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Abstract

Integrated sensing and communication (ISAC) creates a platform to exploit the synergy between two

powerful functionalities that have been developing separately. However, the interference management

and resource allocation between sensing and communication have not been fully studied. In this paper,

we consider the design of perceptive mobile networks (PMNs) by adding sensing capability to current

cellular networks. To avoid the full-duplex operation, we propose the PMN with distributed target moni-

toring terminals (TMTs) where passive TMTs are deployed over wireless networks to locate the sensing

target (ST). We jointly optimize the transmit and receive beamformers towards the communication

user terminals (UEs) and the ST by alternating-optimization (AO) and prove its convergence. To reduce

computation complexity and obtain physical insights, we further investigate the use of linear transceivers,

including zero forcing and beam synthesis (B-syn). Our analysis revealed interesting physical insights

regarding interference management and resource allocation between sensing and communication: 1)

instead of forming dedicated sensing signals, it is more efficient to redesign the communication signals

for both communication and sensing purposes and “leak” communication energy for sensing; 2) the

amount of energy leakage from one UE to the ST depends on their relative locations.
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I. INTRODUCTION

Wireless communications systems have evolved for several generations and the recently com-

mercialized 5G systems have partially met the needs for high data rate, reliable, and low

latency communication services. However, with the development of innovative applications

such as autonomous driving and industrial IoT [1]–[3], future wireless systems are expected

to provide new services, e.g., target tracking and environmental monitoring [4], [5]. To this

end, the recently proposed integrated sensing and communication (ISAC) framework provides

a promising platform to integrate sensing capability in communication systems [6]. The use

of millimeter-wave (mmWave) in 5G and beyond further facilitates the integration between

radar and communication systems with possible hardware and software sharing between two

functionalities. In this case, there have been some interesting developments in three different

areas, i.e., dual-functional radar-communication (DFRC) [7]–[10], sensing-aided communication

[11], and communication-aided sensing [12]–[18].

The most fundamental issue for integrating sensing and communication lies in the interference

management and resource allocation between the two sub-systems. The interference exists and

can be handled in both the device and network levels. In the device level, full-duplex operation

is a critical challenge because BSs need to serve as the transmitter and receiver simultaneously

[19]. To this end, existing works considered self-interference cancellation (SIC) [20]–[22], where

analog filters based on the recursive least squares (RLS) or least mean squares (LMS) estimation

are proposed.

In the system level, there exists the interference between communication and sensing signals.

To this end, some research efforts have been made for the transmit beamformer and waveform

design in ISAC systems. [7] optimized the transmit beamformers for the dual DFRC systems

to achieve a target radar beam pattern while satisfying a given communication performance

requirement. [8] investigated the transmit waveform design by minimizing the multi-user in-

terference in communication while allowing a tolerable mismatch between the designed and

the desired radar beam patterns. The hybrid beamforming technique was considered in [9] to

save the energy consumption. To improve the parameter estimation performance, [23] proposed

to design the ISAC system by minimizing the Cramér-Rao bound (CRB) for sensing. In [24],
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[25], the perceptive mobile network (PMN) was studied to enable different types of sensing

capabilities for wireless communications. However, the joint transmitter and receiver design for

PMN systems is not available in the literature. More importantly, the interplay between sensing

and communication, especially in terms of interference management and resource allocation, has

not been well understood.

In this paper, we will try to tackle the interference in the system levels by taking advantage of

the network structure of mobile networks. Specifically, we first propose the PMN with distributed

target monitoring terminals (PMN-TMT), where TMTs are deployed to add sensing capability

to mobile networks. In the proposed PMN-TMT, the base stations (BSs) will not only serve

communication but also work as the radar transmitters. In particular, BSs will transmit/receive

communication signals and also send sounding signals to the sensing target (ST). However, to

avoid the full-duplex operation and reduce interference between sensing and communication, the

radar signal estimation task will be taken over by the TMTs, which are passive sensing terminals

deployed as IoT devices for sensing and monitoring tasks [3], [26]. They can be deployed on

the BSs, but normally will be spread around the BSs to provide additional angles for sensing

and monitoring purposes. TMTs are connected to the BSs through high capacity links and form

the sensing network.

With the proposed PMN-TMT, we will then consider the joint design of transmit and receive

beamformers. Due to the different nature of sensing and communication systems, the PMN-

TMT has some unique characteristics: 1) Sensing signal, if not handled properly, will cause

interference to the communication receivers; 2) Communication signals can be utilized for

sensing purpose, given they are known by the BSs; and 3) Communication signals will be

reflected by the environment, creating the clutter (interference) for sensing, which may lead

to false alarm/estimation. As a result, how to manage the interference and allocate resources

between sensing and communication are two of the most important questions to be addressed.

In this paper, we will jointly design the transmitter and receiver to optimize the sensing and

communication performance. This problem is first solved by an alternating optimization (AO)

framework, whose convergence proof is also given. However, the complexity of the AO-based

design is high. To reduce the complexity and obtain physical insights regarding the interference

management and resource allocation between the two sub-systems, we further derive linear

transceiver structures and compare their performance with that of the AO-based solution.

The contributions of this paper can be summarized as follows:
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1) We propose a novel ISAC framework, i.e., PMN-TMT, where passive TMTs are deployed

over traditional mobile networks to locate the ST. The distributed multi-antenna TMTs

save the need for full-duplex operation, bring macro-diversity for target detection, and

provide spatial freedom for interference management and environment sensing.

2) We jointly design the transmitter and receiver by maximizing the weighted average of

sensing and communication performance. To address the non-convex optimization prob-

lem, we transfer the fractional programming to a parametric square-root subtractive-form

problem by exploiting the quadratic transform technique [27]. Then, we propose an AO-

based framework to iteratively optimize the transmit and receive beamformers and prove

the convergence of the proposed algorithm.

3) We derive linear transceiver structures, including the zero-forcing (ZF) and beam synthesis

(B-syn) transmitter, and the minimum variance distortionless response (MVDR) receiver.

These linear transceivers not only reduce the computation complexity but also provide

interesting physical insights: (1) “Leaking” energy from communication signals to the ST

is more efficient than forming a dedicated sensing signal; and (2) the amount of energy

leaked from one UE to the ST depends on their channel correlation, which is determined

by their locations.

The remainder of this paper is organized as follows. Section II introduces the system model

of the proposed PMN-TMT. Section III formulates the problem and provides the AO-based

joint transceiver design algorithm, together with its convergence proof. The sub-optimal linear

transceiver structures are derived in Section IV, where several interesting physical insights regard-

ing the interference management and resource allocation between sensing and communication

are also revealed. Section V provides simulation results to illustrate the performance of the

proposed methods and Section VI concludes the paper.

II. SYSTEM MODEL

A. Perceptive Mobile Network with Distributed Target Monitoring Terminals

PMN represents a promising framework to integrate radar sensing in wireless communications

networks. However, due to the different nature of communication and sensing functionalities,

a fully integrated system with dual-functionality will face many challenging issues such as the

full-duplex operation. In this paper, to release such demanding requirements, we propose the

PMN-TMT, as illustrated in Fig. 1. The PMN-TMT can be implemented by adding another
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Fig. 1. Illustration of PMN-TMT.

layer of passive TMTs over the traditional cellular networks. In particular, TMTs are passive

nodes with only perception functionalities, including radar, vision, and other sensing capabilities

[3], [26]. They are distributed in a target area and connected with the base stations (BSs) through

low latency links.

In the proposed PMN-TMT, the communication between the BSs and the UEs is achieved

in the same way as traditional cellular networks. To perform radar sensing, the sounding signal

is generated by the BSs during the downlink communication period. To avoid transmitting and

receiving at the same time (full-duplex), the target sensing/detection is performed by the TMTs.

The distributed TMTs not only reduce the implementation difficulty but also provide multiple

angles to monitor the environment. Such design also facilitates the integration of other IoT

applications in the PMN-TMT.

In this paper, we consider a simplified network with one base station (BS) and one TMT

equipped with Nt and Nr antennas1, respectively. The multiple antennas at the TMTs provide

the spatial freedom that for environment sensing and interference rejection. This network serves

K single-antenna UEs and detects a ST simultaneously. Denote hc,k ∈ CNr×1 and hR ∈ CNr×1 as

the channels from the BS to the kth UE and the ST, respectively. To serve both communication

and sensing, the BS transmits Ns data streams by Nt transmit antennas. The transmit signal

1Collaborative sensing by several TMTs will provide better sensing performance, which is left for the future work.
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s ∈ CNs×1 consists of K data streams for the UEs and Ns − K 2 data streams for sensing.

