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Abstract—The rapid technological advances of cellular tech-
nologies will revolutionize network automation in industrial
internet of things (IIoT). In this paper, we investigate the two-
timescale resource allocation problem in IIoT networks with
hybrid energy supply, where temporal variations of energy
harvesting (EH), electricity price, channel state, and data arrival
exhibit different granularity. The formulated problem consists of
energy management at a large timescale, as well as rate control,
channel selection, and power allocation at a small timescale. To
address this challenge, we develop an online solution to guarantee
bounded performance deviation with only causal information.
Specifically, Lyapunov optimization is leveraged to transform
the long-term stochastic optimization problem into a series of
short-term deterministic optimization problems. Then, a low-
complexity rate control algorithm is developed based on alternat-
ing direction method of multipliers (ADMM), which accelerates
the convergence speed via the decomposition-coordination ap-
proach. Next, the joint channel selection and power allocation
problem is transformed into a one-to-many matching problem,
and solved by the proposed price-based matching with quota
restriction. Finally, the proposed algorithm is verified through
simulations under various system configurations.

Index Terms—Automated network, IIoT, two-timescale re-
source allocation, Lyapunov optimization, one-to-many matching,
ADMM.

I. INTRODUCTION

A. Background and Motivation

A
Utomated networks rely on seamless integration of ad-

vanced self-optimized techniques to improve efficiency,

reliability, and operation economics for industrial internet of

things (IIoT) applications [1]. Fifth-generation (5G) cellular

technologies provide more resilient network infrastructure for

connecting massive IIoT devices. However, carbon dioxide

generated by powering cellular infrastructures puts tremendous

pressure on the sustainability of 5G-empowered IIoT net-

works. Faced with the urgent need of green cellular networks,
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researchers have focused on energy-saving strategies on both

data transmission side and energy supply side.

On data transmission side, network sleeping [2] and energy-

efficient resource allocation techniques [3] are widely men-

tioned, applied, and continuously improved. On energy supply

side, harvesting renewable energy such as solar and wind

energy is advocated to power base stations (BSs) [4]. However,

renewable energy sources with intermittent and fluctuating

characteristics have a large impact on reliable BS operation,

which may further affect quality of service (QoS) guarantees.

A more feasible approach is to utilize both unreliable renew-

able energy sources and reliable grid power in a complemen-

tary manner [5], [6]. In this sense, the coexistence of various

energy sources further complicates resource allocation in 5G-

empowered IIoT networks. There exist several challenges that

remain unsolved.

First, energy resource allocation and communication re-

source allocation are intertwined with each other, and the joint

optimization problem is NP-hard due to the coupling between

energy and communication domains. Second, energy resource

allocation and communication resource allocation have differ-

ent granularities. Generally, energy domain information such

as energy harvesting (EH) and electricity price changes in

a large timescale such as minutes [7], while communication

domain information such as channel state and data arrival

changes in a small timescale such as seconds or even mil-

liseconds [8]. Third, communication resource allocation with

long-term constraint involves the coupling among different

time slots as well as the coupling between different layers,

e.g., rate control in the network layer and power allocation

in the physical layer. Existing works on either single-layer

performance or short-term deterministic optimization cannot

be applied. Last but not least, the large-scale deployment

of IIoT devices brings complexity issues. Compared with

mobile devices and applications, IIoT devices are usually

constrained by limited physical space, energy, communication

and computing resources, and IIoT applications have stringent

requirements on operation delay and reliability. Therefore, it

is important to reduce complexity to cope with numerous

implementation constraints and strict operation demands.

The joint optimization of energy and communication re-

source allocation in renewable energy powered cellular net-

works has attracted intensive attentions [9]–[11]. Nevertheless,

these researches mainly target at single-timescale resource

allocation. There are some works taking different time gran-

ularities into consideration. In [12], Gong et al. studied the

timescale difference between energy arrival variation and

http://arxiv.org/abs/2203.12900v1
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channel fading, and proposed a low-complexity two-stage joint

power allocation and energy management optimization algo-

rithm based on Markov decision process (MDP) and dynamic

programming. In [13], Liu et al. investigated the minimization

of on-grid energy consumption from both the space and time

dimensions, and developed a low-complexity offline algorithm

based on non-causal information as well as several heuristic

online algorithms based on only causal information. However,

both [12] and [13] rely on the assumption that the uncertainties

follow some well-known probability distributions such as

Poisson distribution. They are not suitable for the scenario

where the practical probability distributions disagree with the

pre-assumed statistical models.

To facilitate joint optimization of energy and commu-

nication resource allocation under distribution free models,

Lyapunov optimization has been widely used to provide

bounded performance guarantees of resource allocation under

all possible realizations of uncertainties [14]. It has been

applied in wireless networks [15], hybrid energy powered

cellular networks [16], and relay cooperative networks [17],

etc. Nevertheless, the above-mentioned works mainly focus

on one-timescale stochastic models, and cannot be directly

applied to solve the two-timescale resource allocation problem

addressed in this paper. Moreover, they cannot well handle

the large-scale resource allocation problem with massive IIoT

devices. Alternating direction method of multipliers (ADMM)

enables low-complexity optimization [18]. However, it cannot

be directly applied for the two-timescale resource allocation

problem of IIoT due to the coupling between energy resource

allocation and communication resource allocation in different

timescales and layers.

B. Contribution

Motivated by these gaps, we propose a two-timescale re-

source allocation algorithm for 5G-empowered automated net-

works in IIoT with hybrid energy supply. The main objective

is to maximize the long-term network utility via the joint

optimization of communication and energy resource allocation

under dynamic EH, electricity price, channel state, data arrival,

as well as the long-term constraints of queue stability and

queuing delay. First, we establish both data and energy queues

in different timescales. The joint optimization problem is

formulated as a long-term reward-plus-penalty problem, in

which the network quality of experience (QoE) is taken as

the reward while the energy purchasing cost is taken as the

penalty. Then, the long-term problem is further converted to a

short-term deterministic problem and decomposed into several

subproblems in different timescales by leveraging Lyapunov

optimization. Next, by opportunistically minimizing the upper

bound of drift-minus-utility, the separated energy management,

rate control, channel selection and power allocation subprob-

lems are solved sequentially by using the proposed heurist en-

ergy scheduling algorithm, ADMM-based low complexity rate

control algorithm, and matching-based joint channel selection

and power allocation algorithm, respectively.

The main contributions are summarized as follows.

• Large-timescale energy management optimization under

dynamic EH and electricity price: The proposed algo-

rithm decouples the large-timescale energy management

optimization from the small-timescale communication re-

source allocation. The proposed heuristic energy schedul-

ing algorithm dynamically optimizes the utilization of

harvested energy and grid energy without requiring any

prior knowledge of future EH and electricity prices.

• Small-timescale joint optimization of rate control, chan-

nel selection, and power allocation: The proposed

ADMM-based low-complexity rate control algorithm de-

composes the large-scale optimization problem into a

series of subproblems with lower complexity and acceler-

ates the convergence speed via effective coordination of

subproblem solutions. The joint optimization of channel

selection and power control is transformed into a one-to-

many matching problem and solved by a proposed price-

based matching algorithm with quota restriction.

• Comprehensive theoretical analysis and performance val-

idation: We provide a comprehensive theoretical analysis

for the proposed algorithm in terms of optimality, con-

vergence, and complexity. Intensive simulation results are

conducted under different scenarios to demonstrate its

performance gains.

C. Organization

The rest of this paper is organized as follows. System model

is described in Section II. Problem formulation and trans-

formation are provided in Section III. Section IV elaborates

the proposed two-timescale resource allocation algorithm. A

comprehensive property analysis is provided in Section V.

Numerical results and analysis are introduced in Section VI.

Finally, the conclusion is summarized in Section VII.

