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Abstract

This paper addresses high-resolution vehicle positioning and tracking. In recent work, it was shown

that a fleet of independent but neighboring vehicles can cooperate for the task of localization by

capitalizing on the existence of common surrounding reflectors, using the concept of Team Channel-

SLAM. This approach exploits an initial (e.g. GPS-based) vehicle position information and allows

subsequent tracking of vehicles by exploiting the shared nature of virtual transmitters associated to the

reflecting surfaces. In this paper, we show that the localization can be greatly enhanced by joint sensing

and mapping of reflecting surfaces. To this end, we propose a combined approach coined Team Channel-

SLAM Evolution (TCSE) which exploits the intertwined relation between (i) the position of virtual

transmitters, (ii) the shape of reflecting surfaces, and (iii) the paths described by the radio propagation

rays, in order to achieve high-resolution vehicle localization. Overall, TCSE yields a complete picture

of the trajectories followed by dominant paths together with a mapping of reflecting surfaces. While

joint localization and mapping is a well researched topic within robotics using inputs such as radar and

vision, this paper is first to demonstrate such an approach within mobile networking framework based

on radio data.
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I. INTRODUCTION

The fifth-generation wireless networks aim to support demanding services such as enhanced

Mobile Broadband, Ultra-Reliable and Low Latency Communications, as well as massive Machine-

Type Communications with enhanced data rate and few milliseconds’ latency [1–5]. Many new

services will also require high accuracy localization capabilities, for instance in the domain of

network-assisted intelligent transport, autonomous vehicles and robots. More recently the use of

radio signals provided by the mobile network itself have been investigated as means to enable

the localization of user equipments [6]. In the context of 5G networks, the resolution capabilities

of such methods have improved dramatically thanks to the use of large bandwidth and massive

Multiple Input and Multiple Output system [7–10]. The works [11–15] that rely on the estimation

of Time of Arrival (ToA), Angle of Arrival (AoA) and Angle of Departure (AoD) have provided

possible strategies for radio localization. However, much of this related work tends to specialize

to scenarios where the Line of Sight (LoS) path is dominant. In practice, it is well known that

the sensibility to (and ignorance of the information carried by) multi-path components limits

the localization accuracy [7]. To cope with this problem, the multi-path assisted positioning

methods such as [16, 17] offer an interesting alternative and they allow for the exploitation

of the spatial information carried by multi-path components for localization. In principle, 5G

radio-based localization methods that can leverage multi-path offer substantial advantages over

classical approaches (GPS, RADAR and LiDAR, etc.) as they are naturally more robust with

respect to an obstructed propagation environment. They are also cost-effective as they reuse

existing components and devices without the need for extra hardware [18]. While methods like

[16, 17] capitalize on the multi-paths to localize the user, they cannot exploit the underlying

structure that link the multi-path to the environment.

To this end, the Channel Simultaneous Localization and Mapping (Channel-SLAM) [19–29]

methods were proposed for radio localization, which can exploit the link between the radio paths

and the static reflecting surfaces which create them. Channel-SLAM methods work by allowing

to exploit the static nature of the environment by recasting the multi-path components as pseudo

LoS paths that originate from a set of quasi-static virtual transmitters (VT) to improve the

localization accuracy. Hence by estimating the location of those VTs it is possible to improve

the user localization. As a natural extension of the initial Channel-SLAM concept [19], the

cooperative radio-SLAM methods referred to here as Team Channel-SLAM [30–32] exploit the

multiple user nature of road traffic to provide a cooperative approach to positioning vehicles in
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a NLoS environment.

More precisely, Team Channel-SLAM methods leverage the fact that neighboring vehicles

will be surrounding by the same reflecting surfaces. The algorithm can then explore the co-

dependence between the virtual transmitters observed by these vehicles by building a Common

Virtual Transmitter (CVT) model. This way it is possible to improve the localization accuracy

over a single vehicle scenario, with performance growing with the vehicle density. The topic

of multi-vehicle localization is rich with contributions from the existing literature. In some

approaches, the concept of multiple-target tracking based on radio measurements and VTs is

exploited such as in [32–34] which shows some similarities with our work. However substantial

differences remain. The most striking one is that in previous methods that use radio data to

construct information about VTs, the information related to the surfaces that cause the reflection

is kept implicit, hence not fully leveraged for the vehicular localization purpose. It should be

also noted that such existing methods typically need an initial (e.g. GPS-based) position input in

a single base station case for each new-coming vehicle in order to activate the algorithm, which

can be hard to obtain when the satellite signal is obstructed by high-rise buildings or bridges.

One more advantage of reconstructing surface information as part of the algorithm in our case

is that this initial position estimate derives naturally from the algorithm.

In this paper, we propose a more comprehensive approach coined Team Channel-SLAM

Evolution (TCSE). TCSE is a closed-loop approach allowing to exploit the inter-relations between

information residing the surrounding reflective structures, the shape of reflecting surfaces and

the radio path geometry (so-called radio geometrization) for vehicular localization, as illustrated

in Fig. 1. Our framework also includes wake-up positioning and synchronization1 aided by radio

geometrization, which provides an accurate initial position and time synchronization input for

cooperative SLAM. Though the works [20, 35–37] also consider synchronization under Channel-

SLAM framework, the information of reflecting surfaces is not considered together in their

synchronization bias estimation process. This also makes it more robust to satellite-signal con-

ditions that typically impede accurate GPS-based localization in real-life situations, such as the

presence of high-rise buildings or other obstructions. Besides vehicle positioning, the proposed

framework can also be exploited for the benefit of improving communication performance. For

instance, the information about dominant paths extracted from radio geometrization can be used

to optimize beamforming and beam-alignment strategies [38–42]. The proposed TCSE approach
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encompasses three main components which are presented below:

Cooperative SLAM: Cooperative SLAM explores the shared nature of VTs among multi-

ple neighboring vehicles through a CVT model. For tracking purposes, the CVT model are

maintained by a belief propagation (BP) based data association algorithm. BP was previously

proposed in the context of user localization [26, 27, 32, 33, 43, 44], however not combined with

the estimation of reflective surfaces to which CVTs are associated as in our paper. Also our

approach is designed to detect and handle false alarms (FA) in the association process based on

estimated reflecting surfaces, while such information from reflecting surfaces is not considered

in [26, 27, 32, 33, 43, 44]. The probabilistic distributions for the positions of vehicles and CVTs

are estimated in the form of discrete particles by a team particle filter.

Reflective Sensing and Mapping: Reflective sensing and mapping extracts the information of

reflecting surfaces from the cooperative SLAM. More precisely, it estimates the position and

edge of reflecting surfaces, which are provided for the other two components. Though [43]

also considers wall features rather than directly VTs, it fails to explore their relation with radio

geometrization and FA handling. For this, we use the classical online learning approach called

Follow the Regularized Leader (FTRL) [45].

Radio Geometrization: Radio geometrization estimates the paths described by the radio prop-

agation rays through the Viterbi [46] based reflector decoding algorithm and achieves wake-up

positioning and synchronization1. This component can provide precise initial position and time

synchronization for the cooperative SLAM component using only one base station, which does

not need the synchronization between multiple base stations.

The main purpose of this paper is to present a comprehensive method for vehicle positioning

and tracking referred to as TCSE, which utilizes the radio signal within a mobile networking

framework to simultaneously build a 3-D map of reflecting surfaces to improve the accuracy of

vehicular localization and its robustness to satellite-positioning signal conditions. The contribu-

tions of this paper can be summarized as follows:

• We introduce the Team Channel-SLAM Evolution method to achieve simultaneous multiple

vehicle localization and CVT positioning in an inter-vehicle cooperative manner together

with reflective sensing and mapping as well as radio geometrization.

1Wake-up positioning and synchronization refers to estimating the position and time synchronization bias of a newcomer

target (target just entering the communication range of a base station without its position and time synchronization known).
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• Our reflective sensing and mapping method allows one to estimate the 3-D position and

edge of the reflecting surfaces based on the reflecting elements extracted from the SLAM

procedure.

• In contrast with previous SLAM-based positioning methods, our radio geometrization method

allows to estimate the geometry of all dominant paths between the base station and the

vehicles while bypassing the need for initial position and time synchronization.

The remaining sections are organized as follows. Section II introduces the system models.

Section III introduces the cooperative SLAM component. Section IV introduces the reflective

sensing and mapping component. Section V introduces the radio geometrization component.

Section VI introduces the overview of implementation for TCSE. Simulations are done in Section

VII and the conclusion is drawn in Section VIII.

Notations. Vectors and matrixes are displayed in bold type. Operator ⊗ denotes the Kronecker

product, ‖·‖F denotes the Frobenius norm, |a| denotes the number of elements in vector a, (·)T

denotes the transposition for a matrix, (·)−1 denotes the inversion of a matrix, b·c denotes the

nearest integer less than or equal to that element, ⊕ denotes the xor operation, E (·) denotes the

expectation of a variable and diag (x) denotes the diagonal matrix with the elements of x on

its diagonal and zero else-where. The variables with upper arc-shaped _· denote the estimation

of corresponding variables, and p (·) denotes the probability density function. We write k for

the index of discrete time index, m for the index of vehicles, pm for the index of multi-path

components observed by vehicle m, n for the index of CVTs, l for the index of reflectors, i for

the index of vehicle particles, and j for the index of CVT particles. Specially, we use {·} to

denote the set of corresponding indexes for m, pm, n, l, e.g. {l} , {l |l = 1, 2, ...L} means the

set of all the reflector indexes.

