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Alternative Formulations for the Fluctuating
Two-Ray Fading Model

Maryam Olyaee, Juan M. Romero-Jerez, F. Javier Lopez-Martinez and Andrea J. Goldsmith

Abstract—We present two alternative formulations for the
distribution of the fluctuating two-ray (FTR) fading model, which
simplify its statistical characterization and subsequent use for
performance evaluation. New expressions for the probability
density function (PDF) and cumulative distribution function of
the FTR model are obtained based on the observation that the
FTR fading distribution is described, for arbitrary m, as an
underlying Rician Shadowed (RS) distribution with continuously
varying parameter K, while for the special case of m being an
integer, the FTR fading model is described in terms of a finite
number of underlying squared Nakagami-m distributions. It is
shown that the chief statistics and any performance metric that
are computed by averaging over the PDF of the FTR fading
model can be expressed in terms of a finite-range integral over
the corresponding statistic or performance metric for the RS (for
arbitrary m) or the Nakagami-m (for integer m) fading models,
which have a simpler analytical characterization than the FTR
model and for which many results are available in closed- form.
New expressions for some Laplace-domain statistics of interest
are also obtained; these are used to exemplify the practical
relevance of this new formulation for performance analysis.

Index Terms—Fluctuating Two-Ray, Rician Shadowed,
Nakagami-m, Generalized MGF, Incomplete Generalized MGF,
Co-Channel Interference (CCI), Multi-Antenna.

I. INTRODUCTION

Stochastic channel propagation models are indispensable for
the design, performance evaluation, and comparison of wire-
less communication systems. With developing communication
technologies, existing channel models need to be improved
as the new spectral bands, environments and use cases present
propagation features that are not properly captured by the well-
known classical models. In this regard, the Fluctuating Two-
Ray (FTR) fading model was introduced in [1] as a general
model to capture the rapid fluctuations of the radio channel in
a wide variety of environments, through only three physically-
motivated fading model parameters: K, ∆ and m.

The FTR fading model includes traditional fading models
such as Rayleigh, Rice, Nakagami-m and Hoyt as special
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cases, as well as other widely-used models such as Durgin’s
two-wave with diffuse power (TWDP) fading model. More-
over, the FTR model provides a better match to field measure-
ments than most existing stochastic fading models in different
environments, in particular at 28 GHz [3]. Consequently, the
FTR fading model has been widely used for the performance
analysis of millimeter wave (mmWave) communications [4]–
[8], [13]. Nevertheless, the generality of the model permits
its application to different environments, such as maritime
communications [9]; also, a wide variety of wireless scenarios
and metrics have been been investigated considering the FTR
fading model [10]–[19]. In [4], maximum ratio combining
(MRC) was studied for a multi-antenna system considering the
m parameter to be an integer. In [5], the coverage probability,
average rate and bit error probability of a single-antenna
downlink cellular system with inter-cell interference under
FTR fading was analyzed, again for integer m. Performance
analysis for the sum of squared FTR random variables was
presented in [10] and the performance of the equal gain
combining (EGC) technique was studied in [11] for arbitrary
m in terms of infinite summations. Channel capacity with
different power adaption methods under FTR fading was
explored, also in terms of infinite summations, in [12]. In [13]
and [14] the performance of physical layer security in FTR
fading channels was analyzed, relay network performance for
the FTR fading was investigated in [6]–[8], [15]; and [16]
studied the performance of energy detection in FTR fading.

The analytical results in all the aforementioned works on
FTR are given either for the case when the m parameter of
the model is an integer or in terms of infinite series when
arbitrary m is considered. This is due to the fact that, until now,
two different expressions of the probability density function
(PDF) of the signal-to-noise ratio (SNR) in FTR fading are
available in the literature. The original formulation for the
PDF of the SNR of this model was introduced in [1], and an
analytical expression based on the hypergeometric function
Φ2 [20] was given for the case of integer m. For the case of
arbitrary m, the PDF in [1] can be computed by a numerical
inverse Laplace transformation over the moment generating
function (MGF), which is provided in closed-form. Later,
an alternative expression for the PDF of the SNR valid for
arbitrary m was proposed in [17], [18] based on the use of
infinite series, and therefore all the performance results based
on this formulation entail evaluating an infinite series, which
must be truncated to be numerically computed, yielding error
bounds, and empirical results are necessary to establish the
rate of convergence (which needs to be demonstrated) and the
tightness of the approximation, which in general will depend
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on the channel parameters values.
In this paper we introduce two alternative formulations for

the PDF of the FTR model (one for arbitrary real m and
another for integer m) that avoid the use of infinite series as
well as inverse Laplace transformations. These formulations
are based on the observation that the FTR fading model
can be expressed in terms of some underlying analytically
simpler fading models like the Rician Shadowed (RS) [21]
or Nakagami-m models. Both newly proposed formulations
provide a more complete statistical characterization of the
model, thus opening the door to the performance analysis of
different wireless scenarios and metrics for the FTR model not
found in the literature. In particular, the main contributions of
this paper are:

• It is demonstrated that, for arbitrary real m, any given
metric or statistical function for FTR fading can be
readily obtained by computing a finite-range integral
whose integrand is the metric or function available for
RS fading.

• When m is an integer, it is demonstrated that any given
metric or statistical function for FTR fading can be
obtained by computing a finite-range integral whose inte-
grand is the metric or function available for Nakagami-m
fading.

• New important statistics relevant to communication the-
ory are obtained by employing these new frameworks:
The generalized MGF (GMGF), the incomplete MGF
(IMGF), for arbitrary m; and the incomplete generalized
MGF (IGMGF), for integer m.