II. SYSTEM MODEL

The specific scenario is shown in Fig. 1. The BS provides

wireless connection and data transmission for IIoT devices

within its coverage. It is connected with a rechargeable bat-

tery, which supplements energy by either harvesting energy

from external renewable energy sources, or purchasing energy

from the power grid. The energy supply volatility caused by

intermittent renewable energy sources is compensated by the

reliable grid power. We mainly focus on downlink transmission

from BS to devices. The reason is that some emerging IIoT

applications such as tactile Internet [19], augmented reality

[20], real-time control [21], and hologram [22] impose strin-

gent requirements on downlink data transmission. In such a

downlink scenario, the data traffic source is IIoT application

servers. The data admitted by the BS are firstly stored in a

buffer before transmission, and then are delivered from the

BS to the IIoT devices. The IIoT downlink data transmission

model has also been adopted and studied in [23] and [24].

In the following, the system models are introduced. The key

notations are summarized in Table I.

A. The Model of Timescale Difference

Fig. 1 shows the timescale difference between data arrival

and energy arrival. The two-timescale model proposed in
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TABLE I
SUMMARY OF NOTATIONS.

Notations Definition Notations Definition
T0 data slot duration τ data slot index
M number of energy frames T number of data slots
N set of IIoT devices K set of channels
rn(τ) amount of data admitted at the BS’s network layer

for device n at data slot τ
pn,k(τ) transmission power allocated to device n over

channel k at data slot τ

χn priority of rn(τ) to the QoE of device n σ2 Gaussian white noise power
xn,k(τ) channel selection index for device n over channel

k at data slot τ
γn,k(τ) downlink SNR of device n over channel k at data

slot τ
Un(τ) QoE for device n at data slot τ hn,k(τ) channel gain between the BS and device n over

channel k at data slot τ
vn(τ) downlink transmission rate from the BS to device

n at data slot τ
Wk(τ) bandwidth of channel k in data slot τ

Qn(τ) data backlog of queue n at data slot τ En(τ) energy queue backlog at data slot τ
dn time-average downlink queuing delay of the n-th

queue
d∗n upper bound of downlink queuing for device n

ϑ(τ) harvested energy at data slot τ φ(τ) upper bound of ϑ(τ) at data slot τ
pc(τ) total amount of energy consumed by the BS at

data slot τ
g(τ) amount of energy purchased from the power grid

at data slot τ
gmax upper bound of g(τ) β whight between energy cost and QoE
r (τ) set of rate control optimization variables at data

slot τ
x (τ) set of channel selection optimization variables at

data slot τ
p (τ) set of power allocation optimization variables at

data slot τ
λ1, λ2 Lagrange multiplier corresponding to C5 and C6

η(τ) electricity price of grid power at data slot τ κ(τ) electricity price of harvested energy at data slot
τ

pmax

n,k
maximum transmission power of device n over
channel k

Rmax maximum instantaneous rate of data admission

Emax battery capacity y Lagrange multiplier in ADMM
ρ penalty parameter in ADMM µ scaled dual variable in ADMM

R residual parameter in ADMM ǫpri, ǫdual feasibility tolerances in ADMM
Q(τ) set of N data queues at data slot τ H(τ) set of Q(τ) and E(τ) at data slot τ
q maximum number of channels that can be allo-

cated to each device
F set of devices’ preference lists

ϕ one-to-many matching Λk virtual price of channel k

Fig. 1. Automated networks with hybrid energy supply for IIoT applications.

[25], [26] is adopted, where the continuous time dimension

is partitioned into successive identical data slots with duration

T0, which is indexed by τ = 1, 2, · · · ,MT . Since energy

arrival changes much slower than data arrival, we can assume

that energy arrival remains constant during T (T >> 1) data

slots [25]. Therefore, T data slots are grouped as an energy

frame with duration of TT0 seconds, which is indexed by

m = 1, 2, · · · ,M .

B. The Model of Data Queue

Let N = {1, 2, · · · , n, · · · , N} and K =
{1, 2, · · · , k, · · · ,K} denote the sets of IIoT devices

and channels, respectively. Let rn (τ) denote the amount

of data arriving at the BS’s network layer per second for

device n at data slot τ , which is firstly stored in the buffer

on BS before transmission. The experience of device towards

service quality is characterized by QoE [27], where the QoE

of device n is positively related to the amount of admitted

data, which is given by

Un (τ) = χn log2 [1 + rn (τ)] . (1)

Here, χn is indicates the importance or priority of rn (τ) to

the QoE of device n. The logarithmic function is utilized to

represent the downtrend of the marginal increment of QoE.

Some other works have also adopted logarithmic function-

based utility [28], [29]. The QoE model presented in this

work is also adopted in [23], [30]. Compared with directly

optimizing physical-layer QoS metrics such as data rate,

throughput, and delay, the proposed QoE model can achieve

cross-layer optimization between the network layer rate con-

trol and the physical layer throughput performance. Besides,

the proposed QoE model can also meet the differentiated

service requirements through different priority settings. We

also consider other QoS performance metrics of queue sta-

bility, rate control, downlink queuing delay, and instantaneous

delay in the optimization constraints, which means that the

communication is not “best effort”.

Let xn,k (τ) ∈ {0, 1} be the channel selection index. When

xn,k (τ) = 1, the downlink signal to noise ratio (SNR) of
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device n over channel k is given by

γn,k (τ) =
pn,k (τ) hn,k (τ)

σ2
, (2)

where pn,k (τ) is the transmission power allocated to device n

over channel k. hn,k (τ) is the channel gain. σ2 is the Gaussian

white noise power.

Then, the downlink transmission rate vn (τ) from the BS

to device n can be derived according to the Shannon-Hartley

theorem [31], i.e.,

vn (τ) =

K
∑

k=1

xn,k (τ)Wk (τ) log2 [1 + γn,k (τ)] , (3)

where Wk (τ) denotes the bandwidth of channel k.

The data buffered at the BS towards each IIoT device can

be regarded as a data queue. Denote the data queue related

to device n as queue n, where rn (τ) T0 and vn (τ) T0 can

be regarded as the data input and data output, respectively.

Particularly, rn (τ) T0 indicates how much data related to

device n should be sent to the BS in the view of the network

layer at data slot τ and vn (τ) T0 indicates how much data

should be sent from the BS to device n via wireless link in

the physical layer at data slot τ . Let Qn (τ) denote the data

backlog of queue n at data slot τ , which is evolved as

Qn (τ + 1) = max [Qn (τ)− vn (τ) T0, 0] + rn (τ) T0. (4)

Qn (τ) is mean rate stable [32] if lim
τ→∞

E [|Qn (τ)|]

τ
=0,

which implies that the time-average data output is greater than

or equal to the time-average data input, i.e.,

lim
M→∞

1

MT

MT
∑

τ=1

vn (τ) ≥ lim
M→∞

1

MT

MT
∑

τ=1

rn (τ). (5)

The network is considered to be mean rate stable if

lim
τ→∞

E [|Qn (τ)|]

τ
=0 holds for any device n ∈ N .

In addition, the time-average communication delay dn after

the n-th queue stabilizations [33] is given by

dn =

lim
M→∞

1

MT

MT
∑

τ=1

rn (τ)

{

lim
M→∞

1

MT

MT
∑

τ=1

vn (τ)

}{

lim
M→∞

1

MT

MT
∑

τ=1

[vn (τ) − rn (τ)]

}

≤ d∗n, (6)

where d∗n is the upper bound of delay for device n.

Remark 1: Since data arrival and CSI vary across different

data slots, the BS has to schedule the values of rn (τ),
xn,k (τ), and pn,k (τ) for each device n ∈ N .

C. The Model of Energy Queue

The BS can either exploit renewable energy or purchase grid

power. Denote the harvested energy at data slot τ as ϑ (τ),
which satisfies the following EH constraint

0 ≤ ϑ (τ) ≤ Φ (τ) , (7)

where Φ (τ) denotes the upper bound of harvested energy.

Denote g (τ) as the amount of energy purchased from the

power grid, which is bounded by gmax.

Remark 2: Notably, the EH process and electricity price vary

much slower than data arrival and channel fading. The latter

two change at every data slot, while the former two change

at every energy frame, i.e., every T data slots. In order to

accomplish stable power supply, the grid energy is expected

as a supplement of the renewable energy. As a result, the BS

has to schedule ϑ (τ) and g (τ) on the same time scale.

