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Abstract

In this paper, an intelligent reflecting surface (IRS) is introduced to assist an unmanned aerial

vehicle (UAV) communication system based on non-orthogonal multiple access (NOMA) for serving

multiple ground users. We aim to minimize the average total system energy consumption by jointly

designing the resource allocation strategy, the three dimensional (3D) trajectory of the UAV, as well

as the phase control at the IRS. The design is formulated as a non-convex optimization problem

taking into account the maximum tolerable outage probability constraint and the individual minimum

data rate requirement. To circumvent the intractability of the design problem due to the altitude-

dependent Rician fading in UAV-to-user links, we adopt the deep neural network (DNN) approach to

accurately approximate the corresponding effective channel gains, which facilitates the development

of a low-complexity suboptimal iterative algorithm via dividing the formulated problem into two

subproblems and address them alternatingly. Numerical results demonstrate that the proposed algo-

rithm can converge to an effective solution within a small number of iterations and illustrate some

interesting insights: (1) IRS enables a highly flexible UAV’s 3D trajectory design via recycling the

dissipated radio signal for improving the achievable system data rate and reducing the flight power

consumption of the UAV; (2) IRS provides a rich array gain through passive beamforming in the

reflection link, which can substantially reduce the required communication power for guaranteeing

the required quality-of-service (QoS); (3) Optimizing the altitude of UAV’s trajectory can effectively

exploit the outage-guaranteed effective channel gain to save the total required communication power
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enabling power-efficient UAV communications; (4) NOMA communications offer higher degrees of

freedom (DoF) than that of the conventional orthogonal multiple access (OMA) scheme to minimize

the average power consumption via optimizing the UAV’s trajectory.

I. INTRODUCTION

In recent years, the dramatic growth in the number of wireless devices and the associated

demanding quality-of-services (QoS) have fueled the development of new technologies for

the fifth-generation (5G) and beyond 5G (B5G) wireless networks. Although several potential

technologies, e.g. millimeter wave and massive multiple-input multiple-output (MIMO), offer

some promising solutions to guarantee ubiquitous and ultra-high data rate services, e.g. [2],

[3], the system performance is still limited by some bottlenecks, such as overloaded traffic

demand or shadowed communication links. Fortunately, unmanned aerial vehicles (UAVs)-

enabled wireless communication systems provide a feasible solution [4], [5], which overcome

the physical restrictions of traditional terrestrial wireless systems. Particularly, by exploiting

the high mobility of the UAV, the communication performance can be improved via cruising

the UAV close to the desired users. Also, the line-of-sight (LoS) probability between the

UAV and the desired ground users increases with the operating altitude of the UAV which

facilitates the establishment of a strong communication link. Thus, UAV-enabled wireless

communications which UAVs serve as aerial relays [6], aerial base stations [7], etc, have

drawn significant attention from both academia and industry.

Although numerous advantages of adopting UAVs have been revealed in the literature,

e.g. [4], [8], the onboard battery capacity with limited energy storage capacity of UAVs still

restricts the performance of UAV-enabled communications. To fully unleash the performance

of UAV communication systems, various studies have been conducted in the literature to

improve the power efficiency. For instance, in [9], the authors studied the optimal deployment

of multiple UAVs to minimize the total system transmit power satisfying the individual

user data rate requirement simultaneously. However, the flight power consumption of the

UAV was ignored in this work which contributes a major proportion of the total system

power consumption. Besides, the authors in [10] minimized the total power consumption of

both communication and flying via jointly optimizing UAV’s trajectory and user scheduling

for a rotary-wing UAV. Yet, pure LoS wireless channels between the UAV and ground

users were assumed [9], [10], which are generally invalid in practice, particularly in urban

environments. Also, a probabilistic LoS channel model for UAV-enabled data harvesting

system was proposed in [11], which is suitable to a system with a relatively low flying

June 14, 2022 DRAFT



3

altitude UAV when the shadowing effect dominates the system performance. On the other

hand, for a relatively high altitude UAV with a clear LoS, in [12], the UAV’s 3D trajectory

was optimized taking into account a practical model with an angle-dependent Rician fading

channel to maximize the minimum average collected data rate. However, the considered UAV

communication systems in [11], [12] are based on time division multiple access (TDMA)

scheme and their results are not applicable to a more general system supporting multiple users

simultaneously. Besides, although a non-orthogonal multiple access (NOMA)-assisted UAV

communication system with Rician fading channel model was studied in [13], a significant

portion of the system power is still dissipated in signal transmission if the channel condition

of the users is unsatisfactory. As a result, a new technology to improve the channel quality

is desired for power-efficient communication provisioning.