Without loss of generality, the transmitted symbol vector is given by

s =

sc

sR

 ∈ CNs×1, (1)

which is assumed to be Gaussian distributed with zero means and covariance matrix I. Each

entry of s corresponds to a single-carrier waveform, where sc and sR denote the symbols for

communication and sensing, respectively. Specially, sk, i.e., the kth entry of sc, denotes the

symbol transmitted to the k-th UE.

In this paper, we consider the widely used Saleh-Valenzuela (SV) model to characterize

the sparse nature of mmWave channels [28]–[30]. Suppose uniform linear arrays (ULAs) are

employed at the BS. The BS-UE channel hc,k can then be given by [30]

hc,k =

√
Nt

Np

Np∑
i=1

β
(t)
k,iaT (φ

(t)
k,i), (2)

where Np denotes the number of paths between the BS and the UE. aT (φ) represents the steering

vector of the BS with ||aT (φ)||2 = 1 and φ(t)
k,i is the angle-of-departure (AOD) from the BS to the

kth UE in the ith path. β(t)
k,i denotes the path gain in the ith path of the corresponding channel.

The BS-ST and ST-TMT channels can be modeled similarly.

B. Communication Signal Model

The signal received at the kth UE is expressed as [31]

yc,k = hH
c,kFs + nc, (3)

where

F =

 fc,1, · · · , fc,K︸ ︷︷ ︸
Fc: Communications

, fR,1, · · · , fR,Ns−K︸ ︷︷ ︸
FR: Sensing

 ∈ CNt×Ns (4)

denotes the precoder matrix and nc represents the additive white Gaussian noise (AWGN) with

zero mean and variance σ2
c . In general, it may not be optimal to use only K data streams

for K multiple-antenna communication users. More streams will provide additional freedom in

2Here we assume that the number of UEs K is no more than Ns.



7

achieving a good tradeoff between communication and sensing. In this paper, we consider single-

antenna UEs, and thus we assume that K streams of communication signals are transmitted.

Note that both communication and sensing signals may impose interference to the UEs. Thus,

the received signal-to-interference-plus-noise-ratio (SINR) at the kth UE is expressed as

γk (F) =

∣∣hH
c,kfc,k

∣∣2∑
i 6=k

∣∣hH
c,kfc,i

∣∣2
︸ ︷︷ ︸

Multi-user Interference

+
∥∥hH

c,kFR

∥∥2︸ ︷︷ ︸
Sensing

+σ2
c

.
(5)

C. Radar Signal Model

The sensing signal is regarded as interference by communication systems, but communication

signals can be used for sensing because the transmitted communication waveform is known by

the TMT. Assuming that the transmit waveform is narrow-band and the propagation path is a

line of sight (LoS) path, the base-band signal at a point-like target can be given by [10]

yt = aH
T (φt)Fs, (6)

where φt denotes the AOD from the BS to the ST. Note that the back-scattered echos from the

environment will impose interference to the TMT.

Target detection is a binary hypothesis testing problem, where hypotheses H0 and H1 cor-

respond to the absence and presence of the ST, respectively. Besides the echo back-scattered

from the ST, the TMT will also receive the echoes from the environment, which is known as

the clutter [32]–[34]. The echo signal received by the TMT in the range-Doppler cell under test

(CUT) [32]–[34] is expressed as
H0 : yR,0 =

L∑
l=1

εc,lAc,lFs + nR,

H1 : yR = εsARFs +
L∑
l=1

εc,lAc,lFs + nR,

(7)

where L denotes the number of clutter patches. The response matrices of the clutter patches and

the target [23] are respectively given as

Ac,l = aR(φ
(r)
c,l )a

H
T (φc,l),AR = aR(φ

(r)
t )aH

T (φt),

where aR(φ) denotes the steering vector of the TMT with ||aR(φ)||2 = 1. φ(r)
t and φ(r)

c,l represent

the angle-of-arrival (AOA) from the ST and lth clutter patch to the TMT, respectively. φc,l

denotes the AOD of the lth clutter patch with respect to (w.r.t.) the BS. εs and εc,l represent
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the complex gains of the ST-TMT channel and the channel between the lth clutter patch and

the TMT, respectively, which depend on the gain of the matched filtering, the gain of emission

patterns, the propagation loss, and the target radar cross section (RCS) [33], [34]. They are

assumed to be zero mean Gaussian random variables with variance σ2
t and σ2

c,l, respectively

[33], [34]. nR is modeled as AWGN with zero means and covariance matrix σ2
nI.

In practical applications, the TMT is deployed on a smart manufacturing or industrial IOT

device whose power is limited [3], [26]. To reduce hardware cost and improve the overall energy

efficiency (EE) of the TMT, we consider the hybrid beamforming structure. The baseband signal

is processed by an analog baseband combiner WRF ∈ CNr×Nr
RF , a digital baseband combiner

WBB ∈ CNr
RF×Ns , and a detection filter wd ∈ CNs×1 with the output

xo = wH
d WH

BBWH
RFyR. (8)

Denote w = WBBwd ∈ CNr
RF×1 as the effective digital baseband processor.

Different performance metrics can be selected for different radar applications, e.g., the Cramér-

Rao bound for angle estimation [35]. In this paper, we focus on target detection in the clutter-

presence scenario, where the signal-dependent clutter is generally much stronger than the signal

component. In this case, the detection probability is directly related to the signal-to-clutter-

and-noise-ratio (SCNR) [34], which is widely used to measure the ability of a radar system in

rejecting the clutter [33], [34]. Therefore, we choose SCNR as the performance metric 3, i.e.,

SCNR(w,WRF ,F) =
PS(w,WRF ,F)

PQ(w,WRF ,F)
=

E
(∥∥εswHWH

RFARFs
∥∥2)

E

(∥∥∥∥ L∑
l=1

εc,lwHWH
RFAc,lFs + wHWH

RFnR

∥∥∥∥2
) ,

where

PS(w,WRF ,F) , σ2
tw

HWH
RFARFFHAH

RWRFw,

PQ(w,WRF ,F) ,
L∑
l=1

σ2
c,lw

HWH
RFAc,lFFHAH

c,lWRFw︸ ︷︷ ︸
Clutter

+σ2
nw

HWH
RFWRFw︸ ︷︷ ︸

Noise

. (9)

denote the power of received signal and that of the clutter plus noise, respectively.

3The objective of this paper is to probe whether a target exists at a given direction. In order to scan a large area, one option

is to design the transceiver for monitoring over a continuous range of directions.



9

III. JOINT COMMUNICATION AND SENSING DESIGN

The communication performance can be measured by the SINR at the UEs, whereas the

sensing performance depends on SCNR. In this paper, we attempt to jointly optimize the receive

filter w, the analog combiner WRF , and the precoder F to maximize the weighted sum of

the SCNR and the worst case SINR simultaneously. Concretely, the optimization problem is

formulated as

max
w,WRF ,F

L(w,WRF ,F)

s.t. ‖w‖2 ≤ 1 (10a)

‖F‖2F ≤ P (10b)

WRF ∈MNr×Nr
RF , (10c)

where

L(w,WRF ,F) = κrSCNR(w,WRF ,F) + κc min
k∈[1,K]

γk(F),

with κr ∈ [0, 1] and κc = 1 − κr denoting the weighting coefficients for the sensing and

communication, respectively. The feasible set of the analog combiner is given by MM×N =

{X ∈ CM×N
∣∣ |X(i, j)| = 1, i = 1, · · · ,M, j = 1, · · · , N}. Note that (10a) forces the receiver to

have a unit norm and (10b) limits the power of the transmitter. (10c) represents the unit modulus

constraint as the analog precoders are implemented by phase shifters. The knowledge of σ2
t , σ2

n

and σ2
c,l, l = 1, · · · , L can be obtained by a cognitive paradigm [36]–[38] and is assumed to

be known. Moreover, we assume that the channel state information (CSI), i.e., hc,k and h
(r)
c,k,

are known. It can be observed that both the fractional objective function and constraints are

non-convex, which causes the optimization problem hard to solve.

