseline significantly outperforms the
AE, which exhibits an error floor between BLERs of 10−4 and
10−5. This error floor is caused by the fact that the transmitter
NN takes the channel as an input. Indeed, depending on the
particular channel realization, we noticed that the transmitter
NN sometimes produces a signal constellation that has very
poor performance. While such outliers are rare, they dominate
the average performance at very high SNR. We also note that
the error floor can be lowered by retraining the AE at a higher
SNR, but this may come at the expense of some performance
loss in the low SNR regime.

The above results indicate that the closed-loop MIMO
AE learns to implicitly perform a combination of GS, bit
allocation, and power allocation. In fact, it is insightful to
further examine the performance of the trained AE assuming
that the singular values of the channel matrix remain constant.
To evaluate the AE, channel matrices can be generated by
using random unitary matrices for Uk and V k in (13). Fig. 6
shows the resulting AE performance (without any retraining)
as a function of the first singular value σk,1, where the second
singular value is σk,2 = 0.5. It can be seen that the AE
actually outperforms the SVD-based baseline in the range
0.7 ≤ σk,1 ≤ 1.2, even when bit and power allocation are
used.

To further improve the SVD-based baseline, we also trained
a standard AE directly for the observation model (15) assum-
ing fixed singular values, according to the methodology in

7Rectangular 8-QAM and 16-QAM were used in [32] which give slightly
worse performance.

Sec. II. This essentially provides optimized 4-dimensional
signal constellations over two parallel AWGN channels with
different (but fixed) SNRs. The resulting performance is shown
in Fig. 6 by the black markers, where the optimization
is performed separately for each (σk,1, σk,2) with σk,1 ∈
{0.5, 0.6, . . . , 1.4} and σk,2 = 0.5. This approach provides
the best performance among all considered schemes. However,
it has the downside that a separate optimization is required for
each pair of singular values. Nonetheless, this approach does
provide additional insight into why the AE can outperform
the SVD-based baseline with bit and power allocation for
some channel configurations. In particular, the suboptimality
of the latter scheme stems from the fact that the two parallel
subchannels are treated independently, whereas the AE treats
all available signal dimensions in a joint manner.

V. MIMO BROADCAST CHANNEL

In this section, we consider a downlink MIMO system
where one transmitter with NT antennas broadcasts messages
to NR receivers each with one antenna, where NT ≥ NR.
This scenario is sometimes also referred to as the multiple-
input single-output broadcast channel [33].

A. Background and Baseline Schemes

It is assumed that local CSI hT
k,i ∈ C1×NT is available

at each receiver i = 1, . . . , NR, whereas the transmitter
has knowledge of the full CSI Hk = [hk,1, . . . , hk,NR ]T.
To manage the interference among different users, various
algorithms have been proposed [27], [33]–[35]. In this paper,
we consider both a linear precoding scheme referred to as
transmitter ZF and a nonlinear vector-perturbation scheme.
Both schemes are described next.

For linear precoding, the transmitter first maps NR mes-
sages mk,1, . . . , mk,NR to symbols sk,1, . . . , sk,NR . A pre-
coding matrix W k ∈ CNT ×NR is then used to encode
sk � [sk,1, · · · , sk,NR ]T according to x̃k = W ksk. After-
wards, a normalized version xk = αx̃k is sent over the
channel to ensure that E{‖xk‖2|Hk} = PT , where α �√

PT /E{‖x̃k‖2|Hk} and the expectation is with respect to
the messages of all users. The scaling factor α is assumed to
be known to all receivers. Each of the symbols is assumed
to carry log2(M) bits and, consequently, the sum-rate of the
system is r = NR log2(M). The precoding matrix is of the
form

W k = HH
k (HkHH

k + βINR)−1, (17)

where β ∈ R is a regularization parameter. For ZF, we have
β = 0 and W k then corresponds to the pseudoinverse of
the channel matrix. In this case, each user i observes yk,i =
hT

k,ixk+nk,i = αsk,i+nk,i, from which sk,i can be recovered
with low-complexity maximum-likelihood detection.