II. SYSTEM MODEL

A. Vehicle State Model

As shown in Fig. 1, the location of the base station is denoted as xbs, and there are M vehicles,

where the state for the m-th vehicle at time tk can be denoted as x(k)
m =

{
r

(k)
m ,v

(k)
m , bm

}
.

r
(k)
m and v

(k)
m denote the position and velocity for vehicle m, respectively. bm denotes the

time synchronization bias for vehicle m, which is assumed to be constant but unknown for

each vehicle. Specially, the probabilistic distribution of r(k)
m is approximate by discrete particles

denoted as p
(
r

(k)
m , bm

)
,
{
p
(
r

(k)
m = r

(k,i)
m , bm = b

(k,i)
m

)
= w

(k,i)
m

}NV
i=1

, where w(k,i)
m is the weight

of the i-th particle, r(k,i)
m and b(k,i)

m denote the position and time synchronization bias of the i-th
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Fig. 1. System models for cooperative SLAM, reflective sensing and mapping, and radio geometrization in TCSE.

particle, and NV denotes the number of vehicle particles.

B. Observation Model and Virtual Transmitter Model

The observations from vehicle m at time tk include ToA and AoA measurements for each

multi-path component of the signals from the base station to that vehicle as the case in [47],

which can be denoted as (ToA is multiplied by the speed of light, and AoA is shown in Fig. 1):

z
(k)
m =

{
z

(k)
(m,1), ...,z

(k)
(m,pm), ...,z

(k)
(m,Pm)

}
, z

(k)
(m,pm) =

{
d

(k)
(m,pm), θ

(k)
(m,pm), ϕ

(k)
(m,pm)

}
, (1)

where z(k)
m is the observation from vehicle m at time tk, z(k)

(m,pm) is the observation of its pm-th

multi-path component, and d
(k)
(m,pm), θ

(k)
(m,pm), ϕ

(k)
(m,pm) denote the measurements of ToA, azimuth

angle of AoA, and polar angle of AoA, respectively. We assume that the ToA and AoA have been

previously estimated with errors following Gaussian distributions [26, 27]. The AoA estimations

are obtained by a uniform planner array on the vehicle [48] with zero mean error, and the mean

error of ToA estimation is constant and determined by the time synchronization bias bm.

Each multi-path component can be recast into a LoS link transmission from a virtual transmitter

(VT) to a vehicle, which is extended to common VT as shown in Fig. 1. The state of each VT

can be denoted as:

V
(k)

(m,pm) =
{
r

(k)
(m,pm), o

(k)
(m,pm)

}
, r

(k)
(m,pm) = r

(k)
m + κ

(
d

(k)
(m,pm) − bm, θ

(k)
(m,pm), ϕ

(k)
(m,pm)

)
, (2)

where κ (·) is defined as κ (d, θ, ϕ) = d · (cos θ sinϕ, sin θ sinϕ, cosϕ)T that transforms the

parameters of polar system to 3-D cartesian coordinate system. o(k)
(m,pm) indicates the association

conditions between the observation z(k)
(m,pm) and CVTs. In detail, if o(k)

(m,pm) equals to 0, then

z
(k)
(m,pm) is not an observation for any legacy CVT (CVTs have been observed already). If o(k)

(m,pm)

equals to n, then z(k)
(m,pm) is exactly an observation for the n-th CVT. The VTs recast from vehicle

m can then be denoted as V (k)
m =

{
V

(k)
(m,1), ...,V

(k)
(m,Pm)

}
.

In order to make the observation model more realistic, we also consider the false alarm (FA)
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and missed detection (MD) phenomenons of multi-path detection. If a multi-path measurement

was not originated from any valid VT, then it is a FA (also called clutter). The number of

false alarms (i.e. number of paths that do not match a valid VT) is assumed Poisson distributed

with mean µFA, and the distribution of false alarm measurement is described as fFA

(
z

(k)
(m,pm)

)
,

assumed later to be a uniform distribution. The MD phenomenon means that a certain proportion

of multi-path measurement (originated from valid VTs) will be missed. We denote the missed

proportion as (1− pd) so that pd is the detected probability.

C. Common Virtual Transmitter Model

As shown in Fig. 1, a CVT is modeled based on the VTs observed simultaneously by different

vehicles, which would be more precisely estimated based on multiple observations. The CVT

model is established based on the observed VTs through an affinity propagation [49] based CVT

establishment algorithm [30], and the maintenance of the CVT model is achieved in Section

III-A. The state of CVTs at time tk can be denoted as:

C
(k)
n =

{
r

(k)
n , ε

(k)
n , ρ

(k)
n

}
, ε

(k)
n =

{
ε

(k)
1,n, ..., ε

(k)
m,n, ..., ε

(k)
M,n

}
, (3)

where r(k)
n is the 3-D position of the n-th CVT. ε(k)

n is the CVT-observation association value,

and ε(k)
m,n is a single value indicating the association conditions between the CVT C(k)

n and the

observations from m-th vehicle z(k)
m . In detail, if ε(k)

m,n equals to 0, then the VT V (k)
m recast from

the observation z(k)
m has nothing to do with the CVT C

(k)
n , which also means that vehicle m

have no observation to the CVT C(k)
n . If ε(k)

m,n equals to pm, then the pm-th component z(k)
(m,pm)

in z(k)
m is exactly an observation to the CVT C(k)

n .

The value ρ
(k)
n is the CVT-reflector association value indicating the association conditions

between the CVT C(k)
n and reflecting surfaces (to be introduced in Section II-D). In detail, if

ρ
(k)
n = 0, then there is no existing reflecting surfaces associated with the CVT C(k)

n . If ρ(k)
n = l,

then this means that the l-th reflecting surface reflects the signal from the base station so that

the CVT C(k)
n is observed by vehicles.

Similarly, the probabilistic distribution of r(k)
n is also described by particles defined as p

(
r

(k)
n

)
,{

p
(
r

(k)
n = r

(k,j)
n

)
= w

(k,j)
n

}NC
j=1

, where w(k,j)
n is the weight of the particle r(k,j)

n , and NC denotes

the number of CVT particles.

D. Model for Reflecting Surfaces

This section presents the model used for reflecting surfaces, towards their estimation based on

the reflective sensing and mapping shown in Section IV. Note that we assume no prior knowledge
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Fig. 2. Factor graphs for data association. (a) The factor graph of CVT-observation data association for vehicle m, which shows

the PDF of the association value between CVTs and observations (see eq. (A.1) in Appendix B for its derivation). (b) The factor

graph of reflector-CVT data association, which shows the PDF of the association value between reflectors and CVTs (see eq.

(A.2) in Appendix C for its derivation).

of such surfaces or their number. The model for each reflector (e.g. reflector Rl) is described

as Rl = {Rl,wl,nl,Γl,γl} in this paper. wl = (θl, ϕl, dl)
T is the basic parameter of reflector

Rl, which describes the position of 3-D reflecting surface as sinϕl cos θl · x+ sinϕl sin θl · y +

cosϕl · z + dl = 0. nl = (sinϕl cos θl, sinϕl sin θl, cosϕl)
T is the normal vector of reflector Rl,

and Γl =
{

Ωl
θ1
, ...,Ωl

θN

}
denote the edge points of reflector Rl. γl =

{
γ

(0)
l , ..., γ

(k)
l , ...

}
is the

reflector-CVT association value indicating the association conditions between the l-th reflector

Rl and the CVTs. In detail, if γ(k)
l = 0, then the Rl is not associated with any legacy CVT. If

γ
(k)
l = n, then this means that C(k)

n is the CVT observed by certain neighboring vehicles through

the multi-path signals reflected by reflector Rl. Rl = (xl, yl, zl)
T is the position of the CVT that

is symmetric with the base station about the reflector Rl, which is calculated as:

Rl =
(
I − 2nl ⊗ nTl

)
· xbs − 2dlnl. (4)

III. COOPERATIVE SIMULTANEOUS LOCALIZATION AND MAPPING

The cooperative SLAM achieves cooperative multiple-vehicle localization and CVT estimation.

This component firstly associates the ToA and AoA observations of each multi-path with the

legacy CVTs, and then associates the reflecting surfaces with CVTs so as to utilize the sampling

strategy in [50] to calibrate the state of CVTs for accuracy improvement. Finally, a team particle

filter is utilized to estimate the position of multiple vehicles and CVTs simultaneously.

