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Abstract

In this paper, we consider an integrated data and energy network and D2D communication coexis-

tence (DED2D) system. The DED2D system allows a base station (BS) to transfer data to information-

demanded users (IUs) and energy to energy-demanded users (EUs), i.e., using a time-fraction-based

information and energy transfer (TFIET) scheme. Furthermore, the DED2D system enables D2D com-

munications to share spectrum with the BS. Therefore, the DED2D system addresses the growth of

energy and spectrum demands of the next generation networks. However, the interference caused by

the D2D communications and propagation loss of wireless links can significantly degrade the data

throughput of IUs. To deal with the issues, we propose to deploy an intelligent reflecting surface (IRS) in

the DED2D system. Then, we formulate an optimization problem that aims to optimize the information

beamformer for the IUs, energy beamformer for EUs, time fractions of the TFIET, transmit power

of D2D transmitters, and reflection coefficients of the IRS to maximize IUs’ worse throughput while

satisfying the harvested energy requirement of EUs and D2D rate threshold. The max-min throughput

optimization problem is computationally intractable, and we develop an alternating descent algorithm

to resolve it with low computational complexity. The simulation results demonstrate the effectiveness

of the proposed algorithm.

Index Terms

Intelligence reflecting surface, energy harvesting, data transfer, D2D communication, noncovex

optimization problem.

I. INTRODUCTION

The growth of the next generation networks such as IoT systems raises challenges of energy

and spectrum demands [1]. To address the energy challenge, integrated data and energy networks
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have been recently proposed in which a base station (BS) can perform information transfer

to information-demanded users (IUs) and energy transfer to energy-demanded users (EUs).

Meanwhile, to address the scarcity of spectrum resource and reduce the energy consumption,

Device-to-Device (D2D) communication is still known as an effective solution that allows D2D

transmitters to share spectrum with cellular networks [2] for a short communication range. As a

result, the integrated data and energy network and D2D communication coexistence (DED2D) is

a promising combination that is able to address the challenges of the demand growth of energy

and spectrum resources in the IoT system as well as in the next generation networks.

However, the DED2D system raises other issues. The first issue comes from the coexistence

of the D2D communications and the integrated data and energy network. In particular, the D2D

transmitters share the frequency band with the data and energy network, and thus the D2D

communication causes the co-channel interference to the IUs and significantly degrades the data

throughput of IUs [2]. The second issue is that the wireless channel impairments, e.g., the path

loss and multi-path fading, significantly degrade the data throughput of IUs. The third issue is

that EUs are typically IoT devices that require substantially harvested energy, and the harvested

energy substantially decreases when the distance from the BS to EUs is long. To improve the

data throughput, some technologies, e.g., massive multiple-input multiple-output (MIMO), have

recently been proposed. However, they require high energy consumption and hardware cost [3].

Intelligent Reflecting Surface (IRS) has recently been proposed as an emerging technology

for the development of the next-generation wireless networks [4], [5]. An IRS consists of low-

cost passive elements that can reflect incident signals by intelligently adjusting their phase-shifts

corresponding to wireless channels. The signals reflected by the IRS can be added constructively

with non-reflected signals, i.e., Line-of-Sight (LoS) signals, at receivers to boost the received

signal power, or can be destructively added to suppress the co-channel interference [6], [7]. As

such, IRS is a promising solution to deal with the aforementioned issues, i.e., the co-channel

interference, propagation loss, and obstacles, of the DED2D system. It is also well presented

in [8] that deploying IRS around EUs can significantly improve the total harvesting energy

compared with the case without using IRS.

In this paper, we consider an integrated data and energy network and D2D communication

coexistence (DED2D) system with assistance of IRS. In the IRS-aided DED2D system, a BS

transfers information to multiple IUs and energy to multiple EUs through the time-fraction-based

information and energy transfer (TFIET) scheme [9]. The D2D transmitters can use the same
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frequency band as that of the integrated data and energy network for their data transmissions.

An IRS is deployed in the system with the aim of improving the data throughput of the IUs

and D2D communications as well as well managing the interference caused from the D2D

communications to the IUs. We investigate an optimization problem that jointly optimizes the i)

information beamformer for IUs, ii) energy beamformer for EUs, iii) time fractions of the TFIET

scheme, iv) transmit power of the D2D transmitters, and v) reflection coefficients of IRS. The

objective is to maximize the minimum throughput among the IUs while satisfying the energy

requirement of the EUs and the D2D communication rate threshold. The optimization problem

is computationally intractable due to the fact that both the objective and constraints are complex

functions of beamformers and IRS reflecting coefficients. Especially, the reflecting coefficients

of the IRS are constrained by the nonconvex unit-modulus constraint.

To the best of our knowledge, there is no work investigating the max-min throughput optimiza-

tion problem in the IRS-aided DED2D system, which is a combination of emerging technologies,

i.e., IRS, integrated data and energy network, and D2D communication. In particular, there is a

number of works that propose to use IRS to improve the data throughput in wireless networks.

The readers are referred to a comprehensive survey of such works in [10]. Recently, there have

some works related to IRS-aided D2D communications [11], [6], [12], [13]. Specifically, the

authors in [11] aim to maximize the sum-rate of a D2D pair and an IU in the IRS-aided D2D

communication system by jointly optimizing the transmit power at the D2D transmitter and

phase shifts of IRS. To reduce the required channel training and feedback overhead, the authors

in [6] propose a two-timescale optimization that aims to optimize the transmit beamforming

at the BS, transmit power at the D2D transmitter, and IRS phase shifts, subject to the outage

probability of the IU. Different from [11] and [6], the authors in [12] propose to use the IRS

to reduce the offloading latency for the D2D transmitter. As an extension of the aforementioned

works, the authors in [13] consider the IRS-aided D2D communications with multiple D2D pairs,

and a deep reinforcement learning algorithm is adopted to optimize the transmit power of D2D

transmitter and phase shifts of the IRS under the dynamics of wireless channels. To improve

both the data throughput and harvested energy for the devices, recent works such as [14], [15],

[16], [8], [17], [3], and [9] propose to deploy IRS in the integrated data and energy networks. In

particular, the authors in [14] propose to use an IRS for a simultaneous wireless information and

power transfer (SWIPT) system. The SWIPT system allows each receiver, i.e., user, to split the

received signal into two components, one for energy-harvesting (EH) and one for information
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decoding (ID) by using the power splitting protocol. Then, the authors jointly design the energy

and information beamforming at the BS, phase shifts of the IRS, and power splitting ratio at

all users to maximize the minimum energy efficiency of users subject to the minimum rate and

minimum harvested energy. In fact, it is hard to optimize the conflicting targets of information

and energy beamforming at the same time. Thus, the users can be divided into IUs and EUs,

and then the authors of [15] jointly optimize the information beamformer for IUs, the energy

beamformer for the EUs, and phase shifts of the IRS. In [16], the authors jointly optimize the

information beamformer for the IUs and the phase shift of IRS to maximize the weighted sum

rate of IUs while simultaneously satisfying the energy harvesting requirement of the EUs. The

system model and the optimization problem in [16] can be found in [8], but the work in [8]

aims to maximize the weighted sum-power received at EUs, subject to the SINR constraints for

the IUs. The simulation results in [8] show that the sum-power obtained by EUs significantly

improves than that in the case without IRS. However, these works do not consider fairness in

their optimizations.

As mentioned earlier, the optimization problems for the beamformers and the reflecting co-

efficients of IRS are generally very challenging. Recent works, e.g., in [17], [3], and [9], have

shown the effectiveness of alternating optimization algorithms that can solve the optimization

problems with low computational complexity and converge at least to a locally optimal solution.

Therefore, in this work, we develop an alternating optimization algorithm to solve the max-

min throughput problem in the IRS-aided DED2D system. The main contributions of the paper

include the followings:

• This is the first work that considers the use of IRS for the integrated data and energy network

and D2D communication coexistence system. The integrated data and energy network allows

the BS to perform the information transfer to multiple IUs and the energy transfer to

multiple EUs by using the TFIET scheme, while the D2D communications aim to improve

the spectrum efficiency. The IRS is deployed for supporting the data transfer of the EUs

and data transmission of the D2D communications as well as managing the interference

caused by the D2D communications to the IUs.

• We formulate an optimization problem for the IRS-aided DED2D system that jointly op-

timizes the information beamformer for the IUs, energy beamformer for the EUs, time

fractions of the TFIET scheme, transmit power of D2D transmitters, and reflection coeffi-

cients of IRS, so as to maximize the minimum throughput among the IUs, subject to the
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energy requirement of the EUs and the data rate threshold of the D2D communications.

• Despite the objective to achieve fairness, the throughput problem is computationally in-

tractable. Thus, we develop an alternating descent algorithm that iteratively solves the

problem with efficient computation. This algorithm is proposed for the scenario in which

there is no orthogonal time allocation (N-OTA) between the D2D communications and the

data and energy transfers, and thus it is namely N-OTA algorithm.

• We further consider a scenario, namely OTA, in which the BS performs the OTA among

the D2D communications and the data and energy transfers. In this case, there are no

interference caused by the D2D communications to the integrated data and energy network,

but the time for the data and energy transfers reduces. Then, we formulate the max-min

throughput for the IRS-aided DED2D system in which the time allocation to the D2D

communications is included. To solve this computationally intractable problem, we again

use the alternating descent algorithm.

