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Harnessing Tensor Structures – Multi-Mode

Reservoir Computing and Its Application in

Massive MIMO

Zhou Zhou, Lingjia Liu, and Jiarui Xu

Abstract

In this paper, we introduce a new neural network (NN) structure, multi-mode reservoir computing

(Multi-Mode RC). It inherits the dynamic mechanism of RC and processes the forward path and loss

optimization of the NN using tensor as the underlying data format. Multi-Mode RC exhibits less com-

plexity compared with conventional RC structures (e.g. single-mode RC) with comparable generalization

performance. Furthermore, we introduce an alternating least square-based learning algorithm for Multi-

Mode RC as well as conduct the associated theoretical analysis. The result can be utilized to guide

the configuration of NN parameters to sufficiently circumvent over-fitting issues. As a key application,

we consider the symbol detection task in multiple-input-multiple-output (MIMO) orthogonal-frequency-

division-multiplexing (OFDM) systems with massive MIMO employed at the base stations (BSs). Thanks

to the tensor structure of massive MIMO-OFDM signals, our online learning-based symbol detection

method generalizes well in terms of bit error rate even using a limited online training set. Evaluation

results suggest that the Multi-Mode RC-based learning framework can efficiently and effectively combat

practical constraints of wireless systems (i.e. channel state information (CSI) errors and hardware non-

linearity) to enable robust and adaptive learning-based communications over the air.

Index Terms

Reservoir computing, neural networks, online training, massive MIMO, 5G, imperfect CSI, and

non-linearity

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is an essential physical layer technique for

the 5th generation cellular networks (5G) [1]. By employing a large number of antennas at base
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stations (BSs), a “favorable propagation” channel condition can be achieved. It allows inter-user

interference being effectively eliminated via fairly simple linear precoding or receiving methods,

e.g., conjugate beamforming for downlink, or matched filtering for uplink [2].

However, the deployment of massive MIMO in practical systems encounters several implemen-

tation constraints. Primarily, for the sake of achieving the promised benefits by massive MIMO,

highly accurate channel state information (CSI) is needed [3]. On the other hand, CSI with high

precision is challenging to be obtained due to the low received signal-to-noise (SNR) before

beamforming/precoding, as well as the limited pilot symbols defined in modern cellular networks

due to control overhead [4]. Furthermore, theoretical analysis of massive MIMO systems usually

assume ideal linearity and pleasing noise figures requiring exceptionally high costs on radio

frequency (RF) and mixed analog-digital components [5]. This ends up with a compromise

on the hardware selection which introduces imperfectness (e.g. dynamic non-linearity) to the

transmission link. The resulting non-linearity, on the other hand, leads to waveform distortion

and thereby diminishes the transmission reliability, which is challenging to be analytically tackled

using model-based approaches.

Symbol detection is a critical stage in wireless communications. It is a process that accom-

plishes miscellaneous interference cancellation at receivers, such as inter-symbol, inter-stream,

and inter-user inference, etc. Due to the potential model mismatch from the non-linearity caused

by low-cost hardware devices, standard model-based signal processing approaches are no longer

effective. With the advent of deep neural networks, there are growing interests in using neural

networks (NNs) to handle the model mismatch [4]. In general, NN-based framework aims to

compensate for the model mismatch through the non-linearity of NNs. This recent awareness of

bridging learning-based approaches to the symbol detection task in massive MIMO systems has

posed the following conceptual discussions in the NN design.

• Curse of Antenna Dimensionality: Since the input, hidden, and output layers of NNs are

often configured as the same scale as the antennas to jointly extract and process spatial

and time-frequency features, the growth of antenna numbers inevitably lead to the increase

of the volume of underlying NN coefficients. As NNs essentially learn the underlying

statistics of data, the corresponding increase in the parameter dimensionality often imposes

an exponential need on the training data set to offer a reasonable generalization result.

However, the availability of the training data for cellular networks (e.g.,4G or 5G) especially

the online ones is extremely limited due to the associated control overhead [6]. Furthermore,
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the computational complexity is also evinced with an exponential relation to the NN scale.

Learning neural weights through generic back-propagation can result in large computational

complexities leading to severe processing delays which are not desirable especially for

delay-sensitive applications.

• Blessings of Antenna Dimensionality: On the other hand, a large number of antennas is able

to offer favorable propagation conditions [1]. Properly leveraging the asymptotic orthogo-

nality of the wireless channels can often result in surprising outcomes, which conversely

transforms the curse of dimensionality into “the blessings of dimensionality” [7]. These

findings align with the measurement concentration phenomena which are widely applied to

simplifying machine learning frameworks [8]. Therefore, to explore learning-based strategies

for massive MIMO, we can incorporate inherent structures from the spatial channel as well

as time-frequency features from the modulation waveform to the design of NNs, which is

“blessed” to offer good generalization performance yet under very limited online training.

A. Previous Work

A commonly utilized approach for building learning-based symbol detectors is through un-

folding existing optimization-based symbol detection methods to deep NNs, such as DetNet

[9] and MMNet [10]. Since this framework is based on using explicit CSI, it usually suffers

from performance drop or requires extensive hyper-parameters tuning when CSI is not perfect.

Meanwhile, the resulting “very deep neural networks” are extremely demanding in computational

resources which hinders their applications in practical scenarios. Alternatively, implicit CSI can

be utilized to circumvent the above mentioned training issues. For example, [11] introduced a

deep feedforward NNs for symbol detection in single-input-single-output (SISO) OFDM systems.

Due to its independence from channel models, this approach can equalize the channel with

nonlinear distortion (power amplifier (PA)). However, this method uses a less-structured deep NN

which is yet too complicated to train in practice, since the guaranteed generalization performance

is based on extensive training over large datasets that are impossible to obtain in over-the-air

scenarios. Furthermore, “uncertainty in generalization” [4] will arise if the dataset used for

training the underlying NN is not general enough to capture the distribution of data encountered

in testing. This is especially true for 5G and Beyond 5G networks that needs to offer reliable

service under vastly different scenarios and environments.



4

In 4G/5G MIMO-OFDM systems, there exists different operation modes with link adaptation,

rank adaptation, and scheduling on a subframe basis [12]. Therefore, it is challenging, to adopt

a complete offline training-based approach. Rather, it is critical to design an online NN-based

approach to conduct symbol detection in each subframe only using the limited training symbols

that are present in that particular subframe. In this way, the online-learning-based approach can

be adaptive and robust to the change of operation modes, channel distributions, and environments.