A. Associating ToA and AoA Observations with Common Virtual Transmitters

When the new ToA and AoA observations bring new VTs through equation (2) at time tk with

N legacy CVTs estimated from time slot t0 to tk−1 already existing, it is necessary to associate
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those new VTs to the legacy CVTs to maintain the CVT model. This method allows to justify

whether a new VT recast from ToA and AoA observations belongs to a certain legacy CVT or it

will independently constitute a newcomer CVT. To this end, we introduce the CVT-observation

data association method in this subsection based on belief propagation algorithm similar to

[33], which explores the association conditions between ToA and AoA observations as well as

the legacy CVTs in a probabilistic point of view with the information of reflecting surfaces

(which will be estimated through the reflective sensing and mapping component in Section IV)

considered, where the overall probability distributions are shown by the factor graph in Fig. 2(a).

The CVT-observation association value ε(k)
n and the observation-CVT association value o(k)

(m,pm)

are used to associate the ToA and AoA observations with legacy CVTs. In order to include the

fact that a certain multi-path observation (e.g. z(k)
(m,pm)) can only be associated with one CVT,

the global consistency constraint is introduced:

Φ(k)
m =

∏
n∈N(k−1)

m

Pm∏
pm=1

ψn,(m,pm), ψn,(m,pm) =


0, ε

(k)
m,n = pm, o

(k)
(m,pm) 6= n

or o
(k)
(m,pm) = n, ε

(k)
m,n 6= pm

1, otherwise

(5)

where N (k−1)
m represents the set of CVT (indexes) that can be observed by vehicle m at time

slot tk−1, which is calculated by equation (16) in Section III-A2.

1) Initial Distribution

As shown in Fig. 2(a), the initial belief of o(k)
(m,pm) = 0 is calculated as:

α
(
o
(k)
(m,pm) = 0

)
=

∫∫
p

(
_
x
(k)

m

)
p
(
r
(k)
(m,pm)

)
×h(m,pm)

(
o
(k)
(m,pm) = 0

∣∣∣∣_x(k)

m , r
(k)
(m,pm); z

(k)
(m,pm),R

)
d_x

(k)

m dr(k)(m,pm).

(6)
Given the mean value of the number of FA and the distribution of FA measurement, the

belief message h(m,pm) in (6) is calculated in a way similar to [27].

h(m,pm)

(
o
(k)
(m,pm) = 0

∣∣∣∣_x(k)

m , r
(k)
(m,pm); z

(k)
(m,pm),R

)
,
p
(
1new

(
z
(k)
(m,pm)

)
;R
)
p

(
z
(k)
(m,pm)

∣∣∣∣_x(k)

m , r
(k)
(m,pm)

)
µFAfFA

(
z
(k)
(m,pm)

) , (7)

where _
x

(k)

m is the estimated vehicle state at tk calculated as _
r

(k)

m = r
(k−1)
m +

_
v

(k)

m tδ, and _
v

(k)

m is
the velocity at tk with Gaussian error stained. The likelihood function [32, 47] is defined as:

p

(
z
(k)
(m,pm)

∣∣∣∣_x(k)

m , r
(k)
(m,pm)

)
= G

(
θ
(k)
(m,pm) −

〈
r
(k)
(m,pm) −

_
x
(k)

m

〉
θ

+ α(k)
m ; 0, σ2

θ + (σvθ )
2

)

·G

(
ϕ
(k)
(m,pm) −

〈
r
(k)
(m,pm) −

_
x
(k)

m

〉
ϕ

; 0, σ2
θ

)
G
(
d
(k)
(m,pm) −

∥∥∥∥r(k)(m,pm) −
_
x
(k)

m

∥∥∥∥− b(k)m ; 0, σ2
d

), (8)

where G (x;µ, σ2) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
is the PDF of Gaussian distribution, α(k)

m is the vehicle
orientation at time tk with zero-mean Gaussian distributed error [32] of standard deviation σvθ ,
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〈x〉θ and 〈x〉ϕ represent the azimuth angle and polar angle of vector x respectively. Then we

utilize the information from reflecting surfaces to calculate the probability of 1new

(
z

(k)
(m,pm)

)
,

which denotes whether z(k)
(m,pm) is detected and corresponds to a new valid VT. It is calculated

as:

p
(
1new

(
z
(k)
(m,pm)

)
;R
)
=

∫
l∈L(k−1)

new

∫
p1

(
1new

∣∣∣∣_x(k)

m ;Rl
)
p

(
z
(k)
(m,pm)

∣∣∣∣_x(k)

m ,Rl
)
p

(
_
x
(k)

m

)
p (Rl) d_x

(k)

m dRl,

(9)

where p1

(
1new

∣∣∣∣_x(k)

m ;Rl

)
= pd · pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;Rl

)
is the reflective probability with MD

considered, pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;Rl

)
is the origin reflective probability defined by (34) in Section

IV-B3, and L(k−1)
new = {l} \L(k−1) indicates the set of possible new reflectors (L(k) is defined in

Section III-B2). Specifically, the initial belief α
(
o

(k)
(m,pm) = n

)
, 1.

The initial belief of ε(k)
m,n = 0 which describes that there is no observation from vehicle m

associated with CVT n is calculated as:

β
(
ε(k)
m,n = 0

)
=

∫
l=ρ

(k−1)
n

∫
pO

(
O
∣∣∣∣_x(k)

m ;Rl

)
p

(
_
x

(k)

m

)
p (Rl) d_x

(k)

m dRldρ
(k−1)
n , (10)

where pO

(
O
∣∣∣∣_x(k)

m ;R
ρ

(k−1)
n

)
= 1 − pd · pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;R
ρ

(k−1)
n

)
, and the origin reflective

probability pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;R
ρ

(k−1)
n

)
is calculated by (34) in Section IV-B3. The initial belief

of ε(k)
m,n = (m, pm) is calculated as:

β
(
ε(k)m,n = (m, pm)

)
=

∫∫
p

(
_
x
(k)

m

)
p
(
r(k−1)n

)
× gm,n

(
ε(k)m,n = (m, pm)

∣∣∣∣_x(k)

m , r(k−1)n ; z(k)m ,R
)

d_x
(k)

m dr(k−1)n .

(11)
The belief message gm,n is calculated as:

gm,n

(
ε(k)m,n = (m, pm)

∣∣∣∣_x(k)

m , r(k−1)n ; z(k)m ,R
)

,
p
(
1observe

(
z
(k)
(m,pm)

)
;R
)
p

(
z
(k)
(m,pm)

∣∣∣∣_x(k)

m , r
(k−1)
n

)
µFAfFA

(
z
(k)
(m,pm)

) , (12)

where 1observe

(
z

(k)
(m,pm)

)
denotes whether z(k)

(m,pm) is detected and corresponds to a new or legacy
valid VT. We define the probability of it as observing probability which is calculated as:

p
(
1observe

(
z
(k)
(m,pm)

)
;R
)
=

∫
l∈{l}

∫
p1

(
1observe

∣∣∣∣_x(k)

m ;Rl
)
p

(
z
(k)
(m,pm)

∣∣∣∣_x(k)

m ,Rl
)
p

(
_
x
(k)

m

)
p (Rl) d_x

(k)

m dRl,

(13)

where p1

(
1observe

∣∣∣∣_x(k)

m ;Rl

)
= pd · pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;Rl

)
is the reflective probability with

MD considered, and pR

(
1m,l = 1

∣∣∣∣_x(k)

m ;Rl

)
is defined by (34) in Section IV-B3.

2) Belief Message Propagation and Association

The belief message πε[iter]n→(m,pm) from CVT-observation association value to observation-CVT

association value can be obtain iteratively by belief propagation algorithm in [33]. The probability
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that the observation of multi-path (m, pm) is associated with the CVT C(k)
n is calculated as:

_
p
(
o

(k)
(m,pm) = n

)
=

α
(
o

(k)
(m,pm) = n

)
π
ε[ITER]
n→(m,pm)

α
(
o

(k)
(m,pm) = 0

)
+
∑
n′
α
(
o

(k)
(m,pm) = n′

)
π
ε[ITER]
n′→(m,pm)

. (14)

The CVT (index) _
o

(k)

(m,pm) that is associated with the observation of multi-path (m, pm) is then

calculated following the most probable principle [51] in order to improve the efficiency of TCSE:
_
o

(k)

(m,pm) = arg max
n

_
p
(
o

(k)
(m,pm) = n

)
. (15)

Thus the association between the observations and the legacy CVTs can be executed as:

• Mitigation of false alarms: If the probability p
(
1observe

(
z

(k)
(m,pm)

)
;R
)

is smaller than a FA

threshold δFA, then the observation z(k)
(m,pm) will be seen as a FA and discarded.

• Observation association: An observation z
(k)
(m,pm) will be associated to a legacy CVT ac-

cording to (15) if _
o

(k)

(m,pm) 6= 0, otherwise its corresponding VT calculated by (2) will be

regarded as a standalone CVT.

• Discarding of empty CVT: A legacy CVT is discarded if it has no associated observation.

