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Abstract—Traditional link adaptation (LA) schemes in cellular
network must be revised for networks beyond the fifth generation
(b5G), to guarantee the strict latency and reliability require-
ments advocated by ultra reliable low latency communications
(URLLC). In particular, a poor error rate prediction potentially
increases retransmissions, which in turn increase latency and
reduce reliability. In this paper, we present an interference
prediction method to enhance LA for URLLC. To develop
our prediction method, we propose a kernel based probability
density estimation algorithm, and provide an in depth analysis
of its statistical performance. We also provide a low complxity
version, suitable for practical scenarios. The proposed scheme is
compared with state-of-the-art LA solutions over fully compliant
3rd generation partnership project (3GPP) calibrated channels,
showing the validity of our proposal.

Index Terms—Beyond 5G, kernel distribution estimation, sta-
tistical link adaptation, ultra-reliable low-latency communica-
tions.

I. INTRODUCTION

Among the different application scenarios for networks
beyond the fifth generation (b5G), ultra reliable low latency
communications (URLLC) have drawn significant attention
from both industrial and academic research. The strict require-
ments on latency (1−10 ms) and reliability (first transmission
block error rate (FT-BER) < 10−5) will enable new use cases,
such as factory automation [1], autonomous vehicles [2], and
tactile Internet [3].

In order to meet the aforementioned requirements, different
communication solutions have been investigated. In fact, short
packets [4], shorter transmission time intervals, and grant-free
access schemes [5] are enablers of URLLC. The reader is
referred to [6] for an overview of available solutions.

In this paper, we focus on link adaptation (LA), i.e., the
choice of a proper modulation and coding scheme such that a
certain FT-BER is met. LA drastically reduces the number of
required retransmissions, as the choice of the modulation and
coding scheme (MCS) is based on the channel quality at trans-
mission time, therefore adapting transmissions to the actual
channel quality. However, in order to meet very low target FT-
BER, a poor LA may yield too conservative transmission rates,
with waste of resources. Instead, the LA algorithm should
guarantee the target FT-BER, while at the same time avoiding
too conservative behaviors.

Different solutions have been proposed for LA in URLLC
context. In [7] LA is performed based on a filtered version of
the signal to interference plus noise ratio (SINR), where the
interference power (IP) for the next transmission is predicted
by low-pass filtering past IPs. Similarly, in [8], prediction is
obtained by two different low-pass filters, designed on the
difference between current and previous filtered IP. However,
this approach is sensitive to high oscillations of IPs, yielding
a sub-optimal LA. In [9], a LA solution has been proposed
to attain ultra-reliability. However, this is obtained by means
or retransmission, which increase the overall latency. When
delay constraints allow for retransmissions, proper schemes
can achieve the desired reliability with higher spectral effi-
ciency [10]. When delay constraints becomes strict, instead,
the FT-BER at the first transmission becomes the key enabler
for URLLC. In [11] a conservative LA algorithm has been
proposed, where the MCS is chosen on the basis of the
estimated strongest channel degradation at the packet trans-
mission time. Although retransmissions may not be needed
using a conservative MCS, this solution does not fully exploit
channel conditions at transmission time. In [12], a joint LA
and retransmission policy is obtained, based on the average
SINR value, which however cannot guarantee a small FT-BER
in the short term. In [13], LA is implemented based on IPs
statistics. In particular, the probability density function (p.d.f.)
of IP is predicted using kernel density estimator (KDE) [14],
and then used in the LA algorithm.

In this paper, following the approach in [13], we propose
an algorithm for the estimation of the IP p.d.f. and its use
for LA. The proposed solution is evaluated in a cellular
network scenario with channels following either the Rice
channel model or a 3rd generation partnership project (3GPP)
calibrated 3D Urban micro (UMi) model [15]. It turns out
that the proposed LA framework is more accurate and entails
a lower complexity than state-of-the-art solutions.

With respect to the literature, and in particular to [13], the
contribution of this paper are the following:
• we propose a novel density estimation algorithm, i.e.,

subsets-based KDE (SB-KDE), and compare its perfor-
mance with the state-of-the-art KDE;

• we propose a low-complexity version of SB-KDE, i.e.,
low-complexity SB-KDE (LC-SB);
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• we show how density estimation methods can be lever-
aged for LA, and assess their performance, comparing it
with KDE (for p.d.f. prediction), outer loop link adapta-
tion (OLLA) and a log-normal approximation for LA;

• we test our solution in a 3GPP calibrated 3D UMi
scenario, further assessing the validity of the proposed
framework.

The rest of the paper is organized as follows. In Section II
we introduce the system model for the considered cellular
network, and we review LA. In Section III we present inter-
ference prediction for LA, and review KDE. In Section IV we
introduce SB-KDE and its low-complexity version. The com-
putational complexity analysis of all algorithms is derived in
Section V. In Section VI we assess the validity of the proposed
framework, by comparing it with state-of-the-art algorithms in
both a Rice channel model and a 3GPP calibrated 3D Umi
scenario. Lastly, in Section VII we draw the conclusions.

II. SYSTEM MODEL

We consider a cellular network with C cells wherein, for
each cell, a single next-generation node base (gNB) equipped
with Na antennas serves Ktot single-antenna user equipments
(UEs). Each cell is populated by a random number of UEs
uniformly located in space. We denote as Uc the set of UEs
indexes in cell c. We assume that each gNB serves a single
UE in a resource block, and we denote as h(c, t) the C1×Na

channel from gNB c toward the UE served at transmission
time interval (TTI) t, in the considered resource block.

We consider two different channel models. We first consider
the Rice channel model [16, Ch. 2.4.2], where each link is a
linear combination of a line of sight (LOS) and non LOS
links. While this model is widely used in the literature for its
implementation simplicity, we also consider a more realistic
spatial 3D UMi 3GPP calibrated [15] scenario.