Note that the problem in (10) is a multi-ratio fractional programming (FP) problem which is

NP-hard. Fortunately, the objective function is continuous and has positive denominator. Thus,

the FP problem can be transformed into a parametric subtractive-form problem by exploiting

the Dinkelbach method [39]. However, although the Dinkelbach method can be an efficient

solution to those single-ratio problems with a concave numerator and convex denominator, it

cannot be easily generalized to the multi-ratio problem, like (10). Also, the numerator of the

objective function in (10) has a quadratic form w.r.t. w, WRF , and F, and thus is non-concave.

As a result, extra relaxations are needed to further relax the resulting subtractive-form objective
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function which may degrade the convergence and optimization performance. To address this

issue, we reformulate (10) as a parametric subtractive-form problem by exploiting the quadratic

transform technique proposed in [27], i.e.,

max
w,WRF ,F,ur,uk

F
(
w(t),W

(t)
RF ,F

(t),u(t)
r , u

(t)
k

)
s.t. (10a)-(10c),

(11)

where

F
(
w(t),W

(t)
RF ,F

(t),u(t)
r , u

(t)
k

)
= FR

(
w(t),W

(t)
RF ,F

(t),u(t)
r

)
+ min

k∈[1,K]
Fk
(
F(t), u

(t)
k

)
, (12)

with

FR (w,WRF ,F,ur) = 2κr<
(
σtw

HWH
RFARFur

)
− κr‖ur‖2PQ (w,WRF ,F) , (13)

Fk (F, uk) = 2κc<
(
ukh

H
c,kfc,k

)
− κc|uk|2

(∥∥hH
c,kFR

∥∥2 +
∑
i 6=k

∣∣hH
c,kfc,i

∣∣2 + σ2
c

)
. (14)

Here, ur and uk are two auxiliary complex variables. To solve this problem, an iteration process

based on AO is given as follows

w(t+1) = arg max
w

FR
(
w|W(t)

RF ,F
(t),u(t)

r

)
, s.t. (10a), (15a)

W
(t+1)
RF = arg max

WRF

FR
(
WRF |w(t+1),F(t),u(t)

r

)
, s.t. (10c), (15b)

F(t+1) = arg max
F

FR
(
F|w(t+1),W

(t+1)
RF ,u(t)

r

)
, s.t.Fk

(
F|u(t)k

)
≥ ζ(t), k ∈ [1, K], (10b), (15c)

u(t+1)
r =

σtF
(t+1),HAH

RW
(t+1)
RF w(t+1)

PQ
(
w(t+1),W

(t+1)
RF ,F(t+1)

) , (15d)

u
(t+1)
k =

f
(t+1),H
c hc,k∥∥∥hH

c,kF
(t+1)
R

∥∥∥2 +
∑

i 6=k

∣∣∣hH
c,kf

(t+1)
c,i

∣∣∣2 + σ2
c

, (15e)

ζ(t+1) = min
k∈[1,K]

κcγk(F
(t+1)). (15f)

Remark 1 (Convergence Analysis): We have the following proposition regarding the conver-

gence of the proposed algorithm.

Proposition 1: The iteration in (15) creates a non-decreasing sequence

L(t) = L
(
w(t),W

(t)
RF ,F

(t)
)

= F
(
w(t),W

(t)
RF ,F

(t),u(t)
r , u

(t)
k

)
, (16)
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which converges to the stationary point of (10), i.e., L? = L (w?,W?
RF ,F

?).

Proof : See Appendix A. �

The convergence and optimality of the proposed algorithm are guaranteed by Proposition 1

and [27, Theorem 4], respectively. The next issue is to solve (15a)-(15c).

A. Update w(t+1)

First, we reformulate (13) w.r.t. w as

FR (w|WRF ,F,ur) = 2κr<
(
wHaw

)
− κr‖ur‖2wHBww + const, (17)

where

aw = σtW
H
RFARFur, Bw =

L∑
l=1

σ2
c,lW

H
RFAc,lFFHAH

c,lWRF + σ2
nW

H
RFWRF . (18)

Then the problem in (11) is reformulated as the maximization of (17). This problem can

be efficiently solved by the Lagrange multiplier method. Specifically, we introduce a penalty

function to reformulate the problem in (17) as an unconstrained optimization problem that

minimizes

L(t)
w (w) =−FR

(
w|W(t)

RF ,F
(t),u(t)

r

)
+ γw

(
wHw − 1

)
, (19)

where γw ≥ 0 is the Lagrange penalty coefficient. Note that (19) is convex w.r.t. w. The

minimizer of (19) can be obtained by solving ∇wL
(t)
w (w) = 0, i.e.,

w(t,?) =
1

‖u(t)
r ‖2

(
B(t)
w + γwI

)−1
a(t)
w . (20)

Note that w(t,?) depends on γw. Therefore, in the rest of this subsection, we focus on de-

termining γw. By performing the eigen-decomposition B
(t)
w = VwΛwVH

w and based on the

complementary Karush–Kuhn–Tucker (KKT) condition, we have

w(t,?),Hw(t,?) = a(t),H
w Vw (Λw + λw,1I)−2 VH

wa(t)
w =

Nr
RF∑
i=1

∣∣∣vH
w,ia

(t)
w

∣∣∣2
(λw,i + γw)2

= 1, (21)

where vw,i denotes the ith column of Vw and λw,i is the (i, i)th entry of Λw. It is easy to check

that tr
(
w(t+1)w(t+1),H

)
is monotonic w.r.t. γw. We thus utilize the bisection method to find a

suitable γw to make ||w(t,?)|| = 1. We then update w(t+1) = w(t,?).
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B. Update W
(t+1)
RF

Note that PQ is dependent on WRF . Therefore, we first simplify the formulation in (13).

Defining the vectorization of WRF as wRF = vec(WRF ), the objective function in (13) w.r.t.

wRF is then reformulated as

F (wRF |F,ur, uk) = 2κr<
(
wH
RFawRF

)
− κr‖ur‖2wH

RFBwRFwRF + const, (22)

where

awRF = σtvec
(
ARFurw

H
)
, BwRF = w∗wT ⊗

(
L∑
l=1

σ2
c,lAc,lFFHAH

c,l + σ2
nI

)
. (23)

From (15b), we can observe that the objective function is convex w.r.t. wRF , whereas the feasible

set MNrNr
RF×1 is still non-convex. Fortunately, MNrNr

RF×1 is known as the complex circle

manifold (CCM) so that (15b) can be addressed by the manifold-based method.

The manifold-based method updates the variable within the tangent space TM. By updating

along the tangent space with a small enough step, the new point is almost within M. For the

manifold in (10c), its corresponding tangent space is given as

TwRFMNrNr
RF×1 = {x ∈ CNrNr

RF×1|<(x ◦wRF ) = 0}. (24)

Resembling the gradient-based method, the manifold-based method will find a direction from the

tangent space where the objective function decreases most steeply (for minimization problems),

i.e., the negative Riemannian gradient direction. For the manifold MNrNr
RF×1, the Riemannian

gradient at wRF is a tangent vector given as the orthogonal projection of the Euclidean gradient

∇G(t)w (wRF ) onto the tangent space [40], i.e.,

η(wRF ) = gradG(t)w (wRF ) = ∇G(t)w (wRF )−<(∇G(t)w (wRF ) ◦wRF ) ◦wRF , (25)

where ∇G(t)w (wRF ) = −2κra
(t)
wRF + 2κr‖u(t)

r ‖2B(t)
wRFwRF denotes the Euclidean gradient. The

Riemannian gradient in the tangent space is the optimization direction that shifts the manifold

the least. In practice, a retraction is needed to remap the updated points from the tangent space

onto the manifold. The retraction of a tangent vector βd ∈ TwRFMNrNr
RF×1 at wRF is

P :TwRFMNrNr
RF×1 →MNrNr

RF×1

βd→ (wRF + βd) ◦ 1

|wRF + βd|e
,

(26)
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Algorithm 1 Proposed Manifold-based Method to obtain w
(t,?)
RF

Input: An initial point w
(t,0)
RF = w

(t)
RF and d(0) = −η

(
w

(t,0)
RF

)
.

Repeat

1) Compute β(m) via the Armijo line search step [40, Definition 4.2.2].

2) Update w
(t,m+1)
RF = P(β(m)d(m)) via (26).

3) Compute the Riemannian gradient η
(
w

(t,m+1)
RF

)
via (25).

4) Update the optimization direction d(m+1) = −η
(
w

(t,m+1)
RF

)
.

5) m← m+ 1.

Until Convergence criterion is met.

