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Abstract

A novel framework of reconfigurable intelligent surfaces (RISs)-enhanced indoor wireless networks

is proposed, where an RIS mounted on the robot is invoked to enable mobility of the RIS and enhance

the service quality for mobile users. Meanwhile, non-orthogonal multiple access (NOMA) techniques

are adopted to further increase the spectrum efficiency since RISs are capable to provide NOMA with

artificial controlled channel conditions, which can be seen as a beneficial operation condition to obtain

NOMA gains. To optimize the sum rate of all users, a deep deterministic policy gradient (DDPG)

algorithm is invoked to optimize the deployment and phase shifts of the mobile RIS as well as the

power allocation policy. In order to improve the efficiency and effectiveness of agent training for the

DDPG agents, a federated learning (FL) concept is adopted to enable multiple agents to simultaneously

explore similar environments and exchange experiences. We also proved that with the same random

exploring policy, the FL armed deep reinforcement learning (DRL) agents can theoretically obtain a

reward gain compare to the independent agents. Our simulation results indicate that the mobile RIS

scheme can significantly outperform the fixed RIS paradigm, which provides about three times data rate

gain compare to the fixed RIS paradigm. Moreover, the NOMA scheme is capable to achieve a gain of

42% in contrast with the OMA scheme in terms of sum rate. Finally, the multi-cell simulation proved

that the FL enhanced DDPG algorithm has a superior convergence rate and optimization performance

than the independent training framework.

Index terms— Deep reinforcement learning (DRL), federated learning (FL), intelligent reflect-
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(RIS), resource management
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I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) [1], also known as intelligent reflecting surfaces

(IRSs) [2], have been anticipated as a neonatal component of future communication systems [3].

By employing a number of arranged reflecting elements, the signal can be reflected by RISs

to provide additional channels for wireless links [4, 5]. Therefore, once the phases of reflection

elements are coordinated in a well-organized manner, an effect of passive beamforming [6]

can be achieved and the reflected signal can be concentrated on users to provide considerable

channel gains [7]. One of the main factors that RISs can provide noticeable gain is that they can

provide further possible line-of-sight (LoS) paths for users who do not originally have an LoS

path [8]. However, in most existing research contributions, RISs are fixed on a wall or other

bearing, and therefore the fixed deployment causes RISs may not be able to obtain LoS paths

and optimal channel enhancement, especially in the environment with obstructions. In an effort

to complement this defect, in this paper, we propose a mobile RIS model that RISs are mounted

on intelligent robots to achieve its flexible deployment.

Another compelling concern in the communication field is the user capacity since the number

of users brought by the Internet of Things (IoT) is upstaging continuously [9]. As a consequence,

to further improve the capacity and spectrum efficiency of wireless networks, non-orthogonal

multiple access (NOMA) techniques have become a highly sought-after candidate technique [10].

Moreover, NOMA techniques have been proved to be capable of achieving several advantages

specifically in the RIS-assisted communication network. As pointed out by the authors of

[11], affinities between RISs and the NOMA scheme include that RISs can provide additional

signal diversity, desired channel condition, and undemanding multi-antenna constrain for NOMA

systems. The main interplay is that in a conventional NOMA enhanced wireless network, the

decoding order of successive interference cancelation (SIC) determined by the natural channel

state information (CSI) of users, which is not likely to be fully consistent with the users’ data

rate demand. However, RISs can artificially modify the CSI for each user and thereby provide

desired propagation condition for superposed signals. Therefore, NOMA techniques are invoked

in our mobile RIS model to obtain further capacity and data rate gains.

To maximize the profit of empowering mobility to RISs, how to plan proper dynamic deploy-

ments for mobile RISs are a problem worth exploring. Since users are considered as moving

as well, the optimization problem is highly dynamic, and the joint optimization problem of
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movements and phase shifts of RISs is an emerging problem worth exploring. In addition, since

obstacles that hinder the movement of RISs and shields LoS paths are likely to have irregular

and non-analytic shapes, this also raises challenges for conventional optimization approaches. In

contrast to convex optimization, deep reinforcement learning (DRL) is considered to be a more

competent methodology for dynamic optimization problems since DRL is able to recognize the

current state of the environment [12, 13]. Meanwhile, since multiple mobile RISs can be deployed

in different cells, federated learning (FL) is employed to strengthen their training efficiency and

effectiveness for the proposed multi-cell multi-agent scenario [14]. FL arouses the interest of

researchers as a distributed learning framework since it can effectively utilize computational

resources [15] with a protection of user privacy [16]. Especially for the DRL algorithm, FL

can improve training efficiency and learning effect, since agents can explore the environments

simultaneously and their knowledge can be transferred to each other through a global neural

networks model. Therefore, we propose a DRL algorithm with a framework of FL, namely the

FL enhanced deep deterministic policy gradient (FL-DDPG) algorithm to jointly optimize the

passive beamforming, dynamic deployment of RISs, and the power allocation for NOMA users.

Although the enthusiasm of RISs and machine learning in recent years has resulted in that

a number of related researches have been completed, distinguished from the existing research

contributions, we propose the following new contributions.

• We propose a novel indoor communication model, which employs mobile RIS to enhance

the channel quality for users. Compared to existing fixed RIS paradigms, the proposed

framework is capable to cover indoor users who suffered from obstructed environments

with the aid of flexible deployments of RISs, thereby increasing the sum data rate. In order

to further increase user capacity and increase spectrum efficiency, NOMA techniques are

invoked. A corresponding dynamic decoding order scheme is adopted, since the channels

intervened by mobile RISs are likely to significantly impact the user’s CSI. Build on the

proposed mobile RIS framework, we formulate the maximization problem of the sum data

rate.

• We invoke the DDPG algorithm to jointly optimize the deployments, phase shifts of mobile

RISs and the power allocation policy for users. Since the fading matrixes of users are input

into the neural network, the dimension of the input state can have a significant difference.

Therefore, the size of the neural network has to be adaptive accordingly to ensure an effective

and precise fitting and give the corresponding empirical formula.
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• We propose a federated learning enabled DRL framework to reduce the training time of

agents and theoretically prove that within limited training processes, the FL framework is

capable to provide reward gains for DRL agents. We invoke an FL model with local training

and periodic global model update to enable the agent in each cell to learn from others’

experiences and thereby improve the efficiency of exploration and training. In addition,

we also investigate the impact of the different propagation characteristics of each cell on

FL learning effects. Our simulation results proved that with finite training episodes, the

DRL algorithm enhanced by FL is capable to obtain superior performance compared to the

independent agent training approach.