Denote pc (τ) as the total amount of energy consumed by

the BS at data slot τ , which is given by

pc (τ) =

N
∑

n=1

K
∑

k=1

xn,k (τ) pn,k (τ)T0. (8)

The battery state of the BS is regarded as an energy queue

and the energy queue backlog E (τ) is evolved as

E (τ + 1) = max [E (τ) − pc (τ) , 0] + g (τ) + ϑ (τ) . (9)

Similarly, E(τ) is mean rate stable as long as

lim
τ→∞

E [|E (τ)|]

τ
=0 holds. Since we focus on the downlink

scenario, there are N data queues corresponding to the data

of N devices stored in the buffer of the BS before downlink

transmission, and one energy queue corresponding to the

energy state of the BS. In comparison, the models in [34],

[35] mainly focus on the uplink scenario where each device

holds a data queue and an energy queue. According to the

causality constraint, i.e., pc (τ) ≤ E (τ), the consumed energy

cannot exceed the currently available energy in the battery.

On the other hand, the energy queue backlog is also limited

by the battery capacity Emax, i.e.,

E (τ) + g (τ) + ϑ (τ) ≤ Emax. (10)

III. PROBLEM FORMULATION AND PROBLEM

TRANSFORMATION

In this section, we first introduce the problem formulation.

Then, the Lyapunov optimization-based problem transforma-

tion is elaborated.

A. Problem Formulation

In this paper, we aim at maximizing the long-term QoE

performance of the overall network while minimizing the

energy cost. The objective function is defined as a weighted

sum of QoE and energy cost, which is given by

f (τ) =

N
∑

n=1

Un (τ)− β [η (τ) g (τ) + κ (τ) ϑ (τ)] , (11)

where η (τ) and κ (τ) are the electricity prices of grid power

and harvested energy. β is a parameter used to balance the

tradeoff between energy cost and QoE. We adopt a real-time

electricity price model which varies in the same timescale of

energy harvesting. Similar electricity price timescale has also

been adopted in other works [36], [37].
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Denote r (τ) = {rn (τ)}, x (τ) = {xn,k (τ)}, and p (τ) =
{pn,k (τ)}. The two-timescale resource allocation problem

with long-term optimization objective is formulated as

P1 : maximize
g(τ),ϑ(τ),r(τ),x(τ),p(τ)

lim
M→∞

1

MT

MT
∑

τ=1

f (τ)

s.t.
C1 : 0 ≤ ϑ (τ) ≤ Φ (τ) , ∀τ,
C2 : 0 ≤ g (τ) ≤ gmax, ∀τ,
C3 : 0 ≤ E (τ) + g (τ) + ϑ (τ) ≤ Emax, ∀τ,
C4 : 0 ≤ pc (τ) ≤ E (τ) , ∀τ,
C5 : 0 ≤ pn,k (τ) ≤ pmax

n,k , ∀k, ∀n, ∀τ,
C6 : xn,k (τ) ∈ {0, 1} , ∀k, ∀n, ∀τ,

C7 :
K
∑

k=1

xn,k (τ) ≤ q, ∀n, ∀τ,

C8 :

N
∑

n=1

xn,k (τ) ≤ 1, ∀k, ∀τ,

C9 : 0 ≤
N
∑

n=1

rn (τ) ≤ Rmax, ∀τ,

C10 : dn ≤ d∗n, ∀n,
C11 :E, Qn, ∀n, are mean rate stable.

(12)

Here, C1 and C2 denote the upper bounds of harvested

energy and purchased energy, respectively. C3 is the battery

capacity constraint. C4 is the energy causality constraint. C5

is the instantaneous constraint of transmission power, and

pmax
n,k is the maximum transmission power. C6 − C8 denote

the channel selection constraints, i.e., each channel could be

only used by one device and one device could use at most

q channels. q also indicates the quota of channel for device,

i.e., the maximum number of channels that can be allocated to

each device. C9 is the instantaneous rate control constraint of

the overall network, and Rmax is the maximum instantaneous

rate of data arrival. C10 is the time-average delay constraint.

C11 denotes the stability constraints of data queue and energy

queue.

There exist some difficulties when solving P1. First, the

prior knowledge of future CSI, data arrival, energy arrival

and electricity price is unknown. Second, it involves resource

allocation in different timescales, i.e., rate control, channel

selection, and power allocation have to be jointly optimized

every data slot, while energy management has to be optimized

every energy frame. Third, P1 is a mixed integer nonlinear

problem (MINP), which is NP-hard due to the coupling

between long-term constraints and short-term optimization

objectives [38], [39]. Therefore, it is more complicated than

traditional mixed integer nonlinear optimization problems.

Last but not least, the sum-rate constraint C9 raises complexity

issues as the problem dimension increases significantly with

the number of IIoT devices.

B. Lyapunov Optimization-based Problem Transformation

Lyapunov optimization is introduced to transform the long-

term optimization problem into a series of single-frame opti-

mization subproblems, which are further decomposed over two

timescales. Denote Q (τ) = [Q1 (τ) , Q2 (τ) , · · · , QN (τ)].

Let H (τ) = [Q (τ) , E (τ)] be a concatenated vector of queue

states. Subsequently, based on [26], the Lyapunov function is

defined as

L (τ) =
1

2

{

N
∑

n=1

Q2
n (τ) + [Emax − E (τ)]2

}

. (13)

The Lyapunov drift over T data slots conditioned on the

states of both data and energy queues is given by

∆T (τ) = E [L (τ + T )− L (τ) |H (τ) ] . (14)

Accordingly, the drift-minus-utility (DMU) function is de-

fined as

D [H (τ)] =E [∆T (τ) − V f (τ) |H (τ) ] , (15)

where V is a tunable weight which represents the relative

importance of “utility maximization” compared with “queue

stability”.

Considering the timescale difference among energy manage-

ment, rate control, channel selection, and power allocation, the

upper bound of D [H (τ)] is derived based on the following

theorem.

Theorem 1. The DMU function D [H (τ)] is upper bounded

by

D [H (τ)] ≤
1

2

[

B +
(T − 1)

2
(gmax + ϑmax)

2

]

T

+E

{

D1 [(m− 1)T + 1]

+

mT
∑

τ=(m−1)T+1

[D2 (τ)−D3 (τ)]

}

, (16)

where

B = N
(

r2max + v2max

)

T 2
0 + E2

max + (gmax + ϑmax)
2
,

E [(m− 1)T + 1] = Emax − E [(m− 1)T + 1] ,

D1 [(m− 1)T + 1] = V Tβη [(m− 1)T + 1] g [(m− 1)T + 1]

− E [(m− 1)T + 1] g [(m− 1)T + 1]

+ V Tβκ [(m− 1)T + 1]ϑ [(m− 1)T + 1]

− E [(m− 1)T + 1]ϑ [(m− 1)T + 1] ,

D2 (τ) =

N
∑

n=1

[Qn (τ) rn (τ) T0 − V Un (τ)],

D3 (τ) =

N
∑

n=1

K
∑

k=1

xn,k (τ) [Qn (τ) vn (τ) T0 − E (τ) pn,k (τ)] .

(17)

Proof: See Appendix A.

In Theorem 1, B is a positive constant. Following Lya-

punov optimization, P1 is transformed into opportunistically

minimizing the right-hand side of (16) at each energy frame

subject to C1 ∼ C10. Thus, the long-term stochastic optimiza-

tion problem P1 is converted into a deterministic short-term

optimization problem, which is given by
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Algorithm 1 Two-timescale Resource Allocation Algorithm

1: Input: N , K , T , M , {hn,k(τ)}, Emax, gmax,
{

pmax
n,k

}

,

Rmax, q.

2: Output: g∗, ϑ∗, r∗, x∗, p∗.

3: Initialize: {Qn (1)}, E (1).
4: for m = 1 : M do

5: Energy management: Obtain the optimal solution

g∗ [(m− 1)T + 1] and ϑ∗ [(m− 1)T + 1] according to

(20) and (21).

6: for t = 1 : T do

7: Rate control: Obtain the optimal solution

r∗n [(m− 1)T + t] , ∀n ∈ N , by Algorithm 2.

8: Joint channel selection and power allocation: Ob-

tain the optimal solution x∗

n,k [(m− 1) T + t], by the

proposed one-to-many matching. Obtain the optimal

solution p∗n,k [(m− 1)T + t] according to (43).