As the integrands in the presented formulations are con-
tinuous bounded functions (for a given average SNR), these
finite-range integrals can be efficiently computed. Moreover,
in several important cases the resulting integral can be solved
in closed-form, as is the case for the GMGF for arbitrary m.
Note that both the RS and Nagakami-m fading models have
been intensively investigated, particularly the latter. Therefore,
all the available results for these fading models directly yield
results for FTR fading in a straightforward manner, thus
avoiding starting the required statistical analysis from scratch.
On the other hand, it should be noted that the RS fading
model is a special case of the κ− µ Shadowed fading model
when µ = 1 and κ = K [22], which has been extensively
investigated in the last few years, so that any performance
metric already obtained for the κ − µ Shadowed can also be
used to obtain the corresponding metric for the FTR model.

The use of finite-range integrals is common in commu-
nication theory, two compelling examples being the MGF
approach in [23] for error probability analysis, and the proper-
integral forms for the Gaussian Q-function [24], the Marcum
Q-function [25], and the Pawula F-function [26]. Additional
finite-range integral formulations have been used to establish
the connection between Hoyt and Rayleigh fading in [27] and
between TWDP and Rician fading models [28]. The integral
connection between channel models with an arbitrary number
N of specular components plus a diffuse components (which
includes the FTR model for N = 2) and the RS fading
model was first identified in [29], but a standard procedure

for leveraging known results for RS fading was not explored.
As an example of applying the derived statistical functions,

we obtain outage probability expressions in a number of
scenarios considering FTR fading, co-channel interference
(CCI) and background noise, as well as when assuming
interference-limited scenarios. Numerical results are presented
to confirm the accuracy of our analytical derivations, showing
the effects of different values of the parameters on the system
performance.

The rest of this paper is organized as follows: In Section II,
the preliminary definitions are introduced. Section III and IV
present the connections between the FTR and, respectively,
RS and Nakagami-m fading models, based on which the
alternative formulations of the FTR model are carried out.
Based on these connections, an outage probability analysis is
performed in Section V when the desired signal experiences
FTR fading and in the presence of interference. Finally,
Section VI provides numerical and simulation results followed
by the conclusions in Section VII.

II. PRELIMINARY DEFINITIONS

In the FTR fading model, the wireless channel consists
of two fluctuating dominant waves, referred to as specular
components, to which other diffusely propagating waves are
added. The complex baseband received signal can be expressed
as

V =
√
ζV1 exp(jφ1) +

√
ζV2 exp(jφ2) +X + jY, (1)

where Vn and φn, for n = 1, 2, represent, respectively, the
average amplitude and the uniformly distributed random phase
of the n-th specular component, such that φn ∼ U [0, 2π).
The term X + jY is a complex Gaussian random variable,
with X,Y ∼ N (0, σ2), representing the diffuse received
signal component due to the combined reception of numerous
weak scattered waves. On the other hand, ζ is a unit-mean
Gamma distributed random variable modulating the specular
components, whose PDF is given by

fζ(u) =
mmum−1

Γ(m)
e−mu. (2)

This model is conveniently expressed in terms of the param-
eters K and ∆, defined as

∆ =
2V1V2

V 2
1 + V 2

2

, (3)

K =
V 2

1 + V 2
2

2σ2
, (4)

where K denotes the power ratio of the specular components
to the diffuse components, and ∆ provides a measure of the
similarity of the two specular components, ranging from 0 (one
specular component is absent) to 1 (the specular components
have the same amplitude). Additionally, we define the ancillary
random variable θ , φ1−φ2. Note that, as the phase difference
is modulo 2π, θ will be uniformly distributed, and therefore
we can write θ ∼ U [0, 2π).

Throughout this paper, we will characterize the distribution
of the instantaneous SNR at the receiver, which will be
denoted by γ = (Es/N0) |V |2, with Es and N0 representing,
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respectively, the energy density per symbol and the power
spectral density.

Definition 1: A random variable γ following a FTR distri-
bution with parameters m, K, ∆ and mean γ will be denoted
by γ ∼ FT R(γ,m,K,∆), and its PDF will be denoted by
fFTR
γ (x; γ,m,K,∆), where the parameters may be dropped

from the notation when there is no confusion.
Definition 2: A random variable γ following a squared RS

distribution with parameters m, Kr and γ will be denoted by
γ ∼ RS(γ,m,Kr), and its PDF can be written as

fRS
γ (x; γ,m,Kr) =

(
m

m+Kr

)m
1 +Kr

γ

× exp

(
−1 +Kr

γ
x

)
1F1

(
m; 1;

Kr (1 +Kr)

γ (m+Kr)
x

)
, (5)

where 1F1(·) is the confluent hypergeometric function of the
first kind [30, eq. (9.210.1)], γ = (Es/N0)2σ2(1 +Kr), and
Kr = Ω

2σ2 , where Ω and 2σ2 are the powers of the specular
and diffuse components, respectively.

Definition 3: A random variable γ following a squared
Nakagami-m̂ distribution is expressed as γ ∼ K(γ̂, m̂), and
its PDF, with integer m̂, is given by

fKγ (x; γ̂, m̂) =

(
m̂

γ̂

)m̂
xm̂−1

(m̂− 1)!
e−xm̂/γ̂ . (6)

III. FTR FORMULATION AS A CONTINUOUS MIXTURE OF
RS VARIATES

In this section, we explore the connection of the FTR model
with the RS fading model and present a new formulation
of the PDF, the cumulative distribution function (CDF) and
the moments for the FTR fading channel which are valid for
arbitrary real m. We also present results for relevant Laplace-
domain statistics that have not been previously investigated for
FTR, such as the GMGF and IMGF.

A. PDF and CDF of the FTR fading

Expressions for the PDF and CDF of the FTR model as
a continuous mixture of RS variates are now derived. As a
direct implication of this connection, we will show that any
performance metric for FTR fading can be readily obtained
from its counterpart for RS fading.