• We provide simulation results to show the improvement of the proposed algorithms, i.e.,

the OTA and N-OTA algorithms, compared with the baseline algorithms in which the IRS

phase shifts are random. The results further reveal some interesting findings. For example,

the efficiency of the OTA-algorithm over the N-OTA algorithm can change depending on

the D2D rate threshold and the IRS size.

The rest of the paper is organized as follows. In Section II, we describe the IRS-aided DED2D

system and formulate the optimization problem for the system. In Section III, we present the

alternating descent algorithm proposed to solve the problem. In Section IV, we formulate the

optimization problem in the IRS-aided DED2D system with OTA scenario and present the

alternating descent algorithm to solve it. The simulation results and discussions are presented in

Section V, and the conclusions are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an IRS-aided DED2D network as shown in Fig. 1. The BS is equipped with M

antennas to serve a set UI
4
={(di), i = 1, . . . , UI} of IUs and a set UE

4
={(ej), j = 1, . . . , UE} of

EUs. In this work, we consider the downlink scenario in which IUs receive the data transmitted

from BS, and EUs harvest the energy from the signals transmitted from BS. Both IUs and EUs are

equipped with single-antenna and operate in half-duplex mode. There is a set K = {1, . . . , K} of
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D2D pairs that share the same spectrum with the primary network. The IRS is equipped with a

set N = {1, . . . , N} of reflecting elements. Note that the network can be extended with multiple

IRSs, and the problem remains significantly unchanged. Let Θ ∈ CN×N denote the diagonal

matrix of reflection coefficients. We have Θ , diag(θ1, θ2, . . . , θN), where θn is the reflection

coefficient of element n of IRS, which satisfies the following uni-modulus condition:

|θn| = 1,∀n ∈ N . (1)

Let G ∈ CN×M denote the channel from BS to IRS. We denote h(k,r) ∈ CN as the reflect

interference channel from D2D transmitter of pair k to IRS. Also, we denote h(B,di) ∈ CM ,

h(B,ej) ∈ CM , and g(B,k) ∈ CM as the direct channels from BS to IU di ∈ UI , EU ej ∈ UE , and

the interference channel from BS to D2D receiver of pair k ∈ K, respectively. Furthermore, we

denote h(r,di) ∈ CN , h(r,ej) ∈ CN , and h(r,k) ∈ CN as the channels from IRS to IU di ∈ UI , EU

ej ∈ UE , and D2D receiver of pair k ∈ K, respectively.

For the D2D communications, we denote hk ∈ C and g(l,k) ∈ C as the communication channel

of D2D pair k and interference channel from D2D transmitter of pair l to D2D receiver of pair

k, respectively. Also, let g(k,di) ∈ C and g(k,ej) ∈ C denote the interference channels from D2D

transmitter of pair k to IU di ∈ UI and EU ej ∈ UE , respectively.
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Fig. 1: The IRS-aided integrated data and energy network.
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To perform the data transmission and energy transfer of BS, we adopt the time-switching

protocol [18]. Let ti and te be the factions of time used for the data transmission and energy

transfer of the BS, respectively, and we have 0 ≤ ti + te ≤ 1. Note that the D2D transmitters

communicate with their receivers during ti and te. Then, the signals at IUs, EUs, and D2D

receivers can be determined as follows.

1) Received signals at IUs: During the data transfer period of ti, the signal received at IU

di ∈ UI consists of i) the signal transmitted directly from BS, ii) the signal transmitted from BS

and reflected by IRS, iii) the signal transmitted directly from D2D transmitter of pair k, and iv)

the signal transmitted from the D2D transmitter and reflected by IRS. Let ydi denote the signal

received at IU di, then ydi is determined by

ydi =

UI∑
l=1

h(B,di)(θ)wdlsdl +
K∑
k=1

g(k,di)(θ)
√
pksk + ndi , (2)

where h(B,di)(θ) = hH(B,di) + hH(r,di)ΘG, h(B,di)(θ) ∈ C1×M , g(k,di)(θ) = g(k,di) + hH(r,di)Θh(k,r),

wdl ∈ CM and sdl ∈ C are the information beamformer and symbol intended to IU dl,

respectively, pk and sk are the transmit power of D2D transmitter of pair k and the symbol

intended to D2D receiver of pair pair k, respectively, and ndi ∼ CN (0, 1) is the zero-mean

additive white Gaussian noise (AWGN) with unit variance at IU di.

2) Received signals at EUs: During the energy transfer period of te, the signal received at

EU ej ∈ UE consists of i) the signal transmitted directly from BS, ii) the signal transmitted from

BS and reflected by IRS, iii) the signal transmitted directly from the D2D transmitter of pair k,

and iv) the signal transmitted from the D2D transmitter reflected by IRS. Let yej be the signal

received at EU ej . Then, yej is determined by

yej =

UE∑
l=1

h(B,ej)(θ)velsel +
K∑
k=1

g(k,ej)(θ)
√
pks

d
k + nej , (3)

where h(B,ej)(θ) = hH(B,ej) + hH(r,ej)ΘG, h(B,ej)(θ) ∈ C1×M , g(k,ej)(θ) = g(k,ej) + hH(r,ej)Θh(k,r),

vel ∈ CM and sel ∈ C are the energy beamformer and energy symbol intended to EU el,

respectively, and nej ∼ CN (0, 1) is the additive white Gaussian noise at EU ej . Here, the energy

symbol does not carry any information [19].

3) Signals at D2D receivers: As mentioned earlier, the D2D pairs work during both ti and

te. In particular, during ti, the signal at D2D receiver of pair k ∈ K consists of i) the signal

transmitted directly from the D2D transmitter of pair k, ii) the signal transmitted from the D2D
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transmitter and reflected by the IRS, iii) the signals transmitted from the D2D transmitters of

pairs l,∀l ∈ K \ {k}, and iv) the signals corresponding to the IUs transmitted from the BS and

reflected by the IRS.

The signals at the D2D receivers during te are formulated similar to those during ti. However,

during te, the BS transmits energy symbols rather than the data. Therefore, the signals at the

D2D receivers during te should include the signals corresponding to the EUs transmitted from

the BS and reflected by the IRS. Let yti,k and yte,k denote the signal at D2D receiver of pair k.

Then, yti,k and yte,k can be expressed as follows:

yti,k = hk(θ)
√
pksk +

∑
l∈K\{k}

gl,k(θ)
√
plsl +

UI∑
i=1

g(B,k)(θ)wdisdi + nk,

yte,k = hk(θ)
√
pksk +

∑
l∈K\{k}

gl,k(θ)
√
plsl +

UE∑
j=1

g(B,k)(θ)vejsej + nk, (4)

where hk(θ) = hk+hH(r,k)Θh(k,r), g(l,k)(θ) = g(l,k) +hH(r,k)Θh(l,r), g(B,k)(θ) = gH(B,k) +hH(r,k)ΘG,

and nk ∼ CN (0, 1) is an additive white Gaussian noise at D2D receiver of pair k.

To simplify the presentation, we define the following vectors: w , {wdi , di ∈ UI},v ,

{vej , ej ∈ UE},θ , (θ1, . . . , θN), t , {ti, te}, and p , {pk, k ∈ K}. Then, we can determine

the throughput of the IUs, that of the D2D pairs, and the harvested energy of EUs as follows.

The throughput of IU di (nats/s/Hz) during the data transfer period of ti is given by

tiRti,di(w,p,θ), (5)

where Rti,di(w,p,θ) = ln
(
1+
|h(B,di)(θ)wdi |2

ψti,di(w,p,θ)

)
, and ψti,di(w,p,θ) =

∑
l 6=i,dl∈UI |h(B,di)(θ)wdl|2+∑K

k=1 pk|g(k,di)(θ)|2 + σ2
di

.

Let ρ ∈ [0, 1] denote the energy conversion efficiency of the EUs. The amount of harvested

energy of EU ej during period te is given by

teρEte,ej(v,p,θ), (6)

where Ete,ej(v,p,θ) =

UE∑
l=1

|h(B,ej)(θ)vel |2 +
K∑
k=1

pk|g(k,ej)(θ)|2.

Note that in (6), the energy harvested from the background noise is ignored since the energy

is very small compared with that from the beamforming and interference signals.

The throughput achieved by each D2D pair is the total throughput achieved by the D2D pair

in both ti and te. Thus, the throughput of D2D pair k (nats/s/Hz) is determined by

tiRti,k(w,p,θ) + teRte,k(v,p,θ), (7)
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where Rti,k(w,p,θ) = ln(1 +
pk|hk(θ)|2

ψti,k(w,p,θ)
) and Rte,k(v,p,θ) = ln(1 +

pk|hk(θ)|2

ψte,k(v,p,θ)
). Here,

ψti,k(w,p,θ) and ψte,k(v,p,θ) are defined as follows:

ψti,k(w,p,θ) =
∑

l∈K\{k} pl|gl,k(θ)|2 +
∑

di∈UI |g(B,k)(θ)wdi |2 + σ2
k,

ψte,k(v,p,θ) =
∑

l∈K\{k} pl|gl,k(θ)|2 +
∑

ej∈UE |g(B,k)(θ)vej |2 + σ2
k.