9: Update all the data queues Qn (τ) , ∀n ∈ N , and the

energy queue E (τ) according to (4) and (9).

10: end for

11: end for

P2 : minimize
g[(m−1)T+1],ϑ[(m−1)T+1],r(τ),x(τ),p(τ)

D1 [(m− 1)T + 1]

+

mT
∑

τ=(m−1)T+1

[D2 (τ)−D3 (τ)]

s.t.C1 − C10. (18)

It is noted that the first term of P2 involves only the

energy management decisions, i.e., g [(m− 1)T + 1] and

ϑ [(m− 1)T + 1]. The second term involves only the rate

control decisions, i.e., r (τ). The third term involves only the

joint channel selection and power allocation decisions, i.e.,

x (τ) and p (τ). Therefore, we can further decompose P2 into

three subproblems in different timescales, i.e., large-timescale

energy management subproblem P3, small-timescale rate

control subproblem P4, and small-timescale joint channel

selection and power allocation subproblem P6, which are

introduced in Section IV.

IV. TWO-TIMESCALE RESOURCE ALLOCATION

OPTIMIZATION

In this section, we aim to solve above two-timescale

optimization subproblems. First, the large-timescale energy

management subproblem is solved based on linear program-

ming. Second, ADMM is introduced to solve the large-scale

rate control problem with the sum-rate constraint. Then, a

joint channel selection and power allocation algorithm is

developed by leveraging price-based one-to-many matching.

The proposed two-timescale resource allocation algorithm is

summarized in Algorithm 1.

A. Large-timescale Energy Management Based on Linear

Programming

Accordingly, BS schedules the harvested energy and

purchased energy every T data slots. To minimize

D1 [(m− 1)T + 1], ∀m ∈ {1, 2, . . . ,M}, we solve the fol-

lowing energy management subproblem

P3 : minimize
g[(m−1)T+1],ϑ[(m−1)T+1]

D1 [(m− 1)T + 1]

s.t.C1,C2,C3, τ = (m− 1)T + 1.
(19)

Under the condition that the price of harvested energy

is lower than that of grid power, i.e., κ [(m− 1)T + 1] <

η [(m− 1)T + 1], minimizing D1 [(m− 1)T + 1] is equiva-

lent to using harvested energy as much as possible. However,

the available amount of harvested energy is limited by the up-

per bounds of both the harvested energy Φ [(m− 1)T + 1] and

the remaining battery capacity E [(m− 1)T + 1]. Therefore,

the optimal scheduling policy of harvested energy is derived

as

ϑ∗[(m− 1)T + 1]=

min {Φ [(m− 1)T + 1] , E [(m− 1)T + 1]} . (20)

Taking ϑ∗ [(m− 1)T + 1] into D1 [(m− 1)T + 1], the op-

timal amount of purchased energy is derived as

g∗ [(m− 1)T + 1]

=







min {E [(m− 1)T + 1]− ϑ∗ [(m− 1)T + 1] , gmax},
if Ψ [(m− 1)T + 1] < 0,

0, otherwise,
(21)

where

Ψ [(m− 1)T + 1]=

V Tβη [(m− 1)T + 1]− E [(m− 1)T + 1] . (22)

From (20), we could find the optimization of

ϑ∗ [(m− 1)T + 1] does not depend on the price of harvested

energy. From (21), we could find that the judgment conditions

of g∗ [(m− 1)T + 1], i.e., Ψ [(m− 1)T + 1], depend

on the price of grid power η [(m− 1)T + 1]. However,

the optimal values g∗ [(m− 1)T + 1] under the condition

Ψ [(m− 1)T + 1] < 0 or the condition Ψ [(m− 1)T + 1] ≥ 0
are independent of the price of grid power. In addition,

it also can be found that they are optimized every energy

frame, i.e., T data slots, while the energy queue length E (τ)
changes over each data slot. Therefore, the energy scheduling

policy only depends on the current energy queue state.

B. Low-complexity Small-timescale Rate Control Algorithm

Based on ADMM

To minimize the second term D2 (τ), the following rate

control subproblem is solved at τ ∈ [(m− 1)T + 1,mT ],
∀m ∈ {1, 2, . . . ,M}, which is given by

P4 : minimize
r(τ)

D2 (τ)

s.t.C9.
(23)

Due to the sum-rate constraint C9, the optimization vari-

ables of different devices are coupled, and the computational
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complexity grows enormously as the number of devices in-

creases. When the number of IIoT devices is large, it will

take tremendous amount of time to solve the large-scale rate

control problem. Thus, we propose an ADMM-based low-

complexity algorithm to solve the large-scale rate control

subproblem. The major concept is to alternatively update

primal and dual variables in an iterative fashion [40]. It can

rapidly find the optimal solution in low complexity based on

the decomposition-coordination approach.

In order to obtain the optimal solution, we parti-

tion the vector of rate control variables into two parts,

i.e., xr = [r1 (τ) , r2 (τ) , · · · , rlr (τ)]
T and zr =

[rlr+1 (τ) , rlr+2 (τ) , · · · , rN (τ)]T . Based on [41], P4 is

rewritten as

P5 : minimize
xr,zr

Fr (xr) +Gr (zr)

s.t.Arxr +Brzr = Rmax.
(24)

where xr ∈ R
lr×1, zr ∈ R

(N−lr)×1, Ar ∈ R
1×lr , and Br ∈

R
1×(N−lr). Ar and Br are unit vectors. Fr(xr) and Gr(zr)

satisfy

Fr (xr) =Q1xr −V1,χlog2 (xr) , (25)

Gr (zr) =Q2zr −V2,χlog2 (zr) , (26)

where Q1 = [Q1 (τ) , Q2 (τ) , · · · , Qlr (τ)]T0,

Q2 = [Qlr+1 (τ) , Qlr+2 (τ) , · · · , QN (τ)]T0, V1,χ =
[χ1, χ2, · · · , χlr ]V , and V2,χ = [χlr+1, χlr+2, · · · , χN ]V .

In this paper, we adopt the scaled ADMM algorithm [18],

and form the augmented Lagrangian associated with P5 as

Lρ (xr, zr, y) = Fr (xr) +Gr (zr) +
ρ

2
‖R+ µ‖22 −

ρ

2
‖µ‖22 ,

(27)

where R = Arxr + Brzr − Rmax is the residual. ρ > 0
represents the penalty parameter, which is related to the con-

vergence speed of ADMM. Let y be the Lagrange multiplier.

µ =
y

ρ
is the scaled dual variables. Then, we can iteratively

update both primal and dual variables as

xi+1
r = argmin

{

Fr

(

xi
r

)

+
ρ

2

∥

∥Arx
i
r +Brz

i
r −Rmax + µi

∥

∥

2

2

}

, (28)

zi+1
r = argmin

{

Gr

(

zir
)

+
ρ

2

∥

∥Arx
i+1
r +Brz

i
r −Rmax + µi

∥

∥

2

2

}

, (29)

µi+1 = µi+Arx
i+1
r +Brz

i+1
r −Rmax, (30)

where i denotes the index of iteration.

Next, based on the optimality conditions [42], the primal

residual Rp and the dual residual Rd are expressed as

Rp
i+1 =Arx

i+1
r +Brz

i+1
r −Rmax, (31)

Rd
i+1 =ρAT

r Br

(

zi+1
r − zir

)

. (32)

The termination criteria is defined as
∥

∥Rp
i+1

∥

∥

2
≤ ǫpri and

∥

∥Rd
i+1

∥

∥

2
≤ ǫdual, (33)

Algorithm 2 ADMM-based Low-complexity Rate Control

Algorithm

1: Input: i, xr , zr , µ, ρ, ǫpri, and ǫdual.

2: Output: xr, zr.

3: while
∥

∥Rp
i
∥

∥

2
> ǫpri or

∥

∥Rd
i
∥

∥

2
> ǫdual do

4: Update xi+1
r according to (28);

5: Update zi+1
r according to (29);

6: Update µi+1 according to (30);

7: Update
∥

∥Rp
i+1

∥

∥

2
and

∥

∥Rd
i+1

∥

∥

2
according to (31) and

(32);

8: Update i → i+ 1.

9: end while

where ǫpri > 0 and ǫdual > 0 denote feasibility toler-

ances with respect to primal conditions and dual conditions.