On the other hand, conducting effective and efficient learning only through the limited training

symbols within a subframe is extremely challenging. To achieve this goal, more structural

knowledge of the wireless channel and modulation waveform need to be incorporated as inductive

priors to the NNs to significantly relieve the training overhead in each subframe basis [6], [13].

Reservoir computing (RC) and its deep version have been introduced for the MIMO-OFDM

symbol detection task in [14]–[17] to achieve learning on a subframe basis. To be specific, [14]

is the first work using a vanilla RC structure to conduct MIMO-OFDM symbol detection, where

the input and output are defined in the time domain. It shows this simple approach can achieve

good symbol detection performance in short memory channels with limited training. [15]–[17]

extended the RC-based symbol detection framework by adding units in width and deepth to

handle channel with long taps as well as more severe non-linearity. Experiments show that the

extended RC framework – RCNet can effectively compensate for the distortion caused by non-

linear components in wireless systems as well as mitigate miscellaneous interference merely

from receiver side using training dataset only from each subframe.

B. Contributions

In this paper, we consider the uplink symbol detection in a massive MIMO system with

OFDM waveform using a “subframe by subframe” learning framework. Uplink transmission is

a typical low SNR scenario since mobile terminals often use relatively low transmission powers,

and the RC framework has not yet been investigated under the scope of the massive MIMO

systems. Being able to conduct receive processing – symbol detection on a subframe basis is

extremely important for robust and adaptive communications in the 5G and beyond 5G massive

MIMO networks. By referring to the multi-dimensional feature of massive MIMO signals (e.g.

elevation and azimuth directions in the spatial domain, the time and frequency domain), we

are motivated to incorporate this tensor structure into our symbol detection NN. Although the

concept of tensor-driven NNs has been studied before, such as Tensorized NNs in [18], where
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NN weights are formulated as a tensor-train decomposition [19], and CANDECOMP/PARAFAC

(CP) decomposition characterized convolutional layers for learning-acceleration from [20], our

strategy is different to these techniques as tensor is utilized as the forward path data structure

rather than NN coefficients. In its application to massive MIMO systems, instead of treating the

input signal as a vector sequence, we define the received signal as a tensor sequence that is

consistent with the intrinsic multiple mode property of the underlying massive MIMO signals.

Such a signal processing perspective has been studied in [21]–[26] to solve conventional massive

MIMO channel estimation problems. However, a more accurate explicit CSI does not sufficiently

lead to an improvement of the transmission reliability, since symbol detection is conducted on

a separate stage without knowledge of the channel estimation errors. Our introduced method

is to directly demodulate symbols avoiding the intermediate channel estimation stage. More

importantly, our method accomplishes the symbol detection by using training dataset only from

each subframe. The resulting multi-mode processing framework can in general be extended to

process any other tasks with tensor structured sequence, such as video, social networks, and

recommendation systems, etc.

We name our introduced RC-based NN structure as “multi-mode reservoir computing” (Multi-

mode RC), as it inherits the dynamic mechanism of RC and processes input-output relation using

a tensor format (multi-dimensional array). In our framework, a core-tensor is built as hidden

features of the input tensor sequence. Desired output is then obtained through a multi-mode

mapping. In terms of tensor algebra, the RC readout is learned through a Tucker decomposition

with a deterministic core-tensor thanks to the aforementioned feature extraction. A theoretical

analysis is then provided to show the uniqueness of the learned NN coefficients. Our experiments

reveal that this uniqueness condition is related to the avoidance of over-fitting issues since it

prevents a zero loss value which often results in poor generalization performance on the testing

dataset. Compared to single-mode RC, Multi-Mode RC can achieve better symbol detection

performance in terms of uncoded bit error rate in the low SNR regime with reduced computational

complexity. In addition, the introduced method is shown to be effective to combat extreme

waveform distortion, e.g. applying one-bit analog to digital converter (ADC) as the receiving

quantization. The remainder of this paper is organized as follows: In Sec. II, we briefly introduce

math foundations of tensor and the background of reservoir computing which are utilized to build

the concept of Multi-Mode RC in Sec. III. In Sec. IV, the application of Multi-Mode RC to

massive MIMO-OFDM symbol detection is discussed. Sec. V evaluates the performance of
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Multi-Mode RC as opposed to existing symbol detection strategies in massive MIMO-OFDM

systems. The conclusion and future research directions are outlined in Sec. VI.

II. PRELIMINARY

This section provides an overview of basic tensor algebra and reservoir computing which will

be used in the rest of this paper as the methodology development. In our math notations: scalars,

vector, matrix, and tensor are denoted by lowercase letters, boldface lowercase letters, boldface

uppercase letters, and boldface Euler script letters respectively, e.g., x, x, X and X .

A. Tensor Algebra

Tensor is an algebraic generalization to matrix. A tensor represents a multidimensional array,

where the mode of a tensor is the number of dimensions, also known as ways and orders [27]. The

(i1, i2, · · · , iN)th element of a N -mode tensor, or namely a N th order tensor, X ∈ CI1×I2×···×IN ,

is denoted as xi1,i2,··· ,iN , where indices range from 1 to their capital versions.

By following matrix conventions, rank(X) represents the rank of the matrix X . XT , XH and

X+ respectively stands for the transpose, hermitian transpose, and Moore–Penrose pseudoinverse

of the matrix X . Analogously, the tensor transpose of a tensor X is denoted as X TΠ which means

the ith mode of X TΠ correspond to the mode numbered as Π(i) of X , where Π is a permutation

on set {1, 2, .., N}. Moreover, blockdiag(A1, · · · ,AN) represents stacking A1, · · · ,AN as a

block-diagonal matrix. We denote superblockdiag() as a super-diagonal tensor by stacking its

tensor arguments as illustrated in Fig. 1. superblockdiag−n(·) forms a super diagonal tensor

except on mode n.

The definition of the mode-n matricization of a tensor X is denoted as X(n), where (i1, i2, . . . , iN)

of X ∈ CI1×I2×···×IN maps to the (in, j) entry of matrix X(n) ∈ CIn×I−n , where I−n :=
∏

k 6=−n Ik.

According to [28],

j := 1 +
N∑
k=1
k 6=n

(ik − 1) Jk with Jk =
N∏

m=k+1
m 6=n

Im. (1)

The n-mode product of a tensor X with a matrix U ∈ CJ×In is defined as,

(X ×n U)i1...in−1jin+1...iN
=

In∑
in=1

xi1i2...iNujin .