B. Problem Formulation

In this work, we aim to maximize the worst rate of the IUs, subject to the harvested energy

requirements of the EUs and D2D rate thresholds. To achieve this goal, we optimize the i)

information beamformer w, ii) energy beamformer v, iii) transmit power of D2D transmitters

p, iv) factions of time used for the data transmission and energy transfer of the BS t, and

v) reflection coefficient θ. In particular, we investigate the max-min throughput optimization

problem as follows:

max
w,v,p,t=(ti,te)∈R2

+,θ
f(w,v,p, t,θ) , min

di∈UI
tiRti,di(w,p,θ) (8a)

s.t. (1),

teρEte,ej(v,p,θ) ≥ emin,∀ej ∈ UE, (8b)

tiRti,k(w,p,θ) + teRte,k(v,p,θ) ≥ Rk,min,∀k ∈ K, (8c)

ti + te ≤ 1, (8d)

ti
∑
di∈UI

‖wdi‖2 + te
∑
ej∈UE

‖vej‖2 ≤ PB,max, (8e)

‖wdi‖2 ≤ PB,max; ‖vej‖2 ≤ PB,max, (8f)

pk ≤ Pk,max,∀k ∈ K, (8g)

where emin is the energy threshold of the EUs, Rk,min is the D2D rate threshold, Pk,max and

PB,max are the power budgets of the D2D transmitter of pair k and BS, respectively. The

constraint in (1) is the uni-modulus condition of the IRS elements. The constraint in (8b) is the

minimum harvesting energy requirement of each EU, and the constraint in (8c) is the minimum

data rates of the D2D pairs. The constraints in (8e), (8f), and (8g) represents the transmit power

constraints of the BS and the D2D pairs. It can be observed from (8) that the objective function

given in (8a) and the constraints in (1), (8b), (8c) and (8e) are nonconvex. Thus, the optimization

problem in (8) is nonconvex and difficult to handle due to the time splitting variables and phase
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shift optimization. To develop the path-following algorithm that improves its feasible value in

each iteration, we introduce an inner convex approximation of the nonconvex objective and these

nonconvex contraints, which is presented in the next section.

III. PATH-FOLLOWING ALGORITHM

We first introduce two new variables τi and τe that are defined as τi = 1/ti and τe = 1/te.

Then, the optimization problem in (8) is reformulated by

max
w,v,p,τ=(τi,τe)∈R2

+,θ
f(w,v,p, τ ,θ) , min

di∈UI
(1/τi)Rτi,di(w,p,θ) (9a)

s.t. (1),

(1/τe)ρEτe,ej(v,p,θ) ≥ emin,∀ej ∈ UE, (9b)

(1/τi)Rτi,k(w,p,θ) + (1/τe)Rτe,k(v,p,θ) ≥ Rk,min,∀k ∈ K, (9c)

1/τi + 1/τe ≤ 1, (9d)

(1/τi)
∑
di∈UI

‖wdi‖2 + (1/τe)
∑
ej∈UE

‖vej‖2 ≤ PB,max, (9e)

‖wdi‖2 ≤ PB,max, ‖vej‖2 ≤ PB,max, (9f)

pk ≤ Pk,max, ∀k ∈ K. (9g)

As mentioned earlier, the constraint in (1) is nonconvex, and thus before solving the optimiza-

tion problem, we relax this constraint. In particular, from (1), we have the equivalent condition as∑N
n=1 |θn|2 = N . Indeed, for θ = {(|θn| ∈ (0, 1)),∀n ∈ N}, it follows that |θn|2 ≤ |θn|,∀n ∈ N

and |θn|2 = |θn| when the constraint in (1) is hold. For |θn|2 ≤ |θn|,∀n ∈ N , it is true that∑N
n=1 |θn|2 ≤

∑N
n=1 |θn|. We thus obtain the following inequality

1∑N
n=1 |θn|2

≥ 1∑N
n=1 |θn|

=
1

N
. (10)

The equality condition in (10) holds when the constraint in (1) is satisfied. Based on (10), we

define a variable of Ω(θ) as follows:

Ω(θ) =
1

N
− 1∑N

n=1 |θn|2
. (11)

Ω(θ) measures the degree of satisfaction of the constraint in (12) in the sense that Ω(θ) ≤ 0

for |θn| ≤ 1 and Ω(θ) = 0 if and only if θ = {(|θn| = 1),∀n ∈ N}. Based on the above

manipulations, we can relax the constraint in (1) as follows:

|θn|2 ≤ 1, ∀n ∈ N . (12)
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Now, we incorporate Ω(θ) given in (11) as a penalty function into the objective function in (9a),

and we use the constraint in (12) instead of the constraint in (1). The optimization problem in

(9) is reformulated as follows:

max
w,v,p,τ=(τi,τe)∈R2

+,θ
f(w,v,p, τ ,θ) , min

di∈UI
(1/τi)Rτi,di(w,p,θ) + ηΩ(θ) (13a)

s.t. (12), (9b)− (9g), (13b)

where η is the penalty parameter.

The optimization problem given in (13) is still nonconvex because the objective function

in (13a) and the constraints in (8b) and (8c) are nonconvex. Solving this problem is still

challenging, especially dealing with the phase shift optimization. Nevertheless, we observe that

by fixing either (w,v,p, τ = (τi, τe)) or phase shifts θ, the resulting problem (13) can be solved

efficiently. Therefore, we propose to use an alternating optimization technique [20] to solve the

problem given in (13). In particular, we divide the problem (13) into two sub-problems that are

alternatively optimized at each round, i.e., iteration. The first sub-problem, i.e., sub-problem 1,

aims to optimize (w,v,p, τ = (τi, τe)), and the second sub-problem, i.e., sub-problem 2, aims

to optimize θ.

Let (w(κ), v(κ), p(κ), τ (κ), θ(κ)) be a feasible point of (13) that is found from the (κ − 1)-th

iteration. In iteration κ, we fix θ = θ(κ) and determine w(κ+1), v(κ+1), p(κ+1), and τ (κ+1), then

we fix w = w(κ+1),v = v(κ+1),p = p(κ+1), and τ = τ (κ+1) to determine θ(κ+1).

A. Sub-problem 1

In this sub-problem, we fix θ(κ) and we have the following optimization problem:

max
w,v,p,τ=(τi,τe)∈R2

+

fsub−1(w,v,p, τ ) , min
di∈UI

(1/τi)Rτi,di(w,p, θ
(κ)) (14a)

s.t. (9d)− (9g),

(1/τe)ρEτe,ej(v,p, θ
(κ)) ≥ emin,∀ej ∈ UE, (14b)

(1/τi)Rτi,k(w,p, θ
(κ)) + (1/τe)Rτe,k(v,p, θ

(κ)) ≥ Rk,min,∀k ∈ K. (14c)

To solve the sub-problem given in (14), we convert the nonconvex objective function and the

nonconvex constraints in (14b) and in (14c) to the convex ones. For the objective function, we ap-

ply the inequalities (A.5) in the Appendix to (1/τi)Rτi,di(w,p, θ
(κ)) with x = |h(B,di)(θ

(κ))wdi|2,
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y = ψti,di(w,p, θ
(κ)), t = τi, and x̄ = |h(B,di)(θ

(κ))w
(κ)
di
|2, ȳ = ψti,di(w

(κ), p(κ), θ(κ)), t̄ = τ
(κ)
i .

Then, we have

(1/τi)Rτi,di(w,p, θ
(κ)) ≥ a

(κ)
τi,di

+ b
(κ)
τi,di

(
2−
|h(B,di)(θ

(κ))w
(κ)
di
|2

|h(B,di)(θ
(κ))wdi |2

− ψti,di(w,p, θ
(κ))

ψti,di(w
(κ), p(κ), θ(κ))

)
− c(κ)

τi,di
τi

≥ a
(κ)
τi,di

+ b
(κ)
τi,di

(
2−

|h(B,di)(θ
(κ))w

(κ)
di
|2

2<{(h(B,di)(θ
(κ))wdi)(h(B,di)(θ

(κ))w
(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2

− ψti,di(w,p, θ
(κ))

ψti,di(w
(κ), p(κ), θ(κ))

)
− c(κ)

τi,di
τi

, R
(κ)
τi,di

(w,p, θ(κ)), (15)

over the trust region 2<{(h(B,di)(θ
(κ))wdi)(h(B,di)(θ

(κ))w
(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2 ≥ 0 for

0 < a
(κ)
τi,di

=
2

τ
(κ)
i

ln(1 +
|h(B,di)(θ

(κ))w
(κ)
di
|2

ψti,di(w
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τi,di

=
|h(B,di)(θ

(κ))w
(κ)
di
|2/ψti,di(w(κ), p(κ), θ(κ))

τ
(κ)
i (1 + |h(B,di)(θ

(κ))w
(κ)
di
|2/ψti,di(w(κ), p(κ), θ(κ)))

,

0 < c
(κ)
τi,di

=
ln(1 + |h(B,di)(θ

(κ))w
(κ)
di
|2/ψti,di(w(κ), p(κ), θ(κ)))

(τ
(κ)
i )2

.