We utilize N (k)
m to denote the set of CVT (indexes) that are associated with observations

from vehicle m. We utilize P(k)
n to denote the set of multi-path observation (indexes) that are

associated with CVT C
(k)
n , and utilize M(k)

n to denote the set of vehicle (indexes) that have

multi-path observations associated with CVT C(k)
n , which are calculated respectively as:

N (k)
m = ∪

pm

{
_
o

(k)

(m,pm)

}
,P(k)

n =
{

(m, pm)
∣∣∣_o(k)

(m,pm) = n
}
,M(k)

n =

{
m

∣∣∣∣_o(k)

(m,pm) = n

}
. (16)

B. Associating Reflecting Surfaces with Common Virtual Transmitters

The information of reflecting surfaces estimated from the reflective sensing and mapping in

Section IV can be utilized by the cooperative SLAM to further improve the accuracy of CVT

estimation. To this end, it is necessary to explore the association conditions between the reflecting

surfaces and CVTs to allow the sampling strategy introduced in Section III-C to deliver the

information of reflecting surfaces to CVTs. So we introduce the reflector-CVT data association

method in this subsection with the factor graph shown in Fig. 2(b). The reflector-CVT association

value γ(k)
l and CVT-reflector association value ρ(k)

n are utilized to associate the reflecting surfaces

with legacy CVTs. Similarly, the global consistency constraint is defined as:

Ψ(k) =
L∏
l=1

N∏
n=1

ϕl,n, ϕl,n =

 0, γ
(k)
l = n, ρ

(k)
n 6= l or ρ

(k)
n = l, γ

(k)
l 6= n

1, otherwise
. (17)
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1) Initial Distribution

The initial belief of γ(k)
l = n is calculated as:

ξ
(
γ

(k)
l = n

)
=
∫∫

ul

(
γ

(k)
l = n

∣∣∣r(k)
{n},Rl

)
p (Rl) p

(
r

(k)
{n}

)
dr(k)
{n}dRl, (18)

where the belief message ul is defined as:

ul

(
γ

(k)
l = n

∣∣∣r(k)
{n},Rl

)
, p

(
γ

(k)
l

∣∣C(k)
n ,Rl

)
. (19)

Specially, we define the belief ξ
(
γ

(k)
l = 0

)
, 1. The initial belief of ρ(k)

n = 0 is calculated as:

η
(
ρ(k)n = 0

)
=

∫∫∫
(m,pm)∈P(k)

n ,

m∈M(k)
n ,l∈{l}

pO

(
O
∣∣∣x(k)
m ;Rl

)
p
(
z
(k)
(m,pm)

∣∣∣x(k)
m ,Rl

)
p
(
x(k)
m

)
p (Rl) dz(k)(m,pm)dx

(k)
m dRl,

(20)

where pO
(
O
∣∣∣x(k)

m ;Rl

)
= 1 − pd · pR

(
1m,l = 1

∣∣∣x(k)
m ;Rl

)
, and pR

(
1m,l = 1

∣∣∣x(k)
m ;Rl

)
is the

origin reflective probability calculated by (34) in Section IV-B3. Specifically, the initial belief

η
(
ρ

(k)
n = l

)
, 1.

2) Belief Message Propagation and Association

The belief message πγ[iter]
l→n from the reflector-CVT association value to CVT-reflector associa-

tion value can be obtained iteratively by the belief propagation algorithm in [33]. The probability

that the CVT C(k)
n is associated to reflector Rl is then calculated as:

_
p
(
ρ(k)
n = l

)
=

η
(
ρ

(k)
n = l

)
π
γ[ITER]
l→n

η
(
ρ

(k)
n = 0

)
+
∑
l′
η
(
ρ

(k)
n = l′

)
π
γ[ITER]
l′→n

. (21)

So the reflector (index) that associates with the CVT C
(k)
n is calculated following the most

probable principle [51] in order to improve the efficiency of TCSE:
_
ρ

(k)

n = arg max
l

_
p
(
ρ(k)
n = l

)
. (22)

Thus we define the set of reflectors associated with legacy CVTs as L(k) =
⋃
n

_
ρ

(k)

n .

C. Sampling Strategy for Common Virtual Transmitter Particles

In this section, a recently introduced sampling strategy [50] is used to deliver the information

of reflecting surfaces (estimated from reflective sensing and mapping in Section IV) to CVTs.

The purpose of this method is to improve the particle sampling accuracy for CVTs. In the

particle based estimation method like particle filter, the particle sampling process refers to

approximating a certain probability distribution by sampling a finite number of particles based

on pre-modeled uncertainties (e.g. Gaussian uncertainty) [52–54]. However, if some information

about the probability distribution (like the information of reflecting surfaces in this paper) is
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already known, the particles can be drawn more efficiently. So this section allows to deliver the

information of reflecting surfaces to the CVT estimation in the CVT particle sampling process. In

detail, the information from the reflectors can help to select the CVT particles more reasonably

so as to calibrate the position of the CVTs for vehicular positioning accuracy improvement.

1) Weight updating

For a CVT (e.g. the CVT C
(k)
n ), the information of reflecting surfaces and CVT-reflector

association value _
p
(
ρ

(k)
n = l

)
are used to update the weight of its particles:

p
(
r

(k)
n

)
=
∫∫

p
(
r

(k)
n

∣∣∣ρ(k)
n ,R{l}

)
_
p
(
ρ

(k)
n = l

)
p
(
R{l}

)
dρ(k)

n dR{l} . (23)

2) Particle crossover and mutation

The particles updated through equation (23) are then divided into higher-weighted particles

and lower-weighted particles. Then crossover and mutation operations are adopted to sample the

particles. In detail, the crossover operation makes all the lower-weighted particles get closer to

the higher-weighted particles. The mutation operation generates new higher-weighted particles

with a mutation probability pM . The crossover and mutation operations can be summarized as:

Step 1: Calculate the threshold to distinguish higher-weighted particles and lower-weighted

particles as Nk,n
eff =

⌊
1

/
NC∑
j=1

(
w

(k,j)
n

)2
⌋

.

Step 2: Sort the particles in the descending order of the weights calculated by (23). The

particles ranked before the Nk,n
eff -th particle are defined as higher-weighted particles denoted

as
{
r

(k,jH)
n , w

(k,jH)
n

}
, and the particles ranked after the Nk,n

eff -th particle are defined as lower-

weighted particles denoted as
{
r

(k,jL)
n , w

(k,jL)
n

}
.

Step 3: Update the particles in a joint crossover and mutation manner:

r(k,jL)
n =

 αC

(
2r

(k,jH)
n − r(k,jL)

n

)
+ (1− αC) r

(k,jH)
n , rand (0, 1) ≤ pM

αCr
(k,jL)
n + (1− αC) r

(k,jH)
n , rand (0, 1) > pM

, (24)

where αC ∈ (0, 1) determines how much information from r
(k,jH)
n is supposed to be transferred

to r(k,jL)
n in the crossover operation, and pM is the mutation probability indicating the possibility

that a lower-weighted particle is mutated into a new higher-weighted particle.

D. Team Particle Filter

Team particle filter can be seen as an extension of classical particle filter [52–54] and is here

proposed as a way to estimate the positions of multiple vehicles and CVTs simultaneously (such

position estimates are modeled by particles) using stochastic batch iteration [31], which utilizes

the information of reflecting surfaces together with the sampling strategy in Section III-C.
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In each time slot (e.g. time slot tk), the team particle filter firstly samples the particles of each

CVT based on the information of reflecting surfaces and the particles of each vehicle based on

its velocity information. Then it divides the vehicle particles as well as the CVT particles into

stochastic batches, and updates the position of CVTs and multiple vehicles iteratively. The team

particle filter is described as follows:

1) Particle sampling

Since the position of CVTs are static over time, the particles of each CVT (e.g. CVT C(k)
n )

are inherited from its previous probability distribution as:

r(k,j)
n ∼ p

(
r(k,j)
n

∣∣r(k−1,j)
n

)
= δ

(
r(k,j)
n − r(k−1,j)

n

)
, (25)

where δ (·) denotes the impulse function. Then the particles of each CVT are updated by the

sampling strategy described in Section III-C.

The particles of vehicle m are drawn by its velocity v(k)
m described in Section III-A1:

r(k,i)
m ∼ p

(
r(k,i)
m

∣∣r(k−1,i)
m ,v(k)

m

)
. (26)

2) Joint updating

In each iteration, stochastic batches are chosen from the particles of each vehicle and each

CVT, so the updating process in each iteration (e.g. iteration b) are summarized as:
Step 1: Update the particles chosen in the iteration b for each CVT (e.g. CVT C(k)

n ) as:

w
(k,jn,b)
n = w

(k−1,jn,b)
n p

(
z
(k)

P(k)
n

∣∣∣r(k)n

)
= w

(k−1,jn,b)
n

∏
(m,pm)∈P(k)

n

∫
p
(
z
(k)
(m,pm)

∣∣∣r(k)n , r(k)m

)
p
(
r(k)m

)
dr(k)m , (27)

where jn,b denotes the index of particles belonging to the set of particles chosen in the b-th

iteration for CVT C(k)
n , and P(k)

n is the set of multi-path observation (indexes) that is associated

with CVT C(k)
n calculated in (16).