Section II reviews related state of the art contributions. Section III illustrates the mobile RISs

aided indoor communication models, including both OMA and NOMA scheme and the problem

formulation. Section IV introduces the FL framework, which is employed to coordinate multi-

cell optimization. Section V presents the FL-DDPG algorithm for the joint optimization of the

user power allocation policy, the deployment and phase shift of the mobile RIS. Section VI

demonstrates and analyzes the simulation results. Finally, Section VII is the conclusion section

of this paper.

II. THE STATE OF THE ART

This section briefly reviews the state of the art research on the RISs assisted NOMA network

and DRL/FL optimization in wireless network fields.

A. RIS aided NOMA wireless network

As the combination of RISs and NOMA techniques is considered promising, a series of related

research contributions have been proposed in the past years. To combine the advantages of RISs

and NOMA, authors of [17] proposed a new RIS-aided downlink NOMA system to improve

the reliability of the wireless network, and they derived the analytical expression of the bit error

rate (BER) performance of RIS enhanced NOMA systems. The author of [18] investigated the

physical layer security of a RIS enhanced NOMA system. A NOMA based model of RIS-UAV

communication was proposed in [19], where the authors deployed RISs on the outer surface of

the skyscraper to assist the wireless link of unmanned aerial vehicles (UAVs). UAVs’ trajectories,

passive beamforming of the RISs and power allocation are treated as optimization variables to

minimize the energy cost of the UAVs. A partitioned RIS was employed in [20] to enhance the
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spectrum efficiency by improving the ergodic rate of all users, and the the physical resources

distribution was optimized by three efficient search algorithms. The authors of [21] optimized

user clustering, passive beamforming and power allocation for a downlike NOMA system with

RISs by iteratively optimizing three sub-problems. An RISs enhanced NOMA cellular network

with the joint transmission coordinated multipoint was proposed in [22] to improve the data

rate of edge users, while the network spectral efficiency was evaluated and validated through

Monte-Carlo simulations. Meanwhile, in [23] and [24], joint optimizations of the base station

beamforming and the passive beaming at the RIS were proposed with the aim of minimizing

the total transmit power of the base station.

B. DRL & FL in wireless networks

DRL has demonstrated commendable performance in various wireless network systems [25].

By invoking a DRL approach, the authors of [26] investigated the joint design of transmit

beamforming at the base station and the phase shifts at the RIS. The author of [27] proposed

a hill-climbing algorithm to optimize the power allocation at the base station and reflecting

beamforming to achieve an anti-jamming communication. Similar with [19], an RISs assisted

UAV communication system was invoked in [28] that a UAV and multiple RISs were paired

to serve a number of ground users and two DRL approaches were adopted to maximize the

overall weighted data rate and geographical fairness of by optimizing the UAV’s trajectory and

phase shifts of RISs. The authors of [29] proposed a deep reinforcement learning approach

attention-based neural network (ANN) to allocate resources for a multi-carrier NOMA system.

On the other hand, some researches on FL in wireless networks have been proposed [30].

The author of [31] proposed an FL approach to estimate channel for a RISs assisted massive

Multi-input Multi-output (MIMO) system. To optimize the data rate of RISs aided networks, the

authors of [32] proposed an FL based beam reflection optimization algorithm to achieve high

speed communication with the sparse CSI. In addition, since the FL process needs to exchange

data between agents via wireless networks, researches on how to use wireless communications

to support federated learning is also challenging [33–35]. The authors of [34] formulated the

joint learning and communication problem, and proposed an iterative algorithm to minimize the

total energy consumption for an FL based system.
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III. SYSTEM MODEL

In this section, we first describe assumptions and system model of the proposed mobile RISs

enhanced wireless networks in subsection III-A. The layout modeling method of the indoor

environment and the propagation model are illustrated in subsection III-B and subsection III-C,

respectively. The signal models of both OMA and NOMA scheme are illustrated in subsection

III-D. At last, the optimization problem is formulated in subsection III-E.

A. System Description and Assumption

We consider an indoor downlink multiple-input and single-output (MISO) scenario where RISs

are employed and each RIS is carried by a robot to enhance indoor propagation for a wireless

access point (AP) to serve users in the room as illustrated in Fig. 1. We assume that the served

building has multiple floors or rooms, we can denote each of them as a cell, and each cell

is configured with an AP. In order to relieve the interference between each floor, we adopt a

spectrum strategy similar to what is adapted in the cellular networks to diminish adjacent cell

interference. The frequency band of the system is divided into at least two, and then adjacent

floors can use different frequency bands. For example, if the frequency band is divided into two,

odd-numbered floors can occupy the same frequency band, and even-numbered floors have to

apply the other frequency band. Since the floors using the same frequency band are guaranteed to

have a sufficient spatial distance and the signal is obstructed by ceilings, so that the interference

between APs can be reduced to a negligible level.

We assume that each floor of the building has a similar architectural structure and layout,

which is common in office buildings or flats. For each cell, the AP is equipped with M antenna,

while each user only has a single antenna. The RIS is armed with N reflecting elements, which

can provide concatenated LoS propagation for the transmitter and receivers by reflecting and

reconfiguring the signals. We consider that there are multiple users in the room and they follow

independent random movements [36]. Since users are constantly roaming, in order to maximize

the channel gain, the robot carried RISs have to be deployed opportunely according to the real-

time user distribution. The robot operates on the floor and the RIS is set at a fixed height on

the robot, as a result the altitude of RIS is considered as a constant. In order to ensure safe

operations, the robot cannot cross or collide with any obstacles, it also has to be guaranteed that

the RIS will not collide with people.
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Fig. 1: System model of NOMA enhanced mobile RIS

Remark 1. The fixed-position RIS is likely to encounter blind spots when it is employed in indoor

scenarios since furniture and room structures form a complex sheltered environment. Whether

the RIS is mounted on the wall or ceiling, the LoS blind zone may be caused by girders, pillars,

or chandeliers, and users in the blind zone can only get the NLoS channel. On the contrary, the

RIS mounted on the robot can be deployed timely according to the user’s location, which can

improve the probability of LoS propagation for users.