We also consider the nonlinear precoder proposed in [27].
Compared to ZF, the transmitter computes the unnormalized
transmit vector according to x̃k = W k(sk + p∗

k), where W k

is again defined by (17) (potentially with β > 0),

p∗
k = arg min

p′∈ACZNR

‖W k(sk + p′)‖2 (18)
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Fig. 7. MIMO broadcast AE, in which the transmitter encodes messages for
the individual users, based on full CSI, while each user observes only a local
measurement and local CSI.

is a perturbation vector from the scaled complex integer lattice
CZNR � {x + jy : x, y ∈ ZNR}, and the scaling factor A
depends on the modulation format. Each receiver first applies
a modulo operation zk,i = cmodA(yk,i/α) ∈ C, where
cmodA(xr + jxi) = modA(xr) + jmodA(xi) and

modA(x) � x−A�(x + A/2)/A� (19)

for xr , xi, x ∈ R. Afterwards, one can again apply low-
complexity maximum-likelihood detection based on zk,i.

B. Autoencoder Design and Training

The proposed AE implementation for the MIMO broadcast
channel is visualized in Fig. 7. The transmitter fτ : MNR ×
C

NR×NT → C
NT ×1 maps individual messages mk,i ∈ M for

each user i = 1, · · · , NR to NT complex symbols according to
xk = fτ (mk, Hk), where mk = [mk,1, · · · , mk,NR ]T. One-
hot encoding of mk to a vector of length MNR is applied. The
power constraint E{‖xk‖2|Hk} = PT is enforced through
a normalization layer similar to (16), where the sum in the
denominator runs over the messages of all users.

The NR receivers are implemented as NR individual NNs
of the form fρi : C×C

NT → [0, 1]M . In particular, each user
i observes yk,i = hT

k,ixk + nk,i and generates a probability
vector qk,i ∈ [0, 1]M according to

qk,i = fρi(yk,i, hk,i), (20)

where the receiver network is provided with its observation
yk,i as well as the local CSI hk,i. Then, the transmitted mes-
sage for the i-th user is estimated as m̂k,i = argmaxm[qk,i]m.

In order to train the MIMO broadcast AE, the cross-entropy
loss function defined in (3) cannot be used directly, as we
now have several receivers that need to be optimized. Instead,
we apply a joint loss function

JCE(τ, ρ1, · · · , ρNR) = − 1
NR

NR∑
i=1

E
{
log[fρi(yk,i)]mk,i

}
,(21)

which can again be optimized using the Adam optimizer.

C. Numerical Results and Discussion

As before, we consider Rayleigh fading and use the para-
meters NT = 2, NR = 2, and M = 4, corresponding
to a sum-rate r = 4. Compared to the previous two cases,
there are now three different NNs: one corresponding to the
transmitter and two to the individual users, where the same
NN architecture is used for both users, see Table II. For
simplicity, it is assumed that both receiver NNs share the same

Fig. 8. BLER of the MIMO broadcast AE for M = 4, NT = 2 transmit
antennas, and NR = 2 users. Both baseline schemes use QPSK modulation.

parameters, i.e., ρ1 = ρ2. Training is performed according to
the parameters shown in Table III. Similarly to the closed-loop
MIMO case, we found that it is beneficial to vary the SNR
throughout the training.

Fig. 8 shows the achieved BLER Pr{m̂k,1 �= mk,1} for
the first user of the MIMO broadcast AE (red triangles) as a
function of SNR = PT /(NT N0), where the BLER for the sec-
ond user is nearly identical and omitted. The performance of
the ZF baseline approach with QPSK modulation, i.e., sk,i ∈
{±1± j}/2, is also shown (blue squares). It can be seen that
the AE-based broadcast scheme achieves significantly better
performance than the ZF approach for SNRs above 11 dB.
For example, a gain of around 6 dB is achieved at a BLER
of 10−3. Similarly to the closed-loop MIMO case, the AE
exhibits an error floor which is affected by the training SNR
and stems from the fact that the channel realization is taken
is an input to the transmitter NN.

As a second baseline, we simulate the performance of the
nonlinear vector-perturbation precoder. For QPSK modulation
sk,i ∈ {±1 ± j}/2, the scaling factor is A = 2 [27] and (18)
is solved approximately through exhaustive search, where the
search space is restricted by replacing the entire integer lattice
ZNR with a finite set {−5,−4, . . . , 4, 5}NR . The regularization
parameter in (17) is set to β = ξ/SNR, where ξ = 0.6
was numerically optimized using a grid search. The resulting
performance is shown by the solid green line in Fig. 8. It can
be seen that this nonlinear precoder outperforms the other two
approaches for all SNRs. Thus, our results show that the AE
does not outperform a state-of-the-art baseline scheme for the
considered MIMO broadcast scenario. However, we note that
that the complexity associated with solving (18) is significant.
Thus, the AE could potentially serve as a lower-complexity
alternative, at the expense of some performance loss.