Step 2: Update the particles chosen in the iteration b for each vehicle (e.g. vehicle m) as:

w
(k,im,b)
m = w

(k−1,im,b)
m p

(
z(k)m

∣∣∣r(k)m

)
= w

(k−1,im,b)
m

Pm∏
pm=1,n=

_
o

(k)

(m,pm)

∫
p
(
z
(k)
(m,pm)

∣∣∣r(k)m , r(k)n

)
p
(
r(k)n

)
dr(k)n ,

(28)

where im,b denotes the index of particles belonging to the set of particles chosen in the b-th

iteration for vehicle m, and _
o

(k)

(m,pm) is the CVT (index) that is associated with the observation

of multi-path (m, pm) calculated in (15).

IV. REFLECTIVE SENSING AND MAPPING

The reflective sensing and mapping component estimates the position and edge of the reflecting

surfaces by extracting information from the position estimations of multiple vehicles and CVTs

in cooperative SLAM. This component also in return provides the information of reflecting
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surfaces for cooperative SLAM and radio geometrization for positioning accuracy improvement.

In detail, this component firstly extracts the reflecting elements in Section IV-A as shown in

Fig. 3. Then an online learning approach based on FTRL [45] is introduced to estimate the

position and edge of the reflecting surfaces in Section IV-B, where the reflective probability2

pR (1m,l |xm ;Rl) is calculated based on the ray-crossing algorithm [55].

A. Reflecting Element Extraction

The reflecting elements are extracted from each multi-path observation as shown in Fig. 3.

For the multi-path indexed by (m, pm), the corresponding reflecting element includes: 1) the

position of its reflecting point, and 2) the normal vector of its reflecting surface, which can be

denoted as χ(k)
(m,pm) =

{
P

(k)
(m,pm),E

(k)
(m,pm)

}
. The reflecting point P (k)

(m,pm) is the intersection point

between the vector
−−−−→
r

(k)
n r

(k)
m and the plane about which xbs is symmetric with r(k)

n as shown in

Fig. 3. The normal vector of the reflecting surface is described by azimuth angle and polar angle

which is denoted as E(k)
(m,pm) =

{
θ̄

(k)
(m,pm), ϕ̄

(k)
(m,pm)

}
= κ−1

(
xbs − r(k)

n

)
, where n =

_
o

(k)

(m,pm) is

the CVT (index) associated with multi-path (m, pm) calculated by equation (15), and κ−1 (·) is

the inverse operation of κ (·) that transforms the parameters of cartesian coordinate system to

polar system. The reflecting elements extracted based on CVT C(k)
n (with _

o
(k)

(m,pm) = n) will be

then collected together to estimate the plane coordinate of the reflector ln, where ln =
_
ρ

(k)

n is

the reflector (index) associated with CVT C(k)
n calculated by equation (22).

Then we can obtain the data set for the estimation of reflectorRl as
{
χ

(h)
l

}
=
{
P

(h)
l ,E

(h)
l

}Hl
h=1

,

where Hl is the size of the set. χ(h)
l is the h-th reflecting element, P (h)

l and E(h)
l =

{
θ̄(h), ϕ̄(h)

}
are its reflecting point and the normal vector of the reflecting surface, respectively.

B. FTRL based Reflector Learning and Edge Estimation

1) FTRL Reflector Learning

For each reflector (e.g. Rl), an online learning architecture based on FTRL [45] is introduced

to estimate its plane coordinate with the data set
{
χ

(h)
l

}
. The estimating parameter is defined

as w = (θ, ϕ, d)T , which is also the basic parameter of a reflector as defined in Section II-D.

The loss function is then defined as:

J (w) =
1

2H

H∑
h=1

(
κ(θ;ϕ; 1)T · P (h) + d

)2

+ λref

((
θ − θ̄(h)

)2
+
(
ϕ− ϕ̄(h)

)2
)

(29)

where λref is the constraint weight for angle loss.

2The reflective probability pR (1m,l |xm ;Rl) indicates the probability that whether a vehicle locates at position rm can

receive the signals reflected by reflector Rl.
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Fig. 3. Reflecting elements and edge estimation. This figure shows the reflecting elements for the pm-th path observed by

vehicle m, and also shows the edge estimation of a reflector using 8 discrete points (Vθl = 8).

According to [45, 56], the estimated parameter w can be updated as:

wt+1,i = −ηt,izt,i, zt+1,i = zt,i + gt,i − σt,iwt,i, (30)

where wt,i is the i-th element in wt at t-th iteration, ηt,i is the learning rate based on a per-

coordinate learning rate strategy [56] defined as ηt,i = lα

/(
lβ +

√
t∑

s=1

g2
s,i

)
, zt,i is defined as

zt,i = g1:t,i −
t∑

s=1

σs,iws,i with σs,i calculated as σs,i = 1
ηs,i
− 1

ηs−1,i
, and gt,i is the gradient of wi

at t-th iteration. Setting ni =
t∑

s=1

g2
s,i and z0 = 0, the updating process in the t-th iteration can

be summarized as:

Step 1: Calculate the parameter as wt+1,i = −ηt,izt,i and the loss function as (29).

Step 2: For each wt,i ∈ wt, i) calculate the gradient as gt,i = ∇iJ (wt), ii) update the learning

rate as σt,i =

√
ni+g2

t,i−
√
ni

α
, iii) update zt+1,i as zt+1,i = zt,i + gt,i − σt,iwt,i, iv) update ni as

ni ← ni + g2
t,i.

Based on the trained parameter _
w =

(
_

θ,
_
ϕ,

_

d
)T

obtained from the above steps, the 3-D

coordinate equation of a reflector (e.g. reflector Rl) can then be obtained as sin
_
ϕ cos

_

θ · x +

sin
_
ϕ sin

_

θ · y + cos
_
ϕ · z +

_

d = 0. Then the basic parameter of the reflector can be updated as

wl =
_
w, the normal vector can be updated as nl =

(
sin

_
ϕ cos

_

θ, sin
_
ϕ sin

_

θ, cos
_
ϕ
)T

, and Rl

symmetric with the base station about that reflector can then be calculated by (4).

2) Edge Estimation

The edge of the reflecting surfaces will help to calculate the reflective probability in Section

IV-B3, which is estimated in this subsection based on its corresponding reflecting elements.

For each reflecting element χ(h)
l of the reflector Rl, its projection points to the reflecting

surface can be calculated as P̂ (h)
l =

(
1− nl ⊗ nTl

)
·P (h)

l − dlnl. We define the weight of each
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reflecting element for describing the reflecting surface’s edge as:

J
(
P̂

(h)
l

)
=
(
κ(θl;ϕl; 1)T · P̂ (h)

l + dl

)2

+ λref

((
θ̄

(h)
l − θl

)2

+
(
ϕ̄

(h)
l − ϕl

)2
)
. (31)

For reflector Rl, an edge point Ωl
θ can be estimated in each direction θ ∈ [0, 2π) along

with the ray starting from the center point P̂l = E
(
P̂

(h)
l

)
. If Vθl angles are sampled from

[0, 2π) represented as
{
θ1, ..., θv, ..., θVθl

}
, the estimated edge can then be described as Γl ={

Ωl
θ1
, ...,Ωl

θVθ
l

}
. The point Ωl

θv
is the edge estimated in θv direction, which is selected if the

areal density of the weight calculated by equation (31) on the area from that point away from

the central point P̂l along with the directions ϑv
(
νθl
)
∈
[
θv − π

νθl
, θv + π

νθl

)
is just larger than

the average areal density W̄θ:

Ωl
θv = arg

Ω

∫
SΩ
θv

J
(
P̂

(h)
l

)
dS∫

SΩ
θv

dS
= W̄θ, (32)

where SΩ
θv

is the area of the surface integration in (32) shown in Fig. 3. The average weight W̄θ

is calculated as W̄θ =

∫
Sθ{v}

J
(
P̂

(h)
l

)
dS∫

Sθ{v}
dS

, where Sθv is the area in ϑv
(
νθl
)

directions starting from

the central point P̂l as shown in Fig. 3.

3) Reflective Probability

The the reflective probability p1 (1 |xm ;Rl) is calculated based on the ray-crossing algorithm

[55]. According to the theory of ray-crossing, if a ray starting from a certain point have an odd

number of intersection point(s) across the edge of the area, then that point is in the area enclosed

by that edge. Thus for a vehicle locating at rm, we can first obtain its potential reflecting point

Pml with respect to reflector Rl (the intersection point between the vector
−−−→
rmRl and the plane

coordinate of reflector Rl), and then the intersection points Ωml between the ray from Pml along

−x direction and the l-th reflector’s edge Γl can be easily calculated.