In this model, We denote the set of APs as u ∈ U = {1, 2, 3...U} and the set of users associated

with AP u as ku ∈ Ku = {1, 2, 3...Ku}. Users have to be associated with the AP on the same

floor and the RISs employed is denoted as r ∈ R = {1, 2, 3...R}. For a clear expression, we

default the AP, RIS and the agent employed in the same cell have a corresponding order, for

instance, if the AP order is u = 1, the RIS working with u is r = 1. To express the concatenated

propagation caused by RIS, we denote hu,r ∈ CM×N as the channel matrix of the link between

AP and RIS and hr,k ∈ CN×1 as the link of the r-th RIS to users. On the other hand, users can

also receive the signal via the direct link (AP to user link). Thus, the channel between AP u
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and user k can be denoted as h ∈ CM×1.

In this paper, the passive beamforming of RISs is considered as one of the main optimization

variables. Thus, we denote Θr = diag[β1e
jθ1...βne

jθn ...βNe
jθN ] as the phase shift matrix of

the RIS, where βn represents the amplitude of complex reflection coefficient and θn ∈ [0, 2π)

represents the phase shift. On the contrary, since the main research scope of the paper is the

joint optimization of the deployment and passive beamforming of RIS, the active beamforming

at the AP side is solved by a conventional zero-forcing beamforming [37].

B. Interior Layout Modeling

Prior to discussing indoor propagation and RISs’ deployments, it is necessary to establish an

interior layout model. With the assistance of the layout model, we would be able to determine

whether there is LoS path between any two points in the indoor environment, which is one of

the key knowledge for RISs to obtain significant channel gains.

In order to accurately represent the outline of the furniture, a number of fictitious bricks are

engaged to construct the layout model instead of simple columns. For example, a digitized layout

model for the office is shown in the lower left corner of Fig. 1. Please note that theoretically this

modeling method can describe any shape or object, but it will lead to a rise of computational

complexity since each virtual brick has to be traversed to determine whether it occludes the LoS

path.

C. Propagation Model

In order to simulate the indoor propagation, we do not invoke the statistical prorogation model

since there is only a close range for indoor transmission distance (in metres) and a deterministic

prorogation model is more conducive to precise planning the path of the carrier robot. Thus, we

employ the aforementioned interior layout model and the indoor propagation model proposed

by ITU recommendation [38] to obtain a deterministic indoor prorogation model.

We consider a propagation model including path loss and small-scale fading, which can be

express as

Luku(d) = Luku(d)− 10 log10 h
u
ku , (1)



9

where huku denotes the Rician fading and Luku(d) represents the pass loss described in [38, 39].

With the aid of interior layout model and intersection detection [40], we can calculate whether

the link enjoys LoS. Then we can obtain deterministic pass loss

Luku(d) =


LLoS(d), if LoS,

LNLoS(d, n), if NLoS.
(2)

For the NLoS link, the path loss can be calculated as

LNLoS(d, n) = L0 +N log10 d+ Lf (n), (3)

where variable d represents the separation distance between the transmitter and the receiver and

n represents the the number of completely blocked obstacles, such as the walls or floors. N

denotes the distance power loss coefficient, as suggested in [38], we choose N = 25.5 for the

proposed office scenario. The parameter f represents the carrier frequency in MHz. Please note

that although we invoke discrepant frequency bands on adjacent floors, these center frequencies

have to be adjacent to avoid the heterogeneity in transmission characteristics.

The term L0 represents the basic transmission loss that can be calculated as

L0 = 20 log10 f − 28, (4)

and

Lf (n) = 15 + 4(n− 1). (5)

The path loss for the LoS link can be calculated as

LLoS(d) = 16.9 log10 d− 27.2 + 20 log10 f. (6)

D. Signal Model

1) OMA Scheme: In each cell, an FDMA scheme is adopted, and in order to further spectrum

utilization, some users utilize the same frequency band. For users in the same frequency band,

we apply zero-forcing beamforming to eliminate interference. The pre-coded transmitting signal
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from AP u can be express as

xu(t) =
Ku∑
ku=1

√
P u
ku

(t)guku(t)suku(t), (7)

where suku(t) represents the data symbol sequence from AP u to user ku and P u
ku

(t) is the

allocated power for user ku. guku ∈ CM×1 represents the active beamforming vector. Obviously

these parameters are time-variant, so the time symbol (t) is omitted in the subsequent equation

to achieve a concise expression.

Thus, the received signal at user k can be calculated as

yku = (hu,ku + hr,kuΘrhu,r)
Ku∑
ku=1

√
P u
ku
gukus

u
ku + n0, (8)

where n0 denotes the additive white Gaussian noise (AWGN) and for brevity of the express,

in most cases path loss Luku(t) in the rest of the paper is implicitly included in hu,ku . As

aforementioned, the active beamforming matrix guju is derived by a zero-forcing approach to

mitigate the interferences. Thus, for a given user ku and interference user ju the pre-coding

matrix can be calculated as
(hu,ku + hr,kuΘrhu,r)g

u
ku

= 1,

(hu,ju + hr,juΘrhu,r)g
u
ju = 0, ju 6= ku.

(9)

We denote the ZF pre-coding matrix of AP u as

Gu = [gu
1 , ...g

u
ku
, ...gu

Ku
], (10)

and if we denote Hu,ku = [hu,1, ...,hu,Ku ] and Hr,ku = [hr,1, ...,hr,Ku ] as a result, the direct

channel and the concatenated channel can be regarded as an overall channel response as

Hu = Hu,ku + Hr,kuΘrHu,r. (11)

Thus, the pre-coding matrix Gu can be calculated as the pseudo-inverse of overall channel

response Hu

Gu = Hu(HH
u Hu)

−1
, (12)

Therefore, based on (8) the signal-to-interference-plus-noise (SINR) for user k can be calcu-
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lated as

γku =
| (hu,ku + hr,kuΘrhu,r)

√
P u
ku
gukus

u
ku
|2

| (hu,ku + hr,kuΘrhu,r)
∑

ju 6=ku

√
P u
ju
gujus

u
ju
|2 +σ2

, (13)

where σ2 is the average power of the AWGN 1. Consequently, the data rate of user ku at time

t can be calculated as

Ru
ku = Bku log 2 (1 + γku) . (14)