In parallel to our work, a related AE-based approach for
the MIMO broadcast channel was recently proposed in [22].
In this work, it is shown that the considered AE achieves sig-
nificant performance advantages over Tomlinson–Harashima
precoding [36], [37] which is used as a benchmark. How-
ever, vector-perturbation precoding is known to outperform
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Fig. 9. Interference channel AEs, where two users communicate over the
same physical channel.

Tomlinson–Harashima precoding, see, e.g., [38] for a compar-
ison. Moreover, different block lengths are used in [22] for the
AE implementation and the benchmark precoder. We also note
that the AE design in [22] is different from ours in the sense
that CSI is not provided as an input to the transmitter NN.
Instead, the AE is trained and evaluated for the same fixed
channel realization. As stated in [22], this has the downside
that the AE needs to be retrained if the channel changes.

VI. INTERFERENCE CHANNEL

The last scenario we consider is the Gaussian interference
channel, where N transmitter–receiver pairs, each having a
single antenna, communicate over the same physical channel.

A. Background and Baseline Schemes

The interference channel is modeled by

Y k = HkXk + Nk, (22)

where Hk ∈ CN×N is the channel matrix, Xk =
[xk,1, . . . , xk,N ]T, Y k = [yk,1, . . . , yk,N ]T, and xk,i, yk,i ∈
CNB are, respectively, the transmitted and received sym-
bol vectors of the i-th user. As before, vec(Nk) ∼
CN (0, N0INNB) is i.i.d. Gaussian noise.

As noted in [11], the optimal signaling scheme for the
interference channel is a long-standing research problem.
Existing approaches include, for example, superposition cod-
ing with private and common codebooks [39] or interference
alignment [40]. In this paper, we restrict ourselves to the same
scenario as considered in [11], where [Hk]i,j = 1 for all
i, j ∈ {1, · · · , N}. Moreover, it is assumed that all users
have the same average power constraint E{‖xk,i‖2} = NBPT

for i = 1, . . . , N . A simple baseline scheme in this case
is to use a time-sharing approach, where the transmitters
send their messages in a round-robin fashion while all other
transmitters remain silent. This effectively orthogonalizes the
interference channel into N parallel and independent Gaussian
channels. This baseline scheme was also considered in [11] to
benchmark the AE.

B. Autoencoder Design and Training

In the following, all users have the same message set M.
The generalization to different message sets for each user is
straightforward. Each user maps their message mk,i ∈ M to
transmitted symbols via a transmitter NN fτi : M → CNB

according to

xk,i = fτi(mk,i), (23)

Fig. 10. BLER for the interference-channel AEs with N = 2, NB = 4,
M = 256. The baseline corresponds to time sharing with three different
modulation formats.

where we enforce E{‖xk,i‖2} = NBPT through a stan-
dard normalization layer, similar to (2). After all users have
transmitted their symbols over the channel (22), the receivers
process the received symbol vectors yk,i via an NN by gen-
erating M -dimensional probability vectors qk,i = fρi(yk,i)
for i = 1, . . . , N . The loss function for user i is the expected
cross-entropy

Ji(θ) = −E
{
log[fρi(yk,i)]mk,i

}
, (24)

where we use θ = {τ1, . . . , τN , ρ1, . . . , ρN} to denote all
transmitter and receiver NN parameters. Note that the expec-
tation in (24) is over the channel noise and the transmitted
messages of all users.

To optimize the parameters θ, a weighted average of the
individual losses in (24) for i = 1, . . . , N can be used.
To encourage equal system performance among users, the
weights can further be chosen dynamically in each gradient-
descent iteration, where the weight for user i is set propor-
tionally to the corresponding per-user loss in the previous
iteration [11]. For example, the common loss function for
N = 2 users in iteration t is JCE = αtJ1 + (1 − αt)J2,
where

αt+1 =
Ĵ1(θt)

Ĵ1(θt) + Ĵ2(θt)
, t > 0, (25)

with α0 = 0.5 and we recall that Ĵi refers to the Monte Carlo
approximation of the expectation in (24). A block diagram of
the AE setup for the interference channel is shown in Fig. 9.

C. Numerical Results and Discussion

We consider the case where N = 2 users transmit over
NB = 4 complex channel uses and each user has a message
set of cardinality M = 256. This corresponds to an uncoded
transmission rate of r = log2(M)/NB = 8/4 = 2 bits per
channel use (bpcu) and user. The NN parameters are identical
to the ones in [11, Table IV] and also shown in Table II. Note
that for this setup, no parameters are shared between any of
the four NNs. Training is performed using the Adam optimizer

Authorized licensed use limited to: KIT Library. Downloaded on November 23,2022 at 13:44:45 UTC from IEEE Xplore.  Restrictions apply. 