Most recently, intelligent reflecting surface (IRS) has attracted substantial attention in the

field of wireless communications as it can reshape the signal propagation environment so as

to improve the system performance. For example, beamforming and discrete phase control

of IRS-assisted systems were jointly optimized to minimize the total transmit power in [14].

Besides, the authors in [15] proposed a jointly optimized active beamforming at the transmitter

and passive beamforming at the IRS to maximize the received signal power at desired users.

Furthermore, it is expected that deploying an IRS in UAV-enabled communication systems

can help to improve the achievable data rate for ground users with a weak channel condition.

In particular, the passive beamforming controlled by the IRS can reflect the dissipated signals

transmitted from the UAV to the ground users. This unique feature not only increases the

received signal strength at the desired users, but also improves the flexibility in the UAV’s

trajectory design. Thus, the integration of an IRS into UAV-based communication systems has

been advocated lately. For instance, the authors in [16] maximized the average achievable data

rate in IRS-assisted UAV communication systems by jointly optimizing the UAV’s trajectory

and the phase shift control of the IRS. Yet, this study only focused on the case of a single-user

and the proposed result is not applicable to practical multi-user systems. Also, the joint design

of two-dimensional (2D) trajectory and passive beamforming was studied in [1] for multi-user

IRS-aided UAV communications assuming the availability of perfectly known channel state

information (CSI), which is overly optimistic. Moreover, the 2D trajectory designs ignored

the possibility of exploiting the altitude dimension for improving the system performance.

Besides, the 3D trajectory optimization for UAV communications was designed in [8] and

[17], which only consider the pure LoS channel model and a constant path loss exponent,

respectively. Furthermore, the considered system models in [16] neglected the existence of
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a direct link between the UAV and ground users which leads to inevitable performance

degradation. In fact, a joint resource allocation, 3D trajectory design, and phase shift control

for power-efficient IRS-assisted multi-user UAV communication systems are important and

challenging, which has not been reported in the literature yet.

In this paper, we address the aforementioned problems. We study the joint design of

the resource allocation, UAV’s 3D trajectory, and its flight velocity, as well as the phase

shift control of the IRS in a practical altitude-dependent Rician fading channel for power-

efficient IRS-assisted UAV-NOMA communications. The joint design is formulated as a non-

convex optimization problem to minimize the average total power consumption of the system

taking into account the minimum data rate requirement of each user and the maximum

tolerable outage probability constraint. Since the formulated problem is non-convex and

highly intractable, we first propose a closed-form phase control policy for the IRS. Then, to

handle the intractability caused by the altitude-dependent Rician fading channel, we employ

a deep neural network (DNN) technique to approximate the outage-guaranteed effective

channel gain. Furthermore, the obtained results are exploited to serve as a building block

for the design of an iterative optimization algorithm for addressing the design problem. In

particular, we divide the problem at hand into two subproblems and solve them iteratively

based on the alternating optimization method. In each iteration, a suboptimal solution of

these two subproblems are obtained by the successive convex approximation (SCA) with a

fast convergence.

The remainder of this paper is organized as follows. In Section II, we present the system

and channel models. Section III provides the joint design problem formulation. The proposed

solutions are presented in Section IV. Section V illustrates numerical results to evaluate the

performance of the proposed scheme. Finally, we conclude the paper in Section VI.