Function R
(κ)
τi,di

(w,p, θ(κ)) is now concave. Next, we consider the constraint in (14b). We use

the popular inequality given by

x2 ≥ 2xx̄− x̄2,∀x > 0, x̄ > 0. (16)

Then, the nonconvex constraint in (14b) can be replaced by the following convex constraint

Eτe,ej(v,p, θ
(κ)) ≥

UE∑
l=1

[
2<{(h(B,ej)(θ

(κ))vel)(h(B,ej)(θ
(κ))v(κ)

el
)∗} − |h(B,ej)(θ

(κ))v(κ)
el
|2
]

+
K∑
k=1

pk|g(k,ej)(θ
(κ))|2

, E(κ)
τe,ej

(v,p, θ(κ)) ≥ eminτe/ρ. (17)

For the nonconstraint in (14c), we apply the inequalities in (A.5) in the Appendix to (1/τi)Rτi,k(w,p, θ
(κ))

with x = pk|hk(θ(κ))|2, y = ψti,k(w,p, θ
(κ)), t = τi and x̄ = p(κ)|hk(θ(κ))|2, ȳ = ψti,k(w

(κ), p(κ), θ(κ)), t̄ =

τ
(κ)
i . Then, we have

(1/τi)Rτi,k(w,p, θ
(κ)) ≥ a

(κ)
τi,k

+ b
(κ)
τi,k

(2− p
(κ)
k

pk
− ψti,k(w,p, θ

(κ))

ψti,k(w
(κ), p(κ), θ(κ))

)− c(κ)
τi,k
τi

, R
(κ)
τi,k

(w,p, θ(κ)), (18)
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where

0 < a
(κ)
τi,k

=
2

τ
(κ)
i

ln(1 +
p

(κ)
k |hk(θ(κ))|2

ψti,k(w
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τi,k

=
p

(κ)
k |hk(θ(κ))|2/ψti,k(w(κ), p(κ), θ(κ))

τ
(κ)
i (1 + p(κ)|hk(θ(κ))|2/ψti,k(w(κ), p(κ), θ(κ)))

,

0 < c
(κ)
τi,k

=
ln(1 + p

(κ)
k |hk(θ(κ))|2/ψti,k(w(κ), p(κ), θ(κ)))

(τ
(κ)
i )2

.

Similarly, we apply the inequalities in (A.5) in the Appendix to (1/τe)Rτe,k(v,p, θ
(κ)) with x =

pk|hk(θ(κ))|2, y = ψte,k(v,p, θ
(κ)), t = τi, and x̄ = p

(κ)
k |hk(θ(κ))|2, ȳ = ψte,k(v

(κ), p(κ), θ(κ)), t̄ =

τ
(κ)
e . Then, we have

(1/τe)Rτe,k(v,p, θ
(κ)) ≥ a

(κ)
τe,k

+ b
(κ)
τe,k

(
2− p

(κ)
k

pk
− ψte,k(v,p, θ

(κ))

ψte,k(v
(κ), p(κ), θ(κ))

)
− c(κ)

τe,k
τe

, R
(κ)
τe,k

(v,p, θ(κ)), (19)

where

0 < a
(κ)
τe,k

=
2

τ
(κ)
e

ln(1 +
p

(κ)
k |hk(θ(κ))|2

ψte,k(v
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τe,k

=
p

(κ)
k |hk(θ(κ))|2/ψte,k(v(κ), p(κ), θ(κ))

τ
(κ)
e (1 + p

(κ)
k |hk(θ(κ))|2/ψte,k(v(κ), p(κ), θ(κ)))

,

0 < c
(κ)
τe,k

=
ln(1 + p

(κ)
k |hk(θ(κ))|2/ψte,k(v(κ), p(κ), θ(κ)))

(τ
(κ)
e )2

.

Based on (18) and (19), the nonconvex constraint in (14c) is innerly approximated by the

following convex constraint

R
(κ)
τi,k

(w,p, θ(κ)) +R
(κ)
τe,k

(v,p, θ(κ)) ≥ Rk,min,∀k ∈ K. (20)

Given (15), (17) and (20), the sub-problem 1 can be expressed as

max
w,v,p,τ=(τi,τe)∈R2

+

f
(κ)
sub−1(w,v,p, τ , θ(κ))

, min
di∈UI

R
(κ)
τi,di

(w,p, θ(κ)) + ηΩ(θ(κ)) (21a)

s.t. (9d)− (9g), (17) and (20).

Function f
(κ)
sub−1(w,v,p, τ , θ(κ)) is concave since the first term in (21a) is concave (i.e., the

minimum of concave function [21]) and the second term is concave. Thus, instead of (14), we

solve the convex optimization problem (21), which also generates (w(κ+1), v(κ+1), p(κ+1), τ (κ+1))
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in the next iteration. The computational complexity of the algorithm to solve the convex problem

in (21) is [22]

O(α2β2.5 + β3.5), (22)

where α = 2(M + 1) + K that is the number of the decision variables and β = UI + 2(UE +

K + 1) that is the number of the constraints. Note that (w(κ), v(κ), p(κ), τ (κ)) is a feasible point

to (21), meaning that f (κ)
sub−1(w(κ), v(κ), p(κ), τ (κ), θ(κ)) = fsub−1(w(κ), v(κ), p(κ), τ (κ)). Meanwhile,

(w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) is the optimal solution of (21), and thus we have

f
(κ)
sub−1(w(κ+1), v(κ+1), p(κ+1), τ (κ+1), θ(κ)) > f

(κ)
sub−1(w(κ), v(κ), p(κ), τ (κ), θ(κ)), (23)

for (w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) 6= (w(κ), v(κ), p(κ), τ (κ)). Consider again (15), we have

f(w(κ), v(κ), p(κ), τ (κ), θ(κ)) = f
(κ)
sub−1(w(κ), v(κ), p(κ), τ (κ), θ(κ)) (24)

< f
(κ)
sub−1(w(κ+1), v(κ+1), p(κ+1), τ (κ+1), θ(κ)) (25)

≤ f(w(κ+1), v(κ+1), p(κ+1), τ (κ+1), θ(κ)). (26)

This shows that the optimal solution (w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) of (21) satisfies the conver-

gence condition: f(w(κ+1), v(κ+1), p(κ+1), τ (κ+1), θ(κ)) > f(w(κ), v(κ), p(κ), τ (κ), θ(κ)).

B. Sub-problem 2

We fix variables w(κ), v(κ), p(κ), τ (κ) and optimize θ. Thus, we have the following problem:

max
θ

fsub−2(w(κ), v(κ), p(κ), τ (κ),θ) , min
di∈UI

(1/τ
(κ)
i )Rτi,di(w

(κ), p(κ),θ) + ηΩ(θ) (27a)

s.t. (12),

(1/τ (κ)
e )ρEτe,ej(v

(κ), p(κ),θ) ≥ emin,∀ej ∈ UE, (27b)

(1/τ
(κ)
i )Rτi,k(w

(κ), p(κ),θ) + (1/τ (κ)
e )Rτe,k(v

(κ), p(κ),θ) ≥ Rk,min,∀k ∈ K. (27c)

Similar to Section III-A, to solve the problem in (27), we convert the nonconvex objective

function in (27a), and the nonconvex constraints in (27b) and (27c) to the convex ones. For

this, we first rewrite h(B,di)(θ), h(B,ej)(θ), g(k,di)(θ), g(k,ej)(θ), hk(θ), gl,k(θ) and g(B,k)(θ)

as h(B,di)(θ) = hH(B,di) + θdiag(hH(r,di))G, h(B,ej)(θ) = hH(B,ej) + θdiag(hH(r,ej))G, g(k,di)(θ) =

g(k,di) +θdiag(hH(r,di))hk,r, g(k,ej)(θ) = g(k,ej) +θdiag(hH(r,ej))hk,r, hk(θ) = hk+θdiag(hH(r,k))hk,r,

gl,k(θ) = gl,k + θdiag(hH(r,k))hl,r and g(B,k)(θ) = gH(B,k) + θdiag(hH(r,k))G. Then, we convert the

noncovex objective function and the nonconvex constraints in (27) as follows.
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We apply inequalities in (A.3) in the Appendix to the term Rτi,di(w
(κ), p(κ),θ) in (27a) with

x = |h(B,di)(θ)w
(κ)
di
|2, y = ψti,di(w

(κ), p(κ),θ), x̄ = |h(B,di)(θ
(κ))w

(κ)
di
|2, and ȳ = ψti,di(w

(κ), p(κ), θ(κ)).