In both cases, we assume that downlink transmissions
are performed using the maximal ratio transmission (MRT)
precoder

g(c, t) =
hH(c, t)

||h(c, t)||
, (1)

where [·]H denotes the Hermitian of a vector.
The signal received by the served UE suffers from the inter-

ference caused by all gNBs with index ` = 1, · · · , C, ` 6= c,
transmitting toward their scheduled UEs. The SINR measured
at UE in cell c at TTI t is given by

ρ(c, t) =
|h(c, t)g(c, t)|2P

φ(t) + σ2
, (2)

where P is the transmitted power, σ2 is the noise power, φ(t)
is the IP due to other scheduled users at TTI t, i.e.,

φ(t) =

C∑
`=1, 6̀=c

|h(`, t)g(`, t)|2P, (3)

and x`(t) denotes the index of the UE served by the `-th gNB
at TTI t .

We focus on the most extreme URLLC cases (e.g., motion
control) that are characterized by deterministic periodic traffic

[17] and assume that a) packets for a given UE appear at
periodic TTIs and b) UEs are served by the gNBs in a deter-
ministic fashion, according to a round robin (RR) scheduler
that allows each packet to meet its latency constraints. The
use of a RR scheduler, implies that ρ values are correlated in
time, since periodically each user will be affected by the same
subset of interferers. Correlation is exploited in the design of
our proposed LA scheme. Then, without loss of generality,
we assume that UEs are sequentially served according to
their index in Uc, c = 1, . . . , C. Moreover, because of the
strict latency requirements of URLLC traffic, we assume
that no retransmission is allowed. Therefore, packets that are
successfully received at the UEs always meet the latency
constraint, whereas, when transmission fails, the packet is
dropped. Finally, we assume that each gNB is fully loaded,
i.e., in each TTI there is always a certain UE that needs to be
scheduled by each gNB.

In this paper we focus on LA, i.e., on the problem of
choosing a proper MCS, subject to a first-transmission target
FT-BER. Whilst for each MCS index the values of modulation
order, target code rate, and spectral efficiency are given (see,
e.g., [18]), FT-BER values are usually obtained by simulations
or data collection. For a given FT-BER, the minimum SINR
needed for each MCS is stored in a look-up table. Since now
we will focus on the LA of a single gNB, we drop index
c from the notation. In particular, considering the set M of
available MCSs and assuming that MCSs are ordered by their
increasing rates, the LA problem for TTI t+ 1 can be written
as

M∗(t+ 1) = max
i∈M
{Mi : ρ̂(t+ 1) > ρi}, (4)

where ρi is the minimum SINR for which the target FT-BER
is achieved with MCS i, and ρ̂(t + 1) is an estimate of the
SINR at t + 1. We see that the LA problem selects, among
the MCSs which guarantee a certain target FT-BER, the one
which also maximizes the rate.

The predicted SINR in OLLA [19] is obtained only from the
last measured SINR ρ(t). The idea is that, if the last transmis-
sion was successful with the previously selected MCS and an
acknowledgment (ACK) packet is sent back to the receiver, the
estimated SINR ρOLLA(t+ 1) is increased. If instead the pre-
vious transmission failed and a non-acknowledgment (NACK)
packet is sent back to the transmitter, and ρOLLA(t + 1) is
hence reduced. In particular, the SINR value used for MCS
selection at TTI t+ 1 is

ρ̂OLLA(t+ 1) = ρ̂(t) + ∆(t+ 1), (5)

where the offset is computed as

∆(t+ 1) =

{
∆(t) + ∆ACK, ifACKatt;

∆(t) + ∆NACK, ifNACKatt.
(6)

The values ∆ACK > 0 and ∆NACK are suitably selected such
that the target FT-BER is met, with ∆NACK = − 1−ε

ε ∆ACK

[19]. Therefore, in (5) the SINR estimate is typically reduced
in order to have a more conservative approach in LA.

We notice that the basic OLLA design is not suitable for
URLLC for two reasons. First, due to the very low FT-BER
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requirements of URLLC, adjusting the estimated SINR via
∆NACK would lead to a conservatively low MCS. Indeed, to
recover from a loss, OLLA needs a number of steps propor-
tional to the inverse of the required reliability, significantly
increasing latency. The second drawback of OLLA is that the
target FT-BER is guaranteed over a window of duration 1/ε,
whereas the instantaneous level may be extremely different.

III. INTERFERENCE PREDICTION FOR LA
In this paper, similarly to [13], we compute the predicted

SINR ρ̂(t+ 1) using the last Nprev measured ρ(t), i.e., given
the vector

φNprev
(t) = [φ(t), · · · , φ(t−Nprev + 1)]. (7)

We also assume that we are perfectly able to track the channel
of the scheduled user and we assume that only interference is
rapidly changing [7]. We aim at predicting the outage SINR,
i.e., an SINR value that will be exceeded with high probability,
thus reducing the probability of transmission failures. Thus,
we resort to the maximum quantile (MQ) method proposed
in [13], so that the SINR prediction reduces to predicting the
outage IP φ̂(t+ 1), i.e., the value φ̂(t+ 1) that satisfies

P
[
φ̂(t+ 1) < φ(t+ 1)|φNprev(t)

]
≤ ε. (8)

The resulting LA scheme is denoted as interference-prediction
LA (IPLA).

In order to compute φ̂(t + 1), we estimate the conditional
p.d.f. of φ(t + 1), given the observations φNprev(t), i.e.,
f̂φ(t+1)|φNprev (t)

(a|φ). Then, (8) becomes

P
[
φ̂(t+ 1) < φ(t+ 1)|φNprev(t)

]
=

∫ φ(t+1)

0

fφ(t+1)|φNprev (t)
(a|φ)da

≈
∫ φ(t+1)

0

f̂φ(t+1)|φNprev (t)
(a|φ)da.