2) NOMA Scheme: Contrary to the OMA scheme, the NOMA technique allows multiple

users to form a cluster and utilize the same frequency band simultaneously. Hence, for each

user cluster v ∈ V = (1, 2...V ), and we denotes the users in cluster v as kv. We also assume

that the maximum callable power of each cluster is the same, and the transmitted signal can be

expressed as

xv =
Kv∑
kv=1

√
P u
kv

(t)sukv(t), (15)

and then the transmitting signal of AP can be expressed as

xu =
V∑
v=1

guv

Kv∑
kv=1

√
P u
kv

(t)sukv(t), (16)

where guv represents the ZF pre-coding matrix. Therefore, the received signal of user k in the

NOMA cluster v served by AP u can be expressed as

yku = (hu,kv + hr,kvΘrhu,r)g
u
vx

u
kv + Ivkv + Iukv + n0, (17)

where (hu,kv + hr,kvΘrhu,r)x
u
kv

is the desired signal of user kv. Ivkv denotes the intra-cluster

interference and Iukv denotes the inter-cluster interference received by user kv.

The inter-cluster interference can be calculated as

Iukv =
V∑

v=1,v 6=v

(hu,kv + hr,kvΘrhu,r)g
u
vx

v. (18)

In order to obtain comparable results, the same ZF beamforming is also invoked at the NOMA

1If the multiple access approach is assumed to be ideally orthogonal, the inter-user interference can be considered as zero.
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AP. Similar with the OMA case, the pre-coding for NOMA can be expressed as
(hu,kv + hr,kvΘrhu,r)g

u
kv

= 1,

(hu,jv + hr,jvΘrhu,r)g
u
jv = 0, jv 6= kv, v 6= v.

(19)

The derivation process of the pre coding matrix for NOMA is the same as the OMA scheme,

thus we can also obtain it as

Gu
v = Hu,v(HH

u,vHu,v)
−1
. (20)

It can be observed in (16) that instead of design beamforming for each individual user in the

OMA scheme, a beam in the NOMA system is designed for a NOMA cluster. Since users in the

same NOMA cluster are also likely to have different channel responses, ZF beamforming cannot

eliminate inter-cluster interference for all users in a cluster. For example, assuming users jv and iv

are in the same cluster v with channel (hu,jv+hr,jvΘrhu,r) 6= (hu,iv+hr,ivΘrhu,r). According to

(19) we have (hu,jv+hr,jvΘrhu,r)g
u
kv

= 0 and it is easy to figure out (hu,iv+hr,ivΘrhu,r)g
u
kv
6= 0,

which suggests the inter-cluster interference cannot be remove completely at user jv. We select

the user with the highest channel power gain which we call it the strangest user in each cluster

as the basis for the beamforming in order to keep a correct decoding order for SIC. Therefore,

the inter-cluster can be dislodged at the strongest user in each cluster but weaker users still have

to suffer.

On the other hand, the a portion of intra-cluster interference can be eliminated by SIC and

the intra-cluster interference for each user can be calculated with a given decoding order. Since

users and RISs keep moving, the channel quality will be fickle, so a dynamic decoding order has

to be determined in each time slot. For the convenience of presentation, we assume that users in

NOMA cluster v have a consistent numbering order with channel quality at time t, where user

K is the strongest user. Consider user jv and kv at time t have relationship that

| (hu,jv + hr,jvΘrhu,r) |
V∑

v=1,v6=v
| (hu,jv + hr,jvΘrhu,r)guvx

v | Lu,kv
>

| (hu,kv + hr,kvΘrhu,r) |
V∑

v=1,v6=v
| (hu,kv + hr,kvΘrhu,r)guvx

v | Lu,jv
, (21)

where Lu,kv represents the path loss in linear. After that, user jv can adopt SIC to remove the

signal for user kv in prior of decoding the signal for itself [41]. Thus, the decoding order can be

denote as kv < jv. Therefore, generalize the above theory to multi-user clusters, the decoding
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order for cluster v at time t can be expressed as {1, 2...k...K}, where user kv is the k-th user

to practice SIC decoding in this cluster. As a result, the intra-cluster interference at user k can

be calculated as

Ivkv =
Kv∑

jv=kv+1

(hu,kv + hr,kvΘrhu,r)g
u
Kvx

v
jv . (22)

Therefore, the received SINR for user kv can be calculated as

γukv =
| (hu,kv + hr,kvΘrhu,r)

√
P u
kv
guKvs

u
kv
|2

| (hu,kv + hr,kvΘrhu,r)
Kv∑

jv=kv+1

√
P u
jv
guKvs

u
jv
|2 + |

V∑
v=1,v 6=v

(hu,ku + hr,kuΘrhu,r)guvx
v |2 +σ2

.

(23)

At last, the data rate of user kv served by AP u can be calculated as

Ru
kv = Bu

kv log 2
(
1 + γukv

)
. (24)

E. Problem Formulation

We aim to maximize the sum data rate of users by jointly optimizing robot-mounted RISs’

deployment Dr = {Dr(1), Dr(2), ...Dr(t)...}, r ∈ R, and the phase shift for all reflecting element

Θr = {Θr(1),Θr(2), ...Θr(t)...}, r ∈ R of the mobile RIS, where Dr(t) = [xr(t), yr(t), zr(t)]

represents the position of mobile RIS r at time t. Meanwhile, since APs need to collaborate with

RISs, the corresponding power allocation policy Pr = {P u(1), P u(2), ...P u(t)}, u ∈ U. Thus,

the optimization problem can be formulated as

max
Dr,Pr,Θr

Ku∑
ku=1

U∑
u=1

Rku , (25a)

s.t. xmin ≤ xr(t) ≤ xmax, ∀r,∀t,

ymin ≤ yr(t) ≤ ymax,∀r,∀t, (25b)∑
kv∈Kv

P u
kv(t) ≤ P u

vmax,∀t,∀v,∀u, (25c)

kuv (t) < juv (t),∀(k, j), ∀t, ∀k,∀u, (25d)

R(t) ≥ RQoS,∀t, ∀k, ∀u, (25e)
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where constraint (25b) ensures that the mobile RISs have to be deployed in the appointed room,

since once a mobile RIS is moved to other areas, it may cause unexpected interference especially

when multiple RISs are deployed in the same room. Constraint (25c) is a power constraint that

the total power allocated to users in a cluster cannot exceed the maximum power that the

cluster is authorized to invoke while in the OMA scheme a signal user can be regarded as a

cluster. Constraint (25d) is introduced to ensure that the user ordering and decoding order can

be performed correctly in each NOMA cluster. Finally, taking into account the fairness of users,

constraint (25e) represents the data rate of each user at any time t is guaranteed to meet the

minimum rate of QoS requirement. As mentioned above, the predicament of the optimization

is that the formulated problem is dynamic, non-convex [42] and the obstructive environment is

non-functional. It is worth mentioning that the phase shift optimization in the NOMA scenario

not only provides channel enhancement for users, but the channel modification has to be NOMA-

friendly as well to take care of user fairness. Therefore, a DRL algorithm is invoked to solve

the formulated problem.