Lemma 1. Let γ be a random variable such that γ ∼
FT R(γ;m,K,∆), then γ is a continuous mixture of squared
RS variates, whose PDF is given as

fFTR
γ (x; γ,m,K,∆)

=
1

π

∫ π

0

fRS
γ|θ(x; γ,m,K (1 + ∆ cos(θ)) dθ, (7)

with γ|θ ∼ RS(γ,m,K (1 + ∆ cos(θ))).

Proof. For a particular realization of the random variable ζ,
the channel model defined in (1) corresponds to the TWDP
model. Therefore, the PDF of the SNR for the FTR model can
be written as

fFTR
γ (x;m,K,∆) = Eζ

[
fTWDP
γ|ζ (x; ζK,∆)

]
, (8)

where EX [·] denotes the expectation operator over the random
variable X and fTWDP denotes the PDF of the TWDP model.

Additionally, when there is only one specular component
in (1) the FTR model collapses to the RS fading model,
from which the Rice fading model is obtained for a particular
realization of ζ. Thus, denoting the PDF of the Rice model as
fRice, we can write

fRS
γ (x;m,Kr) = Eζ

[
fRice
γ|ζ (x; ζKr)

]
. (9)

On the other hand, it was shown in [28] that the TWDP and
the Rice fading models are related by

fTWDP
γ (x; K̂,∆) = Eθ

[
fRice
γ|θ (x; K̂ (1 + ∆ cos(θ))

]
. (10)

Consequently, using (8) and (10), the PDF of the FTR model
can be written as

fFTR
γ (x;m,K,∆) = Eζ

[
Eθ

[
fRice
γ|θ,ζ(x; ζK (1 + ∆ cos(θ))

]]
= Eθ

[
Eζ

[
fRice
γ|θ,ζ(x; ζK (1 + ∆ cos(θ))

]]
,

(11)

and taking into account (9) we have

fFTR
γ (x;m,K,∆) = Eθ

[
fRS
γ|θ(x;m,K (1 + ∆ cos(θ))

]
=

1

2π

∫ 2π

0

fRS
γ|θ(x;m,K (1 + ∆ cos(θ)) dθ. (12)

Considering the symmetry of the cosine function around π,
the integration with respect to θ can be peformed in [0, π),
thus obtaining (7).

Remark 1. It must be noted that the factor γ
1+K remains

invariant in the transformation defined in (7), and this is
also true for all the transformations defined in the proof of
Lemma 1 in all subsequent expressions. This is due to the
fact that parameters K and γ are related by the expression
γ =

(
Es/N0

) (
V 2

1 + V 2
2 + 2σ2

)
=
(
Es/N0

)
2σ2 (1 +K),

therefore, if K varies as a function of ζ and/or θ, then γ also
varies as γ(ζ, θ) =

(
Es/N0

)
2σ2 (1 +K(ζ, θ)) , yielding,

γ

1 +K
=
(
Es/N0

)
2σ2 =

γ(ζ, θ)

1 +K(ζ, θ)
. (13)

Corollary 1. Let γ ∼ FT R(γ,m,K,∆), then, its PDF can
be computed as

fFTR
γ (x; γ,m,K,∆)

=
1

π

∫ π

0

(
m

m+K (1 + ∆ cos(θ))

)m
exp

(
−1 +K

γ
x

)
× 1 +K

γ
1F1

(
m; 1;

(1 +K)K (1 + ∆ cos(θ))

γm+ γK (1 + ∆ cos(θ))
x

)
dθ.

(14)

Proof. This expression is obtained by plugging (5) into (7)
and considering (13).

It was demonstrated in [1] that the FTR fading model
collapses to the Hoyt fading model for m = 1. In this regard,
it can be easily shown that the integral connection between
the Hoyt and Rayleigh models presented in [27] is actually a
particular case of (14) when m = 1.
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Remark 2. Lemma 1 implies that, conditioning on θ, the FTR
distribution is actually a RS distribution, and we can write the
conditional PDF as

fFTR
γ|θ (x;m,K,∆) = fRS

γ|θ(x;m,K(1 + ∆cos(θ))) =(
m

m+K (1 + ∆ cos(θ))

)m
1 +K

γ
exp

(
−1 +K

γ
x

)
× 1F1

(
m; 1;

K (1 +K) (1 + ∆ cos(θ))

γm+Kγ (1 + ∆ cos(θ))
x

)
, (15)

which will be used in subsequent derivations.

Lemma 2. Let γ ∼ FT R(γ,m,K,∆), then, its CDF can be
calculated as

FFTR
γ (x;m,K,∆)

=
1

π

∫ π

0

1 +K

γ
x

(
m

m+K (1 + ∆ cos(θ))

)m
×

Φ2

(
1−m,m; 2;−1 +K

γ
x;

− (1 +K)mx

γ(m+K (1 + ∆ cos(θ)))

)
dθ,

(16)

where Φ2 is the bivariate confluent hypergeometric function
defined in [31, p. 34, eq. (8)].

Proof. The CDF of the FTR can be written from the CDF of
the RS that was obtained in [32, eq. (8)] as follows:

FRS
γ (x) =

1 +K

γ
x

(
m

m+K

)m
× Φ2

(
1−m,m; 2;−1 +K

γ
x;− (1 +K)mx

γ (m+K)

)
, (17)

then, it is clear from Remarks 1 and 2 that the conditional
CDF of the FTR model can be written as

FFTR
γ|θ (x;m,K,∆) = FRS

γ (x;K (1 + ∆ cos(θ)))

=
1 +K

γ
x

(
m

m+K (1 + ∆ cos(θ))

)m
×

Φ2

(
1−m,m; 2;−1 +K

γ
x;− (1 +K)mx

γm+Kγ (1 + ∆ cos(θ))

)
.