The Tucker decomposition of a tensor X is defined as

X = G ×1 A
(1) ×2 A

(2) · · · ×N A(N) (2)
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Fig. 1. Illustration of the tensor diagonalization of 3-mode tensors: The left hand-side represents a super diagonal tensor

superblockdiag(G(1),G(2),G(3),G(4)), the right hand side represents a super diagonal tensor only on the first two modes, i.e.

superblockdiag−3(G
(1),G(2),G(3),G(4)), where the diagonal elements are G(1), G(2), G(3) and G(4).

where A(n) represents the nth factor matrix and G is named as the core tensor. Accordingly, the

mode-n unfolding of the tensor X is given by

X(n) = A(n)G(n)(A
(1) ⊗ · · ·An−1 ⊗An+1 · · · ⊗A(N))T , (3)

where G(n) is the mode-n unfolding of G. Note the above unfolding tensor has a reverse order

in the Kronecker products of factor matrices which differs to [27]. This is because we alter the

way to pile up the indices of unfolding tensors according to (1).

We now consider a super diagonal core tensor G with K blocks, i.e.,

G = superblockdiag(G(1),G(2), · · · ,G(K))

where G(k) ∈ CI
(k)
1 ×I

(k)
2 ×···I

(k)
N and a matrix A(n) being partitioned as

[A(n,1),A(n,2), · · · ,A(n,K)].

Accordingly, the resulting n-mode product between G and A(n) can be written in terms of a

super diagonal tensor except on the nth mode:

G ×n A(n) = superblockdiag−n(G(1) ×n A(n,1),G(2) ×n A(n,2), · · · ,G(K) ×n A(n,K)).

When we assume the core tensor of X is super-diagonal, the Tucker decomposition defined in

(2) can be alternatively expressed in terms of a summation of sub-Tucker decompositions:

X =
K∑
k=1

G(k) ×1 A
(1,k) ×2 A

(2,k) · · · ×N A(N,k). (4)

An illustration for Tucker decomposition of a three mode tensor is depicted in Fig. 2.



8

Fig. 2. Illustration for a Tucker decomposition of a three mode tensor: Core tensor and factor matrices are with four partitions.

B. Reservoir Computing

Reservoir computing (RC) is defined as a framework for computation by using memory units.

The ‘reservoir’ is composed of nonlinear components and recurrent loops, where the non-linearity

allows RC to process complex problems and the recurrent loops enable RC with memory. The

‘computing’ is achieved by reading out the states in the reservoir through learned NN layers.

The training of this framework is conducted only on the readout layers which fundamentally

circumvents gradient vanishing/explosion issues in back-propagation through time thanks to the

fixed reservoir dynamics.

A vanilla discrete-time realization of RC is characterized by a state equation and an output

equation. The state equation is formulated with time index t by,

s(t+ 1) = σ

W tran

s(t)

y(t)

 (5)

where σ is a nonlinear function, s(t) is a vector representing the internal reservoir state, y(t) is

the input vector, and W tran stands for the reservoir weight matrix which is often chosen with a

spectral radius smaller than 1 in order to asymptotically reduce any impacts from initial states.

The output equation is simply treated as

z(t) = W out

s(t)

y(t)

 , (6)

where W out is the output weight matrix and z(t) stands for the output. As we can see, the

output is with a skip-connection to the input which assimilates to a residual arrangement [29].

III. MULTI-MODE RESERVOIR COMPUTING

In this section, we introduce the framework of Multi-Mode RC. It processes a sequence-in

and sequence-out task, where the time sequences are configured with more than one explicit
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modes, i.e., the input sequence is formulated as Y (t) or Y(t) rather than a scalar-wise sequence

y(t) or a vector-wise one y(t).

A. Two-Mode Reservoir Computing

For ease of discussion, we begin by considering a two-mode RC. The architecture is comprised

of a recurrent module, a feature queue, and an output mapping.

Recurrent Module: A recurrent module maps input sequence Y (t) ∈ CNin−1×Nin−2 to a state

sequence S(t) ∈ CNs×Ns , where Ns represents the number of neurons defined on each mode of

S(t)1. Therefore, the total number of neurons is N2
s . To equally obtain observations from the

row-space and column-space of Y (t), we define the recurrent equation as,

S(t+ 1) = σ

W tran−1

S(t), O

O, Ỹ (t)

W T
tran−2

 (7)

where

Ỹ (t) = blockdiag(Y (t),Y (t− 1), · · · ,Y (t− T ′)),

T ′ is a hyper-parameter representing the length of input window, σ is a non-linear function,

W tran−1 ∈ CNs×(Ns+T ′Nin−1), W tran−2 ∈ CNs×(Ns+T ′Nin−2) are reservoir weight matrices applied

on the row and column spaces respectively. Note that (7) also can be written as a sum as the form

of (4). Accordingly, the state equation (7) can be regarded as an extension of the standard state

equation (5) by incorporating independent mappings into the row and column spaces of state

S(t) and input Y (t). It also can be equivalently written via the form of (5) through vectorizing

the matrix-wise state and input. Rather than directly applying vectorized state and input to the

standard RC, our introduced approach preserves the multi-mode feature of the input signal, where

the advantages of using this strategy will be discussed in the analysis and evaluation sections of

this paper.

Feature Queue: Our definition of a feature queue G(t) is a queue of sequence, i.e., at a

given time t, the sample G(t) is a queue which is stacked up by current state sample S(t) and

1For simplicity, we assume S(t) as a square matrix. In general, it also can be designed as a non-square matrix. Meanwhile,

the size of Ns is configured through experiments in order to maintain a balance between overfitting and underfitting according

to the datasets. The RC structure based on non-square S(t) is left as our future work.
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input sample Ỹ (t). We opt for a simple formulation and use diagonalizing operation to write

the queue as follows,

G(t) = blockdiag(S(t),ST (t), Ỹ (t), Ỹ
T

(t)). (8)

G(t) is also called extended state sequence as it is obtained with a skip connection to the input.

The presence of Ỹ
T

(t) and ST (t) is to create a fair treatment on the row and column space of

Ỹ (t) and S(t).

Output Mapping: An output layer ensures the feature queue can be identically mapped back

to our desired output size. It is defined as:

Z(t) = W out−1G(t)W T
out−2

= G(t)×1 W out−1 ×2 W out−2

(9)

where W out−1 ∈ CNout−1×Nf−1 and W out−2 ∈ CNout−2×Nf−2; Nf−1 := 2Ns +T ′(Nin−1 +Nin−2)

and Nf−2 := 2Ns + T ′(Nin−1 + Nin−2) respectively represent the size of row and column of

G(t); Meanwhile, Nout−1 and Nout−2 respectively stand for the size of row and column of Z(t).