(9)

The integral in (9) is computed via numerical integration.
Now, we still have the problem of obtaining an estimate of

the conditional p.d.f. f̂φ(t+1)|φNprev (t)
(a|φ). To this end, we

consider
L >> Nprev (10)

samples of φ(t), i.e., φ(t − 1), . . . , φ(t − L), which are used
to estimate the conditional p.d.f.. Then, we decompose the
conditional p.d.f. into the ratio of the joint and marginal p.d.f.s
fφ(t+1),φNprev (t)

(a,φ) and fφNprev (t)
(φ), i.e.,

fφ(t+1)|φNprev (t)
(a|φ) =

fφ(t+1),φNprev (t)
(a,φ)

fφNprev (t)
(φ)

. (11)

In the following we will propose techniques to estimate the
joint p.d.f. of multiple random variables, which will be used to
estimate both the joint and marginal p.d.f.s in (11). In order to
simplify notation, we will consider a generic random vector x,
with p.d.f. f(x). The estimated p.d.f. will be obtained using
set S = {s1, · · · , sN} of observed realizations of x, where
each element sn is given by Nprev + 1 successive elements
φ(·), i.e., sn = [φ(t − 2 − n), . . . , φ(t − 2 − n − Nprev)].

Notice that, since each sn is obtained by grouping identically
distributed elements, elements in S are identically distributed.

A. p.d.f. Estimation by Cumulative Density Function

The simplest p.d.f. estimator is obtained by means of
histogram, i.e.,

f̂h(x) =

∑N
n=1 δ(sn − x)

N
, (12)

where δ(x) is the indicator function such that δ(x) = 1 if
x = 0, 0 otherwise.

Let us split the length Nprev + 1 vectors x and sn into
x = [a, x̄] and sn = [b, s̄n], such that a and b denote the first
element, whereas ·̄ denotes the remaining Nprev values. Based
on (12), we have the following

Lemma 1. The empirical conditional cumulative density func-
tion (CDF) of a given x̄ is given by

F̂ (a|x̄) =

∑N
n=1 1(b− a|x̄)∑N
n=1 δ(s̄n − x̄)

, (13)

where 1(sn(1)− x(1)|x̄) = 1 if sn(1) < x(1) given s̄n = x̄,
0 otherwise.

Proof. The result is given by substitution of (12) in (11), and
by applying the integration in (9).

A drawback of this approach is that, when L is not large
enough, the entries with lower probability will not appear in
S, and the value of their p.d.f. will be zero. This problem
becomes more prominent for URLLC, as targeting 10−5 or
lower FT-BER requires a precise p.d.f. estimate.

B. KDE

A more accurate p.d.f. estimator is KDE, firstly introduced
in [14], namely

f̂ (x) =
1

N

N∑
n=1

K

(
sn − x
h

)
, (14)

where K is the kernel function and h is the kernel bandwidth,
i.e., a parameter of the kernel function which must be suitably
selected.

We consider the multivariate Gaussian kernel with uncorre-
lated dimensions in [20], i.e.,

K

(
sn − x
h

)
=

1√
(2π)Dh

exp

(
−||sn − x)||2

2h

)
, (15)

where D is the dimension. Bandwidth h can be obtained
by minimizing the asymptotic mean integrated squared error
(AMISE) [20]. In particular, when considering a Gaussian
kernel, the AMISE can be written as [20]

AMISE(h) =
1

4
Υ(f

′′
)h4 +

1

2N
√
πh
, (16)

where f
′′

denotes the second derivative of the true p.d.f. f ,
and

Υ(f
′′
) =

∫ ∞
−∞

[f
′′
(u)]2du. (17)



4

The minimum AMISE value is obtained for the bandwidth

h∗ =

(
1

2N
√
πΥ(f ′′)

) 1
5

, (18)

which is the standard deviation of the Gaussian kernel. The
assumption behind (14) is that values are independent iden-
tically distributed. We already discussed the latter condition
when creating sets. However, due to the RR scheduler, values
in S are correlated. This will be exploited to improve the
quality of the proposed estimator, as detailed in Section IV-B.

Notice that, by exploiting Gaussian kernels, a kernel-based
estimate of the CDF can be obtained by substituting the
Gaussian function with the Gaussian Q function. However,
we here focus on p.d.f. estimation.

C. Variable-Bandwidth KDE

The choice of a single bandwidth value may not be ac-
curate enough. For instance, it could be useful to have a
larger bandwidth in intervals wherein few samples have been
collected, and a smaller bandwidth where many samples has
been collected. In order to obtain a better estimate of the IP’s
p.d.f., we consider the variable bandwidth KDE (VB-KDE),
i.e., a KDE with multiple bandiwdths. Among VB-KDEs we
find two different classes [21]: the balloon estimator and the
sample smoothing estimator.

In the balloon estimator, the bandwidth h is a function of
the target point x, i.e.,

f̂ (x) =
1

Nh(x)

N∑
n=1

K

(
sn − x
h(x)

)
. (19)

In the sample smoothing estimator, the bandwidth h is a
function of the measured sample point sn, i.e.

f̂ (x) =
1

N

N∑
n=1

1

h(sn)
K

(
sn − x
h(sn)

)
, (20)

Both estimators present drawbacks: the balloon estimator has
been showed to perform better than the fixed bandwidth KDE
only when dealing with a multidimensional p.d.f. with more
than three dimensions [21]. On the other hand, the sample
smoothing estimator has been showed to be highly dependent
on the distance between sample points.

IV. SUBSETS-BASED SAMPLE SMOOTHING ESTIMATOR

In this paper, we focus on the second class of VB-KDE
estimators and propose a new method which deals with the
drawback of sample smoothing estimators.

Let us consider the sample space (i.e., the list of possible
outcomes) X associated to the p.d.f. f(x). We split X in
B subsets, such that X i ∩ X j = ∅,

⋃B
i=1 X i = X . Subsets

are created according to a predefined rule, homogeneous in
all dimensions, i.e., denoting as X (d) = {X (d)

1 , . . . ,X (d)
B } the

group of subsets created along the dth dimension, X i is the
ith elements of the cartesian product

X (1) ×X (2) × . . .×X (D). (21)

The rule deciding how subsets are created may be based on
different factors, such as the value assumed by the elements
in the set or the number of samples with close values. Both
policies will be discussed in Section VI-B.