Notation: RM×N and CM×N represent the space of a M×N matrix with real and complex

entries, respectively. arcsin(·) denotes the inverse trigonometric functions of sin(·). Operator

| · | and ‖ · ‖ represent the absolute value and the vector norm, respectively. XT and XH

denote the transpose and the conjugate transpose of matrix X, respectively. X⊗Y denotes

the Kronecker product of two matrices X and Y. CN (0, σ2) denote a circularly symmetric

complex Gaussian (CSCG) distribution with zero mean and noise variance σ2, and ∼ means

“distributed as”. diag(x1, . . . , xK) represents a diagonal matrix with the diagonal elements

given by {x1, . . . , xK} and [x]+ = max{0, x}. O(·) represents the big-O notation.
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Fig. 1. An IRS-assisted UAV-NOMA communication system with multiple ground users.

II. SYSTEM MODEL

We consider a rotary UAV-enabled downlink NOMA wireless communication system

serving K ground users (GUs) with the assistance of an IRS as shown in Fig. 1. Particularly,

the IRS is coated on the surface of a building located at the edge of the service area such that

all the GUs have the opportunity to be assisted by the IRS [18], [19]. We assume that the

UAV is equipped with a single antenna1. Besides, the IRS consists of MRx×MRy = MR > 1

passive reflecting elements and all the GUs are single-antenna devices. Also, the total service

time duration T is divided into N equal-length time slots with duration time τ (s), i.e.,

T = Nτ . In each time slot, the UAV selects two GUs2 and serves them through NOMA.

Moreover, the UAV operates in three-dimensional (3D) space with a variable flight velocity,

while the locations of all the GUs and the IRS are fixed during the whole service time, e.g.

[12], [23]. Also, we assume that the IRS is deployed at a high altitude above all obstacles.

The distances between the UAV and the IRS, the UAV and GU k ∈ {1, . . . , K}, as well as

the IRS and GU k at time slot n ∈ {1, . . . , N} are given by

dAR[n] = ‖lR − t[n]‖, dAG
k [n] = ‖lk − t[n]‖, and dRG

k = ‖lR − lk‖, (1)

1Note that single-antenna UAV is commonly assumed in the literature, e.g. [10], [20], to reduce the signal processing

burden at the UAV.
2In this paper, we consider to select two GUs to form a NOMA group since it enjoys a lower computational complexity

and a shorter signal processing delay for successive interference cancellation (SIC) decoding at GUs, compared with that

of grouping more NOMA users [21]. Moreover, as shown in [22], the performance gain of NOMA over OMA diminishes

rapidly with increasing the number of users in one NOMA group. Therefore, the considered two-user NOMA scheme can

achieve a considerable performance improvement than the conventional OMA scheme.
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Fig. 2. The vertical and horizontal AoDs/AoAs between the UAV, IRS, and GU k in the considered downlink communication

system are shown on the left-hand side and the right-hand side, respectively.

respectively. Note that lR = [xR, yR, HR]T ∈ R3×1, lk = [xk, yk, zk]
T ∈ R3×1, and t[n] =

[x[n], y[n], z[n]]T ∈ R3×1 denote the Cartesian coordinate of the IRS3, GU k, and the UAV

at time slot n, respectively.

A. Channel Model
In the considered system, we assume that the channels between the UAV and the GUs

as well as the IRS and the GUs follow a frequency flat Rician fading channel model

with an altitude-dependent Rician factor [12], [25]. Note that the Doppler effect caused

by the movement of the UAV can be well compensated by adopting existing frequency

synchronization algorithms, e.g. [26]. According to [12], the Rician factors of the direct links

between the UAV and different GUs are non-identical caused by the UAV’s mobility and their

surrounding environments. In fact, the altitude-dependent Rician factor for the UAV-GUs link

can be modeled by an exponential function [12], [25], which is given by

κAG
k [n] = A1 exp

(
A2θ

AG
k [n]

)
, (2)

where θAG
k [n] is the elevation angle-of-departure (AoD) from the UAV to GU k at time slot

n, as shown in Fig. 2, and is given by

θAG
k [n] = arcsin

(
z[n]

dAG
k [n]

)
. (3)

Note that A1 > 0 and A2 > 0 are constant parameters related to the terrain environment and

can be obtained via long-term measurements. Then, we can observe that the Rician factor is

bounded by κmin ≤ κAG
k [n] ≤ κmax, where κmin = A1 and κmax = A1e

A2π/2.