Loss Function: In this paper, the loss function is defined to handle sequence-to-sequence

tasks. Given a set of {Y q(t),Zq(t)} as the input-output pairs for training, where q stands for

the batch index, our objective aims to generate Zq(t) by using Y q(t). Therefore, we use

min
W out−1,W out−2

NK∑
q=1

NT∑
t=1

‖Zq(t)−Gq(t)×1 W out−1 ×2 W out−2‖2F , (10)

where ‖ · ‖F is the Frobenius norm of a matrix. Although the loss function is simply formulated

via a least square framework, it offers a connection between the RC readout learning and

alternating least squares (ALS) algorithm which has been widely used and can be easily analyzed

in the context of tensor decomposition [30]. We can further stack Zq(t) and Gq(t) to 4-

mode tensors along the time axis and the batches to have Z ∈ CNout−1×Nout−2×NT×NK and

G ∈ CNf−1×Nf−2×NT×NK respectively. Accordingly, the loss objective (10) can be rewritten in

concise way,

min
W out−1,W out−2

‖Z − G ×1 W out−1 ×2 W out−2‖2F . (11)
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In the training stage, we feed a batch of sequences to RC and solve the problem (11) using

alternating least squares, where W out−1 and W out−2 are iteratively updated by solving the

following matrix-wise least square problems,

W out−1 = arg min
W out−1

‖Z(1) −W out−1G(1)(W out−2 ⊗ INT
⊗ INK

)T‖F

W out−2 = arg min
W out2

‖Z(2) −W out−2G(2)(W out−1 ⊗ INT
⊗ INK

)T‖F .

The iterative process continues until a certain stopping criterion is reached. In this ALS for-

mulation, G(1) and G(2) represent the mode-1 and mode-2 unfoldings of tensor G. However,

directly using this ALS calculation often requires large memory resources due to the Kronecker

products. Therefore, we introduce an alternative approach to calculate the ALS which is discussed

in Appendix.

Since reaction delays exist in RC systems [16], we often need to add another parameter τ ,

namely “Delay of RC states” in the loss objective to optimize. Therefore, we have the following

augmented loss objective,

min
τ<τmax

min
W out−1,W out−2

NK∑
q=1

NT∑
t=1

‖Zq(t)−Gq(t+ τ)×1 W out−1 ×2 W out−2‖2F , (12)

where τmax represents the upper bound of τ to search. Accordingly, the samples of Gq(t) ranging

from time index t = 1 to t = NT +τmax are obtained by using {Y (t)}NT
t=1 with a τmax-length zero

paddings at the end as the RC input. At testing stage, the learned τ are applied to truncate the

RC state sequence such that the output sequence becomes {G(t+ τ)×1W out−1×2W out−2}NT
t=1,

since the output is anticipated as a NT -length sequence. In general, the output sequence can be

truncated off more or less samples in order to match the desired sequence of the tasks.

B. Multi-Mode Reservoir Computing

The structure of multi-mode (beyond 2-mode) reservoir computing is illustrated in Fig. 3. As

a general framework of the 2-mode RC, each component is respectively extended as

• Recurrent Module:

S(t+ 1) = σ(superblockdiag(S(t), Ỹ(t))×1 W tran−1 ×2 · · · ×N W tran−N)

Ỹ(t) = superblockdiag(Y(t), · · · ,Y(t− T ′))
(13)

• Feature Queue:

G(t) = superblockdiag(comb(S(t)), comb(Ỹ(t))) (14)
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TABLE I

NOTATIONS OF MULTI-MODE RC

Notations Definitions

T ′ Input window length

N Number of signal mode in Multi-Mode RC

Nin−n Number of RC input at mode n

Nout−n Number of RC output at mode n

Nf−n Feature queue size at mode n

NT Input and output sequence length

NK Training batch size

Ns Number of neurons on each mode of a state tensor

τ Delay configuration in RC state response

Y(t) ∈ CNin1×Nin−2×···×Nin−N A tensor sequence as the input of Multi-Mode RC

G(t) ∈ CNf−1×Nf−2×···×Nf−N A tensor sequence as the internal feature of Multi-Mode RC

Z(t) ∈ CNout−1×Nout−2···×Nout−N A tensor sequence as the output of RC

Y ∈ CNin1×Nin2×···×Nin−N×NT×NK A higher order tensor by stacking Y(t) through time samples and batches

G ∈ CNf−1×Nf−2×···×Nf−N×NT×NK A higher order tensor by stacking G(t) through time samples and batches

Z ∈ CNout−1×Nout−2···Nout−N×NT×NK A higher order tensor by stacking Z(t) through time samples and batches

Recurrent Layer Feature Queue

Fig. 3. Illustration of Three-Mode Reservoir Computing Architecture

where comb(S(t)) := superblockdiag(S(t),STΠ1 (t),STΠ2 (t) · · · ), Π1, Π2 · · · stand for

permutation patterns which are up to N ! cases.

• Output Layer:

Z(t) = G(t)×1 W out−1 ×2 W out−2 · · · ×N W out−N (15)
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• Loss Function:

min
τ

min
W out−1,W out−2,··· ,W out−N

NK∑
q=1

NT∑
t=1

‖Zq(t)− Gq(t+ τ)×1 W out−1 · · · ×N W out−N‖2F

(16)

Similarly to the 2-mode case, the output weights are learned through alternating least squares.

The optimization (16) can also be formulated as a high order tensor decomposition as defined in

(11). Moreover, to further avoid model overfitting, regularization terms can be added in the loss

function, such as ridge regression, i.e., ‖W out−1‖2F +‖W out−2‖2F +· · ·+‖W out−N‖2F . In addition,

we can observe that the optimization problem (16) is not the canonical Tucker decomposition

defined in [31]. This is because the factor matrices are not designed as full column-rank in

our framework. On the contrary, we choose the factor matrices with full row-rank to fulfill the

mechanism of RC that is “yielding desired output through dimension reduction from internal

memory states.”

C. Theoretic Analysis

We now study the condition on the uniqueness of solving (16) via alternating least squares.

Through our derivation as presented in Appendix, we can arrive at the following theorem.