IV. FEDERATED LEARNING MODEL

In subsection IV-A, we elaborate on the role and superiority of invoking FL to coordinate

multiple agents and prove that there is a theoretical gain in FL-DRL framework. In subsection

IV-B, we propose an FL model with local training to serve multiple cell networks.

A. The Concept of FL

Federated learning is competent to be invoked for optimizing the proposed communication

model. As aforementioned, the proposed indoor network composed of APs has cellular charac-

teristics to extend, and independent agents served in each cell have great common functions and

attributes. For example, the pursuit of service quality, the equipment of RISs and the propagation

characteristics of signals in each cell are equal, which constitutes the cornerstone of adopting

the FL framework.

The FL framework has a number of common advantages for all ML algorithms, for example,

it can save more hardware resources, improve training speed, and with the protection of user

privacy [43]. Moreover, in addition to these frequently mentioned advantages, DRL algorithms

are specifically suitable to be applied in the FL framework. The learning process of RL comes

from continuously interacting with the environment and exploring different states and actions.
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However, the exploration of the environment is not likely to exhaust all states though the

action policy contains random actions or noise [44, 45], which leads to the global optimum

may being buried in the quagmire. In particular, the proposed communication scenarios and

indoor layouts have high complexity, impelling the efficient and sufficient exploration to be a

problem. Therefore, the training effect of DRL is determined by whether the agent has sufficient

exploration and experience, fortunately, the participation of FL is helpful to reveal more different

states since multi-agents are investigating the environment, which allows the environment to be

explored more sufficiently.

Remark 2. When the environments explored by the DRL agents have similarities and the state

transitions have not been traversed by agents, the FL framework can provide potential gains than

independent training scheme since it is likely to obtain more sufficient environmental knowledge.

Proof of Remark 2:

Assuming a Markov process has S states, each state S ∈ S has action space AS
N and the

corresponding reward set R
(S,A)
N , denoting the explored action space of FL agents as AS

F ⊆

AS
N ,R(S,A)

F ⊆ R
(S,A)
N and explored action space of the independent agent as AS

I ⊆ AS
N ,R(S,A)

I ⊆

R
(S,A)
N . Assuming that a repetitive tolerant random action policy is adopted during the exploration

process, we can get E[| AS
F |] ≥ E[| AS

I |] and also for the reward set E[| R
(S,A)
F |] ≥ E[|

R
(S,A)
I |]. For the reward sets, the maximum known reward max(R

(S,A)
F ,R

(S,A)
I ) always exists,

though there may have max(R
(S,A)
F ,R

(S,A)
I ) < max(R

(S,A)
N ). Then the probability that the known

maximum reward is found by FL agents and independent agents can be calculated as

P [max(R
(S,A)
F ,R

(S,A)
I ) ∈ R

(S,A)
I ] = 1− (1− 1

| R(S,A)
N |

R
(S,A)
N ≤max(R(S,A)

F ,R
(S,A)
I )

)E[|AS
I |], (26)

P [max(R
(S,A)
F ,R

(S,A)
I ) ∈ R

(S,A)
F ] = 1− (1− 1

| R(S,A)
N |

R
(S,A)
N ≤max(R(S,A)

F ,R
(S,A)
I )

)E[|AS
F ]|. (27)

Since E[| AS
F |] ≥ E[| AS

I |], then

P [max(R
(S,A)
F ,R

(S,A)
I ) ∈ R

(S,A)
I ] ≤ P [max(R

(S,A)
F ,R

(S,A)
I ) ∈ R

(S,A)
F ],∀S ∈ S, (28)



16

and it can be obtained that

E[max(R
(S,A)
I )] ≤ E[max(R

(S,A)
F )],∀S ∈ S. (29)

It is worth to point out that E[max(R
(S,A)
I )] = E[max(R

(S,A)
F )] if AS

F = AS
I = AS

N , which

reveals that when the action space is traversed, FL will no longer provide gain. Then, the

cumulative reward which described by value function

Q(S,A) = R(S,A) + β
∑
S′∈S

max
A′

Q(S ′, A′). (30)

According to (29) and (30), we can obtain

E[max(QI(S,A))] ≤ E[QF (S,A))]. (31)

For DQL algorithms, assuming the neuronal network fitting correctly, we have Q∗ → Q, then

E[max(Q∗I(S,A))] ≤ E[Q∗F (S,A))]. (32)

Remark 2 is proven.

Therefore, the FL scheme has more expected gain than independent agents until all state

transitions have been traversed by agents. Furthermore, the global model can also greatly enriches

the experience diversity since each agent has different initialization and pseudorandom. In

summary, by establishing a global model and exchanging neural network parameters, agents

located on different floors or cells can learn from each other’s experiences. The introduction

of FL can improve the training efficiency and effect of DRL algorithms and the gain is also

revealed by the simulation results in Section VI.

B. FL Model for DRL

Our FL framework adopts decentralized training and uses federated averaging to generate a

globe model. The operation process can be divided into three parts: local training, updating

global model, and downloading global model, which is illustrated in Fig. 2.

• Local training: Each local agent set up their local model ωut and uses its own computing

resources to train the local model, where t represents the time and u represents the agent

number. Local neural network models have random initialization to increase the diversity

of exploration at early training.
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Fig. 2: Federated learning enhanced indoor mobile RIS network

• Global model update: After a period of training interval FG, the parameters of the global

model ωGt can be upgraded by averaging the parameters of each local model, which can be

express as

ωGt =
1

U

U∑
u=0

ωut . (33)

• Local model update: After the global model is updated, each agent downloads the global

model and then updates the local model according to the global model.