Hence, the Rician channel between the UAV and GU k at time slot n is given by

hAG
k [n] =

√
β0

(dAG
k [n])αAG

[√
κAG
k [n]

1 + κAG
k [n]

hAG,LoS
k [n] +

√
1

1 + κAG
k [n]

∆hAG
k [n]

]
∈ C, (4)

3Since the typical size of each element in a small-scale IRS is the same order of the wavelength of the carrier frequency,

λc, [24], e.g. λc
2

, the separations between reflecting elements of the IRS in the x-dimension and the y-dimension, denoted

as ∆Rx and ∆Ry , respectively, are much shorter than that of the distance between the UAV and the IRS, dAR[n], as well as

the distance between the IRS and GUs, dRG
k . Thus, we assume that the distance of each element of the IRS to a GU/UAV

is identical, as commonly adopted in the literature [16].
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where hAG,LoS
k [n] = e−j2πd

AG[n]
k /λc and the associated phase rotation is caused by the delay

of the line-of-sight (LoS) component of UAV-GUs link, which is determined solely by their

locations and is known to the system. ∆hAG
k [n] ∈ C ∼ CN (0, 1) denotes the randomly

scattered component of the channel experienced by GU k at time slot n. Note that β0 ∈ R

and αAG > 0 denote the average channel power gain at the reference distance and the path

loss exponent of the UAV-GUs channel, respectively. Besides, we use ξAG
k [n] to represent the

horizontal AoD from the UAV to GU k at time slot n and λc denotes the wavelength of the

carrier frequency. Fig. 2 shows the geographic relations of sin ξAG
k [n] = |xk−x[n]|√

(xk−x[n])2+(yk−y[n])2

and cos ξAG
k [n] = |yk−y[n]|√

(xk−x[n])2+(yk−y[n])2
. On the other hand, the pure LoS channel4 from the

UAV to the IRS at time slot n is denoted as

hAR[n] =

√
β0

(dAR[n])αAR e
−j 2πdAR[n]

λc

×
[
1, e−j

2π∆Rx
λc

sin θRA[n] cos ξRA[n], . . . , e−j
2π∆Rx
λc

(MRx−1) sin θRA[n] cos ξRA[n]
]H

⊗
[
1, e−j

2π∆Ry
λc

sin θRA[n] sin ξRA[n], . . . , e−j
2π∆Ry
λc

(MRy−1) sin θRA[n] sin ξRA[n]
]H∈CMR×1, (5)

where αAR > 0 is the path loss exponent of the UAV-IRS link. As shown in Fig. 2, θRA[n]

and ξRA[n] denote the vertical and horizontal angle-of-arrivals (AoAs) between the UAV and

the IRS, respectively. Note that sin θRA[n] = |z[n]−HR|
dAR[n]

, sin ξRA[n] = |xR−x[n]|√
(xR−x[n])2+(yR−y[n])2

,

and cos ξRA[n] = |yR−y[n]|√
(xR−x[n])2+(yR−y[n])2

. Besides, the Rician channel from the IRS to GU k

at time slot n can be modeled as

hRG
k [n] =

√
β0

(dRG
k )αRG

[√
κRG

1 + κRG
hRG,LoS
k +

√
1

1 + κRG
∆hRG

k [n]

]
∈ CMR×1, (6)

where

hRG,LoS
k = e−j

2πdRG
k
λc

[
1, e−j

2π∆Rx
λc

sin θRG
k cos ξRG

k , . . . , e−j
2π∆Rx
λc

(MRx−1) sin θRG
k cos ξRG

k
]H

⊗
[
1, e−j

2π∆Ry
λc

sin θRG
k sin ξRG

k , . . . , e−j
2π∆Ry
λc

(MRy−1) sin θRG
k sin ξRG

k
]H (7)

is the LoS component that is known to the system. ∆hRG
k [n] ∈ CMR×1 ∼ CN (0, IMR

),

αRG ≥ 0, and κRG ≥ 0 represent the randomly scattered component, the path loss exponent,

and the fixed Rician factor of the IRS-GUs channel, respectively. θRG
k and ξRG

k denote the

vertical and horizontal AoDs from the IRS to GU k, respectively. As shown in Fig. 2, we

have sin θRG
k = HR

dRG
k

, sin ξRG
k = |xR−xk|√

(xR−xk)2+(yR−yk)2
, and cos ξRG

k = |yR−yk|√
(xR−xk)2+(yR−yk)2

.