Theorem 1: Given Z ∈ CNout−1×Nout−2×···×Nout−N×NT×NK and G ∈ CNf−1×Nf−2×···×Nf−N×NT×NK

with rank-(Nout−1, Nout−2, · · · , Nout−N , NT , NQ) 2 and rank-(Nf−1, Nf−2, · · · , Nf−N , NT , NK)

respectively, and ∀n, Nf−n ≥ Nout−n, N ≥ 2, the achieved minimization of (16) is unique by

using ALS when the initialization factor matrices are chosen as full rank and∑
i 6=n

Nout−i +NT +NK ≥ Nf−n,∀n. (17)

The above theorem reveals that the uniqueness condition of the Multi-Mode RC learning is

characterized by the shape of the output tensor and feature core-tensor. Alternatively, if we use

a single batch for training, i.e., merge the last two modes of the tensors into one, the shape

of the output tensor and core-tensor respectively become Z ∈ CNout−1×Nout−2×···×Nout−N×(NTNK)

and G ∈ CNf−1×Nf−2×···×Nf−N×(NTNK). Therefore, the uniqueness condition can be rewritten as∑
i 6=n

Nout−i +NTNK ≥ Nf−n,∀n. (18)

2This stands for the multi-mode rank of a tensor. The definition can be found in Appendix.
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In our experiments, we observe that when the uniqueness condition holds, the loss-value is often

greatly larger than zero. The model thereby does not over-fit to the training dataset which can

offer generalization on the unseen testing dataset. More related discussions on this observation

are in the evaluation section.

On the other hand, Multi-Mode RC can be analyzed as an advance of conventional RC by

imposing particular structures on the output layer, where the conventional RC refers to RC

operating on single-mode data structures, i.e., scalars and vectors. To gain this insight, we

consider vectorizing the output layer of a 2-mode RC. According to (9), the resulting output

equation of the 2-mode RC via a single-mode RC based formulation is given by,

Vec(Z(t)) = (W out−2 ⊗W out−1)Vec(G(t)).

The above equation reveals that the output weight of multi-mode RC is forged as a Kronecker

product of two sub-matrices to process a “vectorized” G(t). As opposed to single-mode RC

using a fully connected layer, the resulting Kronecker output layer is with less freedom on

parameters which requires a less amount of data to fit. Meanwhile, the Kronecker structure can

further reduce time and space complexity. We present the complexity analysis results in Table II,

where we assume that the conventional RC and Multi-Mode RC are with the same input-output

size. In this table, the time complexity of the forward path is calculated by the matrix product

between the output layer and RC state at each sample, while the complexity on output learning

is from the matrix inverse operations involved in solving the loss objectives of the entire training

data set. The memory costs in the forward path are calculated based on the size of internal states

and output weights. Meanwhile, the memory spent on learning is on the same scale as the size

of the internal state. Moreover, the input buffer length is ignored in this table for simplicity.

However, it can be easily calculated by substituting Nin−n as NinnT
′ in this table.

TABLE II

TIME COMPLEXITY AND MEMORY USAGE COMPARISON

NN Operations Time Memory

Standard RC forward O(
∏

nNout−n(
∏

nNin−n +NN
s )) O(

∏
nNout−n(

∏
nNin−n +NN

s ))

Multi-Mode RC forward O(
∑

nNout−n(
∏

nNin−nN ! +NN
s )) O(

∑
nNf−nNout−n +

∏
nNin−nN ! +NN

s )

Standard RC learning O((
∏

nNin−n +NN
s )3NK) O((

∏
nNin−n +NN

s )NK)

Multi-Mode RC learning O(
∑

nN
3
f−n

∏
nNout−nNK) O(

∏
nNin−nN ! +NN

s )
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user 1

user 2

user 3

BS

Fig. 4. Uplink transmission in the multi-user massive MIMO system.

IV. APPLICATION: ONLINE SYMBOL DETECTION FOR MULTI-USER MASSIVE MIMO

In this section, we will briefly review the transceiver architecture of multi-user massive MIMO-

OFDM systems and elaborate on how to apply Multi-Mode RC to symbol detection of an uplink

massive MIMO network.

A. Multi-user Massive MIMO-OFDM System

We assume Nu scheduled users are distributed in a cell communicating to a base station (BS)

equipped with a massive rectangular array as shown in Fig. 4, where each user is mounted with

Nq antennas. The transmitted signals from all users to BS can be written as X(t) ∈ CNu×Nq . Let

x(t) = vec(X(t)) ∈ CNt×1, where Nt = NuNq. Each entry of x(t) is a time sequence which

stands for a stream of OFDM signals. For convenience, the OFDM signal x(t) is organized

as OFDM resource grids as illustrated in Fig. 5. In the OFDM resource grids, the horizontal

direction represents OFDM symbols, while the vertical direction stands for sub-carriers indices.

OFDM symbols are constructed into subframes where the time domain signal x(t) is obtained

by applying an inverse Fourier transform (IFFT) on symbols across the subcarriers. Cyclic-

prefix (CP) is added for each OFDM symbol. Let Nc denote the number of subcarriers and

ND + NK be the number of OFDM symbols within a subframe. Here, NK is the number of

OFDM symbols that are used as pilots/reference signals whereas ND OFDM symbols within the

same subframe are used for data transmission. Each element on the resource grids is modulated by

quadrature amplitude modulation (QAM). Note that pilots/reference signals are used to conduct
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Fig. 5. Massive MIMO-OFDM resource grids (subframe-subcarrier) structure for RC training and symbol detection

CSI estimation at the receiver in modern 4G and 5G networks. Furthermore, NK is configured

to be smaller than ND to reduce over-the-air signaling overhead. Meanwhile, NK is often

designed to be proportional to the number of streams to offer a reliable CSI estimation.

The received signal at the BS can be expressed as the following,

Y (t) = r

(
L∑
`=0

H(`)×3 x(t− `) + N (t)

)
(19)

where r(·) is a function which characterizes the non-linearity at the receiver, such as ADCs, as

well as model mismatch; H(`) ∈ CNa×Ne×Nt is a tensor which defines a spatial channel response

at the `th-delay, where the total number of delays is denoted as L; Na is the number of azimuth

antennas, Ne is the number of elevation antennas of the massive MIMO BS antenna array. Our

objective is to train a NN D which can recover X(t) by using Y (t), i.e.,

D(Y (t)) = X(t), (20)

such that the NN is learned by

min
D
f ({D(Y (t))}, {X(t)}) . (21)

B. Online Symbol Detection by Multi-Mode RC

Multi-Mode RC serves as the detection NN, D, through the over-the-air pilots/reference signals

on a subframe basis. The pilots defined in existing massive MIMO-OFDM systems of each
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subframe is directly utilized as the training dataset. The following data symbols in the same

subframe is the testing dataset, i.e., we train the NN using NK pilots to detect ND data symbols

in each subframe. This constraint makes the learning framework different from conventional NNs

to enable online learning for robust and adaptive communications. The azimuth direction is set

as the first mode of Multi-Mode RC and the elevation direction is set as the second mode. Each

OFDM pilot symbol is considered as one training batch. Accordingly, the input sequence length

equals the number of subcarriers, Nc, plus CP. The output is then truncated to be a Nc-length

sequence following the process as described under equation (12). The symbols of each stream

on each subcarrier are obtained through quantization and demodulation.