ωut = ωGt ,∀u. (34)

After the updating is complete, the new model can be used for the next round of local

training.

V. FL-DDPG EXECUTED OPTIMIZATION FOR MOBILE RISS

With the aforementioned FL framework, this section details the FL enhanced DDPG algorithm

to optimize the deployment, phase shifts of RISs, and the power allocation for users. The

algorithm training and decision flow is explained in subsection V-A. As a DRL approach, the
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specific state space and action space design for mobile RIS scenario is presented in subsection

V-B, and the adaptive neural network structure is introduced in subsection V-C. Furthermore,

subsection V-D analyses the convergence and complexity of the FL-DDPG algorithm.

A. FL-DDPG Algorithm and Training

We propose an FL-DDPG algorithm to jointly optimize deployments, phase shifts of mobile

RIS and the corresponding power allocation policy for users in each cell. Additionally, we

implement several improvements on the original DDPG algorithm [46], such as decaying Ornstein

Uhlenbeck (OU) noise and adaptive neural network structure to adapt the algorithm into the

proposed communication scenarios. We assume that each local agent is deployed within the AP

and it can control the actions of the RIS and the carrier robot via the control channel. Due to

the actor-critic structure, four neural networks are used in the DDPG agent, namely the actor

network Q, the critic network µ, the actor target network Q′ and the critic target network µ′.

Once observing the environment state St, the actor network calculates the action At and then it

will be executed. After the action is executed, the state will be changed to St+1, and the reward

Rt will be calculated according to the data rate Rt and QoS requirement threshold. The detailed

update flow of a single DDPG agent is presented in Fig. 3.

In order to train the agent efficiently, we adopted decaying OU noise in the training process

At = µ(St|ωµt ) +N(0, ξt), ξt = ξ0 → 0, ξ0 ∈ [1, 0), (35)

where ωµt represents the parameters of neural network µ and ξt denotes the scale of the OU

noise. The OU action noise can drive the agent to explore further diversely compare to the

Gaussian noise [47], and decreasing noise can improve exploration efficiency without loss of

convergence. On the other hand, memory replay technology is adopted in our model. The agent

record and store the transition (St, At, Rt, St+1) for each step into a replay memory buffer and

randomly sample experiences at each step and train neural networks according to the samples.

For single sample at each step, the actor network can be updated according to the policy gradient.

Assuming the minibatch has e transition samples, the policy gradient can be calculated as

∇ωµJ =
1

e

∑
e

∇AQ(St=e, At=e|ωQ)∇µ
ωµ(St=e|ωµ). (36)
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The critic network is in charge of evaluating the action value (Q-value) of the action taken

actions taken in a certain state, which is similar as the Q-learning and deep Q-network (DQN)

algorithms. A Q-value with a concern of long-term reward is defined by the Bellman equation

Q(St, At) = Rt(St, At) + βmaxQ(St+1, At+1). (37)

In order to accurately estimate Q-value, the critic network is updated by minimizing the loss

function

Le =
1

e

∑
e

(yt=e −Q(St=e, At=e|ωQ))2, (38)

where

yt = Rt(St, At) + βQ′(St+1, µ
′(St+1|ωµ

′
)|ωQ′). (39)

... ...

Actor network

... ...

Critic network

User position

Fading matrix

RIS position

Actions

Motion

RIS phase shift

Power allocation

State

Policy gradiant

Loss fuction

Replay Buffer
Reward: Data rate

                            QoS requirement

OU  noiseO

Save

Soft update

Take action

Environment

x

y

z

x

z

y

Obstcale

Soft update

... ...

Target network

Update

Fig. 3: Flow diagram of the local training in the FL-DDPG algorithm
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Algorithm 1 FL-DDPG algorithm for the sum rate optimization
1: for each cell u ∈ U do
2: Initialize the environment and determine the neural network specifications based on the

number of RIS elements
3: Initialize the actor network ωQu , critic network ωµu , target actor network ωQ

′
u , target critic

network ωµ′u with random parameters
4: for each episode E do
5: if E % FG =0 then
6: Update global model ωQ,Q

′,µ,µ′

G = 1
U

∑U
u=0 ω

Q,Q′,µ,µ′
u

7: Update local models ωQ,Q′,µ,µ′u = ωQ,Q
′,µ,µ′

G .
8: end if
9: Reset the environment and initial state

10: for each step in t0 ≤ t ≤ tmax do
11: Observe St according to the radio map
12: Choose A according to action policy and Q(S, ωQ)
13: IRs take action A, observe Rt and St+1

14: Record e{St, A,R, St+1}
15: Random sample a batch of transection e from memory buffer
16: Calculate target according to (39)
17: Train critic network µ(S, ωµ) with a gradient descent step (38)
18: Train actor network Q(S, ωQ) with (36)
19: Update the target networks ωQ′ ← (1− τ)ωQ

′
+ τωQ, ωµ′ ← (1− τ)ωµ

′
+ τωµ

20: St ← St+1

21: end for
22: Each agent save the network models ωQu , ωµu , ωQ′u , ωµ′u
23: end for
24: end for

B. State, Action and Reward Function

The DDPG algorithm supports continuous state and action space. Therefore, regardless of

movement, phase shifts and power allocation are designed to be continuous to obtain the accurate

action and we design the following state, action space and reward function.

1) State Space: For a single agent, the state space St contains four components, the RIS

location Dr(t) in time slot t, user location Dku(t), ku ∈ Ku, pass loss for each user Luku(t) and

fading matrixes hu,k,hu,r and hr,k. Thus, the state for time slot t can be noted as

St = {Dr(t), Dku(t), Luku(t), real{hu,k,hu,r,hr,k}, imag{hu,k,hu,r,hr,k}}, ku ∈ Ku. (40)

Since the elements in fading matrixes are complex numbers, the real and imaginary parts of

each element can be split and input to different nodes. These selected parameters are necessary,
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while the deployment plan requires location information, and the optimization of power allocation

and phase shifts is based on CSI. In addition, since the state is composed of unrelated variable

categories, their values may have a colossal gap, and therefore proper scaling is necessary to

avoid some values being ignored.

2) Action Space: The composition of the action space completely corresponds to the three

optimization parameters, including motion, phase shift and power allocation.