(18)

By integrating over the parameter θ, the proof is completed.

Based on the connection between the FTR and the RS distri-
butions, we show in the following lemma that the performance
metrics of FTR can be derived from the metrics of the RS
fading model.

Lemma 3. Let h(γ) be a performance metric (or function)
depending on the instantaneous SNR γ, and let XRS(γ,m,K)
be the metric (or statistical function) in RS fading obtained
by averaging over an interval of the PDF of the SNR, i.e.,

XRS(γ,m,K) =

∫ b

a

h(x)fRS
γ (x; γ,m,K)dx, (19)

where 0 ≤ a ≤ b <∞. Then, the average performance metric
in FTR fading channels can be calculated as

XFTR(γ,m,K,∆)

=
1

π

∫ π

0

XRS(γ,m,K(1 + ∆ cos(θ)))dθ, (20)

where Remark 1 must be taken into account.

Proof. The average metric in a FTR fading channel will be
calculated as

XFTR(γ,m,K,∆) =

∫ b

a

h(x)fFTR
γ (x; γ,m,K,∆)dx.

(21)

The result is obtained by plugging (7) into (21) and changing
the order of integration.

Lemma 3 has important consequences, as the RS model
has a simpler formulation than the FTR model and different
performance metrics for the latter are available in the literature
in closed-form.

B. MGF of the FTR fading

As a consequence of Remark 2, the conditional MGF of the
FTR distribution can be written as

MFTR
γ|θ (s;m,K,∆) = MRS

γ (s;m,K(1 + ∆ cos(θ)), (22)

where MRS
γ is the MGF of the squared RS distribution, which

is given by [21]:

MRS
γ (s;m,K,∆) =

mm
(

1− γ
1+K s

)m−1

(
m−

(
m γ

1+K + γ
1+KK

)
s
)m . (23)

Therefore, noting that γ
1+K remains invariant, as justified in

Remark 1, the unconditional MGF of the FTR model will be

MFTR
γ (s;m,K,∆) =

1

π

∫ π

0

MFTR
γ|θ (s;K,∆)dθ

=
1

π

∫ π

0

(1 +K)mm(1 +K − γs)m−1

((1 +K)m− (m+K(1 + ∆ cos(θ)))γs)m
dθ.

(24)

This integral can be solved in closed-form, as shown in the
Appendix as integral I1, yielding

MFTR
γ (s;m,K,∆) =

(1 +K)mm(1 +K − γs)m−1

√
R

× Pm−1

(
(1 +K)m− (m+K) γs√

R

)
,

(25)

where Pm−1(.) is the Legendre function of the first kind of
degree m− 1 and R is defined as

R , ((1 +K)m− (m+K) γs)
2 − (Kγ∆s)

2

=
[
(m+K)

2 − (K∆)
2
]
γ2s2 − 2 (1 +K)m (m+K) γs

+ [(1 +K)m]
2
. (26)

The MGF expression given in (25)-(26) coincides with the one
previously obtained in [1, eqs. (8)-(9)], which, by virtue of the
uniqueness theorem of the MGF, confirms that the PDF given
in (14) is a generalization, for arbitrary m, of the PDF given
in [1, eq. (15)].
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C. Generalized MGF and moments

The generalized MGF is an important statistical function rel-
evant to wireless communication theory, as it naturally appears
when analyzing different scenarios such as energy detection
probability, outage probability with co-channel interference in
interference limited scenarios, physical layer security analysis
[33], or in the context of composite fading channel modeling
[34]. The GMGF of a random variable X is defined:

M
(n)
X (s) =

∫ ∞
0

xn exp (xs) fX(x)dx. (27)

Note that in the case of n ∈ N, the generalized MGF coincides
with the nth order derivative of the MGF.

Lemma 4. Let γ ∼ FT R(γ;m,K,∆), then, the GMGF of
γ can be obtained in closed-form as (28), where 2F1(·) is the
Gaussian hypergeometric function [30, eq. (9.100)] and where
(a)n is the Pochhammer symbol.

Proof. The conditional generalized MGF can be written by
plugging (15) into (27), i.e.:

M
(n)
γ|θ (s) =

∫ ∞
0

xn exp (xs)

(
m

m+K (1 + ∆ cos(θ))

)m
× 1 +K

γ
exp

(
−1 +K

γ
x

)
× 1F1

(
m; 1;

K (1 +K) (1 + ∆ cos(θ))

γm+Kγ (1 + ∆ cos(θ))
x

)
dx.

(29)

The integral in (29) can be solved with the help of [30, eq.
(7.621.4)] as

M
(n)
γ|θ (s) =(

m

m+K +K∆ cos(θ)

)m
1 +K

(1 +K − γs)n+1 γ
nΓ(n+ 1)

2F1

(
m,n+ 1; 1;

(1 +K) (K +K∆ cos(θ))

(m+K +K∆ cos(θ)) (1 +K − γs)

)
,

=

(
m(1 +K − γs)

m(1 +K)− (m+K +K∆ cos(θ))γs

)m
× (1 +K)Γ(n+ 1)

(1 +K − γs)n+1 γ
n×

2F1

(
m,−n; 1;− (1 +K) (K +K∆ cos(θ))

(m+K +K∆ cos(θ)) (1 +K − γs)

)
,

(30)

where the last equality is obtained with the help of [30, eq.
(9.131)]. Besides, based on [31, p.17 eq. (12)] for integer n,
the hypergeometric function can be written as

2F1 (m,−n; c; z) = 2F1 (−n,m; c; z)

=

n∑
l=0

(−1)
l

(
n

l

)
(m)l
(c)l

zl, (31)

thus, the conditional GMGF is determined as

M
(n)
γ|θ (s) = n!

mm(1 +K − γs)m

(1 +K − γs)n+1 γn
n∑
l=0

(
n

l

)
(m)l
l!