Output: The optimal solution w
(t,?)
RF .

where 1
|x|e ∈ R

NrNr
RF×1 denotes a vector whose ith entry is 1/|xi|, and β represents the Armijo

step [40, Definition 4.2.2].

To solve (15b), we propose the manifold-based method summarized in Algorithm 1, whose

convergence is guaranteed by [40, Theorem 4.3.1]. Algorithm 1 provides the update w
(t+1)
RF =

w
(t,?)
RF .

C. Update F(t+1)

We first reformulate the problem w.r.t. F as a quadratically constrained quadratic programming

(QCQP) which is a subclass of semi-definite programming (SDP) [41]. Define the vectorization

of F as f = vec (F). Omitting some constants, (13) w.r.t. f is rewritten as

FR (f |w,WRF ,ur) = 2κr<(aH
F f)− κr‖ur‖2fHBF f + const, (27)

where

aF = σtvec
(
AH
RWRFwuH

r

)
, BF = I⊗

(
L∑
l=1

σ2
c,lA

H
c,lWRFwwHWH

RFAc,l

)
. (28)

Then (14) can be rewritten as

Fk (f |uk) = 2κc<
(
aH
Fk

f
)
− κcfHBFkf − κc|uk|2σ2

c , (29)

where

aFk = u∗kek ⊗ hc,k, BFk = ||uk||2(1− ek)(1− ek)
T ⊗ hc,kh

H
c,k, (30)
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with ek = [0, · · · , 0︸ ︷︷ ︸
k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
Ns−k

]T.

By substituting (27) and (29) into (15c), the resultant problem is a typical QCQP because

the objective function and all constraints are reformulated as a linear or quadratic form. This

problem can be easily solved by the well-known CVX toolbox [42]. We then update F(t+1) by

rearranging f (t,?).

Remark 2: The proposed AO-based method consists of six sub-optimization problems, i.e.,

(15a)-(15f), where the computational cost is dominated by (15a), (15b) and (15c). The first

step aims to obtain the digital baseband processor w, whose main computational cost comes

from the inverse operation of the N r
RF × N r

RF matrix. Therefore, the computational cost of

the first step is about O((N r
RF )3I1) where I1 denotes the number of iterations to update w.

The second step is a manifold-based optimization to obtain WRF , whose computational cost

is about O(NrN
r
RF I2) where I2 denotes the number of iterations required by the bisection

method to update WRF [30]. The third step is a QCQP solved by the CVX toolbox, whose

computational cost is about O((NtNs)
3I3), where I3 denotes the required number of iterations

to update F. In this case, the total computational cost of the proposed AO-based method is about

O(((N r
RF )3I1 + NrN

r
RF I2 + (NtNs)

3I3)T ), where T denotes the number of iterations required

by the proposed optimization problem in (11). It is observed from experiments that T is usually

no more than 10.

Meanwhile, the performance of the AO-based method depends on the weighting coefficients

κc and κR, but it is hard to adjust them to meet a desired communication or sensing performance.

These issues motivate us to find other methods. One option is to use other optimization methods,

such as the alternating direction method of multipliers (ADMM). However, such methods also

involve an internal iteration process whose computational cost is still high since the dimension

of f is large. Moreover, their performance also depends on some intermediate parameters. In the

next section, we derive some linear transceiver structures to reduce the complexity and reveal

more physical sights.

IV. LINEAR TRANSCEIVER DESIGN

In this section, we derive two sub-optimal transceiver structures to reduce the computational

cost. These methods aim to maximize the sensing performance with given communication

requirements.
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A. Linear Transmitter Design

1) ZF Transmitter: ZF is a well-established beamforming method. In the concerned PMN-

TMT, the channel matrix for the UEs is given as Hc = [hc,1, · · · ,hc,K ] ∈ CNt×K . Then, the

zero forcing precoder can be written as

FZF = µHc(H
H
c Hc)

−1 ∈ CNt×K , (31)

where

µ =

√
P

tr [(HH
c Hc)−1]

(32)

denotes the normalized coefficient that guarantees ||FZF||2 = P . It can be validated that

hH
c,ifZF,j =

µ, i = j

0, i 6= j
, (33)

where fZF,j denotes the jth column of FZF, indicating that the beam for one UE will not generate

interference to others.

For an ISAC system, the channel between the BS and the ST is unknown. Thus, we leverage

the steering vector towards the ST. Construct the ISAC ‘channel’ matrix as

He(λa) = [Hc, λaaT (φt)] ∈ CNt×(K+1), (34)

where λa denotes a normalized coefficient to balance the amplitude of aT (φt). Then the ZF-ISAC

precoder is given as

FZF-ISAC = µa(λa)He(λa)
(
HH
e (λa)He(λa)

)−1
, (35)

where

µa(λa) =

√
P

tr [(HH
e (λa)He(λa))−1]

. (36)

Lemma 1: The normalized coefficient µa(λa) can be simplified as

µa(λa) =

√
P

Ca + 1
λ2
aCb

, (37)

where

Ca = tr(HH
c Hc)

−1 +
aH
T (φt)Hc(H

H
c Hc)

−2HH
c aT (φt)

1− aH
T (φt)Hc(HH

c Hc)−1HH
c aT (φt)

,

Cb = 1− aH
T (φt)Hc(H

H
c Hc)

−1HH
c aT (φt).



16

Proof : See Appendix B. �

It can be checked that

hH
c,ifZF-ISAC,j =

µa, i = j

0, i 6= j
, aH

T (φt)fZF-ISAC,j =

µa
λa
, j = K + 1

0, j 6= K + 1
, (38)

which indicates that there is no interference between sensing and communication. By substituting

(35) into (5), we have the SINR for K UEs as

γ1 = · · · = γK =
µ2
a(λa)

σ2
c

. (39)

To guarantee the minimum SINR among all UEs is greater than a given threshold, i.e.,

min
k∈[1,K]

γk =
µ2
a(λa)

σ2
c

≥ Γ, (40)

we can obtain λa =
√

1
Cb(

P

Γσ2
c
−Ca)

where Γ denotes the given threshold. The transmit power on

the direction of the ST is thus given by

PZF,tgt , E
(
||aHT (φt)FZF-ISACs||2

)
=
µ2
a(λa)

λ2a
= (P − Γσ2

cCa)Cb. (41)

2) Beam Synthesis Transmitter: Note that the communication signal can also be leveraged for

sensing since the transmitted communication waveform is known by the TMT. Thus, although

the sensing signals are not supposed to create interference to the UEs, the communication signals

can be leaked to the direction of the ST. In the following, we will investigate how the above

observation can be exploited by the B-syn method [43]. In particular, by the array response

control, the beam pattern is synthesized to force the orientation and nulls of beams at the

directions of the target and interference, respectively. For the given ISAC system, the B-syn

precoder can be constructed as

FB-syn ,

fB-syn,c,1, · · · , fB-syn,c,K︸ ︷︷ ︸
Communication

, fB-syn,R,1, · · · , fB-syn,R,Ns−K︸ ︷︷ ︸
Sensing

 , (42)

where

fB-syn,c,i = αifZF,i + βif⊥, i = 1, · · · , K,

fB-syn,R,j = νjf⊥, j = 1, · · · , Ns −K,
(43)

denote the beamformers for the K UEs and the radar target, respectively. Here fZF,i denotes the

ith column of FZF defined in (31). Note that the beamformer to the UE includes two parts, i.e.,
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the ZF precoder to the ith UE (fZF,i) and the leaked communication signal towards the ST (f⊥).

Here, αi, βi and νj denote the weighting coefficients for the communication terms, the leaked

communication terms, and the dedicated sensing terms, respectively. To avoid interference from

sensing to communication, the term f⊥ is expected to have the following property:

HH
c f⊥ = 0, aH

T (φt)f⊥ = 1, (44)

indicating that f⊥ should not impose interference to communication and should have a constant

gain on the direction of the ST. We then choose f⊥ as the projection of aT (φt) in the null-space

of Hc, i.e.,

f⊥ =
aT (φt)−Hc(H

H
c Hc)

−1HH
c aT (φt)

1− aH
T (φt)Hc(HH

c Hc)−1HH
c aT (φt)

. (45)

It can be validated that FH
ZFf⊥ = 0 and ||f⊥||2 = 1

Cb
. From (43) and (44), we can observe the

communication precoder fB-syn,c,i will transmit signals on the direction of the ith UE and the ST

without interfering the other UEs. The sensing beamformer fB-syn,R,j will transmit signals on the

direction of the ST without imposing interference to UEs.