4In practice, the IRS is mounted at the wall of a building that has a similar height with traditional base stations deployed

in outdoor wireless communication systems [27], e.g. 20− 30 meters. Based on the field measurements in [28], [29], the

LoS probability of the air-to-air communication channel closely approaches one. Thus, in our proposed system, we assume

that the UAV-IRS link experiences the pure LoS channel which the corresponding channel coefficients can be determined

by their locations.
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Moreover, the IRS can manipulate the reflected signals to GUs by introducing controllable

phase shifts. The phase control matrix imposed by the IRS at time slot n is given by5

Φ[n] = diag(ejφ1,1[n], . . . , ejφmRx,mRy
[n], . . . , ejφMRx,MRy

[n]) ∈ CMR×MR , (8)

where φmRx,mRy
[n] ∈ [0, 2π), mRx = {1, . . . ,MRx}, mRy = {1, . . . ,MRy}, represents the

phase control introduced by the (mRx,mRy)-th reflecting element of the IRS at time slot n.

Now, we define the end-to-end effective channel6 between the UAV and GU k at time slot

n as
hk[n] = hAG

k [n] + (hRG
k [n])HΦ[n]hAR[n] ∈ C. (9)

Meanwhile, at the UAV side, the deterministic components of all channels, including

the LoS components, path loss as well as the Rician factors can be determined that are

available for the designed trajectory of the UAV. Apart from the deterministic components,

the distributions of the randomly scattered components in the UAV-GUs and IRS-GUs links

are also available [33].

B. NOMA Transmission and Achievable Data Rate

We consider NOMA transmission at the UAV to serve two GUs at each time slot as it is

potential to achieve a higher power efficiency than that of the conventional OMA schemes7

[34]. Without loss of generality, when the UAV selects GU k and GU k′ to form a NOMA

group and instructs GU k to perform SIC decoding at time slot n, we denote sk,k′ [n] = 1,

∀k, k′. Otherwise, sk,k′ [n] = 0. When sk,k′ [n] = 1, the UAV transmits the superimposed

signals for GU k and GU k′ simultaneously. As illustrated in Fig. 1, GU k is assumed as the

user performing SIC which first decodes the information of GU k′ before decoding its own

information. Besides, GU k′ is assumed as the non-SIC user which directly decodes its own

information while treating the interference of GU k as noise. For sk,k′ [n] = 1, the achievable

data rates of the two stages of SIC decoding at GU k serving as a SIC user and that of GU

k′ serving as a non-SIC user can be formulated as

5Note that although continuous phase control is considered in this paper, it can be extended to the case of discrete phase

control via a similar approach as in [30] and with the IRS channel estimation as in [31].
6The signal propagation delay between the direct link and the reflection link is negligible as it is about 2 µs in an

500 × 500 m2 service area, which is much shorter than the symbol duration in long-term evolution systems (around 70

µs) [32].
7The proposed optimization framework is a generalized one which subsumes TDMA as a special case [11], [12].
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CI,SIC
k,k′ [n] = log2

(
1 +

pk′ [n]|hk[n]|2

pk[n]|hk[n]|2 + σ2
k

)
,∀n, k 6= k′, (10)

CII,SIC
k,k′ [n] = log2

(
1 +

pk[n]|hk[n]|2

σ2
k

)
,∀n, k, and (11)