Then, we have

Rτi,di(w
(κ), p(κ),θ)

≥ a
(κ)
τi,di

+ b
(κ)
τi,di

(
2−
|h(B,di)(θ

(κ))w
(κ)
di
|2

|h(B,di)(θ)w
(κ)
di
|2
− ψti,di(w

(κ), p(κ),θ)

ψti,di(w
(κ), p(κ), θ(κ))

)
≥ a

(κ)
τi,di

+ b
(κ)
τi,di

(
2−

|h(B,di)(θ
(κ))w

(κ)
di
|2

2<{(h(B,di)(θ)w
(κ)
di

)(h(B,di)(θ
(κ))w

(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2
− ψti,di(w

(κ), p(κ),θ)

ψti,di(w
(κ), p(κ), θ(κ))

)
, R

(κ)
τi,di

(w(κ), p(κ),θ) (28)

over the trust region 2<{(h(B,di)(θ)w
(κ)
di

)(h(B,di)(θ
(κ))w

(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2 ≥ 0, where

0 < a
(κ)
τi,di

= ln(1 +
|h(B,di)(θ

(κ))w
(κ)
di
|2

ψti,di(w
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τi,di

=
|h(B,di)(θ

(κ))w
(κ)
di
|2/ψti,di(w(κ), p(κ), θ(κ))

1 + |h(B,di)(θ
(κ))w

(κ)
di
|2/ψti,di(w(κ), p(κ), θ(κ))

.

Moreover, using the inequality given in (16), we have

Ω(θ) ≥ 1

N
− 1∑N

n=1(2<{(θ(κ)
n )∗θn} − |θ(κ)

n |2)
, Ω(κ)(θ) (29)

over the trust region
∑N

n=1(2<{(θ(κ)
n )∗θn} − |θ(κ)

n |2) ≥ 0. From (28) and (29), we have

fsub−2(w(κ), v(κ), p(κ), τ (κ),θ) ≥ f
(κ)
sub−2(w(κ), v(κ), p(κ), τ (κ),θ)

, min
di∈UI

(1/τ
(κ)
i )R

(κ)
τi,di

(w(κ), p(κ),θ) + ηΩ(κ)(θ) (30)

where f (κ)
sub−2(w(κ), v(κ), p(κ), τ (κ),θ) is now concave since the first term in (30) is concave, i.e.,

a type of minimum of concave function [21], and the second term is already concave.

For the constraint in (27b), by using the inequality (27b), the nonconvex constraint can be

replaced by the following convex constraint:

Eτe,ej(v
(κ), p(κ),θ) ≥

UE∑
l=1

[
2<{(h(B,ej)(θ)v(κ)

el
)(h(B,ej)(θ

(κ))v(κ)
el

)∗} − |h(B,ej)(θ
(κ))v(κ)

el
|2
]

+

+
K∑
k=1

p(κ)
[
2<{g(k,ej)(θ)g(k,ej)(θ

(κ))∗} − |g(k,ej)(θ
(κ))|2

]
, E(κ)

τe,ej
(v(κ), p(κ),θ) ≥ eminτ

(κ)
e /ρ. (31)
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To convert the nonconvex constraint in (27c) to the convex constraint, we apply the inequalities

in (A.3) in the Appendix to the term of Rτi,k(w
(κ), p(κ),θ) in (27c) with x = p(κ)|hk(θ)|2, y =

ψti,k(w
(κ), p(κ),θ), and x̄ = p(κ)|hk(θ(κ))|2, ȳ = ψti,k(w

(κ), p(κ), θ(κ)). Then, we have

Rτi,k(w
(κ), p(κ),θ) ≥ a

(κ)
τi,k

+ b
(κ)
τi,k

(
2− |hk(θ

(κ))|2

|hk(θ)|2
− ψti,k(w

(κ), p(κ),θ)

ψti,k(w
(κ), p(κ), θ(κ))

)
≥ a

(κ)
τi,k

+ b
(κ)
τi,k

(
2− |hk(θ(κ))|2

2<{hk(θ)hk(θ(κ))∗} − |hk(θ(κ))|2
− ψti,k(w

(κ), p(κ),θ)

ψti,k(w
(κ), p(κ), θ(κ))

)
, R

(κ)
τi,k

(w(κ), p(κ),θ) (32)

over the trust region 2<{hk(θ)hk(θ
(κ))∗} − |hk(θ(κ))|2 ≥ 0, where

0 < a
(κ)
τi,k

= ln(1 +
p(κ)|hk(θ(κ))|2

ψti,k(w
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τi,k

=
p(κ)|hk(θ(κ))|2/ψti,k(w(κ), p(κ), θ(κ))

1 + p(κ)|hk(θ(κ))|2/ψti,k(w(κ), p(κ), θ(κ))
.

We do the same way with the term of Rτe,k(v
(κ), p(κ),θ) in (27c) with x = p(κ)|hk(θ)|2, y =

ψte,k(v
(κ), p(κ),θ), and x̄ = p(κ)|hk(θ(κ))|2, ȳ = ψte,k(v

(κ), p(κ), θ(κ)). Then, we have

Rτe,k(v
(κ), p(κ),θ) ≥ a

(κ)
τe,k

+ b
(κ)
τe,k

(
2− |hk(θ

(κ))|2

|hk(θ)|2
− ψte,k(v

(κ), p(κ),θ)

ψte,k(v
(κ), p(κ), θ(κ))

)
≥ a

(κ)
τe,k

+ b
(κ)
τe,k

(
2− |hk(θ(κ))|2

2<{hk(θ)hk(θ(κ))∗} − |hk(θ(κ))|2
− ψte,k(v

(κ), p(κ),θ)

ψte,k(v
(κ), p(κ), θ(κ))

)
, R

(κ)
τe,k

(v(κ), p(κ),θ), (33)

where

0 < a
(κ)
τe,k

= ln(1 +
p(κ)|hk(θ(κ))|2

ψte,k(v
(κ), p(κ), θ(κ))

),

0 < b
(κ)
τe,k

=
p(κ)|hk(θ(κ))|2/ψte,k(v(κ), p(κ), θ(κ))

1 + p(κ)|hk(θ(κ))|2/ψte,k(v(κ), p(κ), θ(κ))
.

Based on (32) and (33), the nonconvex constraint in (27c) is innerly approximated by the

following convex constraint

(1/τ
(κ)
i )R

(κ)
τi,k

(w(κ), p(κ),θ) + (1/τ (κ)
e )R

(κ)
τe,k

(v(κ), p(κ),θ) ≥ Rk,min,∀k ∈ K. (34)

Based on (30), (31), and (34), instead of (27), we solve the following convex optimization

problem

max
θ

f
(κ)
sub−2(w(κ), v(κ), p(κ), τ (κ),θ) (35)

s.t. (12), (31), and (34).
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The solution of (35) is also used as θ(κ+1) in the next iteration. The computational complexity

of the algorithm to solve the convex problem in (35) is O(α2β2.5 + β3.5), where α = N and

β = N + UE + K. The overall algorithm for the max-min throughput optimization problem in

(9) is shown in Algorithm 1. This algorithm is namely N-OTA algorithm, meaning that there

is no orthogonal time allocation between the D2D communications and the integrated data and

energy network. To enhance the computational efficiency of the algorithm, it is important to

generate a feasible point. Moreover, we need to determine the penalty parameter η.

C. Generation of a Feasible Point and Selection of η

We fix τ (0) = (τ
(0)
i , τ

(0)
e ), θ(0) that satisfies the convex constraints in (1) and (9d), and we

randomly generate (w(0), v(0), p(0)) feasible for (9d)-(9g). Then, we solve the following problem

max
w,v,p

µ (36a)

s.t. (9f)− (9g),

(1/τ
(0)
i )R

(κ)
τi,di

(w,p, θ(κ)) ≥ µ,∀di ∈ UI , (36b)

E(κ)
τe,ej

(v,p, θ(κ)) ≥ eminτ
(0)
e µ/ρ, ∀ej ∈ UE, (36c)

R
(κ)
τi,k

(w,p, θ(κ)) +R
(κ)
τe,k

(v,p, θ(κ)) ≥ Rk,minµ,∀k ∈ K, (36d)

(1/τ
(0)
i )

∑
di∈UI

‖wdi‖2 + (1/τ (0)
e )

∑
ej∈UE

‖vej‖2 ≤ PB,max, (36e)

until µ ≥ 1. Solving (36) generates a feasible set of (w(κ), v(κ), p(κ), τ (0) = (τ
(0)
i , τ

(0)
e ), θ(0)) that

is considered to be a feasible point for (9). Then, we can select a value of η as

η = −
[

min
di∈UI

(1/τ
(0)
i )Rτi,di(w

(κ), p(κ), θ(0))

]
/Ω(θ(0)) (37)

so as to ensure the same magnitude between objective function and penalty function [23].

IV. ORTHOGONAL TIME ALLOCATION SCENARIO

In Section III, we consider the IRS-aided DED2D system in which the D2D transmitters

perform their communications during the data transfer and energy transfer time. The N-OTA

scenario can help to improve the spectrum efficiency, but raises the interference management. In

this section, we consider again the IRS-aided DED2D system in which there is an orthogonal time
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Algorithm 1 N-OTA algorithm for (9)

1: Initialize: Generate any values of τ (0) = (τ
(0)
i , τ

(0)
e ) and θ(0) satisfying the convex constraints in (1) and (9d), then solve

(36) to receive a feasible set of (w(κ), v(κ), p(κ), τ (0) = (τ
(0)
i , τ

(0)
e ), θ(0)) for (9). Set κ = 0;

2: Compute η according to (37);

3: repeat

4: Solve the convex problem in (21) for θ = θ(κ) to generate (w(κ+1), v(κ+1), p(κ+1), τ (κ+1));

5: Solve the convex problem in (35) for (w,v,p, τ ) = (w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) to generate θ(κ+1);

6: κ← κ+ 1;

7: until Convergence.