In massive MIMO systems, symbol detection can be conducted through either a joint or a

decomposed approach:

1) Joint Processing: In the joint processing, data symbols are obtained through a single Multi-

Mode RC with a multi-head output, where the size of the first and second mode of the RC output

sequence are respectively Nq and Nu. The mode order of the output node also can be reversely

configured. This is because Multi-Mode RC treats equally on each output mode according to

the generation rule of the internal feature queue as shown in (14). A well trained joint model

is anticipated to yield a good symbol detection performance since all interference and imperfect

factors are handled jointly.

2) Decomposed Processing: The decomposed approach refers to learning the output weight

through a decomposed way. For instance, in the case of 2-mode RC, it has Nu × Nq pairs

of (wout−1,wout−2) to learn, where the vector weight w maps the internal states to a scalar

entry of the output tensor sequence. In this framework, the training on each decomposed output

weight is based on their individual loss allowing the training through a parallel manner which

can significantly reduce the computation latency. On the other hand, the decomposed method

takes extra resources on storage and computation compared to the joint approach. For instance,

in 2-mode RC based joint approach, the size of output weight matrices W out−1 and W out−2 are

respectively Nout−1 × Nf−1 and Nout−2 × Nf−2. In the decomposed way, the shapes of output

mapping on each mode are respectively 1×Nf−1 and 1×Nf−2. Thus, there are Nout1Nout2 ×

(Nf−1 + Nf−2) output weights in total for the decomposed approach which is higher than

Nout−1 × Nf−1 + Nout−2 × Nf−2 from the joint way. Overall, the map from MIMO-OFDM

parameters to the Multi-Mode RC parameters is summarized in Table III.
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TABLE III

NOTATIONS OF MULTI-MODE RC BASED MIMO-OFDM SYMBOL DETECTION

Notations Definition Corresponding notations in Multi-Mode RC

Nt Number of antennas stacked from all users N/A

Nu Number of users Nout−1 in joint processing

Nq Number of antennas at each user Nout−2 in joint processing

Na Number of azimuth antennas Nin1

Ne Number of elevation antennas Nin2

Nc Number of OFDM sub-carriers NT

NK Number of pilot symbols in a frame NK -Training batches (if use multi-batch training)

ND Number of data symbols in a frame Testing batches

x(t) ∈ CNt×1 Transmitted Signal Desired output

X(t) ∈ CNu×Ns Transmitted Signal Desired output

Y (t) ∈ CNa×Ne Received Signal Input

Y ∈ CNa×Ne×T Stacked tensor of received signal Input

V. PERFORMANCE EVALUATIONS

This section provides performance evaluations of the introduced Multi-Mode RC for uplink

symbol detection in a multi-user massive MIMO-OFDM scenario. We choose uncoded bit error

rate (BER) as the quantitative metric to evaluate the reliability of the underlying link. Table

III contains simulation parameters of the massive MIMO-OFDM system. The default system

configuration is: Na = 8, Ne = 8, Nc = 512, Ncp = 32, Nq = 2, Nu = 2, NK = 4 and

ND = 12. Note that in this setting, the pilots/reference signals overhead is 25% which is inline

with 5G standards [32]. The channel coefficients are generated according to the clustered delay

line (CDL) model defined in 3GPP Technical Report (TR) 38.901, where the transmitter and

receiver are configured with uniform linear arrays having half-wavelength antenna spacing, and

the power delay profile is configured with a cluster delay rate of 3. The maximum delay spread

of the channel is set as the length of the CP in OFDM. Each obtained BER point is collected

over 100 consecutive subframes. SNR is defined as the average power ratio between noise-free

received signal and the additive noise. The configuration of the Multi-Mode RC is set as follows:

T ′ = NCP , Ns = 8, the number of ALS iterations is set as 6, the state transition matrix W tran

on each mode is independently generated with its spectral radius less than 1. Meanwhile, the

input weights matrix W in is generated independently for each mode from a uniform distribution
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on [−1, 1].

A. Parsing Multi-Mode RC

We first parse various components of a Multi-Mode RC to offer more insights on the underlying

NN structure. We consider three types of Multi-Mode RC in the evaluation: 1) Our introduced

one; 2) Our introduced one without using the tensor permutation to construct the feature queue

in (14); 3) Our introduced one using a large number of Ns, where Ns = 128. Fig. 6 and

Fig. 7 respectively show the training and testing BERs under different numbers of iteration

when SNR = 15dB. As we can observe that without tensor permutation in the feature queue,

the RC performs underfitting to the task. This is because the feature from different modes of the

input tensor sequence has not been equally extracted. Meanwhile, if we increase the number of

neurons, the NN model complexity increases. Accordingly, it “overfits” the training data as the

training BER dramatically decreases, whereas the testing BER increases.

0 2 4 6 8 10 12 14 16 18
ALS iteration

10 4

10 3

10 2

10 1

BER in Training Stage
multi-mode RC with proper configurations
multi-mode RC with large # neurons
multi-mode RC without state permutations

Fig. 6. Training BER of multi-mode RC with respect to iterations in ALS.