Then, we consider a bandwidth value hi for each subsets,
and define the SB-KDE estimator

f̃(x) =
1

B

B∑
i=1

1

|X i|hi

∑
s∈X i

K

(
s− x
hi

)
. (22)

Let P(X i) be the probability of the ith subset, and f(x|X i)
the p.d.f. of sample x in the ith subset. Assuming that the
value B is given and that sets are created according to a certain
policy, we have the following results on the SB-KDE.

Lemma 2. Given the number of subsets B, the bias of the
SB-KDE estimator is given by

Bias(f̃(x)) (23)

= ω2(K)

B∑
i=1

1

2
f

′′
(x|X i)h

2
iP(X i) + o(h2i ),

where ω2(K) is the second moment of the kernel function K,
i.e.,

ω2(K) =

∫ ∞
−∞

u2K(u)du. (24)

Proof. See Appendix A.

Lemma 3. Given the number of subsets B, the variance of
the SB-KDE estimator is given by

Var(f̃(x)) = Υ(K)f(x)
1

B

B∑
i=1

1

hi
+O

(
1

N

)
,

where N is the total number of samples.

Proof. See Appendix A.

Exploiting the results in Lemma 2 and Lemma 3, we also
obtain the following two results.

Theorem 4. For a given number of subsets B, and bandwidths
h = [h1, · · · , hB ], the AMISE obtained via SB-KDE exploiting
a Gaussian kernel is given by

AMISE(h) =

1

4

B∑
i=1

(
Υ(f

′′
(x|X i))h

4P (X i)
2

+
1

2B2|X i|
√
πhi

)
.

(25)

Proof. See Appendix A.

Theorem 5. For a given number of subsets B and considering
a Gaussian kernel, the minimum AMISE is obtained via the
SB-KDE for the ith bandwidth value given by

h∗i =

(
1

2B2|X i|
√
πΥ(f ′′(x|X i))P(X i)2

) 1
5

. (26)

Proof. See Appendix A.

A. Optimal Bandwidth Computation

The computation of (26) requires the knowledge of the
true p.d.f., as for (18). Therefore, to compute the optimal
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Algorithm 1: Bandwidth computation algorithm for
SB-KDE

Data: X , B, X i ∀ i = 1, · · · , B, ε
Result: f̂

1 initialize f̃0 = 0;
2 compute h(0)

i (18) via algorithm in [20];
3 compute f̂(x|X i) via KDE algorithm in [20];
4 compute P̂(X i) via (27) ∀i = 1, · · ·B;
5 h

(1)
i = h

(0)
i

(
N/(B2|X i|P(X i)

2)
)1/5, ∀i = 1, · · · , B;

6 compute f̃1 using h(1)
i ;

7 q = 1;
8 while DKL(f̃(q)||f̃(q−1)) > ε do
9 q = q + 1;

10 compute f̂(x|X i) via KDE using h(q−1)
i ;

11 compute P̂(X i) via (27) ∀i = 1, · · ·B;
12 h

(q)
i = h

(q−1)
i

(
N/(B2|X i|P(X i)

2)
)1/5,

∀i = 1, · · · , B;
13 compute f̃(q) using h(q)

i ;
14 end

bandwidth, we resort to an iterative algorithm. The optimal
bandwidth for SB-KDE has been proven to depend on both
the probability P(X i) and the second derivative of the p.d.f.,
f

′′
(x|X i). However, again, the true p.d.f. is not known.

Therefore, we propose a heuristic algorithm, splitting the SB-
KDE design into the design of one KDE for each subset
i = 1, . . . , B, obtaining a first estimate of the bandwidths
hi, then refined iteratively.

In particular, we note that (26) and (18) are similar, except
for a multiplicative factor given by

(
N/(B2|X i|P(X i)

2)
)1/5

.
Therefore, we exploit the result obtained via KDE to obtain
the optimal bandwidth for SB-KDE.

Once the ith bandwidth has been obtained from KDE, a first
estimate of the probability P̂(X i) is obtained by integration
over the ith subset, i.e.,

P̂(X i) =

∫
x∈X i

f̂(x|X i)dx. (27)

The bandwidth values are then updated according to the
estimate (27), and the procedure is repeated until convergence.
Given the p.d.f. estimates f̃q and f̃q−1 respectively at iteration
q and q− 1, the algorithm reaches convergence when the two
p.d.f.s are similar in terms of their Kullback-Leibler divergence
[22], i.e., when for a suitable parameter ε

DKL(f̃q||f̃q−1) =
∑
x∈X

f̃q(x) log2

f̃q(x)

f̃q−1(x)
≤ ε, (28)

where log2(·) represents the base-2 logarithm.
The algorithm steps are presented in Algorithm 1.

B. Low-complexity SB-KDE

The proposed SB-KDE algorithm has the drawback of a
high computational complexity than KDE, as it requires B
KDEs for each iteration. In order to reduce its complexity,
we replace the bandwidth estimation algorithms with the
estimation of a covariance matrix. In particular, since the mea-
sured IPs are correlated due to the round robin scheduler, we

compute the bandwidth as the correlation matrix of the IP, thus
capturing time correlation. We consider the multidimensional
Gaussian kernel,

Ξ

(
sn − x
Hi

)
=

1√
(2π)DdetHi

exp

(
− (sn − x)TH−1i (sn − x)

2

)
,

(29)

where Hi = E(sns
H
n ) is the covariance matrix of the

IP sequence in ith subset and detHi its determinant. For
each subset of X , we estimate the D-dimensional sample
covariance matrix. We denote as A` the N`×D matrix whose
rows are given by IP sequence of length D jointly belonging
to the `th element of X . Denoting as µd the sample mean
value of the d-th column, the (q, j) element of the ith sample
covariance matrix is given by

[Hi]q,j =
1

N` − 1

N∑̀
n=1

(A.,q − µq)∗(A.,j − µj). (30)

The resulting SB-KDE density estimator is obtained as

f̃(x) =
1

B

B∑
i=1

1

|X i|det(Hi)

∑
s∈X i

Ξ

(
s− x
Hi

)
. (31)

By replacing the iterative algorithm with an estimate of
the sample covariance matrix, we reduced the computational
complexity to a linear function of the number of measured
IPs. We henceforth denote the SB-KDE with bandwidth given
by (30) as LC-SB.