The remaining issue is how to allocate power to these component beams. By substituting (43)

into (5), we have

γk =
|αk|2µ2

σ2
c

, k = 1, · · · , K. (46)

It is desired to maximize the sensing performance with a minimal SINR for all UEs, i.e.,

mink∈[1,K] γk ≥ Γ. Thus, we consider the equal-rate transmission, i.e.,

α1 = · · · = αK = α? =

√
Γσ2

c

µ2
. (47)

The remaining task is to determine βi and νj . We give the following proposition for allocating

power to maximize the transmitted power on the direction of ST.

Proposition 2: The optimal allocation is given as νj = 0, j = 1, · · · , Ns −K and

βi =
√

(P − Γσ2
c tr(H

H
c Hc)−1)Cb ·

fHZF,iaT (φt)

||FZFaT (φt)||
, i = 1, · · · , K. (48)

The resultant transmit power on the direction of ST is given as

PB-syn,tgt = 2α?
√
Pq||atgt||+ Ctgt, (49)
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where

Ctgt = Γσ2
ca

H
T (φt)Hc

(
HH
c Hc

)−2
HH
c aT (φt) + (P − Γσ2

c tr(H
H
c Hc)

−1)Cb. (50)

Proof : See Appendix C.

Proposition 2 indicates that instead of designing dedicated sensing streams, we should add

the sensing streams to the communication streams. As a result, the transmit signal can be

given by
∑K

i=1 α?a
H
T (φt)fZF,isc,i +

∑K
i=1 βisc,i =

∑K
i=1

(
α?a

H
T (φt)fZF,i + βi

)
sc,i. It can be ob-

served from (49) that there are three energy terms in PB-syn,tgt, including the two terms in

Ctgt. On the other hand, if we use a dedicated sensing stream, the transmit signal is given by∑K
i=1 α?a

H
T (φt)fZF,isc,i +

∑Ns−K
j=1 νjsR,j where the received power is equal to Ctgt. Thus, the

advantage of the B-syn scheme comes from the cross-term 2α?
√
Pq||atgt||. We may regard this

cross-term as the reuse or leaking of communication energy for the sensing purpose.

Comparing the transmit power towards the ST by ZF and B-syn, we have the following

proposition regarding the improvement of B-syn over ZF.

Proposition 3: The improvement of the transmit power towards the ST by B-syn over ZF can

be obtained from (41) and (49) as

PB-syn,tgt − PZF,tgt =
2Γσ2

c

µ2
||FH

ZFaT (φt)||2 + 2

√
Γσ2

cPq
µ2
||FH

ZFaT (φt)|| ≥ 0. (51)

Remark 3: The improvement by B-syn over ZF will be zero only when

1) Γ = 0, indicating that the required communications performance is zero. Then all power

will be allocated to sensing.

2) FH
ZFaT (φt) = 0. Recalling (31), it is equivalent to HH

c aT (φt) = 0, implying that the ST

already falls into the null space of Hc.

In the above cases, B-syn is equivalent to ZF. On the other hand, the performance gap between

B-syn and ZF will become larger if ||FH
ZFaT (φt)||2 is larger. Note that FH

ZFaT (φt) denotes the

power of FZF on the ST direction. In general, if the ST is closer to one UE, the correlation

between them gets larger and it is more efficient to leak power from that UE to the ST.

Remark 4: B-syn and ZF are the linear precoders, whose computational cost mainly comes

from matrix operations. Specially, the computational cost of (31) and (45) are dominated by the

inverse operation of HH
c Hc with complexity O(K3+K2Nt). Thus, the computational cost of (31)

and (45) are about O(K3+2K2Nt) and O(K3+2K2Nt+2KNt), respectively, whereas that of the

AO for updating F is about O((NtNs)
3I3). Note that we choose Ns = K for B-syn and ZF. This
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indicates that the proposed B-syn and ZF methods can significantly reduce the computational

cost. Meanwhile, B-syn and ZF can update the precoder with a given communication requirement.

ZF transmits a dedicated sensing data stream to the ST and there is no interference between the

dedicated sensing signal and the communication signals. In contrast, B-syn leaks energy from the

communication signal to ST. From (51), we can observe that, it is better to leak communication

energy to the ST direction than designing a dedicated sensing signal. In particular, B-syn uses

less data stream to achieve a better sensing performance than ZF.

B. Receiver Design

In the above, we give two methods to design the transmitter. With a given transmitter structure,

to maximize the SCNR, the design of the receiver weff is given by

max
weff

SCNR(weff) =
σ2
tPtgt

∣∣wH
effaR(φt)

∣∣2
wH

effRCNweff
, (52)

where Ptgt denotes the power transmitted to the ST and RCN =
L∑
l=1

σ2
c,lAc,lFFHAH

c,l +σ2
nI. This

problem is the classic MVDR beamforming problem, whose solution is given by [44]

weff =
R−1CNaR(φt)

aH
R(φt)R

−1
CNaR(φt)

. (53)

Then we can adopt the fast optimization method in [45] to obtain WRF and w from weff.

Assembling the MVDR receiver with B-syn and ZF yields two linear transceiver structures, i.e.,

‘B-syn + MVDR’ and ‘ZF + MVDR’.

Remark 5: The computational cost of (53) and the method in [45] are about O((N r
RF )3) and

O(N r
RFNsI4), respectively, where I4 denotes the number of required iterations. Thus, the total

computational cost of ‘B-syn + MVDR’ and ‘ZF + MVDR’ are about O((N r
RF )3 +N r

RFNsI4 +

K3+K2Nt) and O((N r
RF )3+N r

RFNsI4+K3+2K2Nt+2KNt), respectively. Compared with the

computational cost of AO, i.e., O(((N r
RF )3I1 +NrN

r
RF I2 + (NtNs)

3I3)T ), the linear transceiver

structures are more computationally efficient.

V. SIMULATION

In this section, we show the performance of the proposed PMN-TMT with different transceiver

structures. In the simulation, we consider a mmWave system operating at a carrier frequency of

28GHz. We assume that the ISAC system serves 3 single antenna UEs and 1 ST. The BS employs
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a ULA with Nt = 128 antennas. Unless specified otherwise, we also set Nr = 128 and NRF = 4.

In this paper, we fix the distance between the BS and TMT as 50m. The distances between the

BS and UEs are set as a random variable uniformly distributed in the range [19, 21]m. The AOD

and AOA of the ST, UEs and clutter patches are set as random variable uniformly distributed

in the range [−π
2
, π
2
]. The noise power at the UEs and TMT are σ2

c and σ2
n, respectively. We set

σ2
c = σ2

n = −90dBm, σ2
t /σ

2
n = 20dB and 1

L

∑L
l=1 σ

2
c,l/σ

2
n = 30dB. Recalling (2), the channel

between the BS and kth UE is modeled as [30]

hc,k =

√
Nt

Np

Np∑
i=1

β
(t)
k,iaT (φ

(t)
k,i), (54)

where β(t)
k,i ∼ CN (0, 10−0.1κ) denotes the complex gain of the LOS path and κ is the path loss

given as κ = a + 10b log10(d) + ε with d denoting the distance between the BS and the kth

UE and ε ∼ CN (0, σ2
ε ) [29]. Following [29], we set a = 61.4, b = 2, σε = 5.8dB. β(t)

k,i ∼

CN (0, 10−0.1(κ+µ)) denotes the complex gain of the NLOS path and µ is the Rician factor [46].

We model the small-scale fading as Rician, where the Rician factors is set as 7dB for LOS and

0dB for NLOS. Here, we set Np = 4.

For the manifold optimization, we set the maximum number of iterations as 200. The tolerance

for the norm of the gradient between two iterations is 10−4. To terminate the iteration, the

tolerance for the objective function between two iterations is 10−2 and the maximum number of

iterations is 20.

A. System Performance

In Sec. III, we prove the convergence of the proposed AO method. Here, we first show its

convergence through the simulation. Fig. 2 illustrates the convergence behavior of the average

objective function with AO. Here we set Nr = 32, κc = 0.5 and 500 Monte-Carlo experiments

are performed. It can be observed that the iteration will converge in about 4 rounds.