Consequently, the ADMM-based low-complexity rate control

algorithm is summarized in Algorithm 2.

C. Small-timescale Joint Channel Selection and Power Allo-

cation Based on One-to-many Matching

To maximize the third term D3 (τ), the following joint

channel selection and power allocation subproblem is solved

at τ ∈ [(m− 1)T + 1,mT ], ∀m ∈ {1, 2, . . . ,M}, which is

given by

P6 : maximize
x(τ),p(τ)

D3 (τ)

s.t.C4 − C8,C10.
(34)

Different from traditional mobile devices, IIoT has stringent

QoS requirements such as delay. Compared with related works

[43], [44], we not only consider the long-term constraint of

queuing delay, but also take strict instantaneous downlink

queuing delay constraint into consideration. The tight coupling

between rn(τ) and vn(τ) in (6) makes it difficult to transform

C10. Thus, we tighten the delay constraints over every data slot

as

rn (τ)

vn (τ) [vn (τ) − rn (τ)]
≤ d∗n. (35)

The instantaneous delay is defined as the left term of (24),

i.e.,
rn(τ)

vn(τ)[vn(τ)−rn(τ)]
. It only involves short-term variables of

slot τ , i.e., rn(τ) and vn(τ).
The downlink transmission delay is considered implicitly

in the downlink queuing delay. First, to reduce the downlink

queuing delay for maintaining queue stability, the BS should

select channel with higher quality and allocate more transmis-

sion power, both of which will reduce the downlink transmis-

sion delay. Second, under the queue stability condition, the

time-average data output is greater than or equal to the time-

average data input based on (5), i.e., the downlink transmission

rate has a lower bound. Since the downlink transmission delay

is inversely proportional to the downlink transmission rate, it

has an upper bound.

Rearranging (35), we can get

fd [vn (τ)] = rn (τ)− d∗n[vn (τ)]
2
+ d∗nvn (τ) rn (τ) ≤ 0,

(36)
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where fd [vn (τ)] is a one-variable quadratic inequality with

respect to vn (τ). Since fd (0) = rn (τ) > 0 and d∗n > 0, there

exist a positive solution and a negative solution which make

the equality in (36) hold. The positive solution is given by

v∗n (τ) =
d∗nrn (τ) +

√

[d∗nrn (τ)]
2
+ 4rn (τ) d∗n

2d∗n
. (37)

Accordingly, the delay constraint could be converted into a

transmission capacity constraint as

C12 : vn (τ) ≥ v∗n (τ) . (38)

Replacing C10 with C12, P6 is rewritten as

P7 : maximize
x(τ),p(τ)

D3 (τ)

s.t.C4 − C8,C12.
(39)

We rearrange P7 as

maximize
x(τ),p(τ)

N
∑

n=1

fD3
[xn,k (τ) , pn,k (τ)]

s.t.C4 − C8,C12,

(40)

where fD3
[xn,k (τ) , pn,k (τ)] =

Qn (τ) vn [xn,k (τ) , pn,k (τ)]T0 − E (τ) xn,k (τ) pn,k (τ).
The problem defined in (40) is NP-hard due to the coupling

between integer variables and continuous variables. To

provide a tractable solution, we transfer it into a one-to-many

matching problem. Matching theory has been widely adopted

in channel selection optimization. In [45], Anandkumar

et al. considered a cognitive medium access model, and

proposed a matching-based joint user allocation algorithm to

optimize user access strategy. However, it only considers the

one-to-one matching scenario where each channel can only

be utilized by at most one user. Different from one-to-one

matching, we represent the one-to-many matching problem as

a triple (N ,K,F). N and K represent the sets of matching

participants, i.e., devices and channels, respectively. F
denotes the set of devices’ preference lists. The definition of

one-to-many matching is given as follows.

Definition 1. (One-to-many matching) ϕ is a one-to-many

correspondence mapping from set N ∪ K onto itself under

preference F , i.e., ϕ(n) ⊆ K, ∀n ∈ N . k ∈ ϕ (n) means

that channel k is matched with device n, i.e., xn,k = 1.

ϕ (n) = {n}1×q represents that device n is not matched with

any channel. The quota q represents that at most q channels

can be matched to one device simultaneously, while each

channel could be only used by at most one device.

Taking device n and channel k as an example to explain

matching stability. A matching ϕ is blocked if n and k are not

matched but both n and k prefer to be matched with each other

under ϕ. Thus, n and k form a blocking pair for matching ϕ,

namely that (n, k) blocks the matching. We say that matching

ϕ is not stable because n and k would prefer to disrupt the

matching in order to be matched with each other.

Definition 2. (Stable matching) A matching ϕ is stable if

there exists no blocking pair.

One-to-many matching problem has been widely studied. In

[46], Sanguanpuak et al. studied the nonorthogonal spectrum

assignment problem, and proposed a many-to-one matching-

based spectrum sharing algorithm. However, it does not con-

sider the coupling between power allocation and channel

selection. To decouple the coupling between power alloca-

tion and channel selection in the transformed one-to-many

matching problem, the preference of device towards channel

is established based on the optimal power allocation strategy.

The proposed joint channel selection and power allocation

algorithm based on one-to-many matching is summarized in

Algorithm 3, which contains five phases, i.e., initialization,

power allocation, preference list construction, proposal and

price rising, and matching termination. When multiple devices

compete for the same channel, classical matching approaches

solve the matching conflicts by randomly assigning the chan-

nels to a device [47]. In comparison, we propose the price-

based matching with quota restriction, where the price of

the specific channel, i.e., the matching cost, is increased to

force some device to give up this channel. Algorithm 3 is

implemented as follows.

1) Initialization: Set ϕ (n) = ∅, Ω = ∅, and Λk = 0,

∀k ∈ K. Ω represents the set of channels which receive more

than one matching proposal from devices. Λk is the virtual

price of channel k used to solve the conflict of matching.

2) Power allocation: By temporarily matching each device

n ∈ N with each channel k ∈ K, when ϕ (n) = k,

the maximum value of fD3
[pn,k (τ) |xn,k (τ) = 1] can be

obtained by solving the following power allocation problem

P8 : maximize
pn,k(τ)

fD3
[pn,k (τ) |xn,k (τ) = 1]

s.t.C4,C5.
(41)

P8 is a convex optimization problem and can be solved

by applying Karush-Kuhn-Tucker (KKT) conditions. The La-

grangian associated with P8 is given by

L [pn,k (τ) , λ] =− fD3
[pn,k (τ) |xn,k (τ) = 1 ]

+ λ
[

pn,k (τ) − pmax
n,k

]

, (42)

where λ is the Lagrange multiplier corresponding to constraint

C5. The optimal solution p∗n,k (τ) is given by

p∗n,k (τ) = min

[

pmax
n,k ,

Qn (τ)T0Wk (τ)

E (τ) ln 2
−

σ2

hn,k (τ)

]

. (43)

We can notice that p∗n,k (τ) is positively related to Qn (τ),
and is negatively related to hn,k (τ) and E (τ).

3) Preference list construction: We define the preference

of device n towards channel k as

Fn,k|ϕ(n)=k = fD3

[

p∗n,k (τ) |xn,k (τ) = 1
]

− Λk, (44)

where the virtual price Λk reflects the matching cost of channel

k. The preference list of device n, i.e., Fn, is constructed by

sorting all K channels in descending order according to the

preferences, i.e., Fn,k|ϕ(n)=k, ∀k ∈ K. The total set F is

constructed as F = {Fn, ∀n ∈ N}.
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4) Proposal and price rising: Denote |ϕ(n)| as the size of

ϕ(n). If ∃|ϕ(n)| < q, the device n ∈ N will propose to the

first q−|ϕ(n)| channels in its preference list Fn. Afterwards, if

any channel k ∈ K receives only one proposal from a device,

then they will be directly matched. Otherwise, if k receives

more than one proposal, add k into set Ω and implement the

price rising process to solve matching conflicts. Each channel

k ∈ Ω raises its price Λk by ∆Λk to increase the matching

cost, which is given by

Λk = Λk +∆Λk. (45)

Accordingly, all the devices proposed to k update their prefer-

ences as (44) and renew their proposal strategies. Some devices

proposed to channel k may give it up due to the increasing

matching cost. The price rising process will continue until

only one device remains, which is eventually matched with

channel k. Then, k is removed from Ω. If all the channels in

Fn have been matched with other devices and are unavailable

to n, then ϕ(n) = {n}1×q.