× (1 +K)
l+1

Kl(1 + ∆ cos(θ))
l

[m (1 +K)− (m+K +K∆ cos(θ)) γs]
l+m

.

(32)

Therefore, the unconditional GMGF will be given by

M (n)
γ =

1

π

∫ π

0

M
(n)
γ|θ (s)dθ,

and with the help of integral I2 solved in the Appendix the
proof is completed.

It should be noted that (28) is valid for all possible values
of the channel parameters when s is a non-positive real
number (which is usually the case in communication theory
applications), since for the Gaussian hypergeometric function
2F1(a, b; c; z) in the expression it is always true that z ∈ R
with z ≤ 0, which permits its computation using its integral
representation [30, eq. (9.111)].

The moments of the SNR can be readily obtained from the
GMGF, as we now show.

Corollary 2. Let γ ∼ FT R(γ;m,K,∆), then, the moments
of γ will be given by

µn = n!

(
γ

1 +K

)n n∑
l=0

(
n

l

)
Kl (m)l
l!ml

×
l∑

q=0

(−1)q
(
l

q

)
Γ( 1

2 + q)
√
πΓ(1 + q)

(2∆)
q

(1−∆)l−q. (33)

Proof. This result is obtained by simply substituting s = 0 in
(28).

The moments of the FTR model where presented in [19],
however, different expressions were given for different values
of the parameter ∆. On the other hand, (33) is valid for any
∆.

D. Incomplete MGF of the FTR model

The incomplete MGF is widely used in different situations
for analyzing the performance of communication systems,
therefore it has prominent relevance in communication theory.
These situations include order statistics, symbol and bit error
rate calculations, capacity analysis in fading channels, outage
probability in cellular systems, adaptive scheduling techniques,
cognitive relay networks, or physical layer security [35].

The lower and upper IMGF of a random variable X are
defined by changing one of the limits of integration in the
definition of the MGF by a non-negative real number δ ∈
(0,∞), as follows [35]:

Ml
X(s, δ)

∆
=

∫ δ

0

esxfX(x)dx (34)

Mu
X(s, δ)

∆
=

∫ ∞
δ

esxfX(x)dx. (35)
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M (n)
γ (s) = n!mm(1 +K − γs)m−n−1

γn
n∑
l=0

(
n

l

)
(m)l
l!

(1 +K)
l+1

Kl

[m (1 +K)− (m+K −K∆) γs]
m+l

l∑
q=0

(
l

q

)
(1−∆)

l−q
(2∆)

q

×
Γ
(

1
2 + q

)
Γ
(

1
2

)
πΓ(q + 1)

2F1

(
m+ l,

1

2
+ q; q + 1;

2K∆γs

m (1 +K)− (m+K −K∆) γs

)
. (28)

The MGF of X is related to the lower and upper MGF by the
relations:

MX(s) =Ml
X(s,∞) =Mu

X(s, 0), (36)

Mu
X(s, δ) = MX(s)−Ml

X(s, δ). (37)

In the following lemma, an expression of the lower incomplete
MGF is provided for the FTR model.

Lemma 5. Let γ ∼ FT R(γ,m,K,∆), then, its lower IMGF
is given in (38) (see the top of the next page), where Φ2 is the
bivariate confluent hypergeometric function.

Proof. This result is obtained by considering Lemma 3 and
using the lower IMGF of the RS model presented in [35, eq.
(13)].

IV. FTR FORMULATION AS A CONTINUOUS MIXTURE OF
NAKAGAMI-m VARIATES

In this section, we describe a formulation to connect the
Nakagami-m model to the FTR fading for integer m. In
this regard, we introduce the PDF, CDF and the incomplete
generalized MGF of the FTR fading model in terms of finite-
range integrals of elementary functions. Note that the GMGF,
the IMGF, and the moments are particular cases of the IGMGF,
from which they can easily be obtained. We also show that any
given metric already known for Nakagami-m can be readily
extended to the FTR case when m is an integer.

Lemma 6. Let γ be a random variable such that γ ∼
FT R(γ;m,K,∆) with m ∈ N, then γ is a continuous
mixture of squared Nakagami-m variates, which PDF and
CDF are given, respectively, as

fγ
FTR(x; γ,m,K,∆) =

1

π

∫ π

0

m−1∑
i=0

Ci(θ)f
K
γ|θ,i(x; (m− i)Ω(θ),m− i)dθ, (39)

Fγ
FTR(x; γ,m,K,∆) =

1− 1

π

∫ π

0

m−1∑
i=0

Ci(θ)e
−x/Ω(θ)

m−i−1∑
r=0

1

r!

(
x

Ω(θ)

)r
dθ,

(40)

where γ|θ, i ∼ K(x; (m− i)Ω(θ),m− i) and

Ci(θ) =

(
m− 1

i

)
mi (K(1 + ∆ cos(θ)))

m−i−1

(m+K(1 + ∆ cos(θ)))
m−1 , (41)

Ω(θ) =
γ

1 +K

m+K(1 + ∆ cos(θ))

m
. (42)

Proof. It was shown in [36] that, when parameter m is an
integer, the PDF and CDF of the squared RS distribution
can be expressed in terms of the statistics of the squared
Nakagami-m. By recognizing that the RS fading model is a
special case of the κ−µ Shadowed fading model when µ = 1
and κ = K we can write:

fRS(x; γ,m,K) =

m−1∑
j=0

Bjf
K(x; (m− j)ΩB ;m− j), (43)

FRS(x; γ,m,K) = 1−
m−1∑
1=0

Bje
−x/ΩB

m−j−1∑
r=0

1

r!