Fig. 3 shows the average sensing performance of different transceiver structures with different

levels of communication performance requirement with Nr = 32. For each curve, 800 Monte-

Carlo experiments are performed. The legend ‘AO (κc = C)’ denotes the AO method proposed

in Sec. III with κc = C. The legend ‘Beam synthesis’ and ‘ZF’ represent the proposed ‘B-syn +

MVDR’ and ‘ZF + MVDR’ transceivers with a given Γ, respectively. In particular, Γ = ΓAO,κc=C

means that we fix Γ to be the same as that of the ‘AO’ with κc = C. Note that ΓAO,κc=0.5 <

ΓAO,κc=0.9995 < 50. We have several observations regarding the performance comparison.



21

1 2 3 4 5 6 7 8 9 10

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
b
je

ct
iv

e 
F

u
n
ct

io
n

Fig. 2. The objective function L(w,WRF ,F) over iterations.
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Fig. 3. Comparison of different methods for updating F.

AO vs. B-syn vs. ZF: By comparing ‘AO (κc = 0.5)’, ‘Beam synthesis (Γ = ΓAO,κc=0.5)’

and ‘ZF (Γ = ΓAO,κc=0.5)’, we can observe that the performance of AO outperforms both B-syn

and ZF, while B-syn is better than ZF. The same conclusion can be obtained by comparing

‘AO (κc = 0.9995)’, ‘Beam synthesis (Γ = ΓAO,κc=0.9995)’ and ‘ZF (Γ = ΓAO,κc=0.9995)’. This

is mainly due to different transceivers’ tolerance for the interference between UEs and the ST.

In particular, AO does not force the beams towards different UEs and the ST to be completely

orthogonal. B-syn requires the orthogonality between UEs to completely eliminate the multi-UE

interference but allows leakage from the communication signal to the ST. On the other hand, ZF

strictly constrains the UEs and ST not to affect each other. In particular, the sensing performance
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will degrade when the orthogonality constraint is stronger.

AO vs. B-syn with Different Communication Requirements: Comparing ‘AO (κc = 0.5)’

and ‘Beam synthesis (Γ = ΓAO,κc=0.5)’ with ‘AO (κc = 0.9995)’ and ‘Beam synthesis (Γ =

ΓAO,κc=0.9995)’, we can observe the gap between AO and B-syn will become smaller when κc and

the corresponding Γ increase. This indicates that when the communication requirement is high,

B-syn will behave similarly as AO. This is because when the communication requirement is low,

the UEs can tolerate higher interference and thus it is not necessary to completely eliminate the

multiuser interference. As the communication requirement increases, the multi-UE interference

is more critical and forces AO to avoid it like B-syn. Thus, the gap is getting smaller. Under

such circumstances, B-syn is preferable since it has much lower computational complexity than

AO.

B-syn vs. ZF with Different Communication Requirements: Comparing ‘Beam synthesis

(Γ = ΓAO,κc=0.5)’ and ‘ZF (Γ = ΓAO,κc=0.5)’ with ‘Beam synthesis (Γ = 50)’ and ‘ZF (Γ =

50)’, we can observe that, as Γ increases, the gap between B-syn and ZF will become larger.

Note here Γ = 50 corresponds to a higher communication requirement than Γ = ΓAO,κc=0.5.

This indicates that, compared with ZF, B-syn can achieve better sensing performance with the

same communication requirement, and as the communication requirement Γ increases, the power

improvement in (51) becomes larger.
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Fig. 4. Effect of Ns for AO.

Energy Leaking: In Sec. IV, we proved that it is more efficient to leak communication energy

to the ST than sending a dedicated sensing signal, i.e., B-syn outperforms ZF. However, it is
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hard to prove this property for AO. In Fig. 4, we show the sensing performance of AO with

different number of data streams Ns when κc = 0.5. Note that the case Ns = K indicates there

are K communication data streams and no dedicated sensing signal, while the case Ns = K+C

indicates that there are C data streams for sensing. It can be observed that, as Ns increases, the

performance of AO becomes slightly worse, implying that the dedicated sensing signal is also

less efficient for AO.

B. Physical Insights

In this section, we reveal some physical insights by looking into the beam patterns with

different transceiver structures.

Interference Management: In Fig. 5, we show how interference management and power

allocation between sensing and communication are achieved by different transmitter structures,

which further explains the performance difference shown in Fig. 3. For ease of display, we fix

the direction of the ST, the UEs and the clutter patches at 45◦, {10◦, 15◦, 40◦} and {50◦, 60◦},

respectively. Parts (a), (b) and (c) in Fig. 5 illustrate the beam pattern for each UE, together

with their corresponding energy leakage to the ST. The beam pattern for the ith communication

data stream is defined as Pi(φ) = ||aH
T (φ)fc,i||2. Here we set κc = 0.5.

It can be observed that both ZF and B-syn eliminate the multi-user interference, but AO allows

a low level of interference. In terms of the power leakage from communication to sensing, both

B-syn and AO leak a certain amount of energy from the UEs to the ST, but ZF does not.

Furthermore, with AO, the transmit gain on the ST direction from data streams 1, 2, and 3

are about 16.2145dB, 16.2416dB and 16.4111dB, respectively, where the total gain is about

21.0612dB. The corresponding numbers for B-syn are 4.7362dB, 11.0243dB and 20.4923dB,

respectively, and the total gain is about 21.0598dB. Meanwhile, the resultant SCNR of AO and

B-syn are 475.947 and 472.001, respectively. These observations agree with (68), which indicates

that βi is proportional to the ith entry of atgt, i.e., aH
T (φt)fZF,i and it is more efficient to leak

energy to the ST from UEs closer to the ST (higher channel correlation).

Overall Beam Pattern: Fig. 6 shows the overall beam pattern, i.e., P (φ) = ||aH
T (φ)F||2. Com-

paring AO with B-syn, we can observe that they achieved the same communication performance

by different strategies, i.e., AO delivers a higher power to the UEs while allowing interference

between UEs, but B-syn forces the interference to zero while sending a lower power to different

UEs. On the other hand, the transmit power towards the ST by two schemes is similar, which
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Fig. 5. Transmitted beam pattern for different data streams. (a) Data stream 1 for UE 1 (10◦); (b) Data stream 2 for UE 2

(15◦); (c) Data stream 3 for UE 3 (40◦).

agrees with Fig. 3. When comparing B-syn with ZF, we notice that they achieved the same gain

for the UEs but B-syn obtained a higher transmit power towards the ST, because leaking energy

from communication to sensing is more efficient than forming a dedicated sensing signal, which

agrees with (51). Furthermore, we can observe that AO transmits extremely low (but non-zero)

power on the direction of the clutter patches, i.e., {50◦, 60◦}. As will be shown later, this will

give more freedom to the receiver design.

Which UE Leaks More Energy? Fig. 7 shows the beam pattern where the relative locations

of the UEs with respect to the ST are different and we set Γ = 600. In general, the ST can

obtain more gain from the closer UEs. The B-syn and ZF methods can always avoid multi-UE
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interference.

Impact of Communication Requirement: Fig. 8 shows the beam pattern with different Γs.

The directions of the ST and UEs are set as 45◦ and (48◦, 54◦, 60◦), respectively. The transmit

power to the ST by B-syn is larger than that of ZF owing to the power improvement in (51).

When Γ is reasonably large, the gap becomes larger. This is because, with a large Γ, the power

improvement will be more significant as more energy has been used for communication.

Receive Beam Pattern: Next, we show the beamforming performance of the TMT, i.e.,

P (φ) = ||wHWH
RFaR(φ)||2. For ease of illustration, we fix the direction of the ST and the

clutter patches at 54◦ and (30◦, 35◦, 40◦), respectively. Fig. 9 shows the received beam pattern

with different number of the receive antennas Nr. Overall, the mainlobe of all scenarios can

focus on the ST while the responses on the clutter direction are all less than −20dB. Comparing

‘B-syn + MVDR’ and AO, we can observe that the MVDR receiver suppresses the energy from

the direction of clutter patches while AO does not need to. This is because AO can suppress the

transmit power towards the clutter patches, which leaves more freedom for the receiver.