5) Matching termination: The matching process will be

finished until a stable matching is produced. The devices select

the channels based on the derived ϕ.

V. PERFORMANCE ANALYSIS

In this section, some theoretical properties in terms of

optimality performance, convergence performance, and com-

putational complexity are analyzed.

A. Tradeoff between Queue Stability and Utility Maximization

Theorem 2. Algorithm 1 achieves a
[

O (V ) , O
(

1/V

)]

trade-

off between queue stability and utility maximization by adjust-

ing the control parameter V . The time-average data queue

backlog, time-average energy queue backlog, and time-average

network utility are bounded by

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ)





≤
B

2δ1
+

V (fmax − fopt)

δ1
, (46)

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ)





≥ Emax −
B

2δ2
−

V (fmax − fopt)

δ2
, (47)

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

f (τ)



 ≥ fopt −
B

2V
, (48)

where fmax is the finite constant to bound E [f(τ)], and fopt
is the theoretical optimum of P1 [28].

Proof: See Appendix B.

Theorem 3. The joint channel selection and power allocation

algorithm produces a stable matching between devices and

channels within finite iterations.

Proof: See Appendix C.

Algorithm 3 Joint Channel Selection and Power Allocation

based on One-to-many Matching

1: Input: N , K , T , M , q.

2: Output: {xn,k(t)}.

3: Phase 1: Initialization

4: Set ϕ = ∅, Ω = ∅, and Λk = 0, ∀k ∈ K.

5: Phase 2: Power allocation

6: By temporarily matching every device n with each chan-

nel, obtain the optimal power allocation result {p∗n,k (τ)}
as (43).

7: Phase 3: Preference list construction

8: Every device calculates its preference value toward each

channel as (44).

9: The preference list of device n, i.e., Fn, is constructed by

sorting all K channels in descending order according to

the preferences, i.e., Fn,k|ϕ(n)=k, ∀k ∈ K.

10: Phase 4: Proposal and price rising

11: while ∃|ϕ (n) | < q do

12: Each device n ∈ N proposes to the first q − |ϕ (n) |
channels in Fn.

13: if any channel k ∈ K receives only one proposal from

a device n, then

14: the channel k will be directly matched with device

n.

15: else

16: Add k into set Ω.

17: for k ∈ Ω do

18: Each channel k ∈ Ω increases its price Λk as (45).

19: All the devices proposed to k update their prefer-

ences as (44) and renew their proposal strategies.

20: end for

21: end if

22: end while

23: Phase 5: Matching termination

24: The matching process will be finished until a stable

matching is produced.

B. Convergence of ADMM-based Low-complexity Rate Con-

trol Algorithm

Theorem 4. The residual convergence, objective convergence,

and dual variable convergence are expressed as follows:

1) Residual convergence: The primal and dual residuals con-

verge to 0 as i → ∞, which implies that the iterations

approach feasibility.

2) Objective convergence: The objective function of P7 even-

tually converges to the primal optimal value under the

stopping criterion as i → ∞.

3) Dual variable convergence: The dual variable yi+1 eventu-

ally converges to the dual optimal value under the stopping

criterion as i → ∞.

Proof: See Appendix D.

C. Computational Complexity

1) Computational complexity of energy management: The

computational complexity of linear programming is in the lin-
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ear order with the number of optimization variables. Similarly,

the energy management problem is also a linear programming

problem with two variables optimized over a total of M energy

frames. Thus, its computational complexity is O(2M).
2) Computational complexity of rate control: Rate control

is optimized at each data slot with N optimization variables.

Thus, updating primal and dual variables introduces a com-

plexity of O [max (lr, N − lr)]. Assuming that xr, zr, and µ

are updated ξ times before reaching convergence, the total

complexity of rate control is O [max (lr, N − lr)×MTξ].
3) Computational complexity of joint channel selection

and power allocation: The complexities for each device

to acquire the preferences and construct the preference list

are O (K) and O (K log (K)), respectively. Assuming that

the number of iterations required for resolving the conflict

in the price rising process is ς , and there are max (N,K)
conflict elements in the price rising process, the com-

plexityof joint channel selection and power allocation is

O {MT {max(N,K)× ς + [NK +NK log (K)]}}.

TABLE II
SIMULATION PARAMETERS.

Parameter Value

Number of devices N = 5
Number of channels K = 12
Channel bandwidth W = 1 MHz

Tunable weight of DMU V = 100
Number of energy frames M = 200
Number of data slots at each energy
frame

T = 5

One data slot duration T0 = 1 second

Upper bound of purchased energy gmax = 2.5 J

Capacity of recharge battery Emax = 5 J

Maximum sum of arrival data Rmax = 20 Mbps

Service weight parameter χ = [0.1, 0.15, 0.2, 0.25, 0.3]
Penalty factor of utility β = {0, 5000}
The initial state of data queue Qn (1) = 3 Mbits

The initial state of energy queue E (1) = 2 J

Time-average delay constraint d∗n = 10 microseconds

Quota restriction q = [3, 1]

VI. SIMULATION RESULTS

In this section, we verify the proposed two-timescale re-

source allocation algorithm through simulations. Simulation

parameters are summarized in Table II [10], [28]. Based on

[25], the energy frame duration is about five to ten times

of the data slot duration. Hence, T is set as five times

of the data slot duration. The proposed algorithm can be

adaptable to different values of T including scenario where

T ≫ 1. The data storage capacity of the BS is set as 500
GB. In simulations, we set the price of harvested energy as

0, i.e., κ (τ) = 0. This is reasonable since the energy is

harvested from the external renewable energy sources rather

than purchased from the power grid. The BS does not need

to pay any money to the grid company. Similar assumption is

also adopted in [18]. Moreover, we also consider the scenario

where κ(τ) 6= 0. Based on (20) and (21), the proposed

algorithm can be extended to more general price settings. We

consider different types of electricity price. Three heuristic

algorithms are used as baselines for comparison purpose. In

the baseline 1 algorithm, the optimization of channel selection

is neglected, and channels are allocated to devices randomly

[48]. The baseline 2 algorithm only maximizes the time-

average QoE of network, while the minimization of energy

cost is neglected, i.e., β = 0. In the baseline 3 algorithm,

the rate control problem is solved by the convex optimization

toolbox [28], i.e., the CVX toolbox.

A. Data Queue Performance

1) Data queue backlog: Fig. 2 and Fig. 3 show the evo-

lutions of data queue backlog corresponding to the proposed

algorithm and the baseline 1 algorithm, respectively. The data

queue backlog of the proposed algorithm tends to be stable

within a short period of time, which guarantees reliable service

provision, while the data queue backlog of the baseline 1
algorithm fluctuates more violently, thus making the network

less stable. Compared with the baseline 1 algorithm, the

proposed algorithm can reduce the peak to average ratio (PAR)

of data queue backlog by 35.5%. This phenomenon has also

been validated in Fig. 4, which shows the empirical cumulative

distribution function (CDF) performance of data queue back-

log. Taking device 1 as an example, the probability that the

data queue backlog Q1 lies within the region [2.501, 2.548] is

0.5604, while the probability corresponding to the baseline 1
algorithm is only 0.1608.

2) Data arrival rate: The data arrival rate performances

of the proposed algorithm and the baseline 1 algorithm are

shown in Fig. 5 to Fig. 7. Similar to the data queue backlog

performance, the data arrival rate fluctuation of the proposed

algorithm is much less than that of the baseline 1 algorithm.

The proposed algorithm can reduce the PAR of data arrival rate

by 28.5%, which infers a more stable rate control performance.

3) Data transmission rate: Fig. 8 shows the shaded error

bar of data transmission rate, where the width of the shadow

represents the standard deviation. Compared with the baseline

1 algorithm, the proposed algorithm has a much narrower

shadow, which provides a more stable transmission rate.

Furthermore, we can find that the proposed algorithm can

differentiate devices by providing higher transmission rate

to devices with larger service weights. In comparison, the

baseline 1 algorithm treats all the devices as if they have the

same service weight.