CNSIC
k,k′ [n] = log2

(
1 +

pk′ [n]|hk′ [n]|2

pk[n]|hk′ [n]|2 + σ2
k′

)
,∀n, k 6= k′, (12)

respectively, where pk[n], pk′ [n], σ2
k, and σ2

k′ denote the power allocation variables and the

background noise powers for GU k and GU k′ at time slot n, respectively. Note that when

k = k′, sk,k[n] = 1 models the case of TDMA where only GU k is served at time slot n

and the achievable rate can be given by CII,SIC
k,k [n] in (11). However, due to the existence of

randomly scattered components in Rician fading channels, an outage event occurs when the

transmission rate exceeds the achievable data rate. To capture the potential outage events, we

define the effective rate allocation for GU k and GU k′ at time slot n as rk[n] and rk′ [n],

respectively. When sk,k′ [n] = 1, rk[n] can be achieved when the two stages of SIC decoding

at GU k are successful, i.e., rk′ [n] ≤ CI,SIC
k,k′ [n] and rk[n] ≤ CII,SIC

k,k′ [n]. Meanwhile, rk′ [n] can

be achieved when the direct decoding at GU k′ is successful, i.e., rk′ [n] ≤ CNSIC
k,k′ [n]. Besides,

when sk,k[n] = 1, rk[n] can be achieved when rk[n] ≤ CII,SIC
k,k [n].

Our design aims to satisfy the minimum data rate requirement of each user while taking

into account the potential outages of both SIC decoding and direct decoding. Therefore, we

formulate the average transmission rate of user k during the whole flight period as follows:

R̄k =
1

N

N∑
n=1

K∑
k′=1
k′ 6=k

sk,k′ [n]rk[n]

︸ ︷︷ ︸
GU k as a SIC user

+
1

N

N∑
n=1

K∑
k′=1
k′ 6=k

sk′,k[n]rk[n]

︸ ︷︷ ︸
GU k as a non-SIC user

+
1

N

N∑
n=1

sk,k[n]rk[n]︸ ︷︷ ︸
GU k as an OMA user

, (13)

where the first term denotes the average transmission rate of GU k as a SIC user, the second

term denotes the average transmission rate of GU k as a non-SIC user, and the third term

represents the average transmission rate of GU k as an OMA user.

C. Power Consumption Model

The power consumption of the UAV plays an important role in UAV-based commu-

nications due to its small-size onboard battery with limited energy capacity. The system

power consumption consists of the UAV’s communication power and the flight power. The

communication power of the UAV at time slot n can be given by

Pcomm[n] =
K∑
k=1

K∑
k′ 6=k

sk,k′ [n] (pk[n]+pk′ [n]) +
K∑
k=1

sk,k[n]pk[n]. (14)

Note that the first term denotes the communication power consumption for NOMA users and

the second term represents the communication power of the users selected to operate in OMA
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TABLE I
PHYSICAL MEANING OF PARAMETERS IN FLIGHT POWER CONSUMPTION MODEL OF UAV [10].

Parameters Physical meaning Simulation values
G Weight of UAV 20 (Newton)
Ω Blade angular velocity 300 (radians/second)
r Rotor radius 0.4 (meter)
ρ Air density 1.225 (kg/m3)
s Rotor solidity 0.05 (m3)
Ar Rotor disc area 0.503 (m2)
v0 Induced velocity for rotor in forwarding flight 4.03 (meter/second)
d0 Fuselage drag ratio 0.3
Po Blade profile power in hovering status 79.86 (watt)
Pi Induced power in hovering status 88.63 (watt)

mode. In this system, we consider a rotary wing UAV as it has a higher maneuverability than

fixed wing UAVs. According to [8], [10], the flight power consumption of a rotary wing UAV

at time slot n is given by

Pfly[n]=Po

(
1+

3(v2
x[n]+v2

y[n])

Ω2r2

)
︸ ︷︷ ︸

Bladeprofile power

+
Piv0

v2
x[n]+v2

y[n]︸ ︷︷ ︸
Induced power

+
1

2
d0ρsAr(v

2
x[n]+v2

y[n])3/2︸ ︷︷ ︸
Parasite power

+ Gvz[n]︸ ︷︷ ︸
Vertical flight power

, (15)

where the velocity of the UAV in 3D Cartesian coordinate is denoted as v[n] = [vx[n], vy[n],

vz[n]]T ∈ R3×1. The physical meanings of the parameters in (15) are summarized in Table

I. In (15), the first three components are related to the horizontal flight power and the last

component, representing the vertical flight power consumption, plays an important role in

controlling the UAV’s flight altitude. In particular, it is expected that optimizing the vertical

velocity, vz[n], can affect the flight endurance and the flight power consumption.