8: Output (w(κ), v(κ), p(κ), τ (κ) = (τ
(κ)
i , τ

(κ)
e ), θ(κ))

allocation (OTA) among the data transfer phase, energy transfer phase, and D2D communication.

In particular, the BS allocates the time fractions to the data transfer, energy transfer, and D2D

communication. As such, the N-OTA can be considered to be the OTA in which time fraction

allocated to the D2D communication is zero. In the OTA scenario, there are no interference

caused by D2D communications to the integrated data and energy network, but the time fractions

for the data and energy transfers reduce. Thus, it is interesting to discuss the efficiency of the

N-OTA and OTA scenarios, which will be presented in the simulation results.

We first introduce a new variable td to indicate the time faction allocated to the D2D com-

munications. Then, the throughput at IUs, the harvested energy at EUs, and the throughput

at the D2D pairs are determined as follows. The throughput at IU di (nats/s/Hz) during time

fraction ti is tiR̃ti,di(w,θ), where Rti,di(w,θ) = ln(1 +
|h(B,di)(θ)wdi |2

ψ̃ti,di(w,θ)
) with ψ̃ti,di(w,θ) =∑

l 6=i,dl∈UI |h(B,di)(θ)wdl |2 + σ2
di

. The harvested energy during time fraction te of EU ej is

teρẼte,ej(v,θ), where Ẽte,ej(v,θ) =

UE∑
l=1

|h(B,ej)(θ)vel |2. The throughput at D2D pair k (nats/s/Hz)

is tdR̃td,k(p,θ), where R̃td,k(p,θ) = ln(1+
pk|hk(θ)|2

ψ̃td,k(w,p,θ)
) with ψ̃td,k(p,θ) =

∑
l∈K\{k} pl|gl,k(θ)|2+

σ2
k.

We now formulate the optimization problem for the OTA scenario. The problem is similar to

(8) in which the variable td that indicates the time fraction allocated to the D2D communications

is included in t, i.e., t = (ti, te, td). Mathematically, the optimization problem is formulated as
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follows:

max
w,v,p,t=(ti,te,td)∈R3

+,θ
f(w,v,p, t,θ) , min

di∈UI
tiR̃ti,di(w,θ) (38a)

s.t. (1),

teρẼte,ej(v,θ) ≥ emin, ∀ej ∈ UE, (38b)

tdR̃td,k(p,θ) ≥ Rk,min,∀k ∈ K, (38c)

ti + te + td ≤ 1, (38d)

ti
∑
di∈UI

‖wdi‖2 + te
∑
ej∈UE

‖vej‖2 ≤ PB,max(1− td), (38e)

‖wdi‖2 ≤ PB,max, ‖vej‖2 ≤ PB,max, (38f)

tdpk ≤ Pk,max,∀k ∈ K. (38g)

To solve the non-convex problem given in (38), we introduce new variables τi = 1/ti, τe =

1/te, and τd = 1/td. Then, the problem in (38) is equivalently expressed as

max
w,v,p,τ=(τi,τe,τd)∈R3

+,θ
f(w,v,p, τ ,θ) , min

di∈UI
(1/τi)R̃τi,di(w,θ) (39a)

s.t. (1),

(1/τe)ρẼτe,ej(v,θ) ≥ emin,∀ej ∈ UE, (39b)

(1/τd)R̃τd,k(p,θ) ≥ Rk,min,∀k ∈ K, (39c)

1/τi + 1/τe + 1/τd ≤ 1, (39d)

(1/τi)
∑
di∈UI

‖wdi‖2 + (1/τe)
∑
ej∈UE

‖vej‖2 ≤ PB,max(1− 1/τd), (39e)

‖wdi‖2 ≤ PB,max, ‖vej‖2 ≤ PB,max, (39f)

pk ≤ Pk,maxτd,∀k ∈ K. (39g)

We further incorporate the penalty function Ω(θ) into the optimization problem in (39) as

max
w,v,p,τ=(τi,τe,τd)∈R3

+,θ
f(w,v,p, τ ,θ) , min

di∈UI
(1/τi)R̃τi,di(w,θ) + ηΩ(θ) (40a)

s.t. (12), (39b)− (39g). (40b)

Similar to Section III, we divide the problem in (40) into two sub-problems that are alternatively

optimized at each round, i.e., iteration. Sub-problem 1 aims to optimize w,v,p, τ = (τi, τe, τd),

and sub-problem 2 is to optimize θ.
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A. Sub-problem 1

In this sub-problem, we fix θ(κ) and solve the following optimization problem:

max
w,v,p,τ=(τi,τe,τd)∈R3

+

fsub−1(w,v,p, τ , θ(κ)) , min
di∈UI

(1/τi)R̃τi,di(w, θ
(κ)) + ηΩ(θ(κ)) (41a)

s.t. (39d)− (39g),

(1/τe)ρẼτe,ej(v, θ
(κ)) ≥ emin,∀ej ∈ UE, (41b)

(1/τd)R̃τd,k(p, θ
(κ)) ≥ Rk,min,∀k ∈ K. (41c)

Suppose that (w(κ), v(κ), p(κ), τ (κ)) is a feasible point for (41) found from iteration (κ − 1). To

solve the problem in (41), we convert the objective function and constraints in (41b) and (41c)

to convex ones as follows. We apply the inequalities in (A.5) in the Appendix to the term of

(1/τi)R̃τi,di(w, θ
(κ)) in the objective function with x = |h(B,di)(θ

(κ))wdi |2, y = ψ̃ti,di(w, θ
(κ)), t =

τi and x̄ = |h(B,di)(θ
(κ))w

(κ)
di
|2, ȳ = ψ̃ti,di(w

(κ), θ(κ)), t̄ = τ
(κ)
i . Then, we have

(1/τi)R̃τi,di(w, θ
(κ))

≥ ã
(κ)
τi,di

+ b̃
(κ)
τi,di

(
2−
|h(B,di)(θ

(κ))w
(κ)
di
|2

|h(B,di)(θ
(κ))wdi|2

− ψ̃ti,di(w, θ
(κ))

ψ̃ti,di(w
(κ), θ(κ))

)
− c̃(κ)

τi,di
τi

≥ ã
(κ)
τi,di

+ b̃
(κ)
τi,di

(
2−

|h(B,di)(θ
(κ))w

(κ)
di
|2

2<{(h(B,di)(θ
(κ))wdi)(h(B,di)(θ

(κ))w
(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2
− ψ̃ti,di(w, θ

(κ))

ψ̃ti,di(w
(κ), θ(κ))

)
−

− c̃(κ)
τi,di

τi

, R̃
(κ)
τi,di

(w, θ(κ)) (42)

over the trust region 2<{(h(B,di)(θ
(κ))wdi)(h(B,di)(θ

(κ))w
(κ)
di

)∗}− |h(B,di)(θ
(κ))w

(κ)
di
|2 ≥ 0, where

0 < ã
(κ)
τi,di

=
2

τ
(κ)
i

ln(1 +
|h(B,di)(θ

(κ))w
(κ)
di
|2

ψ̃ti,di(w
(κ), θ(κ))

),

0 < b̃
(κ)
τi,di

=
|h(B,di)(θ

(κ))w
(κ)
di
|2/ψ̃ti,di(w(κ), θ(κ))

τ
(κ)
i (1 + |h(B,di)(θ

(κ))w
(κ)
di
|2/ψ̃ti,di(w(κ), θ(κ)))

,

0 < c̃
(κ)
τi,di

=
ln(1 + |h(B,di)(θ

(κ))w
(κ)
di
|2/ψ̃ti,di(w(κ), θ(κ)))

(τ
(κ)
i )2

.

Meanwhile, the constraint in (41b) can be replaced by

Ẽτe,ej(v, θ
(κ)) ≥

UE∑
l=1

[
2<{(h(B,ej)(θ

(κ))vel)(h(B,ej)(θ
(κ))v(κ)

el
)∗} − |h(B,ej)(θ

(κ))v(κ)
el
|2
]

, Ẽ(κ)
τe,ej

(v, θ(κ)) ≥ eminτe/ρ. (43)
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Similarly, we apply the inequalities in (A.5) in the Appendix to the term of (1/τd)R̃τd,k(p, θ
(κ)) in

(41c) with x = pk|hk(θ(κ))|2, y = ψ̃td,k(p, θ
(κ)), t = τd, x̄ = p(κ)|hk(θ(κ))|2, ȳ = ψ̃td,k(p

(κ), θ(κ)), t̄ =

τ
(κ)
d . Then, we have

(1/τd)R̃τd,k(p, θ
(κ)) ≥ ã

(κ)
τd,k

+ b̃
(κ)
τd,k

(
2− p

(κ)
k

pk
− ψ̃td,k(p, θ

(κ))

ψ̃td,k(p
(κ), θ(κ))

)
− c̃(κ)

τd,k
τd , R̃

(κ)
τd,k

(p, θ(κ)),

where

0 < ã
(κ)
τd,k

=
2

τ
(κ)
d

ln(1 +
p

(κ)
k |hk|2

ψ̃td,k(p
(κ), θ(κ))

),

0 < b̃
(κ)
τd,k

=
p

(κ)
k |hk|2/ψ̃td,k(p(κ), θ(κ))

τ
(κ)
d (1 + p(κ)|hk|2/ψ̃td,k(p(κ), θ(κ)))

,

0 < c̃
(κ)
τd,k

=
ln(1 + p

(κ)
k |hk|2/ψ̃td,k(p(κ), θ(κ)))

(τ
(κ)
d )2

.