• Deployments: For the deployment, the agent does not calculate the optimal position but

choosing the next move ∆Dr(t) for the robot at each time slot t. The proposed approach

allows the agent to find the optimal movement at each moment, with a consideration of

long-term reward. However, the method of directly finding an optimal position will cause

the moving path of mobile RIS may not be optimal.

• Phase shifts: The agent calculates the optimal Θr(t) at the current moment for each element

express them in a radian system. The time for rotating the angle of reflecting elements is

neglected.

• Power allocation policy: The agent allocate power P u
ku

(t) to each associated user ku at each

time slot, where the allocated power meets P u
ku

(t) < P u
maxku(t). For the OMA scenario,

P u
maxku(t) = P u

max/Ku but in NOMA cases users can have their own power upper bound

while
∑
ku

P u
maxku(t) ≤ P u

max/Ku.

In summary, the action space can be noted as

At = {∆Dr(t),Θ, P u
ku(t)}, ku ∈ Ku. (41)

3) Reward Function: For each cell, in order to maximize the data rate of the system, the

reward is set to be proportional to the sum rate of all users. As mentioned in (25e), in order

to meet the user fairness constraint, once the data rate of any user does not meet the QoS

requirements, a penalty has to be imposed. The agent will receive a discounted reward as in

(42), where λ is the reduction factor

Rt =


Ru(t), QoS requirement satisfied,

Ru(t)
λ
, QoS requirement not satisfied.

(42)
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Fig. 4: Neural network structure of the proposed FL-DDPG algorithm

C. Neural Network Structure for DT-DPG algorithm

The structures of the actor network and the critic network is presented in Fig. 4. Two batch

normalization (BN) layers and an activation layer with relu function are employed in the actor

network. The first BN layer is in charge of normalizing input data and the second BN layer

ensures a valid input range for the tanh layer. Since all elements of fading matrices hu,k,hu,r

and hr,k need to be input to the actor network as the basis for the phase shift optimization, then

the size of the input dimension have to be adaptive and determined by the number of users and

the number of elements in RIS. The size of the hidden layer should also be adjusted accordingly

to the communication system to achieve a proper fitting effect. The empirical number of the

activation layer nodes is ωrelu = 4MN , where the position input is not counted since it adds a

negligible input dimension. A similar structure is adopted in the critic network. Since the critic

network only needs to output a Q-value, its hidden layers can have a minor size, although the

critic network has a larger input dimension.

D. Convergence and Complexity Analysis

The convergence of the basic Q-learning has been proved in a series of literatures, such as [48].

However, due to the introduction of neural networks, the convergence of the DDPG algorithm is

no longer guaranteed [46]. In fact, DRL algorithms may fail to converge under the interference

of improper parameters setting. Nevertheless, the proposed FL-DDPG algorithm is capable to
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converge when a few constraints are met. If the learning rate, target network update rate and

action noise are properly set, FL-DDPG can converge stably, which can be proved by simulation

results displayed in Section VI.

The complexity of the FL-DDPG algorithm is largely determined by the size of the neural

network employed. Since the local training approach is adopted, each agent trains the neural

network by itself, so the complexity of each agent can be denoted as ζu can be calculated

independently and the total complexity of the multi-agent system is ζ = ζG +
U∑
u=0

ζu, where

ζG represents the complexity caused by the updating and downloading parameters of the globe

model.

The action selection for each step is the responsibility of the actor network ωQ, and we

denote that the number of nodes in the actor network as ωQn for normalized nodes, ωQr for

relu nodes and ωQt for ’tanh’ nodes. Thus, the calculations complexity caused by the node

computation is 5 · ωQn + ωQr + 6 · ωQt as suggested in [49]. Further, assuming the actor network

has I layers in total and each layer i has ‖ωQi ‖ nodes, the complexity required to propagate

values between neural nodes and adding bias can be calculated as
I∑
i=0

‖ωQi ‖ · ‖ω
Q
i+1‖. Then the

complexity of actor network for a single step is ζωQ = 5 · ωQn + ωQr + 6 · ωQt +
I∑
i=0

‖ωQi | · ‖ω
Q
i+1‖.

If we apply the same assumption to the critic network µ, since the critic network has to train e

samples at each step, with the same calculation method, the complexity of the critic network is

ζωµ = e·(5·ωµn +ωµr +6·ωµt +
I∑
i=0

‖ωµi |·‖ω
µ
i+1‖). Then, for the proposed scenario, which has t steps

per episode, for a single agent the total complexity can be calculate as ζu = E · t · (ζωQ + ζωµ),

where E represents the episode number. On the other hand, the complexity caused by the globe

model is 2 · E/FG · ‖ωQ‖ + ‖ωµ‖, where FG represents number of episodes interval of global

model update, which is negligible compared to the local model training. Therefore, the total

complexity can be express as ζ =
U∑
u=0

ζuωQ + ζuωµ .

VI. NUMERICAL RESULTS AND ANALYSIS

Section VI aims to exhibit numerical results of the FL-DDPG optimized mobile RIS system.

In the simulation, we assume that each cell serves four users and these users are partitioned into

two clusters. Each user makes a random movement on the horizontal plane at every time slot, the

moving distance conforms to the Rayleigh distribution and the direction following the uniform

distribution. The building structure of each cell is assumed to be the same, and the global model
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TABLE I: Simulation Parameters

Parameter Description Value Parameter Description Value

fc carrier frequency 2GHz K number of users 4

Buk bandwidth 1 MHz Pumaxk maximum transmitting power 20 dBm

Vmax maximum speed of RIS 0.5 m/s λ QoS penalty coefficient 2

ymax room length 20 m xmax room width 15 m

RQoS QoS require 10 kb/s σ noise power density -30 dBm/MHz

α learning rate 3× 10−4 γ discount factor 1

e batch size 64 samples τ target update rate 0.002

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0

2

4

6

8

10

12

14

Fig. 5: Optimized path for the mobile RIS

update frequency for the FL is 20 episodes. As for the agent, Adam optimizers are employed

for the neural network training and the proper learning rate range is 5× 10−4 to 10−5 according

to our simulation. The initial action noise scale is set as 0.4. The rest of the default parameters

have been given in Table I.