V. COMPUTATIONAL COMPLEXITY

We here consider the computational complexity in terms of
total number of addition and multiplication operations. The
implementation of the KDE and of its optimal bandwidth in
[20] requires the computation of the discrete cosine transform
(DCT) of the data in the training set. The computational
complexity of a two-dimensional DCT is given by [23]

CDCT(µ) =
7

3
µβ − 20

9
µ+

2

9
(−1)β + 2, (32)

where µ is the length of the DCT and β = log2 µ. Succes-
sively, it requires to find the root of the obtained function, with
a total number of operations given by [24, Th. 2.1]

Croot = 2 log2

η0
η
, (33)

where η0 is the difference between the maximum and mini-
mum value in the training set, and η is the error tolerance.
The overall complexity is hence given by

CKDE(µ) = CDCT(µ) + Croot. (34)

The SB-KDE algorithm requires an initial KDE estimate
for each subset. Then, it requires, for each iteration until
convergence, the computation of a summation over the number
of samples in each subset and 4 multiplications for each subset.
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Fig. 1. AMISE vs. bandwidth for KDE and SB-KDE. Notice that, being
AMISE a function of B = 2 bandwidths for SB-KDE, curves are obtained by
fixing one bandwidth value and varying the other. We assumed Smax = 100,
and true p.d.f. with h = [1.5, 2.7, 1.2].

The overall complexity is hence given by

CSB−KDE = BCKDE(µ/B) + nit4B

B∑
i=1

|X i|, (35)

where nit denotes the number of iterations for convergence.
The LC-SB requires the estimation of the set variance for

each subset, which is linear in the cardinality of the considered
subset. Therefore, the overall complexity can be expressed as

CLC−SB =

B∑
i=1

|X i|. (36)

VI. NUMERICAL RESULTS

A. SB-KDE Optimality

In order to assess the performance of the SB-KDE density
estimator, we compare the AMISE obtained for both KDE
and SB-KDE for a fixed and known p.d.f. f(x) of a random
variable. In particular, we assume that the true p.d.f. is given
by (22) for B = 3 and h = [1.5, 2.7, 1.2]. This allows us
to compute the p.d.f. f(x) for each x in a predefined dataset
S. We assume that S = {0, 1, . . . , Smax}, and we randomly

create sets Xi, i = 1, . . . , B, such that
B⋃
i=1

Xi = S.

Fig. 1 shows the AMISE obtained with KDE as in (16) and
SB-KDE as in (25) with B = 2. Notice that both estimates are
approximations of the true p.d.f., which is based on 3 subsets.
Furthermore, since the AMISE for SB-KDE is a function of
two bandwidths, results are shown by fixing one bandwidth
to the optimal value, and letting the other vary. By using
multiple bandwidths, the AMISE is reduced, validating our
approach. Furthermore, we notice that the proposed solution
is less sensitive to sub-optimal bandwidth values. In fact, we
notice that near-to-optimal AMISE values are obtained for a
wider range of bandwidth values for SB-KDE with rspect to
KDE.

B. Link Adaptation

In this work, we assume that the LA can match the FT-
BER target if the predicted IP is larger than that experienced
at transmission time. Therefore, we assume a correct trans-
mission if the predicted IP is larger than the actual one at the
successive time instant, whereas otherwise a failure occurs.
This models a system where uncontrolled re-transmissions are
to be avoided, for instance due to very strict latency constraints
in URLLC. For each IP test sequence of T TTIs, we evaluate
the reliability of the different solutions by counting the number
of events in which the predicted IP is below the actual one.
We hence define the reliability of the system (between 0 and
1) as

1− θ = 1−
∑T−1
t=1 χ(t)

T − 1
, (37)

where χ(t) is the indicator function

χ(t) =

{
1 if φ̂(t) < φ(t);

0 otherwise.
(38)

Notice that, θ represents the unreliability. Since we are inter-
ested in high reliability, we aim at small θ values.

For each UE we assume that, if a failure happens, the
experienced DR is zero, due to the packet’s transmission’s
failure. Therefore, considering short packets of size M , the
instantaneous DR R(t) at TTI t is [25]

R(t) ≈ (1−χ(t))

(
log2(1 + ρ̂(t))−

√
1

M
V (ρ̂(t))Q−1(ε)

)
,

(39)
where V (ρ̂(t)) = ρ̂(t)(2+ρ̂(t))

(1+ρ̂(t))2 , where Q is the Gaussian
complementary CDF, Q−1 is its inverse, and ρ̂(t) is the
predicted SINR. We denote as R̄ the average DR in time,
and as M = 128 the number of channel uses. Notice that we
used ≈ in (39) as we neglect terms with O(logM/M).

For the MQ-based methods, we consider that prediction
exploits the conditional p.d.f. (11), where prediction is based
on the previous measured IP, i.e., Nprev = 1.

We compare two different heuristic policies for creating LC-
SB subsets. The first is based on the values assumed by the
IPs in the time series. In particular, assuming an IP sequence
with minimum value m and maximum value M , the bth subset
is given by X (b)

d = xd, s.t. xd ≥ (b − 1)M−mB + 1 andxd <
bM−mB . We denote this method by LC-SBV. The latter policy
is based on the number of different IPs in the time series. In
particular, we populate each subset with the same number of
sample points. We denote this method as LC-SBN.