Now, we can reformulate sub-problem 1 as follows:

max
w,v,p,τ=(τi,τe,τd)∈R3

+

f
(κ)
sub−1(w,v,p, τ , θ(κ)) , min

di∈UI
R̃

(κ)
τi,di

(w, θ(κ)) + ηΩ(θ(κ)) (44a)

s.t. (39d)− (39g),

Ẽ(κ)
τe,ej

(v, θ(κ)) ≥ eminτe/ρ,∀ej ∈ UE, (44b)

R̃
(κ)
τd,k

(p, θ(κ)) ≥ Rk,min,∀k ∈ K. (44c)

It can be observed from (44) that f (κ)
sub−1(w,v,p, τ , θ(κ)) is concave. In particular, the first

term in (21a) is concave, i.e., the minimum of concave functions [21], and the second term is

already concave. Therefore, instead of (21), we solve the convex optimization problem given

in (44), and its solution is also used as (w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) in the next iteration. The

computational complexity of the algorithm to solve the problem in (44) is determined by (22),

where α = 2M +K + 3 and β = UI + 2(UE +K + 1).

B. Sub-problem 2

Sub-problem 2 is defined as follows

max
θ

fsub−2(w(κ), v(κ), p(κ), τ (κ),θ) , min
di∈UI

(1/τ
(κ)
i )R̃τi,di(w

(κ),θ) + ηΩ(θ) (45a)

s.t. (12),

(1/τ (κ)
e )ρẼτe,ej(v

(κ),θ) ≥ emin, ∀ej ∈ UE, (45b)

(1/τ
(κ)
d )R̃τd,k(p

(κ),θ) ≥ Rk,min,∀k ∈ K. (45c)
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Similar to Section IV-A, to solve (45), we convert the objective function and the constraints

in (45b) and (45c) as follows. We apply the inequalities in (A.3) in the Appendix to the term

of R̃τi,di(w
(κ),θ) in the objective function with x = |h(B,di)(θ)w

(κ)
di
|2, y = ψ̃ti,di(w

(κ),θ), x̄ =

|h(B,di)(θ
(κ))w

(κ)
di
|2, ȳ = ψ̃ti,di(w

(κ), θ(κ)). Then, we have

R̃τi,di(w
(κ),θ)

≥ ã
(κ)
τi,di

+ b̃
(κ)
τi,di

(
2−

|h(B,di)(θ
(κ))w

(κ)
di
|2

2<{(h(B,di)(θ)w
(κ)
di

)(h(B,di)(θ
(κ))w

(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2
− ψ̃ti,di(w

(κ),θ)

ψ̃ti,di(w
(κ), θ(κ))

)
, R̃

(κ)
τi,di

(w(κ),θ) (46)

over the trust region 2<{(h(B,di)(θ)w
(κ)
di

)(h(B,di)(θ
(κ))w

(κ)
di

)∗} − |h(B,di)(θ
(κ))w

(κ)
di
|2 ≥ 0, where

0 < ã
(κ)
τi,di

= ln
(
1 +
|h(B,di)(θ

(κ))w
(κ)
di
|2

ψ̃ti,di(w
(κ), θ(κ))

)
,

0 < b̃
(κ)
τi,di

=
|h(B,di)(θ

(κ))w
(κ)
di
|2/ψ̃ti,di(w(κ), θ(κ))

(1 + |h(B,di)(θ
(κ))w

(κ)
di
|2/ψ̃ti,di(w(κ), θ(κ)))

.

Moreover, according to (29), we can express Ω(θ) as

Ω(θ) ≥ 1

N
− 1∑N

n=1(2<{(θ(κ)
n )∗θn} − |θ(κ)

n |2)
, Ω(κ)(θ).

For the constraint in (45b), it can be replaced by

Ẽτe,ej(v
(κ),θ) ≥

UE∑
l=1

[
2<{(h(B,ej)(θ)v(κ)

el
)(h(B,ej)(θ

(κ))v(κ)
el

)∗} − |h(B,ej)(θ
(κ))v(κ)

el
|2
]

, Ẽ(κ)
τe,ej

(v(κ),θ) ≥ eminτ
(κ)
e /ρ. (47)

For the constraint in (45c), we also apply the inequalities in (A.3) in the Appendix to R̃τd,k(p
(κ),θ)

with x = p(κ)|hk(θ)|2, y = ψ̃td,k(p
(κ),θ) and x̄ = p(κ)|hk(θ(κ))|2, ȳ = ψ̃td,k(p

(κ), θ(κ)). We have

R̃τd,k(p
(κ),θ) ≥ ã

(κ)
τd,k

+ b̃
(κ)
τd,k

(
2− |hk(θ(κ))|2

2<{(hk(θ))(hk(θ(κ)))∗} − |hk(θ(κ))|2
− ψ̃td,k(p

(κ),θ)

ψ̃td,k(p
(κ), θ(κ))

)
, R̃

(κ)
τd,k

(p(κ),θ) (48)

over the trust region 2<{(hk(θ))(hk(θ
(κ)))∗} − |hk(θ(κ))|2 ≥ 0, where

0 < ã
(κ)
τd,k

= ln(1 +
p(κ)|hk|2

ψ̃td,k(p
(κ), θ(κ))

),

0 < b̃
(κ)
τd,k

=
p(κ)|hk(θ(κ))|2/ψ̃td,k(p(κ), θ(κ))

1 + p(κ)|hk(θ(κ))|2/ψ̃td,k(p(κ), θ(κ))
.
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From the above derivations, we can reformulate sub-problem 2 as follows

max
θ

f
(κ)
sub−2(w(κ), v(κ), p(κ), τ (κ),θ) , min

di∈UI
(1/τ

(κ)
d )R̃

(κ)
τd,di

(w(κ),θ) + ηΩ(κ)(θ) (49a)

s.t. (12),

Ẽ(κ)
τe,ej

(v(κ),θ) ≥ eminτ
(κ)
e /ρ,∀ej ∈ UE, (49b)

(1/τ
(κ)
d )R̃

(κ)
τd,k

(p(κ),θ) ≥ Rk,min,∀k ∈ K. (49c)

The problem in (49) is now convex, and the computational complexity of the algorithm to solve

this problem is determined by (22), where α = N and β = N +UE +K. The overall algorithm

to solve the optimization problem in (39) is presented in Algorithm 2. Similar to Algorithm 1,

it is important to generate a feasible point as well as to select the penalty parameter η for

Algorithm 2, which is omitted here due to the paper length constraint.

Algorithm 2 OTA Algorithm for solving the problem in (39)

1: Initialize: Find a feasible point (w(κ), v(κ), p(κ), τ (0) = (τ
(0)
i , τ

(0)
e , τ

(0)
d ), θ(0)) for the problem in (39). Set κ = 0;

2: Compute η according to (37) from the obtained feasible set;

3: repeat

4: Solve the convex problem in (44) for θ = θ(κ) to generate (w(κ+1), v(κ+1), p(κ+1), τ (κ+1));

5: Solve the convex problem in (49) for (w,v,p, τ ) = (w(κ+1), v(κ+1), p(κ+1), τ (κ+1)) to generate θ(κ+1);

6: κ← κ+ 1;

7: until Convergence.

8: Output (w(κ), v(κ), p(κ), τ (κ) = (τ
(κ)
i , τ

(κ)
e , τ

(κ)
d ), θ(κ))

V. PERFORMANCE EVALUATION

In this section, we present and discuss simulation results obtained by the proposed algorithms.

For an ease of presenting the results, we consider a scenario that consists of one BS, one IRS and

two IUs, two EUs and three D2D pairs. Nevertheless, the algorithms can scale efficiently to bigger

network sizes. The coordinates of the BS and IRS are at (40, 0, 25) and (0, 60, 40), respectively.

Meanwhile, the IUs, EUs and D2D pairs are randomly located in an area of 120m× 120m. We

consider the large-scale fading between the BS and IRS with an coefficient γBS−IRS (in dB)

determined as γBS−IRS = GBS +GIRS − 35.9− 22 log10(dBS−IRS), where GBS = 5 dBi is the

antenna gain of the BS, GIRS = 5 dBi is the gain of the IRS elements, respectively, and dBS−IRS

is the distance between the BS and IRS. Similar to [24], we assume a full-rank BS-to-IRS LoS

channel matrix that is defined as [G]n,m = ejπ
(

(n−1) sin θ̄LoS(n) sin φ̄LoS(n)+(m−1) sin θLoS(n) sinφLoS(n)
)
,
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where θLoS(n) and φLoS(n) are uniformly distributed as θLoS(n) ∼ U(0, π) and φLoS(n) ∼

U(0, 2π), respectively, and θ̄LoS(n) = π − θLoS(n) and φ̄LoS(n) = π + φLoS(n). The channel

from the BS to each user at a distance of d meters is determined by
√

10−αPL/10h̃, where h̃ is

the channel gain from the BS to the user, and αPL is the path-loss of the channel. In particular,

for the EUs, h̃ is the Rician fading channel gain associated with a Rician factor of 10 dB, and

for other users, i.e., the IUs and D2D users, h̃ is the normalized Rayleigh fading channel gain.