VI. CONCLUSION

In this paper, we proposed a novel perceptive mobile network structure with distributed target

monitoring terminals, which saves the full-duplex operation required by conventional ISAC

systems. We investigate the interference management between sensing and communication by

jointly design the transmit and receive beamformers to maximize the weighted average between
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Fig. 7. Transmitted beam pattern for different location of ST and UEs. (a) φt = 65◦, Data stream 1 for UE 1 (70◦); (b)

φt = 65◦, Data stream 2 for UE 2 (75◦); (c) φt = 65◦, Data stream 3 for UE 3 (80◦).

sensing and communication performance. The problem was first solved by an AO method

and linear transceiver structures were also derived to reduce the computation complexity and

reveal interesting physical insights. It was shown that leaking communication energy towards

to the sensing target is more efficient than forming a dedicated sensing signal. Furthermore,

the amount of energy leakage depends on the channel correlation between the communication

user and sensing target, which is determined by their locations. Simulation results validated the

effectiveness of the proposed methods and illustrated the physical insights regarding interference

management and resource allocation between sensing and communication.
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Fig. 8. Transmitted beam pattern under different Γ. (a) Γ = 80; (b) Γ = 800;.
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Fig. 9. Received beam pattern under different Nr . (a) Nr = 128; (b) Nr = 16;.

APPENDIX A

PROOF OF PROPOSITION 1

To simply the notation, we first denote

a(t+1)
ur = F(t+1),HH(t+1),HW

(t+1)
RF w(t+1), B(t+1)

ur = PQ
(
w(t+1),W

(t+1)
RF ,F(t+1)

)
. (55)

Hence, (15d) can be rewritten as u
(t+1)
r =

a
(t+1)
ur

B
(t+1)
ur

. By substituting (55) into (13), we have

FR
(
u(t)
r |w(t+1),W

(t+1)
RF ,F(t+1)

)
= 2κr<(a(t+1),H

ur u(t)
r )− κr‖ur‖2B(t+1)

ur .
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Thus, we can obtain

FR
(
u(t+1)
r |w(t+1),W

(t+1)
RF ,F(t+1)

)
−FR

(
u(t)
r |w(t+1),W

(t+1)
RF ,F(t+1)

)
=

κr

B
(t+1)
ur

∥∥a(t+1)
ur −B(t+1)

ur u(t)
r

∥∥2 ≥ 0.

It indicates that the objective function FR increases after the update of ur. Then we have

SCNR(t+1) = SCNR
(
w(t+1),W

(t+1)
RF ,F(t+1)

)
=
FR
(
w(t+1),W

(t+1)
RF ,F(t+1),u

(t+1)
r

)
κr

≥
FR
(
w(t+1),W

(t+1)
RF ,F(t+1),u

(t)
r

)
κr

≥ · · · ≥
FR
(
w(t),W

(t)
RF ,F

(t),u
(t)
r

)
κr

= SCNR(t).

(56)

Similarly, we have

Fk(u(t+1)
k |F(t+1))−Fk(u(t)k |F

(t+1)) =
κc

B
(t+1)
uk

∥∥∥a(t+1)
uk
−B(t+1)

uk
u
(t)
k

∥∥∥2 ≥ 0.

where a(t+1)
uk = f

(t+1),H
c h

(t+1)
c,k , B(t+1)

uk =
∑

i 6=k

∣∣hH
c,kfc,i

∣∣2 +
∥∥hH

c,kFR

∥∥2 + σ2
c .

Denote k† = arg mink∈[1,K] γk(F
(t+1)). We have

min
k
γk(F

(t+1)) =
Fk†(u

(t+1)

k†
|F(t+1))

κc
≥
Fk†(u

(t)

k†
|F(t+1))

κc

(a)

≥ ζ(t)

κc
= min

k
γk(F

(t)), (57)

where (a) comes from the constraint in (15c).

From (56) and (57), the sequence L(t) = κRSCNR(t) +κc mink∈[1,K] γk(F
(t)) is monotonically

increasing with more iterations. According to the monotone convergence theorem [47], the

increasing sequence L(t) will converge to a stationary point L? as t increases. �

APPENDIX B

PROOF OF LEMMA 1

For ease of illustration, we denote He(λa) as He hereafter in this proof. Recalling (34) and

applying the block matrix inversion lemma [34], we can show that

(HH
e He)

−1 =

 HH
c Hc λaH

H
c aT (φt)

λaa
H
T (φt)Hc λ2a

−1 =

(HH
c Hc)

−1 0

0H 0

+

A1 A2

AH
2 AH

3

 , (58)

where

A1 =
λ2a(H

H
e He)

−1HH
e aT (φt)a

H
T (φt)He(H

H
e He)

−1

λ2a − λ2aaH
T (φt)He(HH

e He)−1HH
e aT (φt)

,

A2 =
λa(H

H
e He)

−1HH
e aT (φt)

λ2a − λ2aaH
T (φt)He(HH

e He)−1HH
e a

(
Tφt)

,

A3 =
1

λ2a − λ2aaH
T (φt)He(HH

e He)−1HH
e aT (φt)

.

(59)
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Thus, we have

tr(HH
e He)

−1 = tr(HH
c Hc)

−1 + tr(A1) + A3. (60)

By substituting (60) into (36), we have (37). �

APPENDIX C

PROOF OF PROPOSITION 2

The transmit power to the ST is given by

PB-syn,tgt , E
(
||aH

T (φt)FB-syns||2
)

= E

∥∥∥∥∥
K∑
i=1

α?a
H
T (φt)fZF,isc,i +

K∑
i=1

βisc,i +
Ns−K∑
j=1

νjsR,j

∥∥∥∥∥
2


=
K∑
i=1

K∑
m=1

α2
?a

H
T (φt)fZF,i(a

H
T (φt)fZF,m)∗E

(
sc,is

∗
c,m

)
+

K∑
i=1

K∑
m=1

βiβ
∗
mE
(
sc,is

∗
c,m

)
+

Ns−K∑
j=1

Ns−K∑
n=1

νjν
∗
nE
(
sR,js

∗
R,n

)
+

K∑
i=1

K∑
m=1

2α?<
(
β∗maH

T (φt)fZF,iE
(
sc,is

∗
c,m

))
+

K∑
i=1

Ns−K∑
j=1

2α?<
(
ν∗j a

H
T (φt)fZF,iE

(
sc,is

∗
R,j

))
+

K∑
i=1

Ns−K∑
j=1

2<
(
βiν
∗
jE
(
sc,is

∗
R,j

))
,

where we utilized the property aH
T f⊥ = 1. Here, sc,i and sR,j denote the ith and jth entry of sc

and sR, respectively. Recalling that E(ssH) = I, we have

PB-syn,tgt =
K∑
i=1

|α?aH
T (φt)fZF,i|2 +

K∑
i=1

2α?<(β∗i a
H
T (φt)fZF,i) +

K∑
i=1

|βi|2 +
Ns−K∑
j=1

|νj|2. (61)

Next, we further simplify (61). First, by the definition of FZF and α?, we have
K∑
i=1

|α?aH
T (φt)fZF,i|2 = α2

?a
H
T (φt)FZFF

H
ZFaT (φt) = Γσ2

ca
H
T (φt)Hc

(
HH
c Hc

)−2
HH
c aT (φt). (62)

Then, to meet the transmit power constraint, we have

P =
K∑
i=1

||fB-syn,c,i||2 +
Ns−K∑
j=1

||fB-syn,R,j||2 =
K∑
i=1

(
α2
?||fZF,i||2 + |βi|2||f⊥||2

)
+

Ns−K∑
j=1

|νj|2||f⊥||2,

which is equivalent to
K∑
i=1

|βi|2 +
Ns−K∑
j=1

|νj|2 =
P − α2

?||FZF||2

||f⊥||2
= (P − Γσ2

c tr(H
H
c Hc)

−1)Cb, (63)
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where we used the property ||FZF||2 = P and ||f⊥||2 = 1
Cb

. It requires that P−Γσ2
c tr(H

H
c Hc)

−1 ≥

0, i.e., Γ ≤ P
σ2
c tr(H

H
c Hc)−1 . Substituting (63) into (61) yields

PB-syn,tgt , E
(
||aHT (φt)FB-syns||2

)
= 2α?<(aH

tgtq) + Ctgt, (64)

where

atgt =

fHZF,1aT (φt), · · · , fHZF,KaT (φt), 0, · · · , 0︸ ︷︷ ︸
Ns−K

T

, (65)

q = [β1, · · · , βK , ν1, · · · , νNs−K ]T, (66)

Omitting α? and Ctgt which are constant irrelevant to the allocation of {βi} and {νj}, the

resource allocation problem to maximize PB-syn,tgt is formulated as

max
q

<(aH
tgtq)

s.t. ||q||2 = Pq,

(67)

where Pq = (P −Γσ2
c tr(H

H
c Hc)

−1)Cb. The constraint is obtained from (63) which indicates that

the total power of q, composed of {βi}Ki=1 and {νj}Ns−Kj , is fixed once Γ is given. This problem

is to find a vector q on a sphere which has the highest correlation with atgt. The solution can

be obtained by the Lagrange multiplier method as

q =
√
Pq ·

atgt
||atgt||

. (68)

It follows from (65) and (66) that νj = 0 for j = 1, · · · , Ns − K, which indicates that the

optimal solution is to allocate all power to {βi}Ki=1. Substituting (68) into (64) yields (49). �

REFERENCES

[1] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous iot: Applications, trends and

challenges,” 2021.