C. Baseline Algorithms

In order to better assess the performance of the SB-KDE
and its low-complexity version, we compare the results with
four state-of-the-art algorithms. Two baselines are given by
the MQ method proposed in [13], based on the empirical CDF
(13) (henceforth referred to as ECDF) and on KDE. The third
method is the based on OLLA, described in Section II. Since
OLLA does not exploit any interference prediction method,
for a fair comparison, we exploit the low-pass filtering of the
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(a) LC-SBV (b) LC-SBN

Fig. 2. Average DR vs. θ for LC-SBV (left) and LC-SBN (right). In both figures same marker denotes the same number of subsets. Results are reported for
a training set of L = 103 samples (dashed lines) and a training set of L = 104 samples (solid lines).

IPs proposed in [7]. We will hereafter denote this method as
OLLA-LPP. In particular, given the previously predicted IP
φ̂(t) and the current measured IP φ(t), the IP to be used for
the next transmission is given by [7]

φ̂(t+ 1) = αφ(t) + (1− α)φ̂(t− 1), (40)

where α is a constant real value, which is usually small. The
predicted value is then used to compute the SINR ρ

(t+1)
OLLA.

The last baseline method assumes the IPs’ distribution to be
log-normal. Its first and second (order) moments are estimated
as a log-normal random variable [26]. We propose to set the
first and second moments of the p.d.f. as the mean µX and
variance σ2

X of the training set given by X . The predicted IP
is hence given by

φ̂(t+ 1) = exp
(

Θ−1 (2ε− 1)
√

2σX + µX

)
, (41)

where Θ(x) represents the error function

Θ(x) =
1√
π

∫ x

−x
e−t

2

dt. (42)

D. Rice Channel Model

We here consider a scenario with N = 9 square cells, with
each gNB located at the center of is at a distance of 200 m
from neighboring gNBs. Each gNB is equipped with Na = 16
antennas linearly spaced by d = λ/2. The IPs are measured in
the central cell, and the number of UEs in each surrounding
cell is given by the realization of a uniform random variable in
range [2, 8]. We consider a noise power of σ2 = −101 dBm,
a transmitted power at each gNB of P = 46 dBm, Rice K
factor Ψ = 10 dB, path loss exponent ν = 3.5 and a cell edge
signal to noise ratio (SNR) without interference of 20 dB. This
corresponds to a typical highly interference limited scenario
in practical deployments [15].

Fig. 2 shows the average DR vs. θ for the LC-SBV (left)
and LC-SBN (right). Results have been obtained by fixing

the number L of training samples used for p.d.f. estimation
and changing the parameter ε, yielding different values of θ.
Figures show both the impact of increasing L and the effect of
the number of subsets B. About the sensitivity with respect to
L, we denote with dashed line the results obtained estimating
the p.d.f. with L = 103 samples and with solid line the
results obtained estimating the p.d.f. with L = 104 samples.
Moreover, for each curve in each figure, a higher reliability,
i.e., la smaller θ, is obtained by decreasing ε. We notice that a
larger L leads to a higher reliability with both policies, since
having a larger number of training samples yields a higher
precision in the estimated p.d.f.. We also notice that for LC-
SBN a lower L leads to higher DR for high θ. Indeed, a lower
precision in the p.d.f. estimation leads to a less conservative
behavior, with higher rates and a lower reliability. We now
consider the effect of the number of subsets. We notice that
more subsets entail a lower θ and hence a higher reliability
for both policies, whereas in terms of rate results do not
show the same behavior. In fact, for LC-SBV the best trade-
off between DR and reliability is obtained when considering
B = 4 subsets, whereas for LC-SBN is obtained with B = 2
subsets. We can hence identify the number of subsets as a
hyper-parameter, to be optimized based on collected data.
Comparing the two policies, we notice that LC-SBV attains
higher DR as the reliability increases. In the following, we
choose LC-SBV B = 4 as the policy to be compared with
baseline algorithms, as it achieves the best performance both
in terms of average DR and reliability.

Fig. 3 shows the average DR vs. θ for the best policy chosen
from Fig. 2 and the baseline methods, when considering
L = 103 training samples. For KDE we show both the
performance obtained with L = 103 training samples and the
optimal results obtained by over-fitting, i.e., using all samples
in the dataset for training. The ECDF method based on (13)
attains a poor approximation of the CDF, since not enough
points are available to match the strict reliability targets. The



8

Fig. 3. Average DR vs. θ for the best performing policy chosen from Fig. 2
and the baseline methods. Estimation performed with L = 103 samples.

comparison with the other methods motivates the need for
kernel-based density estimators. About OLLA-LPP we notice
that, although it works well with high θ values, the attained
DR rapidly degrades for decreasing θ, due to the highly
conservative behavior of OLLA which favors reliability to
DR. Considering a URLLC scenario targeting high reliability,
and hence small θ, we notice that OLLA-LPP is not able
to guarantee both high reliability and high DR, therefore
not being a suitable solution if the load offered by URLLC
becomes relevant. A similar behavior is obtained with the
LogNormal approximation, where DR rapidly degrades with
increasing reliability values. However, differently from OLLA-
LPP, the DR has a slower decrease and does not tend to zero
for θ < 10−4. Furthermore, we notice that, compared to the
other p.d.f.-based methods, LogNormal reaches smaller values
of θ. Indeed, this method relies on a closed-form equation of
the IP p.d.f. and does not suffer for an insufficient number
of training data, being able to reach infinite precision. On
the other hand, we notice that the LogNormal approximation
attains a higher DR than OLLA-LPP for θ < 2 ·10−4. The DR
for the proposed SB-KDE degrades as θ decreases. However,
it attains a higher DR when it’s able to match the desired
reliability when compared to LogNormal and OLLA-LPP,
whereas, when compared to KDE, it attains higher DR only
for θ ≤ 5 · 10−3. Furthermore, compared to KDE, it also to
attains lower θ, for θ ≤ 2·10−3, confirming that a subset-based
approach is advantageous over the plain KDE. Comparing the
low-complexity LC-SBV with all other approaches, we notice
that it attains the highest DR for all θ ≥ 2 · 10−3. However,
LC-SBV is limited by the demanding amount of data needed
to estimate the p.d.f.. Fig. 4 shows the average DR vs θ,
for the best performing policy chosen from Fig. 2 and the
baseline methods, when considering L = 104 training samples.
Note that both KDE approaches have similar performance, i.e.,
convergence is already obtained with 104 training samples. For
the ECDF method, a larger training set does not improve its
performance. About SB-KDE, we notice a DR degradation
smaller than 0.2 bit/s/Hz, up to θ = 0.5 · 10−4, then DR

Fig. 4. Average DR vs. θ for the best performing policy chosen from Fig. 2
and the baseline methods. Estimation performed with L = 104 samples.

rapidly decreases, still being higher than that of OLLA-LPP
and that of Log-normal approximation. Furthermore, we also
notice that the subset-based approaches attain smaller θ values
than KDE, and LC-SBV is the best performing method down
to θ = 10−4.