(
x

ΩB

)r
,

(44)

where

Bj =

(
m− 1
j

)
mjKm−1−j

(m+K)
m−1 , (45)

ΩB =
γ

1 +K

m+K

m
. (46)

If we now apply Lemma 3, the PDF and CDF of the FTR
model are obtained.

We now demonstrate that any performance metric already
known for Nakagami-m fading with integer m can readily be
extended to FTR fading by applying a finite range integral to
the Nakagami-m metric.

Lemma 7. Let h(γ) be a performance metric (or function)
depending on the instantaneous SNR γ, and let XK(γ,m) be
the metric (or statistical function) under Nakagami-m fading
with average SNR γ and integer m obtained by averaging over
an interval of the PDF of the SNR, i.e.,

XK(γ,m) =

∫ b

a

h(x)fKγ (x; γ,m, )dx, (47)

where 0 ≤ a ≤ b <∞. Then, the average performance metric
in FTR fading channels with average SNR γ and integer m
can be calculated as

XFTR(γ,m,K,∆)

=
1

π

∫ π

0

m−1∑
i=0

Ci(θ)X
K ((m− i)Ω(θ),m− i) dθ. (48)

Proof. From Lemma 3, any metric or statistical function for
the FTR model, XFTR(γ,m,K,∆), can be calculated in terms
of the RS metric. By considering that, for integer m, the
statistics of the RS model can be written in terms of the
Nakagami-m model, as shown in Lemma 6, the proof is
completed.
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M l
γ(s, z) =

1

π

∫ π

0

mm(1 +K)z

γ(m+K(1 + ∆ cos(θ)))m
Φ2

(
1−m,m, 2,

(
s− 1 +K

γ

)
z,

(
s− m(1 +K)

γ(m+K +K∆ cos(θ))

)
z

)
dθ.

(38)

It is important to note that the Nakagami-m model has
been for decades a widely used stochastic fading model for
wireless channels, for which closed-form results are available
for a myriad of performance metrics and system models.
From Lemma 7, all those results can be readily extended in a
straightforward manner to the much more general FTR fading
model.

A. Incomplete generalized MGF of FTR

The incomplete generalized MGF finds application in the
outage probability calculation in the presence of co-channel
interference and background noise [37] or in the secrecy
outage when the legitimate link undergoes arbitrary fading
[35]. The (upper) incomplete generalized MGF of a random
variable X is defined as follows:

GX(n, s,Λ) =

∫ ∞
Λ

xnesxfX(x)dx, (49)

where fX(x) is the PDF of X and we assume n ∈ N.

Lemma 8. Let a random variable γ ∼ FT R(γ;m,K,∆)
with m ∈ N. Then, the IGMGF of γ is obtained as

GFTR
γ (n, s,Λ; γ,m,K,∆) =

1

π

∫ π

0

m−1∑
i=0

Ci(θ)G
K
γ (n, s,Λ; (m− i)Ω(θ),m− i) dθ, (50)

where Ci(θ) and Ω(θ) are defined in (41) and (42), respec-
tively, and GKγ (n, s,Λ; γ̂, m̂) is the IGMGF of the Nakagami-
m fading that was obtained in [37, eq. (25)] which, using [30,
eq. 8.352.2], can be written as

GKγ (n, s,Λ; γ̂, m̂) =
(m̂/γ̂)m̂

(m̂/γ̂ − s)m̂+n

× (m̂+ n− 1)!

(m̂− 1)!
e−(m̂/γ̂−s)Λ

m̂+n−1∑
j=0

(m̂/γ̂ − s)j Λj

j!
. (51)

Proof. This result is obtained by the direct application of
Lemma 7 to (51).

V. APPLICATION EXAMPLE: OUTAGE PROBABILITY OF
MULTI-ANTENNA RECEIVER WITH CCI

The statistical analysis carried out in the previous sections
allows to analyze numerous wireless scenarios undergoing
FTR fading, including those arising from the incomplete and
generalized MGF formulations, as well as those available in
the literature when assuming RS or Nakagami-m fading. As
an example of application, in this section we investigate the
outage probability in a wireless communication system in
the presence co-channel interference (CCI) when the desired
user experiences FTR fading and considering two different

scenarios: (A) the desired signal experiences FTR fading
(with integer m) and the receiver suffers CCI and background
noise; and (B) the desired signal experience FTR fading
(with arbitrary m) and the receiver is CCI limited, i.e., the
background noise is assumed to be negligible.

Consider a wireless communication system where the re-
ceiver is affected by L interfering signals and additive white
Gaussian noise (AWGN). The received signal from the desired
user and the interfering users undergo FTR and i.i.d. Rayleigh
fading, respectively. Thus, the SINR at the receiver can be
written as

SINR =
W

Y +N0
, (52)

where W is the received power from the desired signal, Y is
the sum of L independent exponential random variables, and
N0 is the background noise power. The outage probability of
the SINR for the considered system can be defined as

Pout = P

(
W

Y +N0
< Rth

)
, (53)

where Rth denotes the SINR threshold. On the other hand,
the CDF of the total interference power can be expressed as
[37, eq. (8)]

FY (y) = 1− e−y/PI

L−1∑
k=0

1

k!

(
y

PI

)k
, (54)

where PI denotes the received power for every CCI signal
which, for simplicity, is assumed to be the same for all
interferers.

A. CCI with background noise case with integer m
The outage probability when the background noise cannot

be neglected is given by

Pout =FW (RthN0)

+

∫ ∞
RthN0

[
1− FY

(
w

Rth
−N0

)]
fW (w)dw, (55)

where fW (w) is the PDF of W . Note that all the statistical
functions of W are intimately related to functions of the SNR
γ derived in the previous sections, as W = γ

Es/N0
; and it

is straightforward to show that, in practice, they are obtained
by considering W instead of γ in the expressions, with W =

γ

Es/N0
.