We use a binary random variable 1m,l to denote whether a vehicle locates at rm can receive

the signal reflected by the reflector Rl, and its probability according to the results of reflective

sensing and mapping is denoted as:

p (1m,l = 1 |rm,Rl ) =

 1, mod (|Ωml| , 2) = 1

0, otherwise
. (33)

Since the reflective sensing and mapping continuously extracts information from cooperative

SLAM for reflector estimation, we utilize the reflector density factor fD (Rl) to indicate the

reliability of a reflector estimation. The reflector density of a reflecting surface is zero if the

number of its reflecting elements Hl is smaller than the scaling number Hscale, in this case the
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estimation of that reflector is regarded unreliable. If Hl > Hscale, the reflecting density is defined

as fD (Rl) , 1−e−Hl
/(
Hscale

∫
Γl

dS
)
. Since the reflective probability is independent of velocity and

synchronization bias, p (1m,l |rm,Rl ) = p (1m,l |xm,Rl ). Thus the reflective probability when

1m,l = 1 is defined as:

pR (1m,l = 1 |xm ;Rl) = p (1m,l = 1 |xm,Rl ) fD (Rl) + fR0 (1m,l = 1 |xm,Rl ) [1− fD (Rl)],

(34)

where fR0 (1m,l |xm,Rl ) is the activation reflective probability in case that the reflector estimation

is not reliable.

V. RADIO GEOMETRIZATION

This section introduces the radio geometrization to estimate the geometric paths of the multi-

path propagation rays from the base station to a newcomer vehicle so as to further estimate its

position and time synchronization bias. To this end, the radio geometrization component firstly

introduces a Viterbi [46] based reflector decoding algorithm to link the multi-path observations

from the newcomer vehicle to the current reflectors, so that the reflectors that reflect the signal

of the observed multi-paths can then be decoded. Then the radio geometrization component

estimates the position and time synchronization bias of the vehicle based on the Separate

Constrained Weighted Least Square (SCWLS) algorithm [57, 58] which is referred to as wake-up

positioning and synchronization. Note that the radio geometrization can be easily extended from

the downlink scenario in this section to an uplink scenario.

A. Viterbi Based Reflector Decoding

Since the position of the newcomer vehicle is unknown, its multi-path observations cannot be

modeled into VTs according to equation (2). However, the relative positions among VTs can be

utilized to decode a certain reflector for each multi-path observation, where that reflector has

the biggest probability to be the one reflects the signals from the base station to the newcomer

vehicle. We assume that there is no ternary isomorphism in the spatial distribution among all

CVTs, and there are more than three multi-path components observed by the newcomer vehicle.

The state space, transition matrix, observation space, emission matrix and initial probability of

the Viterbi based reflector decoding process are then described as follows:

1) State Space

Based on the no ternary isomorphism assumption, we group three CVTs as a state. So the

state space of the Viterbi based reflector decoding is defined as Q = {q1, ..., qu, ..., qU}. The
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state qu is defined as qu =
{
RT
l1
,RT

l2
,RT

l3

}
, where (l1, l2, l3) is a combinatorial number with

U = C3
L kinds of combinations

2) Observation Space

The ToA and AoA observations of the newcomer vehicle are defined as Zx =
{
z(x,1), z(x,2),

..., z(x,Px)

}
, where z(x,p) refers to the observations of the p-th multi-path defined as z(x,p) =

{θp, ϕp, dp}, and Px is the number of multi-path observations. The observation is divided into

D = Px − 2 layers with three multi-path observations each. Then the observation of the d-th

layer is defined as (d = 1, 2, ..., Px − 2):

V (d) =
{
zT(x,d), z

T
(x,d+1), z

T
(x,d+2)

}
. (35)

3) Emission Matrix

The observation emission matrix of Viterbi based reflector decoding is defined as:

B
(
V (d)

)
=
[
bv
(
V (d)

)]
U×1

, bv
(
V (d)

)
= p

(
V (d) |ud = qv

)
, (36)

where bv
(
V (d)

)
is the probability of observing V (d) when the state is qv. The relative positions

among the three VTs recast from the observations of d-th layer V (d) are utilized to measure the

probability of observing V (d) when the state is qv. Then bv
(
V (d)

)
is calculated as:

bv
(
V (d)

)
= g

(
$(d)
v ; 0, σ2

)
, $(d)

v = min
E

(d)
3

{∥∥∥qvE(d)
3 ∆ + κ

(
V (d)

)
∆
∥∥∥}, (37)

where g
(
$

(d)
v ; 0, σ2

)
denotes that $(d)

v follows a zero mean Gaussian distribution with variance

of σ2, E(d)
3 is a 3× 3 permutation matrix3, and ∆ is a subtraction matrix aiming to calculate

relative position defined as ∆ = [1,−1, 0;−1, 0, 1; 0, 1,−1]. Specially, if z is a set of observations

like z = (z1, z2, ...,zN), then κ (z) = (κ (z1) ,κ (z2) , ...,κ (zN)).

4) Transition Matrix

The transition matrix of Viterbi based reflector decoding is defined as:

A(d) =
[
a(d)
uv

]
U×U , a

(d)
uv = p (ud+1 = qv |ud = qu ) , (38)

where ud denotes the current state in d-th layer, and the value a(d)
uv means the probability that

the state qu transits to state qv from d-th layer to (d+ 1)-th layer. The value a(d)
uv is defined as:

a(d)
uv ,


1,
(
quE

(d)
3

)
⊕
(
qvE

(d+1)
3 >> 1

)
=
(

1 1 0
)

0, otherwise
. (39)

3A permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column, and 0s elsewhere.

Specifically, for the dimension of 3× 3, there are A3
3 = 6 kinds of permutation matrixes.
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The transition matrix in (39) indicates that the two states qu and qv in the transition process

have only two same CVTs in specified place, which will ensure the relativity in the transition

process according to the observation space defined in (35).

5) Initial Probability

The initial probability of Viterbi based reflector decoding is defined as equation (40), which

constrains that there is no same CVT in any state.

Π = (π1, π2, ..., πU) , πu ∝

1, rank (qu) = 3

0, otherwise
. (40)

The highest probability transiting to state ud among all the possible state transition paths

(u1,u2, ...,ud−1) based on the observations V (1:d) up to d-th layer is defined as δ(d) (u),

δ(d) (u) = max
u1,u2,...,ud−1

p
(
ud = u,u1,u2, ...,ud−1,V

(1:d) |λ
)
. (41)

So its recursion formula of δ(d) (u) is derived as:

δ(d+1) (u) = max
u1,u2,...,ud

p
(
ud+1 = u,u1,u2, ...,ud, V

(1:d+1) |λ
)

= max
v∈Q

[
δ(d) (v) a(d)

uv

]
bv
(
V (d+1)

)
.

(42)

Thus the most probable state in (d− 1)-th layer transiting to the state ud in d-th layer is

defined as Ψ(d) (u), which can be derived based on δ(d) (u) as:

Ψ(d) (u) = arg max
v∈Q

[
δ(d−1) (v) a(d)

uv

]
. (43)

Then the algorithm for Viterbi based reflector decoding can be summarized as:

Step 1: Initialize δ(1) (u) and Ψ(1) (u) as δ(1) (u) = πubu
(
V (1)

)
, Ψ(1) (u) = 0,u ∈ Q.

Step 2: Update the state in each layer dynamically as (42) and (43).

Step 3: Calculate the probability of the most probable path and its state in layer D as P ∗ =

max
u∈Q

δ(D) (u) , q∗D = arg max
u∈Q

[
δ(D) (u)

]
.

Step 4: Recall the states in layer d = D − 1, ..., 1 through Ψ (u) as q∗d = Ψ(d+1)
(
q∗d+1

)
.

Then the most probable state q∗d corresponding to the observation V (d) is decoded as V (d) ∼

q∗dE
(d)
3 . Thus the most probable CVTs (generated by reflectors)

{
R(x,p)

}Px
p=1

corresponding to

the observation Zx are then decoded as Zx ∼
{
R(x,1),R(x,2), ...,R(x,Px)

}
.

B. Wake-up Positioning and Synchronization

This section utilizes the reflector decoding results in Section V-A to estimate the position

and time synchronization bias of the newcomer vehicle to achieve wake-up positioning and

synchronization based on the SCWLS algorithm [57, 58]. The ToA observations {dp} are

utilized to achieve TDoA positioning, and the AoA observations {θp, ϕp} are utilized to achieve
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AoA positioning. Finally, the two positioning methods are jointly considered in the wake-up

positioning and synchronization algorithm.

1) TDoA Positioning

Since there exists time synchronization bias, the ToA measurement dp can be resolved as

dp = δp + b+ ndp, where δp is the real distance from CVT R(x,p) to the vehicle x, b is the time

synchronization bias, and ndp is the observation error of dp. We define the ToA observation of

the first multi-path d1 as reference ToA, so the distance difference between the ToA observation

of multi-path p and the reference ToA is calculated as:

rp,1 = dp − d1 = δp − δ1 + ndp,1, (44)

where p = 1, 2, ..., Px denote the indexes of the multi-path, and ndp,1 is the error of the dis-

tance difference calculated as ndp,1 = ndp − ndp. For sake of simplification, we define R(x,p) =

(xp, yp, zp)
T , and the position of the newcomer vehicle as rx = (x, y, z)T . Then δp is calculated

as δp =
∥∥R(x,p) − rx

∥∥
F

. According to (44), we can obtain:

Eϑ = h+m, ϑ =
(
x− x1 y − y1 z − z1 δ1

)T
,m =

(
m2,1 · · · mPx,1

)T
,

E =


x2 − x1 y2 − y1 z2 − z1 r2,1

...
...