The path-loss αPL (in dB) is determined as αPL = 30 + 10γ log10(d), where γ is the path-loss

exponent. In particular, γ is set to 3 for the Rician channels and is set to 2 for the Rayleigh

channels. Other simulation parameters are provided in Table I that are similar to those in [3].

TABLE I: Simulation parameters.

Parameters Value Parameters Value Parameters Value Parameters Value

M 6 N 10 ρ 0.5 emin 0 dBm

UI 2 UE 2 K 3 Rk,min 0.4 bps/Hz

B 10 MHz PB,max 20 dBm Pk,max 20 dBm σ2
di
, σ2
k -174 dBm/Hz

For the performance comparison, we consider the following algorithms:

• N-OTA: This is the alternating descent algorithm as described in Section III (shown in

Algorithm 1), which is proposed to solve the optimization problem given in (9).

• N-OTA with random θ: This algorithm is similar to the N-OTA algorithm in which the

phase shifts of the IRS are random.

• OTA: This is the alternating descent algorithm as described in Section IV (shown in

Algorithm 2), which is proposed to solve the optimization problem given in (39).

• OTA with random θ: This is similar to the OTA algorithm in which the phase shifts of

the IRS are random.

First, we discuss the convergence of the algorithms and the max-min throughput obtained

by the algorithms. As shown in Fig. 2(a), all the algorithms are able to rapidly converge to

their stable values. As seen, the OTA algorithm converges faster than the N-OTA algorithm.

Moreover, max-min throughput obtained by the IUs with the OTA algorithm is higher than that

with the N-OTA algorithm. This is due to the fact that there exists interference caused by the

D2D communications to the IUs in the N-OTA scenario. This reduces the SINR at the IUs and

decreases their throughput. It can also be seen from Fig. 2(a) that the max-min throughputs
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Fig. 2: a) The convergence of the algorithms and b) the max-min throughput versus BS’s power

budget PB,max.

obtained by the OTA and N-OTA are much higher than those obtained by the OTA and N-OTA

with random θ, respectively. This demonstrates the effectiveness of our proposed algorithms.

Next, we discuss the impact of the maximum transmit power, i.e., PB,max, of the BS on

the max-min throughput achieved by the IUs. As shown in Fig. 2(b), as PB,max increases, the

max-min throughput of IUs increases. This is because of that the data throughput of each IU is

proportional to PB,max. Moreover, it can be seen from the figure that over the values of PB,max,

the max-min throughputs obtained by the proposed algorithms with phase shift optimization

are always higher than those obtained by the baseline algorithms with random θ. For example,

the N-OTA algorithm improves the max-min throughput up to 22% compared with the N-OTA

algorithm with random θ.

Since the integrated data and energy network coexists with the D2D communications, it is

important to show the impact of the D2D rate threshold, i.e., Rk,min, on the max-min throughput

achieved by the IUs. As shown in Fig. 3(a), as Rk,min increases, the throughputs obtained by

all the algorithms decrease. This result can be explained as follows. With the N-OTA algorithm,

as Rk,min increases, the D2D transmitters need to transmit their signals with higher power. This

increases the interference from D2D communications to the IUs, which reduces the SINR at

IUs and decreases their throughputs. With the OTA algorithm, as Rk,min increases, more time is

allocated to the D2D communications, which reduces the time assigned to the IUs and decreases

their throughputs. It is interesting that as Rk,min increases, the throughput obtained by the OTA
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Fig. 3: a) Achievable max-min throughput versus (a) the D2D rate threshold Rk,min and b) the

number of D2D pairs K

algorithm decreases faster than that obtained by the N-OTA algorithm. The reason may be that

the phase shift optimization of the N-OTA algorithms helps to reduce the interference caused by

the D2D communications to the IUs. Therefore, as Rk,min increases, the increase of interference

caused by the D2D communications may not be significant, and the throughput obtained by the

N-OTA algorithm slowly decreases. Thus, as Rk,min is high, i.e., ≥ 0.7 bps/Hz, the throughput

obtained by the N-OTA algorithm is higher than that obtained by the OTA algorithm. These

results further imply that to achieve the high throughput for the IUs, the OTA scenario can be

considered when Rk,min is low, and the N-OTA scenario is considered when Rk,min is high.

Now, we discuss the impact of number of D2D pairs K on the max-min throughput of IUs,

and the results are shown in Fig. 3(b). As seen, as K increases, the throughputs obtained by both

the N-OTA and OTA algorithms decrease. In particular for the N-OTA algorithm, the reason is

that as K increases, the interference caused by the D2D communications to the IUs increases.

For the OTA algorithm, as K increases, the SINR at each D2D receiver reduces due to the

increase of interference from the D2D transmitters. To satisfy the fixed D2D rate threshold,

more time is required (and allocated) to the D2D communications. As a result, this reduces the

time allocated to the IUs and their throughputs. Note that over the values of K, the max-min

throughput with the phase shift optimization is always higher than that with the random θ.

It is worth noting that the size of the IRS, i.e., N , can also affect the max-min throughput

achieved by the IUs. As shown in Fig. 4(a), as N increases, the max-min throughputs achieved by
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Fig. 4: Achievable max-min throughput versus a) the number of IRS elements and b) the number

of antennas at the BS.

both the N-OTA and OTA algorithms increase. The reason is that the SINR at the IUs increases

as N increases. However, the the increasing rate of the N-OTA algorithms is faster that of the

OTA algorithm. This can explained based on the definition of the throughput of the IUs (in

Sections III and IV). Indeed, in both the N-OTA and OTA scenarios, the throughput of each IU

is in the form of tiRti,di , where ti is the time allocated to IU i and Rti,di is the data rate obtained

by the IU. In the N-OTA scenario, there is no time allocated to the D2D communications, and

thus ti is larger than that in the OTA scenario. Therefore, as N increases, Rti,di obtained by the

N-OTA algorithm increases faster than that obtained by the OTA algorithm. The throughput of

the IUs also increases as the number of antennas of the BS increases as shown in Fig. 4(b). This

is obvious since the SINR at the IUs increases.

VI. CONCLUSIONS

In this paper, we have considered the IRS-aided DED2D system in which the integrated

data and energy network and D2D communication coexist with the assistance of IRS. We

have formulated the max-min throughput optimization problem with the aim of maximizing

the minimum throughput of the IUs, subject to the harvested energy requirement of the EUs

and the data rate threshold of the D2D communications. The max-min throughput optimization

problem is computationally intractable, and we have proposed the alternating descent algorithm

to solve it. We have further considered the max-min throughput optimization problem in the OTA
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scenario in which there is the time allocation to the D2D communications. We have provided

the simulation results to evaluate and compare the effectiveness of the proposed algorithms.

APPENDIX A: FUNDAMENTAL INEQUALITIES

Function f(x) = ln(1 + 1/x) is convex on the domain x > 0

ln(1 +
1

x
) ≥ ln(1 +

1

x̄
) +

1

1 + x̄

(
1− x

x̄

)
. (A.1)

The convex function f(x, y) = ln(1 + 1
xy

) on R2
+

ln(1 +
1

xy
) ≥ f(x̄, ȳ) + 〈∇f(x̄, ȳ), (x, y)− (x̄, ȳ)〉

≥ ln(1 + 1/x̄ȳ) +
1/x̄ȳ

t̄(1 + 1/x̄ȳ)
(2− x

x̄
− y

ȳ
). (A.2)

Substituting x→ 1/x and x̄→ 1/x̄

ln(1 +
x

y
) ≥ ln(1 + x̄/ȳ) +

x̄/ȳ

(1 + x̄/ȳ)
(2− x̄

x
− y

ȳ
). (A.3)

From [25], the convex function f(x, y, t) = 1
t

ln(1 + 1
xy

) on R3
+. Therefore

1

t
ln(1 +

1

xy
) ≥ f(x̄, ȳ, t̄) + 〈∇f(x̄, ȳ, t̄), (x, y, t)− (x̄, ȳ, t̄)〉

≥ 2

t̄
ln(1 + 1/x̄ȳ) +

1/x̄ȳ

t̄(1 + 1/x̄ȳ)
(2− x

x̄
− y

ȳ
)− ln(1 + 1/x̄ȳ)

t̄2
t. (A.4)

Substituting x→ 1/x and x̄→ 1/x̄

1

t
ln(1 +

x

y
) ≥ 2

t̄
ln(1 + x̄/ȳ) +

x̄/ȳ

t̄(1 + x̄/ȳ)
(2− x̄

x
− y

ȳ
)− ln(1 + x̄/ȳ)

t̄2
t. (A.5)
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