From (54) and (55), the outage probability can be written
as [37, eq. (21)]

Pout = FW (RthN0) +

L−1∑
k=0

k∑
l=0

eN0/PI (−N0)k−l

l!(k − l)!PIkRthl

×GW
(
l,− 1

RthPI
, RthN0

)
, (56)
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where FW (w) and GW (n, s,Λ) are, respectively, the CDF and
IGMGF of the received power signal under FTR fading, which
can be directly obtained for integer m from (40) and (51),
respectively, yielding (57), which can be efficiently computed
by simple finite-range integrations of elementary functions.

B. Interference limited case with arbitrary m

We now consider a wireless communication system with N
receive antennas performing MRC with negligible background
noise, i.e., the system is interference limited with L i.i.d.
Rayleigh interferers. In this case, W in (52) represents the
output signal at the MRC receiver from the desired user, which
is assumed to undergo FTR fading with arbitrary m. The
outage probability can be computed now as

P̂out = 1−
∫ ∞

0

FY

(
w/R̂th

)
fW (w)dw, (58)

where R̂th is the SIR threshold. By plugging (54) into (58),
we have

P̂out =

L−1∑
k=0

1

k!

(
1

R̂thPI

)k ∫ ∞
0

wke−w/R̂thPIfW (w)dw.

(59)

The integral in (59) represents the k-th order generalized MGF
of W , M (k)

W (s), when s = −1
R̂thPI

. Assuming the received
power at every antenna to be affected by i.i.d. FTR fading
with average W , the MGF of W at the MRC output will be
given by

MW (s) =

N∏
i=1

MWi
(s), (60)

where Wi is the received signal power at the i-th antenna. The
k-th ordered GMGF of W is determined as [37, eq. (13)]

M
(k)
W (s) =

dkMW (s)

dsk
= k!

∑
U

N∏
i=1

M
(ui)
Wi

(s)

ui!
, (61)

where U is a set of N -tuples such that U = {(u1...uN ), ui ∈
N,

∑N
i=1 ui = k}, and M (ui)

Wi
(s) is the ui-th order GMGF of

the received signal power at the i-th antenna. Then, the outage
probability will be given by [37, eq. (15)]

P̂out =

L−1∑
k=0

(
1

R̂thPI

)k∑
U

N∏
i=1

1

ui!
M

(ui)
W

(
1

R̂thPI

)
, (62)

where M (ui)
Wi

(s) is computed from (28) by simply considering
the relation Wi = γi

Es/N0
. Thus, a closed-form outage proba-

bility expression for arbitrary m is obtained in (63).

VI. NUMERICAL RESULTS

In this section, numerical results obtained from our an-
alytical derivations are presented for the new expressions
of the PDF and for the outage probability in the presence
of interference in the two scenarios defined in the previous
section. Results of scenario A are based on the connection
between FTR and Nakagami-m fading for integer m, while
the connection between RS and FTR fading for arbitrary m is

exploited in scenario B. These results are validated by Monte
Carlo simulations, showing an excellent agreement.

In Fig. 1, the PDF of the FTR fading model is plotted for
two values of the m parameter: one integer (m = 3) and one
non-integer m = 1.5 which has been obtain from (39) (for
the case of m integer) and (14) (for both cases). Simulation
results show a perfect match to the analytical results in all
cases.

Regarding outage probability results, for scenario A we
define the normalized average SINR as

SINR =
W

LPI +N0
, (64)

where W is the mean received power of the desired signal and
PI is the mean received power of an interferer.

Figs. 2 and 3 present the outage probability of a system
with CCI and background noise in terms of the normalized
SINR (dB) as defined in (64). In Fig. 2, the effect of different
parameters of the FTR fading (including m, K, and ∆) on
the outage probability is evaluated. It can be observed that,
with similar K and ∆, the outage probability decreases as
m increases due to the reduction of the channel fluctuations.
Also, for the given values of m and ∆, the outage probability
declines by increasing K from 10 to 15, which gives a
measurement of the strength of the specular components to the
diffuse component. Moreover, decreasing ∆ from 0.6 to 0.2 for
the same m and K provides a lower outage probability, since
the reduction of ∆ results in a lower similarity between the
specular components in the FTR fading model, which therefore
are less probable to cancel each other, as they have indepen-
dent phases. Fig. 3 compares the effect of different values
of the SINR threshold (Rth = 6, 8, 10). As expected, lower
values of the SINR threshold yield lower values of the outage
probability. Analytical results are verified by simulation.

Figs. 4 and 5 show the performance of the outage probability
in a noise-limited multi-antenna system performing MRC.
Fig. 4 provides the performance of the outage probability
for different values of m (0.5, 1, 1.5, 2.5). It can be observed
that parameter m has a significant impact on performance, in
particular for lower values of this parameter. For instance, for
a given SIR threshold R̂th = 0 dB, the outage probability is
0.01 for m = 1, while for m = 0.5 the outage probability
becomes 0.003. The analytical result, which are calculated
using (63), are verified by Monte Carlo simulations. Fig. 5
shows analytical results for the outage probability considering
different numbers of receive antennas, N = 1, 2, 4, and
interferers, L = 1, 2. By exploiting the MRC technique at the
multi-antenna receiver, it is shown that, as expected, increasing
the number of antennas reduces the outage probability and im-
proves the system performance in the presence of interference.

VII. CONCLUSION

We presented two flexible connections that describe the rela-
tionship between the fluctuating two-ray fading and two other
fading models: (i) Rician Shadowed and (ii) Nakagami-m. In
particular, we provided a relationship that can be leveraged
to derive performance metrics under FTR fading by using the
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P out = 1− 1

π

m−1∑
i=0

∫ π

0

Ci (θ) e−RthN0/Ω(θ)
m−i−1∑
r=0

1

r!