Fig. 5 exhibits a trajectory example of the mobile RIS derived from the proposed DDPG

algorithm. In this figure, the orange curve records the trajectory of the mobile RIS and the blue

stars represent the position where the robot stops at each discrete time slot, which is also the

RIS position that is input into the neural network as a part of the state information. The mobile

RIS is initially placed in the middle area of the office, and it moves to a corner gradually so that

provides LoS cover for the large area blocked by the sofa. The gray and white blocks correspond

to the furniture and walls of different heights. It can be observed that the derived path avoids

obstacles and the data rate gain for the flexible deployment will be discussed later.



25

0 50 100 150 200 250 300
Episode

200

300

400

500

600

700

800

900

1000

1100
Av

er
ag

e 
Th

ro
ug

hp
ut
 (M

Hz
)

NOMA gain

OMA lr = 0.001
NOMA lr = 0.001
OMA lr = 0.0003
NOMA lr = 0.0003
OMA lr = 0.0001
NOMA lr = 0.0001

Fig. 6: Mobile RIS performance with different learning
rates
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Fig. 7: Mobile RIS performance with different reflection
element numbers

Fig. 6 demonstrates the training performance of the DDPG algorithm in a single cell. It can be

observed that the average throughput of the system increases steadily over the training episodes

and gradually flattens out in the late stage of training, which proves that the algorithm has stable

convergence within a proper learning rate range. The throughput of well trained agents indicates

that an inappropriately large learning rate can result in a debuff in optimization performance.

For example, when the learning rate is 0.001, the throughput suffers a decrease of approximately

7% compared to the other two learning rates. Moreover, we can observe a significant NOMA

gain, which is around 42% compared to the OMA scheme under the same conditions.

The impact of the RIS reflecting elements number on system performance is investigated

in Fig. 7. Logically, a larger amount of reflection elements can enhance the propagation to a

superior extent and obtain further power gain. It can be observed that with the enhancement of 16

reflection elements, the OMA scheme obtain a data rate equivalent to the NOMA scheme with 4

reflection elements. Meanwhile, the stable convergence of results indicates although the different

values of reflecting elements number N cause tremendous dimensional differences of the input

state, by correspondingly adjusting the size of the neural network, the proposed algorithm can

serve RIS with different specifications.

We plot the throughput curve versus the transmit power in Fig. 8 and display both OMA and

NOMA cases where the number of antennas M is 2 or 4. The data rate gain of the 4 antennas

case is approximately 11.6% on average, compared to the case of double antennas. The NOMA

gain is higher with the growth of the transmission power, the reason is when the transmission
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Fig. 8: Achievable sum rate versus AP transmit power
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Fig. 9: Date rate gain of each component in mobile RIS
enhanced networks

power is low, the weaker users are not likely to meet the QoS requirements and need to be

allocated more power to ensure the fairness. Although this fairness-dominated power allocation

scheme results in a reduction in data rate gain, the NOMA scheme still achieves a noticeable

gain in the case of small transmit power.

In order to determine the gain of the maneuver deployment and each other component in the

mobile RIS model, we plot Fig. 9 to show the throughput of the proposed model and benchmarks.

First of all, the dynamic decoding order achieves a gain of 10.2% compared to the pre-settled

static decoding order. By observing the curve, it can be found that in this case the flexibly

deployed RIS obtains an additional 15.1% data rate gain compared to the fixed RIS scheme,

where the RIS is settled at the start position in Fig. 5. It is worth noting that the performance

improvement provided by the mobile RIS even exceeds the performance difference between the

fixed RIS model and no RIS engaged network, which indicates the superiority of the mobile

RIS framework is substantial and puissant. In addition, in contrast to the fixed RIS model, the

mobile RIS has compelling compatibility for various user distributions. In order to investigate

the effect of the phase shift optimization, we employ a RIS with random phase shifts as another

benchmark. It is undeniable that the RIS with random phase shifts also leads to a diminutive gain

compared to the no RIS mode, but it is far inferior than the DRL optimized case. Meanwhile,

the curve behaves unevenness even in the final episodes since the phase is not controlled by the

agent.

Fig. 10 shows the impact of environmental differences on the performance of federated
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Fig. 10: The performance of federated learning
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Fig. 11: Training effect with/without federated learning

learning, where the difference factor (DF) represents the correlation of the fading characteristic

in different cells. DF is 0 means that the cells have the same channel characteristics. Obviously,

FL achieved the optative performance in this case, since agents are in the same environments

so that the model update has the highest efficiency. It is worth noting that even though the

rooms have similar architectural structures, they have different fading characteristics due to the

difference in decoration and surface materials. Therefore, we investigate the cases that cells with

propagation differences, and DF = 1 suggests that the propagation characteristics of each cell

are completely independent. It can be observed that even in the case of DF=1, FL-enhanced

DRL still has stable convergence, and is capable to achieve a matched average sum rate to the

single-cell case.

We intend to plot Fig. 11 to reveal the gain of FL at different training maturities. It can be found

at first that the introduction of FL can effectively save training time. With the aid of FL, agents

only spend 150 episodes of training to achieve an equal performance that the single-cell scheme

needs 250 episodes, which supports the statement in Remark 2. Since the DRL approaches train

agents by replaying the obtained experiences, more diverse and richer experience of transitions

obtained by FL makes the agents’ decision-making wiser. It is undeniable that spending infinite

training episodes can enable all states to be explored, so that the agents can converge to the

same optimal level. However, in practice, under the condition that the training time is limited,

FL has a significant training advantage compared to the mode without FL.
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VII. CONCLUSIONS

This paper has proposed a NOMA enhanced wireless network model with the aid of mo-

bile RISs that can provide NOMA craved channel conditions and improve channel quality

for users. In order to optimize deployments and phase shifts of RISs and the corresponding

power allocation for users, an FL enhanced DDPG algorithm has been proposed, which has

preponderant performance under the same training extend compared to the independent DLR

scheme since the engagement of FL lead to more sufficient exploration and experience exchange

for agents. Simulation results proved that 1) Compared to the scenario without RIS, mobile RISs

are capable to provide around 30.1% data rate gain that significantly exceeds the gain of the fixed

RISs paradigm, which is 12.4%; 2) The NOMA scheme, where the proposed dynamic decoding

identification method is applied, outperforms the OMA scheme by obtaining approximately 42%

gain in terms of the sum rate.; 3) The FL enhanced DDPG algorithm has stable convergence while

the parameters are within an appropriate range and the participation of the federated learning

can considerably reduce the training time of the DDPG agents or improve the training effect

under a limited equal training process.
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