B. Uniqueness Conditions

Now, we investigate how the uniqueness condition defined in Theorem 1 determines the

training and testing performance. For convenience, we set Nc = 64 and use single-batch based
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Fig. 7. Testing BER of Multi-Mode RC with respect to iterations in ALS.

training in this evaluation. According to (18), the critical conditions for this task becomes,

Nu +NTNK == 2Ns +NaT
′ +NeT

′

Nq +NTNK == 2Ns +NaT
′ +NeT

′

When we only change parameters T ′ and Ns while fixing the rest based on our default setup,

the critical conditions become 130 == 8T ′ + Ns. This condition is plotted as the dashed red

line in Fig. 8 and Fig. 9. Meanwhile, we also plot the contours of the log-loss as well as the

BER in the same (Ns, T
′) plane. As shown in Fig. 8, the loss is guaranteed to be greater than

a threshold, e.g., −4.00, when the uniqueness condition holds. On the other hand, when the

condition is violated, the loss tends to be close to zero. In this case, the RC model overly fits to

the training data which brings a high risk of over-fitting. This result is also consistent with the

BER contour plotted in Fig. 8. Note that even though satisfying the uniqueness condition can

potentially avoid overfitting, it may cause underfitting as we can observe the high BER below

the condition line in Fig. 9.
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Fig. 8. Log loss contour in (Ns, T
′) plane in training stage

C. Comparison with State-of-Art Detection Strategies

We now investigate the BER versus SNR using different approaches. In Fig. 10, the compared

methods are: 1) LMMSE+LMMSE-CSI which uses linear minimum mean square error (LMMSE)

based symbol detection under the LMMSE estimated CSI. 2) SD+LMMSE-CSI which uses

sphere decoding for symbol detection based on the LMMSE estimated CSI. 3) Large-window

RC refers to the windowed echo state network (WESN) introduced in [15] by vectorizing the

input as a vector and setting the input buffer size as 52. 4) Ridge-large-window RC refers to

the same WESN but using l2 norm as a penalty term to the output weights in the loss function.

5) Multi-Mode RC is the introduced method. 6) Ridge-Multi-Mode RC standards for the same

Multi-Mode RC but also adding a l2 norm as the regularization on the output weights in the loss

objective. Fig. 10 clearly demonstrates the performance gain of the Multi-Mode RC over the

signal processing-based methods (LMMSE+LMMSE-CSI and SD+LMMSE-CSI). Meanwhile,

we can see that the Multi-Mode RC is more robust than the single-mode RC as the multi-mode

feature of MIMO-OFDM signals is leveraged for the symbol detection.

In addition, we investigate the BER performance by increasing the array size. Fig. 11 shows

that when the number of antennas increases (e.g improve the antenna array from 8×8 to 10×10),
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Fig. 9. BER contour in (Ns, T
′) plane in testing stage

the BER curves of all methods are improved. On the other hand, the Multi-Mode RC continues

showing its advantage over other methods.

D. Performance Evaluation under Receiving Non-linearity —- Low Resolution ADCs

To show the advantage of RC-based approach in other model mismatch scenarios, we evaluate

the BER performance when low precision quantization is added in the link which is extremely

relevant to massive MIMO systems. We consider the extreme case of using one-bit ADC which

quantizes the in-phase and quadrature components to 1 or -1. The definition of the quantizer for

any one of the components is,

q(x) = Amax · sign(x) (22)

where Amax is the maximum magnitude of the quantizer where we set it as 0.6 in the evaluation.

Fig. 12 clearly shows that the Multi-Mode RC is the most robust method in this scenario.

Meanwhile, we can observe the saturation phenomena of the BER curve when the antenna

number increases. This is because the quantization level on each antenna is set as a fixed value.

Intuitively, the performance can be further improved by optimizing the quantization level on

each antenna. This will be considered as our future work.
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Fig. 10. BER in a multi-user massive MIMO system with 64 antennas at the BS (8× 8 antenna array).
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Fig. 11. BER in multi-user massive MIMO with 64 (8× 8) and 100 (10× 10) antennas at the BS.
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Fig. 12. BER in one-bit multi-user massive MIMO systems with different antenna numbers.

E. Comparison with Model-based Learning Approaches

In this section, we compare the Multi-Mode RC against a state-of-the-art model-based symbol

detection NN, MMNet [10]. MMNet is a deep NN structure based on unfolding iterative soft-

thresholding algorithms, which adds degrees of flexibility on certain parameters in the NN for

training. In our evaluation, MMNet is configured using the aforementioned training dataset

associated with the LMMSE-estimated CSI. As the legends shown in Fig. 13, we choose three

MMNet operation modes as the benchmark methods: 1) MMNet-Online-I contains only scalar

trainable parameters. It assumes the channel additive noise in both testing and training stages are

with homogeneous distributions. The “Online” scheme refers to a training framework described

in the paper, by which a NN for conducting symbol detection on the first subcarrier is trained

from scratch using 1000 iterations and NK pilot symbols, while other NNs with respect to the

remaining sub-carriers are fine-tuned based on the first NN with 3 additional iterations using their

individual training symbols. 2) MMNet-Online-II has matrix-form parameters as noise variance

estimators per layer, which is considered as an advanced structure of MMNet-Online-I using

the same training strategy. 3) MMNet-Pretraining-Online-II adds a pre-trained training stage to

MMNet-Online II. In this way, the NNs are initialized with pre-trained weights using 256 pilot
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Fig. 13. BER in a multi-user massive MIMO system with 64 antennas at the BS (8× 8 antenna array).

symbols from historical training datasets with different channel realizations.

Note that, while MMNet achieves notable performance on both i.i.d Gaussian channels and

spatially-correlated channels in [10], the utilized training symbols are relatively larger than the

setup in this paper (e.g. 500 pilot symbols associated with perfect CSIs which is not consistent

to the online over-the-air scenario as in our paper). Furthermore, the computation and memory

requirements on MMNet are significantly higher than the introduced method. To be specific,

MMNet requires Nc NNs to estimate symbols on all subcarriers, each of which stacks 10 layers

of neurons. Therefore, the number of training iterations significantly increases. In our method, we

only use 4 pilot symbols and a single NN to jointly accomplish the symbol detection task. Our

evaluation results demonstrate that the Multi-Mode RC outperforms MMNet in the multi-user

massive MIMO scenario with a steep performance improvement slope. Overall, Reg-Multi-Mode

RC shows 5− 6 dB gain in SNR compared with MMNet.

VI. CONCLUSION

In this paper, we presented a NN structure, Multi-Mode RC, for symbol detection in massive

MIMO-OFDM systems. We elaborated on the NN architecture and its configuration for the

symbol detection task. The introduced Multi-Mode RC framework is shown to be able to
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effectively cope with the model mismatch, waveform distortion as well as interference in the

systems. Numerical results demonstrated the advantages of Multi-Mode RC in the following

aspects: It can offer lower BER than conventional single-mode RC frameworks in low SNR

regime while achieving reduced computational complexity. Compared to other model-based

learning approaches, the introduced method can operate on a subframe-basis thus completely

relying on the limited over-the-air pilots/reference symbols. This attractive feature enables us to

train the symbol detection task using a compatible signal overhead as modern cellular networks.