(
RthN0

Ω (θ)

)r
dθ +

L−1∑
k=0

k∑
l=0

eN0/PI (−N0)k−l

l!(k − l)!PIkRthl

× 1

π

∫ π

0

m−1∑
i=0

Ci(θ)

(
1

Ω(θ)

)m−i
(m− i+ l − 1)!

(m− i− 1)!
e−(1/Ω(θ)+1/RthPI)RthN0

m−i+l−1∑
j=0

(RthN0)
j

j! (1/Ω (θ) + 1/RthPI)
m−i+l−j dθ.

(57)

P̂out =
L−1∑
k=0

(
1

R̂thPI

)k∑
U

N∏
i=1

mm

(
1 +K +

W

R̂thPI

)m−ui−1

W
ui

ui∑
l=0

(
ui
l

)
(m)l
l!

(1 +K)
l+1

K[
m (1 +K) + (m+K −K∆)W/R̂thPI

]m+l

×
l∑

q=0

(
l

q

)
(1−∆)

l−q
(2∆)

q Γ
(

1
2 + q

)
Γ
(

1
2

)
πΓ(q + 1)

2F1

(
m+ l,

1

2
+ q; q + 1;

−2K∆W

m (1 +K) R̂thPI + (m+K −K∆)W

)
. (63)
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Fig. 1. PDF of the SNR (γ) under FTR fading obtained using the FTR-RS
connection (m = 1.5, 3) and the FTR-Nakagami-m connection (m = 3).
Monte-Carlo simulation are also plotted.

available performance results under RS fading for any arbitrary
m, as well as utilizing the existing performance results under
Nakagami-m fading model for integer m. Based on these
novel formulations, we provided new analytical results for very
relevant Laplace-domain statistics which were not previously
available for the case of FTR fading, finding direct application
in a number of scenarios of interest in communication theory.

APPENDIX
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Fig. 2. Analytical and simulation results for the outage probability in the
presence of CCI and background noise versus normalized SINR (dB) for
different m, K and ∆ with L = 2, PI = 0.01 and Rth = 1.

SOLVING INTEGRAL I1 AND I2

The integral I1 for an arbitrary non-negative real number ν
and a > |b| is defined as

I1 ,
1

π

∫ π

0

dx

(a+ b cosx)
v+1 . (65)

Let us consider the following equality by changing variable
u = c t, as:∫ ∞

0

tve−c·tdt =
1

cv+1

∫ ∞
0

uve−udu =
1

cv+1
Γ (v + 1) .
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Fig. 4. Analytical and simulation results for the outage probability versus
SIR threshold (dB) in a interference-limited system for different values of m
(0.5, 1, 1.5, 2.5) with K = 10, ∆ = 0.6, N = 2, PI = 1 and L = 1.

Therefore,

I1 =
1

π

∫ π

0

[
1

Γ (v + 1)

∫ ∞
0

tve−(a+b cos x)·tdt

]
dx. (66)

-15 -10 -5 0 5 10 15 20

SIR Threshold (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
ut

ag
e 

Pr
ob

ab
ili

ty
 (

In
te

rf
er

en
ce

 li
m

ite
d)

L=2, Theory
L=1, Theory
N=1, Simulation
N=2, Simulation
N=4, Simulation

Fig. 5. Analytical and simulation results for the outage probability versus
SIR threshold (dB) for different numbers of antennas (N ) and interferers (L)
with K = 10, ∆ = 0.6, m = 2.5, and PI = 1.

Now, by interchanging the order of integration we can write

I1 =
1

Γ (v + 1)

1

π

∫ ∞
0

[∫ π

0

tve−(a+b cos x)tdx

]
dt (67)

=
1

Γ (v + 1)

∫ ∞
0

tve−at
[

1

π

∫ π

0

e−bt cos xdx

]
dt (68)

=
1

Γ (v + 1)

∫ ∞
0

tve−atI0 (bt)dt (69)

=
1(√

a2 − b2
)v+1Pv

(
a√

a2 − b2

)
, (70)

where Pv is the Legendre function and where we have used
[38, p. 196 (8)] together with the fact that the Bessel function
I0 in (69) is an even function.

The integral I2 for positive integer P1, arbitrary positive
P2, arbitrary α and |β| < 1 can be computed as

I2 ,
∫ π

0

(1 + α cos(θ))
P1

(1 + β cos(θ))
P2
dθ (71)

(A)
=

1

(1− β)P2

∫ 1

0

(1− α+ 2αx)P1(1 +
2β

1− β
x)−P2

× (−1)x−
1
2 (1− x)−

1
2 dx (72)

(B)
=

−1

(1− β)P2

P1∑
q=0

(
P1

q

)
(2α)q(1− α)P1−q

×
∫ 1

0

xq−
1
2 (1− x)−

1
2 (1 +

2β

1− β
x)−P2dx (73)

(C)
=

−1

(1− β)P2

P1∑
q=0

(
P1

q

)
(2α)q(1− α)P1−q

√
πΓ
(
q + 1

2

)
Γ(q + 1)

× 2F1

(
P2, q +

1

2
; q + 1;− 2β

1− β

)
, (74)

where (A) followed from the change of variables cos(θ) =
2x − 1, yielding dθ = −dx√

x
√

1−x , (B) followed by using the
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binomial theorem (a+b)n =
∑n
q=0

(
n
q

)
an−qbq for positive in-

teger P1, and (C) is obtained from the integral representation
of the Gauss hypergeometric function [30, eq. (9.111)]

2F1 (a, b; c; z)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(1− tz)−adt (75)

where a = P2, b = q + 1
2 , c = q + 1 and z = − 2β

1−β .
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