E. 3GPP Channel Model

In order to test the proposed algorithm in a more realistic
scenario, we consider in this section a three-dimensional
spatial 3D Urban Micro (UMi) channel, calibrated with the
results obtained by 3GPP [15]. In detail, we consider C = 21
cells, organized in 7 sites, each with 120 degrees subsets per
cell, inter-site distance of 200 m, and wraparound. An average
of 5 UEs is deployed per cell, which move with a speed of
3 km/h. Each gNB is equipped with 64 antennas, organized
in a uniform planar array, with 8 rows, 4 columns and with
cross-polarized antenna elements. The gNBs serve UEs at a
carrier frequency of 3.7 GHz on a system bandwidth of 10
MHz and using a transmit power of 41 dBm. We follow the
scenario in [15], where the reader can find more details.

Results have been obtained by fixing the number L of
training samples for p.d.f. estimation and varying ε, allowing
to obtain different θ values. As for the Rice channel model, we
show both the effect of increasing L and varying the number
B of subsets.

Fig. 5 shows the DR vs. θ for the two considered policies for
the LC-SB algorithm. Dashed lines refer to training sequences
of L = 102 samples, while solid lines to training sequences
of 104 samples. We notice that, if the training set does not
have enough samples, both methods are unable to attain small
θ values with a poor reliability. About LC-SBV, we notice
the trade-off between DR and reliability when considering
the number of subsets B needed to estimate the p.d.f.. In
fact, on one hand a larger number of subsets yields higher
DR values, on the other hand a smaller number of subsets
means we reach smaller θ values. Hence, this parameter will
be set according to the specific users’ need. About LC-SBN,
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(a) LC-SBV (b) LC-SBN

Fig. 5. DR vs. θ for LC-SBV (left) and LC-SBN (right) obtained with the 3GPP channel model. In both figures same marker shape denotes the same number
of subsets. Results are reported for a training set of L = 102 samples (dashed lines) and a training set of L = 104 samples (solid lines).

Fig. 6. Average DR vs. θ for the best performing policy chosen from Fig. 5
and the baseline methods. Results obtained with L = 104 training samples.

we instead notice that increasing the number of subsets does
not improve performance. However, the LC-SBN with B = 2
is the best performing method among all policies and number
of subsets, and is hence compared with the baseline methods.

Fig. 6 shows the average DR vs. θ for all the baseline
methods, the proposed SB-KDE and LC-SBN with B = 2
subsets. Results are obtained with L = 104 training samples.
As for Fig. 4, both OLLA-LP and the LogNormal approxima-
tion attain decreasing DR values for decreasing θ. Regarding
KDE, performance obtained considering 104 training samples
is equal to those obtained considering the full dataset, meaning
that convergence has been reached. However we recall that,
although these are the best results obtainable with KDE, they
do not represent the overall optimum, as the estimated p.d.f.
may be inaccurate. In fact, with ECDF we attain higher DRs
for high θ values. However, KDE can reach θ = 10−4,
showing that kernel methods provide good performance for
low reliability target. About the proposed SB-KDE, it achieves

Fig. 7. Computational complexity vs. number of training data for the kernel
based density estimators. Dashed curves show results for LC-SBV, whereas
dotted curves show results for LC-SBN.

higher DR values compared to those of KDE for θ > 2 ·10−3,
whereas LC-SBN attains higher DR values for all θ ≥ 6·10−4,
as LC-SBN can not attain lower θ values considering L = 104

training samples.
Fig. 7 shows the computational complexity in terms of

number of additions and multiplications vs. the number of
training samples L for the KDE and the two policies for the
low-complexity LC-SB. The best performing method is the
LC-SBN, due to the fact that it linearly depends on the number
of samples per subset, which decreases as the number of subset
increases.

VII. CONCLUSIONS

In this paper we considered the problem of predicting
interference power to enable efficient link adaptation for
URLLC. We considered variable bandwidth kernel density
estimators. We first derived the optimal bandwidth for the
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SB-KDE, and based on the optimal solution for KDE, we
proposed a heuristic algorithm to estimate a p.d.f. based
on the optimal bandwidths. Motivated by the considerable
computational complexity of the proposed solution, we then
proposed a low-complexity version of the SB-KDE, namely
the LC-SB. By means of extensive simulations in cellular
networks, considering realistic 3GPP 3D UMi channel models,
we showed through numerical evaluations that the proposed
solutions attain at the same time higher DR a better and match-
ing of the reliability targets than state-of-the-art solutions. By
jointly looking at results in Fig.s 4,6 and 7, we can conclude
that the proposed LC-SB method attains the best DR with
the lower computational complexity and achieves extremely
high reliability targets. Therefore, it is the best investigated
algorithm for URLLC, being hence an effective approach to
LA.

APPENDIX A
DERIVATION OF THE OPTIMAL BANDWIDTH FOR SB-KDE

We henceforth consider operations between vector and
scalar as element-wise. We also recall that the kernel function
of a vector is a scalar value. We assume that K(·) is a kernel
function as defined in [14], therefore

∫
K(u)du = 1 and that∫

uK(u)du = 0.