4) Queuing delay: Fig. 9 shows the time-average queu-

ing delay performance. For the proposed algorithm, we can

find that devices with higher service priorities, e.g., device

5, experience less delay compared with devices with lower

service priorities, e.g., device 1. This is consistent with the

transmission rate results shown in Fig. 8. For example, since

it has the highest priority, the time-average data output of

device 5 is also the highest among those of all the devices

in order to satisfy (5). Considering the fact that the queuing

delay is inversely proportional to the time-average data output,

device 5 may have the smallest queuing delay based on

(5) and (6). While for the baseline 1 algorithm, delay is

uncorrelated with service priority, thus making differentiated

service provisioning impossible.
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Fig. 2. Data queue backlog of the proposed algo-
rithm.
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Fig. 3. Data queue backlog of the baseline 1
algorithm.

Fig. 4. CDF of data queue backlog.
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Fig. 5. Data arrival rate of the proposed algorithm.
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Fig. 8. Shaded error bar of transmission rate.
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Fig. 10. Network utility of the proposed algorithm.

5) Network utility: Fig. 10 and Fig. 11 show the net-

work utility performances of the proposed algorithm and the

baseline 1 algorithm, respectively. The proposed algorithm

achieves more stable network utility performance than the

baseline 1 algorithm, which implies a better adaptiveness to

the random variation of channel state.

B. Energy Queue Performance

1) Energy consumption: Fig. 12-Fig. 15 show the relations

between electricity price and purchased grid energy for the

proposed algorithm and the baseline 2 algorithm respectively.

In Fig. 12 and Fig. 13, we adopt a sinusoid-based electricity

price with the minimum value of 1.8 RMB/kWh and the

maximum value of 9.0 RMB/kWh. The choice of sinusoid

function has two advantages: 1) it highlights the fluctuation

of the electricity price; 2) it characterizes the peak and valley

features of the electricity price. Similar electricity price model

is also adopted in [18]. In Fig. 14 and Fig. 15, we adopt a two-

tier electricity price with the minimum value of 3 RMB/kWh

and the maximum value of 7 RMB/kWh. Simulation results

demonstrate that the proposed algorithm can dynamically

adapt purchased energy with time-varying electricity price

by avoiding purchasing the expensive grid power during the

peak-price period. In comparison, the baseline 2 algorithm is

unaware of the energy cost, and consumes grid energy any

time if needed. This inevitably leads to higher energy cost,

which is demonstrated in Fig. 17 and Fig. 18.

Fig. 16 shows the total purchased energy and the total

harvested energy over 200 energy frames versus different

values of κ. The simulation results demonstrate that the
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Fig. 12. Purchased energy of the proposed algo-
rithm under sinusoid-based electricity price model.
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Fig. 13. Purchased energy of the baseline 2 algo-
rithm under sinusoid-based electricity price model.
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Fig. 14. Purchased energy of the proposed algo-
rithm under two-tier electricity price model.
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Fig. 15. Purchased energy of the baseline 2
algorithm under two-tier electricity price model.
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energy versus κ.
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optimal values of ϑ [(m− 1)T + 1] and g [(m− 1)T + 1] do

not depend on κ [(m− 1)T + 1].

2) Grid energy cost: Fig. 17 and Fig. 18 show the grid

energy cost per energy frame and the total energy cost accu-

mulated over 200 energy frames, respectively. Compared with

the baseline 2 algorithm, the proposed algorithm can reduce

the energy cost by 48.23%, due to the awareness of electricity

price and dynamic adaptation of gird energy consumption.

3) QoE and energy backlog: Fig. 19 and Fig. 20 show the

network QoE and energy queue backlog, respectively, where

the bar graph represents the time-average value and the error

bar represents standard deviation. It is observed that time-

average QoE performance of the proposed algorithm is only

0.54% lower than the that of baseline 2 algorithm, while the

energy queue backlog is only 5.40% lower. In other words,

the proposed algorithm trades only 0.54% QoE performance

degradation and 5.40% energy queue backlog reduction for

energy cost reduction as high as 48.23%.

C. Computational Complexity and Convergence Performances

1) Convergence of Algorithm 2: Fig. 21, Fig. 22, and

Fig. 23 show the primal residual convergence, dual residual

convergence, and optimal convergence of the ADMM-based

rate control algorithm at τ = 1000, respectively. It is observed

that the stopping criterion constraints ǫpri and ǫdual, i.e., the

dotted lines shown in Fig. 21 and Fig. 22, can be satisfied

within 16 iterations. Fig. 23 demonstrates that the objective
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value converges to the optimal value within only 7 iterations

when there are 500 devices.

2) Optimality gap and computational complexity: Fig. 24

and Fig. 25 compare optimality and computational complexity

between the proposed algorithm and the baseline 3 algorithm,

respectively. Simulation results demonstrate that the optimality

gap between the two algorithms is always less than 1%. On

the other hand, the proposed algorithm can reduce the compu-

tational time by 99% compared with the baseline 3 algorithm

when there are 500 devices. Furthermore, the computational

time of the baseline 3 algorithm increases significantly with

the number of devices, while that of the proposed algorithm

remains in a much lower level.

VII. CONCLUSIONS

In this paper, we studied the two-timescale resource alloca-

tion problem in 5G-empowered automated networks for IIoT

applications. We proposed a two-timescale resource allocation

algorithm to maximize the long-term QoE performance while

simultaneously minimizing the grid energy cost, in which

the optimization of energy management is performed every

energy frame, while the optimization of rate control, channel

selection, and power allocation is performed every data slot.

We proved that the proposed algorithm can achieve bounded

performance deviation based only on causal information of

CSI, EH, and electricity price. We compared it with three

heuristic algorithms under various simulation configurations.

Simulation results demonstrate that the proposed algorithm

can effectively reduce the PARs of data queue backlog and

data arrival rate by 35.5% and 28.5%, respectively. It allows

differentiated service provision and achieves 48.23% energy

cost reduction by dynamically adapting resource allocation

with service priority and time-varying electricity price. It is

able to trade only 1% optimality performance degradation for

99% computatational time reduction. In the future work, we

plan to study how to adopt the machine learning with existing

framework to further improve the performance.

APPENDIX A

PROOF OF THEOREM 1

For any nonnegative real numbers Qn (τ), rn (τ) and

vn (τ), there holds

1

2

[

Q2
n (τ + 1)−Q2

n (τ)
]

≤
1

2
r2n (τ)T

2
0 +

1

2
v2n (τ) T

2
0 +Qn (τ) [rn (τ) − vn (τ)]T0.

(49)

Applying the law of telescoping sums over τ ∈
[(m− 1)T + 1,mT ], we can derive

1

2

[

Q2
n (τ + T )−Q2

n (τ)
]

≤
1

2

mT
∑

τ=(m−1)T+1

[

r2n (τ) + v2n (τ)
]

T 2
0

+

mT
∑

τ=(m−1)T+1

{Qn (τ) [rn (τ) − vn (τ)]}T0. (50)
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Similarly, for energy queue, we can derive

1

2

[

E2 (τ+1)− E2 (τ)
]

≤
1

2
p2

c
(τ) + [g (τ) + ϑ (τ)]2 + E (τ) {pc (τ) − [g (τ) + ϑ (τ)]} .

(51)

1

2

[

E2 (τ+T )− E2 (τ)
]

≤
1

2

mT
∑

τ=(m−1)T+1

[

p2
c
(τ) + [g (τ) + ϑ (τ)]

2
]

+
1

2

mT
∑

τ=(m−1)T+1

E (τ) {pc (τ) − [g (τ) + ϑ (τ)]} . (52)

Combining (50) and (52) as well as applying the law of

telescoping sums and the law of iterated expectations, we

derive

∆T (τ) ≤
1

2
BT

+

mT
∑

τ=(m−1)T+1

N
∑

n=1

E {T0Qn (τ) [rn (τ)− vn (τ)] |H (τ)}

+

mT
∑

τ=(m−1)T+1

E {E (τ) {pc (τ)− [g (τ) + ϑ (τ)]} |H (τ)}.