7296 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 9, SEPTEMBER 2022

Fig. 11. Top: learned constellations for the interference channel
(256 points per user), where different colors correspond to different users
(cf. [11, Fig. 7 (d)]). Bottom: the same constellations after applying an
optimized rotation matrix (see the appendix for details).

with learning rate 0.001 at Eb/N0 = PT /(rN0) = 11 dB
(cf. Table III). We use the normalized SNR Eb/N0 for this
scenario to make it easier to compare to prior work in [11].

Fig. 10 shows the performance of the trained AE (red
triangles) in terms of the per-user BLER Pr{m̂k,i �= mk,i}
for the first user i = 1, where the performance of the second
user is essentially the same and omitted from the plot. As a
comparison, the time-sharing baseline is shown, where the
two users alternate 16-QAM transmission (blue squares) which
again gives a rate of r = 2 bpcu and user.8 It can be seen that
the AE outperforms this baseline by around 1 dB at a BLER
of 10−3.

The above results are consistent with the ones reported in
[11, Fig. 6]. However, no explanation for the performance
gain is provided in [11], where it is noted that the obtained
results are “difficult to interpret”. In the following, we aim to
provide an explanation for the observed gains. First, we note
that the baseline scheme can be improved by performing GS.
In particular, since the two AEs jointly transmit messages
over NB = 4 channel uses, a time-sharing scheme with 2
users may utilize NB/2 = 2 complex channel uses, i.e., 4
real dimensions. In other words, rather than time-sharing
16-QAM, a better baseline scheme is obtained by time-sharing
an optimized 4-dimensional modulation format. To that end,
we trained a conventional AE for a standard AWGN channel
with M = 256 and NB = 2, as explained in Sec. II.
The performance when using the resulting AE in a time-
sharing fashion is shown in Fig. 10 by the solid green line.
Interestingly, this baseline gives the same BLER as the AE
for the interference channel.

Indeed, we argue that this is not a coincidence and that the
scheme learned by the two interference-channel AEs corre-
sponds, in fact, to time sharing, albeit in a rotated reference
frame. To see this, we plot the learned signal constellations
for the two users in the top of Fig. 11 (which is similar
to [11, Fig. 7 (d)]). As noted in [11], the learned constel-
lation clouds resemble ellipses with orthogonal major axes

8These two cases are referred to as AE(4,8) and TS(4,8) in [11, Fig. 6].

and varying focal distances. We noticed that these elliptic
shapes can be reproduced by applying a random 8-dimensional
rotation matrix to the time-sharing AE scheme. Moreover, it is
possible to find a rotation matrix that de-rotates the learned
constellations in the top of Fig. 11 such that essentially all
signal energy for the two users is confined to orthogonal time
slots. The resulting constellations are shown in the bottom of
Fig. 11. The details about how to obtain the underlying rotation
matrix are given in the appendix.

Lastly, we note that optimized modulation formats in 4
dimensions have been studied before (see, e.g., [41]) and the
baseline scheme can be further improved. The format with
M = 256 points in [41] corresponds to the intersection of a
4-dimensional lattice and a spherical bounding region. This
constellation is also available in [26] denoted by w4_256. Its
performance in a time-sharing scheme is shown by the dotted
green line in Fig. 10. It can be seen that the lattice-based
format outperforms all other schemes discussed so far, where
the gain is quite significant at high SNR. At this point, it is
important to stress that the cross-entropy minimization used
for training the AE does not necessarily minimize the BLER.
Instead, an AE trained with cross-entropy loss maximizes a
lower bound on the mutual information (MI), see, e.g., [14].
Indeed, it can be shown that the learned AE constellation for
the time-sharing scheme achieves a higher MI than the lattice-
based format w4_256 over the standard AWGN channel (1)
at high SNRs.

VII. CONCLUSION AND FUTURE WORK

In this work, we have evaluated several AE-based MIMO
and MU communication systems in order to quantify and
explain potential performance gains over fair benchmarks.
The systems under consideration were open-loop MIMO,
closed-loop MIMO, MIMO broadcast, and the interference
channel. For all cases, the AE provides optimized mappings
from messages to transmit vectors, as well as optimized
detectors. For open-loop and closed-loop MIMO, we have
shown that previously observed performance gains of the
AE compared to the baselines can be partially attributed to
geometric constellation shaping and optimized bit and power
allocation. For MIMO broadcast, we have proposed a novel
decentralized AE structure that performs close to nonlinear
vector-perturbation precoding and significantly outperforms
conventional ZF. Lastly, for the considered Gaussian inter-
ference channel, we have provided an interpretation of the
learned AE-based communication scheme, thereby explaining
the performance gains observed in prior work. In particular,
we have shown that the AE learns a “rotated” time-sharing
scheme.