...
...

xPx − x1 yPx − y1 zPx − z1 rPx,1

 ,h =
1

2


∥∥R(x,2) −R(x,1)

∥∥2 − r2
2,1

...∥∥R(x,Px) −R(x,1)

∥∥2 − r2
Px,1

 ,

(45)

where mp,1 = δpn
d
p,1 +

(
ndp,1
)2
/

2. If the second-order error is ignored, then mp,1 ≈ δpn
d
p,1.

2) AOA Positioning

For the observation of azimuth angle θp, we have θp = θrp + nθp, where θrp denotes the real

azimuth angle and nθp denotes its observation error. According to the definition of azimuth angle,

we have (y − yp)/(x− xp) = sin θrp
/

cos θrp. For the observation of polar angle ϕp, we define

ϕp = ϕrp + nϕp , where ϕrp denotes the real polar angle, and nϕp denotes its observation error.

According to the definition of polar angle, we can obtain cosϕrp = z−zp
δp

. So we can get the

following equation for the AoA positioning:

Hϑ = K + µ+ ν, µ =
(
µ1 · · · µPx

)T
, ν =

(
ν1 · · · νPx

)T
,

H =


sin θ1 − cos θ1 1 − cosϕ1

...
...

...
...

sin θPx − cos θPx 1 − cosϕPx

 , K =


0

r2,1 cosϕ2

...

rPx,1 cosϕPx

 ,
(46)
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where µp = nθp [(x− xp) cos θp + (y − yp) sin θp] ≈ nθpδp sinϕp, and νp = nϕp δp sinϕp−ndp,1 cosϕp.

3) Joint TDoA and AoA Positioning

Considering the equations (45) and (46) simultaneously, we can obtain:

Aϑ = q +N , A =
[
ET HT

]T

, q =
[
hT KT

]T

,N =
[
mT (µ+ ν)T

]T
. (47)

Since there are potential inverse operations for a singular matrix in (47), the equation (47)

can be transformed as:

Gχ = q − gδ1 +N ,G =
(

[A]:,1 [A]:,2 [A]:,3

)
,χ =

(
x− x1 y − y1 z − z1

)T
, g = [A]:,4,

(48)

where [A]:,i is the i-th row of matrix A, and the weight matrix is defined as W = E
(
NNT

)
.

Since the observation error from distance, azimuth angle, and polar angle are independent,

the weight matrix can then be calculated as (the value δp in the calculation process of W is

approximated as δp ≈ rp,1 +
_

δ 1):

W =

 M E

ET N

−1

, E = E
(
m(µ+ ν)T

)
,M = E

(
mmT

)
,N = E

(
(µ+ ν) (µ+ ν)T

)
.

(49)

We define the weighted least square function of equation (48) as JLS
(
_
χ,

_

δ 1

)
=
(
G

_
χ− q + g

_

δ 1

)T
·W ·

(
G

_
χ− q + g

_

δ 1

)
, and χ can then be estimated as:

_
χ = arg min

_
χ

JLS

(
_
χ,

_

δ 1

)
s.t. _

χ
T _
χ =

_

δ 1

2

. (50)

The problem in (50) is solved by introducing the Lagrange multipliers η, then _
χ can be

calculated iteratively by the co-called SCWLS algorithm. Initializing W = I2Px−1, the SCWLS

algorithm can be summarized as:

Step 1: Calculate the Lagrange multipliers η as [58], so that η can be obtained with multiple

roots: η[s], s = 1, 2, ..S, S 6 6.

Step 2: Calculate
_

δ 1 based on
{
η[s]
}

, and find the group of
{
η[s],

_

δ
[s]

1 ,
_
χ

[s]
}

that minimizes

the Lagrangian.

Step 3: Reconstruct W as (49), and repeat steps (1∼2) until _
χ converges.

Thus the position and time synchronization bias of the unknown vehicle is calculated by (51),

which can provide accurate initial positioning and time synchronization for cooperative SLAM.

_
rx =

_
χ+R(x,1),

_

b = d1 −
∥∥_χ∥∥

F
. (51)
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Fig. 4. The three main components of TCSE are shown above: (i) cooperative SLAM, (ii) Reflective sensing and mapping, (iii)

Radio geometrization.

VI. OVERVIEW OF IMPLEMENTATION FOR TEAM CHANNEL-SLAM EVOLUTION

The relations among the three main algorithm components in TCSE are shown in Fig. 4

and is also summarized below for the reader’s overall understanding. More specifically, when

TCSE is initially deployed, the cooperative SLAM component is initiated to estimate the state

of CVTs and multiple vehicles jointly through the CVT-observation data association method and

the team particle filter as described in Section III. Meanwhile, the reflective sensing and mapping

component collects the estimation results of multiple vehicles and CVTs from the cooperative

SLAM to estimate the position and edge of the reflecting surface as described in Section IV.

When the reflecting surfaces have been mapped up in sufficient detail, the framework can

in turn improve the accuracy of cooperative SLAM by: 1) sampling the CVT particles based

on reflector-CVT data association and the sampling strategy described in Section III, and 2)

providing the reflective probability for CVT-observation data association and reflector-CVT

data association as described in Section IV and III. Meanwhile, radio geometrization utilizes

the information of reflecting surfaces to achieve wake-up positioning and synchronization as

described in Section V.

VII. NUMERICAL RESULTS

Simulations are done to test the performance of the TCSE algorithm. As shown in Fig. 5,

the simulations in this paper focus on a fixed 100m-length road with vehicles passing by with a

certain flowing density, and a base station is placed with a known location at [50m, 0, 8m]. There

are 10 reflectors in our simulation as shown in Fig. 5, and the information of each reflectors

(including the number of those reflecting surfaces) is unknown. The density of vehicles on the

road is set to 8 vehicles/100 meters, and the velocity of each vehicle is 10m/s. The length of
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Fig. 5. Simulation layout with road, running vehicles and surrounding reflecting buildings. The figure shows the accuracy of

vehicle localization for two newcomer vehicle examples (wake-up positioning) along with the reconstructed radio path for them

(radio geometrization).

each time slot tδ = 0.1s, and we execute TCSE for 50000 time slots in 100 simulation runs. In

order to verify the increased performance of TCSE as the number of vehicles passing through

the 100 meters’ road in increasing, we define the index of each vehicle passing through the road

as fV , which is referred to in the plots as Vehicle Index. Hence fV = 1, 2, ..., f, ..., F , where F

is the total number of vehicles exposed in the experiments (in our case, F = 3924).

In order to be more realistic, we consider the possibility of measurement errors in the ToA,

AoA, vehicle velocity, and initial localization. The standard deviation of the ToA measurement

error (σd) is set to 0.2m following a zero-mean Gaussian distribution (ZMGD), and the standard

deviation of AoA measurement error (σθ, both for polar angle and azimuth angle) is set to 1

degree following a ZMGD. The magnitude error of velocity follows a ZMGD with standard

deviation σv = 0.1m/s, and the orientation error of the velocity follows a ZMGD with standard

deviation σθv = 0.1deg.

The initial positioning is set with an error following a ZMGD with standard deviation σG =

5m. Note that this value is in line with typical GPS performance and corresponds to a large

amount of initial uncertainty in relation to the objective of this work which is to achieve well

sub-meter accuracy reliably (i.e. even when GPS signals have dropped). The time synchronization

bias multiplied by speed of light follows a ZMGD with standard deviation σS = 5m. The number

of particles for vehicles and CVTs is set asNV = NC = 120. The probability distribution of false

alarm measurement fFA

(
z

(k)
(m,pm)

)
is uniform on [0, 50m], [0, 2π], and [0, π] for ToA, azimuth
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TABLE I

PARAMETER SETTINGS

µFA pd δFA αC pM lα lβ λref fR0 (1 |xm,Rl ) Hscale

0, 0.5, 1 1, 0.95, 0.9 10−4 0.95 0.05 1.98× 10−3 0.99 20× (σd/σθ)
2 0.5 100

angle of AoA, and polar angle of AoA respectively. The further parameters mentioned in this

paper are shown in Table I.

We denote the vehicle positioning error and vehicle synchronization error (multiplied by speed

of light) as εV P and εV S , respectively. Since the height of a vehicle is easy to access, we consider

the 2-D positioning error for each vehicle. The vehicle positioning error after f vehicle passed

by is calculated as ε(f)
V P = 1

kf−kf−1
· 1
M
·

kf∑
k=kf−1+1

M∑
m=1

∥∥∥_r(k)

m − r
(k)
m,real

∥∥∥
F

, where kf is the time slot

at which the f vehicle is passing. _r
(k)

m and r(k)
m,real are the estimated and real positions of vehicle

m at time slot tk. The time synchronization error of vehicles εV S is calculated similarly.