(53)

where ∆T (τ) =
1

2

[

Q2
n (τ + T )−Q2

n (τ)
]

+

1

2

[

E2 (τ+T )− E2 (τ)
]

. Based on the definition of DMU, we

can subtract the term E [V f (τ) |H (τ) ] from both sides of

(53), and then apply the law of iterated expectations to derive

the upper bound of DMU, which is given by

D[H(τ)] ≤
1

2
BT +

mT
∑

τ=(m−1)T+1

E{{V βη(t)[g(t) + ϑ(t)]

−E(τ)[g(τ) + ϑ(τ)]}|H(τ).}

+
mT
∑

τ=(m−1)T+1

N
∑

n=1

E{{[Qn(τ)rn(τ)T0]

−V Un(τ)}|H(τ).}

−
mT
∑

τ=(m−1)T+1

N
∑

n=1

K
∑

k=1

xn,kE{{Qn(τ)vn(τ)T0

−E(τ)pn,k(τ)}|H(τ)}. (54)

Define D0 (τ) as

D0(τ) =

mT
∑

τ=(m−1)T+1

E{{V βη(t)[g(t) + ϑ(t)]pn,k

−E(τ)[}(τ) + ϑ(τ)]}|H(τ).}. (55)

According to the energy causality, for ∀τ
′

> τ , the follow-

ing inequality holds

E (τ)−
(

τ
′

− τ
)

pc ≤ E
(

τ
′

)

≤E (τ) +
(

τ
′

− τ
)

(gmax + ϑmax) , (56)

where ϑmax is the upper bound of E [ϑ (τ) |H (τ) ].

Using these inequalities (56) over τ ∈ [(m− 1)T + 1,mT ],
we can derive

D0 (τ) ≤
(T − 1) T

2
(gmax + ϑmax)

2

+TV βη [(m− 1)T + 1] {g [(m− 1)T + 1]

+ϑ [(m− 1)T + 1]}

+E [(m− 1)T + 1] {g [(m− 1)T + 1]

+ϑ [(m− 1)T + 1]}. (57)

This completes the proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

To prove Theorem 2, we introduce some significant and

practical assumptions, i.e.,

E [rn (τ)T0 − vn (τ) T0|Qn (τ) ] ≤− δ1, (58)

E {pc (τ) − [g (τ) + ϑ (τ)]|E (τ)} ≤ − δ2, (59)

where δ1 > 0 and δ2 > 0 are the gap between data queue

input and output, and the gap between energy queue input

and output, respectively.

According to Theorem 1, we can derive

D [H (τ)] ≤
1

2
BT − V fopt

+
mT
∑

τ=(m−1)T+1

N
∑

n=1

E {Qn (τ) [rn (τ)− vn (τ)]}

+

mT
∑

τ=(m−1)T+1

E {E (τ) {pc (τ)− [g (τ) + ϑ (τ)]}}.

(60)

Applying the law of telescoping sums over τ ∈ [1,MT ]
and the law of iterated expectations for the above equation,

we derive

E



L (MT )− L (1)− V

M
∑

m=1

mT
∑

τ=(m−1)T+1

f (τ)



 ≤
1

2
MBT

−E





M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ) δ1





−E

M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ) δ2 − VMTfopt. (61)
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According to (61), we can derive

E



L (MT )− L (1)− V

M
∑

m=1

mT
∑

τ=(m−1)T+1

f (τ)





≤
1

2
MBT − E

M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ) δ1 − VMTfopt.

(62)

Rearranging (62), we obtain

E





M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ) δ1





≤
1

2
MBT − E [L (MT )− L (1)] + VMT (fmax − fopt) ,

(63)

where fmax is the finite constant to bound E [f(τ)], and fopt
is the theoretical optimum of P1. There exists a bound that

fmax ≥ fopt.

Dividing both sides of (63) by MTδ1 and taking the limit

M → ∞, we can obtain

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ)





≤
1

2δ1
B +

V (fmax − fopt)

δ1
. (64)

Similarly, based on (61), we can obtain

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ)





≤
1

2δ2
B −

E [L (MT )− L (1)]

MTδ2
+

V (fmax − fopt)

δ2
. (65)

Taking the limit M → ∞ and using

lim
M→∞

E [L (MT )− L (1)]

MTδ2
= 0, we can derive

lim
M→∞

1

MT
E

M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ) ≤
1

2δ2
B +

V (fmax − fopt)

δ2
.

(66)

Rearranging (66), we have

lim
M→∞

1

MT
E

M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ) ≥ Emax

−
1

2δ2
B −

V (fmax − fopt)

δ2
. (67)

Similarly, based on (61), we can obtain

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

f (τ)





≥ lim
M→∞

1

VMT
E [L (MT )− L (1)]−

B

2V
+ fopt. (68)

Since lim
M→∞

1

VMT
E [L (MT )− L (1)] = 0, we have

lim
M→∞

1

MT
E

[

M
∑

m=1

f (τ)

]

≥ fopt −
B

2V
. (69)

This completes the proof of Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

The contradiction method is utilized to prove Theorem 3.

Assume that there exists a blocking pair (n, k) in the final

matching ϕ∗, which means that ϕ∗(n) = k but n and k would

prefer to disrupt the matching in order to be matched with

each other. According to Definition 2, the matching does not

terminate until all the blocking pairs are eliminated. In other

words, ϕ∗ is not the final matching, which causes conflict with

the assumption. Therefore, there does not exist a blocking pair

in the final matching, and the proposed algorithm produces a

stable matching between devices and channels within finite

iterations.

APPENDIX D

PROOF OF THEOREM 4

The properties of residual convergence, objective conver-

gence, and dual variable convergence specified in Theorem 4

hold if the objective function of P7, i.e., Fr(xr)+Gr(zr), is

closed, proper, and convex, and the Lagrangian Lρ(xr,yr, y)
has a saddle point.

Fr(xr) is composed of two convex functions. According

to the accumulation nature of convex functions, Fr(xr) is

convex. Similarly, based on (31), Gr(zr) is also convex.

Therefore, Fr(xr) +Gr(zr) is convex.

Second, since Fr(xr) is convex, there exists at

least one minimum point. Therefore, the set of

{rlr (τ)|rlr (τ) ∈ dom Fr(xr);Fr(xr) ≤ α}, ∀α ∈ R, is

closed, i.e., Fr(xr) is closed. Similarly, Gr(zr) is also

closed. Thus, Fr(xr) +Gr(zr) is closed.

Third, there must exist at least one set of variables xr ∈
R

lr×1 which satisfy Fr(xr) < ∞. On the other hand, due to

the existence of the minimum point, Fr(xr) > −∞ is true for

all xr ∈ R
lr×1. That is, Fr(xr) is proper. Similarly, we can

prove that Gr(zr) is also proper. Therefore, Fr(xr)+Gr(zr)
is proper.

Define (x∗

r , z
∗

r) as the optimal value of the primal problem,

which is given by

(x∗

r , z
∗

r) = inf
(xr,zr)

sup
y

Lρ (xr, zr , y) . (70)

Define y∗ as the optimal value of the dual problem, which

is given by

y∗ = sup
y

inf
(xr,zr)

Lρ (xr, zr, y) . (71)

Since (x∗

r , z
∗

r) minimizes Lρ (xr, zr, y
∗) over xr ∈ R

lr×1

and zr ∈ R
(N−lr)×1, and y∗ maximizes Lρ (x

∗

r , z
∗

r , y) over

y ≤ 0, we have

Lρ (x
∗

r , z
∗

r , y
∗) = inf

(xr ,zr)
Lρ (xr, zr, y

∗) , (72)

Lρ (x
∗

r , z
∗

r , y
∗) = sup

y
Lρ (x

∗

r , z
∗

r , y) . (73)
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Then, we have

Lρ (x
∗

r , z
∗

r , y) ≤ Lρ (x
∗

r , z
∗

r , y
∗) ≤ Lρ (xr, zr , y

∗) , (74)

Based on (74), (x∗

r , z
∗

r , y
∗) is a saddle point for

Lρ (xr, zr, y).
Therefore, the properties of residual convergence, objective

convergence, and dual variable convergence hold because the

objective function of P7 is closed, proper, and convex, and

the Lagrangian Lρ(xr,yr, y) has a saddle point.
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