In our future work, we will consider the optimization of the quantization thresholds at each

antenna port. Since quantization is an irreversible process, adaptive quantization strategies are a

promising approach to preserve the waveform information. Furthermore, incorporating gradient-

free learning algorithms into the RC framework is another interesting direction.

APPENDIX

PROOF OF THEOREM 1

Lemma 1: Given two full-rank matrices X ∈ CM1×M2 and G×CH×M2 , where H ≥M1, the

following least squares problem has a unique solution if and only if rank(X) = rank(W ?),

where W ? is the optimum.

min
W
‖X −WG‖F (23)

Proof: Based on the assumptions, we have rank(X) = min{M1,M2} and rank(G) =

min{H,M2}. In general, (23) has a unique solution if and only if rank(G) = H [33].

rank(G) = H implies M2 ≥ H . Accordingly, the solution is given by XG+, where G+

represents the Moor-Penrose inverse of matrix G. Since X is with full row rank, G+ is with

full column rank and H ≥M1, we have rank(XG+) = rank(X). Thus, we have rank(W ?) =

rank(XG+) = rank(X).

On the contrary, suppose rank(W ?) = rank(X) holds. We have H ≤ M2, otherwise there

exists W ? +H which is also a minimum of (23), where H is a non-zero solution of HG = 0.

Since G is assumed with full rank, we have rank(G) = H .

Lemma 2: Given the same assumption as Lemma 1, the sufficient and necessary condition for

the uniqueness of (23) can be expressed as

M2 ≥ H (24)
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Proof: Since the necessary and sufficient condition for the uniqueness is rank(G) = H .

Therefore, the uniqueness condition can be alternatively written as (23) is M2 ≥ H .

Before proceeding on the proof of Theorem 1, we introduce the following concepts to characterize

rank properties of tensor [31].

Definition 1: The mode-n rank of a tensor G is the mode-n unfolding of G, i.e., G(n).

Definition 2: A N-order tensor G is with rank-(M1,M2, · · · ,MN) when its mode-1 rank,

mode-2 rank to mode-N rank are equal to M1, M2, and MN , respectively.

Lemma 3: Given X ∈ CM1×M2×···×MN and G ∈ CH1×H2×···×HN , which are with rank-

(M1,M2, · · · ,MN) and rank-(H1, H2, · · · , HN) respective, and Hn ≥ Mn, N > 2, the min-

imization of

min
W 1,··· ,WN

‖X − G ×1 W1 ×2 W2 · · · ×N WN‖F (25)

is unique if

rank(X(n)) = rank(W ?
n) (26)

where W ?
1, · · · , W ?

N is the optimum.

Proof: We prove this theorem by mathematical induction. According to Lemma 1, the

uniqueness holds for minW 1 ‖X − G ×1 W 1‖F . Then, we assume it holds for N order tensor

X and G with N − 1 factor matrices.

Now, we consider the case with N factor matrices,

min
W 1,··· ,WN

‖X − G ×1 W1 ×2 W2 · · · ×N WN‖F

= min
WN

{ min
W 1,··· ,WN−1

‖X(N) −WNG(N)(W1 ⊗ · · · ⊗WN−1)
T‖F}

We denote W ?
N as one of the optima of the above problem. Since W ?

N is with full row rank based

on the assumption, we have tensor G×NW ?
N with rank-(H1, H2, · · · ,MN). This is because G(n)

is with full row rank. Therefore, (W ?
1, · · · , W ?

N−1) as an optimum of minW 1,··· ,WN−1
‖X −

G ×1 W1 ×2 W2 · · · ×N W?
N‖F is unique based on the inductive assumption. We then assert

W ?
N is unique. Otherwise it contracts to Lemma 1.

Remarks:
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• The proof does not conduct the mathematical induction on the tensor mode. This is because

the uniqueness does not hold for matrix decomposition, i.e., minW 1,W 2 ‖X−W 1GW T
2 ‖F .

• This theorem is only a sufficient condition for the uniqueness of (25).

Theorem 2: Under the same condition as Lemma 3, using ALS to solve (25) by initializing

the factor matrices with full rank, the achieved solution is unique when∑
i 6=n

Mi ≥ Hn.

Proof: If we solve the optimization problem (25) through ALS as well as initializing factor

matrices as full rank, updated factor matrices are with full rank at each iteration if we assume∑
i 6=n

Mi ≥ Hn

due to Lemma 2. Here, the prerequisite of Lemma 2 is met because in the updating rule for

W n, rank(G(n)(W1 ⊗ · · ·Wn−1 ⊗Wn+1 ⊗ · · · ⊗WN)T ) = Hn is guaranteed by the full rank

initialization assumption on factor matrices. Therefore, when ALS terminated at an optimum of

(25), we can assert this optimum is the unique by using Lemma 3.

With minor revisions on the statement of the above Theorem, we can arrive at Theorem 1.

APPENDIX

LOW COMPLEXITY FACTOR MATRIX CALCULATION IN ALS

At each step of using alternating least squares to solve the factor matrices W out−1 and W out−1

in (11), suppose we directly solve the following sub-problem to obtain W out−1,

W out−1 = arg min
W out−1

‖Z(1) −W out−1G(1)(W out−2 ⊗ INT
⊗ INK

)T‖F .

The resulting memory costs spent on W out−2⊗INT
⊗INK

are very large. To solve the bottleneck

from memory units, we can alternatively solve the W out−1 as follows,

W out−1 = arg min
W out−1

‖Z − G ×1 W out−1 ×2 W out−2‖

(a)
= arg min

W out−1

‖Z −
∑
k

G(k) ×1 W
(k)
out−1 ×2 W

(k)
out−2‖

= arg min
W out−1

‖Z(1) −
∑
k

W
(k)
out−1(G(k) ×2 W

(k)
out−2)(1)‖

= arg min
W out−1

‖Z(1) −W out−1[(G(1) ×2 W
(1)
out−2)(1), · · · , (G(K) ×2 W

(K)
out−2)(1)]

T‖
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where (a) comes from the partition definition of Tucker decomposition in (4) and K := N ! + 1.

As the above calculation suggests, we can first calculate mode-2 product between each partitioned

core tensor and factor matrix, then concatenate them as a big matrix to calculate a pseudoinverse

to reach a least squares solution of W out−1. Similar tricks can be apply to calculate W out−2,

· · · , W out−N in general multi-mode RC.
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