In general, our work has shown that, for a wide vari-
ety of different scenarios, AE-based communication systems
have the potential of learning very good solutions without
a priori knowledge about complex mathematical tools or
communication-theoretic principles. On the other hand, our
work has also highlighted the fact that such systems do not
necessarily perform better than state-of-the-art benchmarks,
provided that the benchmarks are properly chosen. A particular
emphasis in this work was placed on selecting benchmarks
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that include known geometrically-shaped signal constellations,
many of which are available in open databases such as [26].
Compared to previous work, the improved baseline schemes
have allowed us to provide additional insights into AE-based
systems and, in some cases, full interpretations of the learned
communication schemes.

For future work, we believe that there are several important
aspects concerning the use of AEs which deserve further study:

• Channel Models: Similar to related prior work,
we have adopted memoryless channel models based on
i.i.d. Rayleigh fading and AWGN. However, real wireless
systems may follow a different fading model and suffer
from additional impairments such as memory effects or
nonlinearities caused by imperfect hardware. For such
systems, existing design approaches potentially operate
far from optimality and AE-based methods may provide
significant performance gains. However, the AE architec-
ture and training method would need to be appropriately
modified, e.g., using orthogonal frequency-division mul-
tiplexing (OFDM) in the case of memory effects.

• Training Complexity: The considered AEs require a rel-
atively large amount of training data, with large batch
sizes, in order to converge to a good solution. Improving
the convergence speed would allow for the exploration
of a larger parameter space, for example in terms of
the NN architecture, potentially leading to performance
improvements.

• Implementation Complexity: Another important aspect
is the computational complexity at runtime in practi-
cal implementations. While a thorough evaluation of
the implementation complexity (including the associated
performance–complexity trade-off) is beyond the scope
of this paper, we note that model-compression techniques
such as NN pruning can be used to significantly reduce
the number of computations (often without much loss in
performance).

• Scalability: With more transmit and receive antennas
and/or more users, the complexity scaling of the cor-
responding NNs (e.g., in terms of layers) is currently
unknown. Moreover, the employed one-hot encoding
scheme causes input and output sizes to grow expo-
nentially with the number of antennas and rate. This
scalability issue may become even more severe when
one considers dispersive channels in combination with
OFDM, leading to hundreds or thousands of parallel
channels. Alternative embeddings [42] or multi-hot
sparse categorical cross entropy could help alleviate the
latter issue. Both these issues affect training convergence
(due to more trainable parameters) and runtime compu-
tational complexity.

• Rate adaptation: The considered AEs have a fixed data
rate, which limits possibilities for rate adaptation. New
NN architectures are needed to provide rate-adaptive
transmission.

APPENDIX

To de-rotate the learned signal constellations of each user
for the interference channel in Sec. VI-C, we start by

constructing an overall n × n rotation matrix

R(θ) =
∏

i,j∈[n]
i<j

Gij(θij), (26)

where n =2NB, [n] � {1, 2, . . . , n}, Gij(θij) is a Givens
rotation matrix, and θ is a vector of length n(n − 1)/2 that
contains all parameters, i.e., all individual rotation angles θij .
Then, let Ru(θ), Rl(θ) ∈ Rn/2×n denote the upper and lower
half of R(θ) and define

X̃1(θ) = Rl(θ)X1, (27)

X̃2(θ) = Ru(θ)X2, (28)

where X1, X2 ∈ Rn×M are the learned AE signal constel-
lations, i.e., each column in X1 and X2 corresponds to one
constellation point for the first and second user, respectively.
Note that for the example in Sec. VI-C, we have n = 8
and M = 256. Finally, θ is optimized using conventional
stochastic gradient descent with loss function

J (θ) = ‖X̃1(θ)‖2 + ‖X̃2(θ)‖2 (29)

and learning rate 0.001. The individual angles of the Givens
rotation matrices are randomly initialized assuming a uniform
distribution over the interval [0, 2π]. Note that the optimization
outcome and the resulting rotation matrix are not unique
because the constellation of each user can be arbitrarily rotated
in 4 dimensions without affecting the loss (29).
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