A. Reflective Sensing and Mapping

The reflective sensing and mapping component extracts the reflecting elements from the

cooperative SLAM component to estimate the position and edge of the reflecting surfaces in

an online learning way, and its performance is shown in Fig. 6. In Fig. 6(a), the blue colored

balls indicate the reflecting elements, based on which the position of the reflecting surface and

its edge are estimated (denoted by green surface). Then the CVT R{l} symmetric with the base

station about the estimated surface can be calculated by equation (4), and its estimation error

over Vehicle Index can be seen in Fig. 6(b). We can see from the Fig. 6(a) that the position

and edge of the reflecting surface are well close to the real reflecting surface, which means that

the reflective sensing and mapping component can estimate the reflecting surface well based

on the reflecting elements extracted from cooperative SLAM component. We can also see from

Fig. 6(b) that the mean position error of the CVTs corresponding to the reflecting surfaces gets

gradually decrease over the increasing of Vehicle Index (up to an error of 0.234m until the last

vehicle passed by), which further indicates that the reflective sensing and mapping component

have a good performance in the reflecting surface estimation.

B. Radio Geometrization

The radio geometrization component aims to characterize the exact geometric paths of the

radio propagation rays from the base station to a newcomer vehicle, and further estimates the

position and time synchronization bias of the newcomer vehicle. Fig. 5 shows the estimation of

radio geometrization of two newcomer vehicles from different directions, where the red lines
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Fig. 6. Performance of reflective sensing and mapping. In (a) the position and edge of a reflecting surface is reconstructed. In

(b) it is seen how the common virtual transmitters (CVT) are better localized as the number of vehicles driving over time over

the road section is increasing.
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Fig. 7. Performance of wake-up positioning and synchronization.

indicate the real radio propagation paths, the blue lines denote the estimated radio propagation

paths, the red crosses indicate the real position of the newcomer vehicles, and the green vehicles

indicate the estimated position of the newcomer vehicles. Note that the time synchronization

bias of a newcomer vehicle is also estimated in the radio geometrization component, which

together with the position estimation of the newcomer vehicle is coined wake-up positioning

and synchronization as described in Section V-B. The performance of wake-up positioning and

synchronization can be seen in Fig. 7, where the wake-up positioning error can be seen in

Fig. 7(a) and the wake-up synchronization error can be seen in Fig. 7(b). We can see that the

50 percentile error of wake-up positioning is 0.5103m, and the 50 percentile error of wake-

up synchronization (multiplied by speed of light) is 0.3604m, which is much better than the

initial positioning from GPS (σG = 5m). Fig. 5 and Fig. 7 show that the radio geometrization

component has a good performance in radio propagation path estimation as well as wake-up
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Fig. 8. Performance of vehicle positioning and synchronization as the number of vehicles driving over time over the road

section is increasing ((a) and (b)). The CDF of vehicle positioning error is shown in (c). As can be seen a dramatic gain of

performance occurs when the cumulated number of vehicles over time exceeds 300, which allows a high-quality reconstruction

of surrounding reflective structures.

positioning and synchronization, where the latter provides a more precise initial position and

synchronization input to the cooperative SLAM component. That will improve the robustness

of the TCSE algorithm when the GPS signals are in bad conditions or even dropped in urban

scenario with bridges, high-rise buildings, or other obstructions.

C. Vehicle Positioning and Synchronization

The simulation results of vehicle positioning and time synchronization can be seen in Fig.

8. For vehicle positioning, we can see from Fig. 8(a) and Fig. 8(c) that the vehicle positioning

error gets gradually decreasing with the increasing of Vehicle Index and finally converges to a

low error with 50 percentile value of 0.2369m. For vehicle synchronization, we can see from

Fig. 8(b) that the vehicle synchronization error (multiplied by speed of light) also gets gradually

decreasing with the increasing of Vehicle Index and finally converges to a low error with a mean

value of 0.1425m. What’s more, compared with the situation without radio geometrization as

well as reflective sensing and mapping (Cooperative SLAM in Fig. 8c), the TCSE has a much

better performance in vehicle localization and synchronization. This mainly results from: 1)

the reliable data association method with a built-in ghost path elimination machine and joint
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Fig. 9. Performance of vehicle positioning over different levels of FA and MD.

estimation method for vehicles and CVTs in the cooperative SLAM component, 2) the sampling

strategy in Section III-C provides precise information of reflecting surfaces from the reflective

sensing and mapping component to cooperative SLAM component, 3) the radio geometrization

component provides precise initial position and time synchronization input to cooperative SLAM

through wake-up positioning and synchronization. This further indicates that the TCSE can

provide accurate vehicle positioning and time synchronization based on the interaction among

the cooperative SLAM component, the reflective sensing and mapping component as well as the

radio geometrization component.

D. Performance Against FA and MD

The performance of vehicle positioning over different levels of FA and MD is shown in Fig.

9. We can see from Fig. 9 that the algorithm is fairly robust with respect to the FA and MD

phenomenon, which mainly owns to the mechanism described in Section III-A2 allowing to

check the consistency of the ghost path (falsely detected paths) with the rest of the data based

on the reflective probability.

VIII. CONCLUSION AND OUTLOOK

We introduced the TCSE approach for joint vehicular localization and 3-D reflective mapping,

which improves the accuracy of vehicular localization and its robustness to satellite-positioning

signal conditions. Beyond improving the performance for localization, TCSE also has potential

for communication performance enhancement. This is because the radio geometrization in TCSE

would provide geometrical paths of radio propagation rays to beamforming designing for channel

capacity improvement. An interesting open topic would for instance include the problem of joint

communication and localization (sensing) performance enhancement following the example of

recent works [59–61].
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APPENDIX A

ROTATION MATRIX

If rotating the vector rx = (x, y, z)T around the axis e = (ex, ey, ez)
T by angle θ, the rotated

vector r̂x can then be calculated as r̂x = T (θ, e) · rx, where T (θ, e) is defined as T (θ, e) =

Â+ cos θ ·
(
I − Â

)
+ sin θ ·A∗ with Â = e⊗ eT and A∗ = (0,−ez, ey; ez, 0,−ex;−ey, ex, 0).

Specially, if e is a set of normal vectors defined as e = (e1, e2, ..., eN), then T (θ, e) =

diag {T (θ, e1) , ...,T (θ, eN)}.
APPENDIX B

FACTOR GRAPH DERIVATION FOR CVT-OBSERVATION DATA ASSOCIATION
This section shows the derivation of the joint probability distribution function for the CVT-

observation association value ε(k)
n and the observation-CVT association value o(k)

m , which can be
described by the factor graph in Fig. 2(a).

p
(
o
(k)
m , ε

(k)
m

)
=

∫
p

(
_
x

(k)

m , r
(k−1)

N(k−1)
m

, r
(k)
{m,pm}

,Rl, z
(k)
{m,pm}

, ρ
(k−1)
{n} , o

(k)
m , ε

(k)
m

)
d_x

(k)

m dr(k−1)

N(k−1)
m

dr(k)
{m,pm}

dRldz
(k)
(m,pm)

dρ(k−1)
{n}

=

∫∫ 
∫ Pm∏
pm=1

h(m,pm)

(
o
(k)
(m,pm)

= 0

∣∣∣∣_x (k)

m , r
(k)
(m,pm)

; z
(k)
(m,pm)

,R
)
p
(
r
(k)
{m,pm}

) [∫
l∈L(k−1)

new
p1

(
1new

∣∣∣∣_x (k)

m ;Rl
)
p (Rl) dRl

]
dr(k)
{m,pm}

︸ ︷︷ ︸
PDF of observation - CVT association value

∫ ∏
n∈N(k−1)

m

gm,n

(
ε
(k)
m,n = (m, pm)

∣∣∣∣_x (k)

m , r
(k−1)
n ; z

(k)
m ,R

)
p

(
r
(k−1)

N(k−1)
m

)[∫
l∈{l}

p1

(
1observe

∣∣∣∣_x (k)

m ;Rl
)
p (Rl) p

(
z
(k)
(m,pm)

)
dRl

]
·

︸ ︷︷ ︸
PDF of CVT - observation association value

·
[∫
l=ρ

(k−1)
n

∫
pO

(
O
∣∣∣∣_x (k)

m ;Rl
)
p (Rl) dRldρ

(k−1)
n

]
dz(k)

(m,pm)
dr(k−1)

N(k−1)
m

}
︸ ︷︷ ︸

PDF of CVT - observation association value


∏

n∈N(k−1)
m

Pm∏
pm=1

ψn,(m,pm)

︸ ︷︷ ︸
global consistency constraint

p

(
_
x

(k)

m

)
d_x

(k)

m (A.1)

APPENDIX C

FACTOR GRAPH DERIVATION FOR REFLECTOR-CVT DATA ASSOCIATION
This section shows the derivation of the joint probability distribution function for the CVT-

reflector association value ρ
(k)
n and the reflector-CVT association value γ

(k)
l , which can be

described by the factor graph in Fig. 2(b).
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