A. Bias

Define the local KDE as

f̂(x) =
1

B

B∑
i=1

1

|X i|
∑
z∈X i

1

hi
K

(
z − x
hi

)
. (43)

The mean value of the kernel function can be computed as

E

[
1

hi
K

(
z − x
hi

)]
=

∫ ∞
−∞

1

hi
K

(
ζ − x
hi

)
f(ζ)dζ. (44)

From the total probability law we have

f(ζ) =

B∑
`=1

f(ζ|X `)P(X `), (45)

and by substitution in (44) we obtain

E

[
1

hi
K

(
z − x
hi

)]
=∫ ∞

−∞

1

hi
K

(
ζ − x
hi

) B∑
`=1

f(ζ|X `)P(X `)dζ.

(46)

By performing the change of variables u = (z − x)/hi we
obtain

E

[
1

hi
K

(
z − x
hi

)]
=∫ ∞

−∞
K (u)

B∑
`=1

f(uhi + x|X `)P(X `)du.

(47)

Let us consider the second order Taylor series expansion of
f(uhi + x|X i), obtaining

f(uhi + x|X i) ≈ f(x|X i) + f (1)(x|X i)hiu+

1

2
f

′′
(x|X i)h

2
iu

2 + o(h2i ).
(48)

By substitution of (48) in (47) we obtain
B∑
`=1

∫ ∞
−∞

K (u) f(uhi + x|X i)P(X `)du = (49)

B∑
`=1

∫ ∞
−∞

K (u)
(
f(x|X `) + f (1)(x|X `)h`u+ (50)

1

2
f

′′
(x|X `)h

2
`u

2
)
P(X `)du =

B∑
`=1

(
f(x|X `) +

1

2
f

′′
(x|X `)h

2
`ω2(K)

)
P(X `),

where the second term involving the first derivative is zero as
the mean of K(u) is zero and where ω2(K) is defined in (24).

Therefore

E[f̂(x)] = E

[
1

B

B∑
i=1

1

|X i|
∑
z∈X i

1

hi
K

(
z − x
hi

)]

=
1

B

B∑
i=1

1

|X i|
∑
z∈X i

E

[
1

hi
K

(
z − x
hi

)]

=
1

B

B∑
i=1

1

|X i|

B∑
z∈X i,`=1

(
f(x|X `) +

1

2
f

′′
(x|X `)h

2
`ω2(k)

)
P(X `)

= f(x) +
1

B

B∑
i=1

(
B∑
`=1

1

2
f

′′
(x|X `)h

2
`ω2(k)P(X `)

)

= f(x) +

B∑
`=1

1

2
f

′′
(x|X `)h

2
`ω2(k)P(X `).

Therefore, the bias is

Bias(f̂(x)) = E[f̂(x)]− f(x) (51)

= ω2(k)

B∑
`=1

1

2
f

′′
(x|X `)h

2
`P(X `) + o(h2i ).

B. Variance

From the bias analysis we saw how the kernel function of
a vector can be treated as a random variable. The variance of
a random variable (r.v.) x can be computed as

Var(x) = E[x2]− E[x]2. (52)

From the bias analysis, focusing on the first order Taylor
approximation we have

E[f̂(x)] ≈ f(x) + o(1), (53)

where the second term is O
(

1
N

)
, being N the number of

samples used for density estimation. Then, following the



11

approach used for the bias computation we have

E

[
1

hi
K

(
z − x
hi

)2
]

= (54)

1

hi

∫ ∞
−∞

K (u)
2
B∑
`=1

f(uhi + x|X `)P(X `)du (55)

=

∫ ∞
−∞

K (u)
2
f(uhi + x)du,

where the second equality comes from the fact that we
considered a first order Taylor series and the total probability
law. Therefore, recalling that the kernel estimator is a linear
estimator and that K

(
z−x
hi

)
is independent identically dis-

tributed (i.i.d)

Var(f̂(x)) (56)

=
1

B2

B∑
i=1

1

|X i|2
∑
z∈X i

1

hi
Υ(K)f(x) +O

(
1

N

)
,

= Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi
+O

(
1

N

)
,

where Υ(K) is defined in (17).

C. AMISE

The MSE can be expressed as

MSE = Bias(f̂(x))2 + Var(f̂(x)). (57)

The asymptotic mean squared error (AMSE) is obtained by
the asymptotic derivation of bias and variance (51) and (56)
as

AMSE =

(
1

2
ω2(K)

B∑
i=1

f
′′
(x|X i)h

2
iP(X i)

)2

+ Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi
.

By integrating the AMSE we obtain the AMISE

AMISE

=

∫ ∞
−∞

(1

2
ω2(K)

B∑
i=1

f
′′
(x|X i)h

2
iP(X i)

)2

+

Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi

]
dx.

(58)

Since f(x|X i) = 0∀x /∈ X i we obtain

AMISE

=

∫ ∞
−∞

(
1

4
ω2(k)2

B∑
i=1

f
′′
(x|X i)

2h4iP(X i)
2

+Υ(K)f(x)
1

B2

B∑
i=1

1

|X i|hi

)
dx

=

B∑
i=1

(
1

4
Υ(f

′′
(x|X i))h

4
iP(X i)

2ω2(k)2 +
Υ(K)

B2|X i|hi

)
.

D. Optimal bandwidth

The optimal value h∗i can be computed as

∂AMISE

∂hi
= Υ(f

′′
(x|X i))h

3
iP(X i)

2ω2(K)2 − Υ(K)

B2|X i|h2i
= 0,

from which the AMISE optimal bandwidth value is given by

h∗i =

(
Υ(K)

B2|X i|Υ(f ′′(x|X i))P(X i)2ρ2(k)2

) 1
5

. (59)

Considering a Gaussian kernel we have

AMISE (60)

=
1

4

B∑
i=1

(
Υ(f

′′
(x|X i))h

4
iP(X i)

2 +
1

B2|X i|2
√
πhi

)
,

and therefore

h∗i =

(
1

2B2|X i|
√
πΥ(f ′′(x|X i))P(X i)2

) 1
5

. (61)
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