[2] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning for sensor-based human activity recognition:

Overview, challenges, and opportunities,” ACM Comput. Surv., vol. 54, no. 4, may 2021.

[3] Q. Huang, H. Chen, and Q. Zhang, “Joint design of sensing and communication systems for smart homes,” IEEE Network,

vol. 34, no. 6, pp. 191–197, 2020.

[4] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture

radar,” IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 1, pp. 6–43, 2013.



31

[5] A. Zhang, M. L. Rahman, X. Huang, Y. J. Guo, S. Chen, and R. W. Heath, “Perceptive mobile networks: Cellular networks

with radio vision via joint communication and radar sensing,” IEEE Veh. Technol. Mag., vol. 16, no. 2, pp. 20–30, 2021.

[6] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards

dual-functional wireless networks for 6g and beyond,” 2021.

[7] F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “Mu-mimo communications with mimo radar: From co-existence to

joint transmission,” IEEE Trans. Wirel. Commun., vol. 17, no. 4, pp. 2755–2770, 2018.

[8] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems:

Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, 2018.

[9] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications,

state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.

[10] X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser mimo

communications and mimo radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.

[11] C. Sturm and W. Wiesbeck, “Waveform design and signal process. aspects for fusion of wireless communications and

radar sensing,” Proc. IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.

[12] M. Roberton and E. Brown, “Integrated radar and communications based on chirped spread-spectrum techniques,” in IEEE

MTT-S International Microwave Symposium Digest, 2003, vol. 1, 2003, pp. 611–614 vol.1.

[13] G. N. Saddik, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans.

Microw. Theory Tech., vol. 55, no. 7, pp. 1431–1437, 2007.

[14] J. A. Mahal, A. Khawar, A. Abdelhadi, and T. C. Clancy, “Spectral coexistence of mimo radar and mimo cellular system,”

IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 2, pp. 655–668, 2017.

[15] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-communications: Information embedding

using sidelobe control and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2168–2181, 2016.

[16] A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad, and B. Himed, “Non-coherent psk-based dual-function radar-

communication systems,” in 2016 IEEE Radar Conference (RadarConf), 2016, pp. 1–6.

[17] T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “Majorcom: A dual-function radar communication system using

index modulation,” IEEE Trans. Signal Process., vol. 68, pp. 3423–3438, 2020.

[18] T. Huang, N. Shlezinger, X. Xu, D. Ma, Y. Liu, and Y. C. Eldar, “Multi-carrier agile phased array radar,” IEEE Trans.

Signal Process., vol. 68, pp. 5706–5721, 2020.

[19] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing

techniques for joint communication and radar sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 15,

no. 6, pp. 1295–1315, 2021.

[20] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proceedings of the ACM SIGCOMM 2013 conference on

SIGCOMM, 2013, pp. 375–386.

[21] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges

and opportunities,” IEEE Journal on selected areas in communications, vol. 32, no. 9, pp. 1637–1652, 2014.

[22] D. Korpi, S. Venkatasubramanian, T. Riihonen, L. Anttila, S. Otewa, C. Icheln, K. Haneda, S. Tretyakov, M. Valkama,

and R. Wichman, “Advanced self-interference cancellation and multiantenna techniques for full-duplex radios,” in 2013

Asilomar Conference on Signals, Systems and Computers. IEEE, 2013, pp. 3–8.

[23] F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-rao bound optimization for joint radar-communication

design,” 2021.

[24] M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath, “Framework for a perceptive mobile network using

joint communication and radar sensing,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 1926–1941, 2020.



32

[25] Z. Ni, J. A. Zhang, X. Huang, K. Yang, and J. Yuan, “Uplink sensing in perceptive mobile networks with asynchronous

transceivers,” IEEE Trans. Signal Process., vol. 69, pp. 1287–1300, 2021.

[26] S. Wang, Y. Hou, F. Gao, and X. Ji, “A novel iot access architecture for vehicle monitoring system,” in 2016 IEEE 3rd

World Forum on Internet of Things (WF-IoT), 2016, pp. 639–642.

[27] K. Shen and W. Yu, “Fractional programming for communication systems—part i: Power control and beamforming,” IEEE

Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, 2018.

[28] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave

mimo systems with large antenna arrays,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 998–1009, 2016.

[29] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel

modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, 2014.

[30] P. Wang, J. Fang, L. Dai, and H. Li, “Joint transceiver and large intelligent surface design for massive mimo mmwave

systems,” IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 1052–1064, 2021.

[31] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter

wave mimo systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 485–500, 2016.

[32] S. D. Blunt, J. G. Metcalf, C. R. Biggs, and E. Perrins, “Performance characteristics and metrics for intra-pulse radar-

embedded communication,” IEEE J. Sel. Areas Commun., vol. 29, no. 10, pp. 2057–2066, 2011.

[33] H. Wang and L. Cai, “On adaptive spatial-temporal processing for airborne surveillance radar systems,” IEEE Trans.

Aerosp. Electron. Syst., vol. 30, no. 3, pp. 660–670, 1994.

[34] L. Xie, Z. He, J. Tong, and W. Zhang, “A recursive angle-doppler channel selection method for reduced-dimension space-

time adaptive processing,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 3985–4000, 2020.

[35] F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-rao bound optimization for joint radar-communication

beamforming,” IEEE Transactions on Signal Processing, vol. 70, pp. 240–253, 2022.

[36] S. M. Karbasi, A. Aubry, V. Carotenuto, M. M. Naghsh, and M. H. Bastani, “Knowledge-based design of space–time

transmit code and receive filter for a multiple-input–multiple-output radar in signal-dependent interference,” IET Radar,

Sonar & Navig., vol. 9, no. 8, pp. 1124–1135, 2015.

[37] W. L. Melvin and J. R. Guerci, “Knowledge-aided signal process.: a new paradigm for radar and other advanced sensors,”

IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 3, pp. 983–996, 2006.

[38] J. R. Guerci, “Cognitive radar: A knowledge-aided fully adaptive approach,” in 2010 IEEE Radar Conference. IEEE,

2010, pp. 1365–1370.

[39] A. Barros, J. Frenk, S. Schaible, and S. Zhang, “A new algorithm for generalized fractional programs,” Mathematical

Programming, vol. 72, no. 2, pp. 147–175, 1996.

[40] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press,

2009.

[41] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38, no. 1, pp. 49–95, 1996.

[42] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx,

Mar. 2014.

[43] W. Peng, L. Xie, J. Shi, T. Gu, and Z. He, “Beampattern synthesis using quantized phase control via multi-point iterative

gradient descent,” IEEE Commun. Lett., pp. 1–1, 2021.

[44] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[45] H. Kasai, “Fast optimization algorithm on complex oblique manifold for hybrid precoding in millimeter wave mimo

systems,” in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018, pp. 1266–1270.

http://cvxr.com/cvx


33

[46] M. K. Samimi, G. R. MacCartney, S. Sun, and T. S. Rappaport, “28 ghz millimeter-wave ultrawideband small-scale fading

models in wireless channels,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–6.

[47] J. Bibby, “Axiomatisations of the average and a further generalisation of monotonic sequences,” Glasgow Mathematical

Journal, vol. 15, no. 1, p. 63–65, 1974.


	I Introduction
	II System Model
	II-A Perceptive Mobile Network with Distributed Target Monitoring Terminals
	II-B Communication Signal Model
	II-C Radar Signal Model

	III Joint Communication and Sensing Design
	III-A Update w(t+1)
	III-B Update WRF(t+1)
	III-C Update F(t+1)

	IV Linear Transceiver Design
	IV-A Linear Transmitter Design
	IV-A1 ZF Transmitter
	IV-A2 Beam Synthesis Transmitter

	IV-B Receiver Design

	V Simulation
	V-A System Performance
	V-B Physical Insights

	VI Conclusion
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Proposition 2
	References