On the other hand, in practice, the IRS is usually mounted on the building exterior which

is accessible to energy source. Besides, the IRS is nearly passive and its operation power is a

constant which is much lower than that of the communication and flight power consumption

of the UAV [10], [15]. Therefore, we ignore the IRS power consumption in the considered

system.

III. PROBLEM FORMULATION

The optimization problem for minimizing the average total power consumption via jointly

designing the user scheduling S = {sk,k′ [n],∀n, k, k′}, the power allocation P = {pk[n],

∀n, k}, the effective transmission rate R = {rk[n],∀n, k}8, the UAV’s 3D trajectory T =

{t[n],∀n}, the UAV’s 3D flight velocity V = {v[n],∀n}, and the phase control policy of the

IRS Φ = {φmRx,mRy
[n], ∀n,mRx,mRy} is formulated as:

8Note that the transmission rate rk[n] is optimized to satisfy the outage probability constraints based on the practical
altitude-dependent Rician fading channel model while only the statistical CSI is available for resource allocation.
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minimize
S,P,R,T ,V,Φ

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

Pfly[n] (16)

s.t.C1: sk,k′ [n] ∈ {0, 1},∀n, k, k′, C2 :
K∑
k=1

K∑
k′=1

sk,k′ [n] ≤ 1,∀n,

C3: pk[n] ≥ 0,∀n, k, C4 : Pcomm[n] ≤ Ppeak,∀n, C5 : R̄k ≥ Rmink ,∀k,

C6: Pr
(
sk,k′ [n]rk′ [n]≤sk,k′ [n]CI,SIC

k,k′ [n], sk,k′ [n]rk[n]≤sk,k′ [n]CII,SIC
k,k′ [n]

)
≥1−εSIC

k ,∀n, k′6=k,

C7: Pr
(
sk′,k[n]rk[n] ≤ sk′,k[n]CNSIC

k′,k [n]
)
≥ 1− εNSIC

k ,∀n, k′ 6=k,

C8: Pr
(
sk,k[n]rk[n] ≤ sk,k[n]CII,SIC

k,k [n]
)
≥ 1− εOMA

k ,∀n, k,

C9: t[n+ 1] = t[n] + v[n]τ, n = 1, . . . , N − 1,

C10: t[1] = t0, C11 : t[N ] = tF,

C12: tmin ≤ t[n] ≤ tmax,∀n, C13 : ‖v[n+ 1]− v[n]‖ ≤ Vaccτ, ∀n,

C14: ‖v[n]‖ ≤ Vmax, ∀n, C15 : 0 ≤ φmRx,mRy
[n] < 2π,∀n,mRx,mRy.

Note that C1 defines the user scheduling variable and C2 guarantees that at most two users

are scheduled at each time slot. C3 is the non-negative constraint for the transmit power

from the UAV to GU k and Ppeak in C4 represents the peak transmission power of the

UAV at each time slot. Constraint C5 is introduced to limit the minimum data rate for each

user. Constraints C6 − C8 represent the maximum outage9 probability constraints for the

SIC decoding at SIC users, the direct decoding at non-SIC users10, and the direct decoding

at OMA users, respectively, where εSIC
k > 0, εNSIC

k > 0, and εOMA
k > 0 are corresponding

maximum tolerable outage probabilities. Constraint C9 denotes the relationship between the

UAV’s 3D trajectory and its flight velocity11. C10 and C11 denote the starting and the final

locations of the UAV, respectively. Parameters tmin and tmax in constraint C12 limit the

maximum service area of the UAV. Vacc and Vmax in constraints C13 and C14 denote the

maximum flight acceleration and the maximum flight velocity, respectively. C15 limits the

range of phase control of the IRS.

In practice, although the transmit power consumption is much lower than the flight power

consumption [10], minimizing both pcomm[n] and Pfly[n] in the objective function is necessary

9Note that the channel outage happens when the effective transmission rate is larger than the channel capacity.
10In this system, we assume that the SIC user did not tempt to decode its own message if the first stage is failed, as

commonly adopted in [2], [34].
11Note that the UAV’s flight velocity is a function of its trajectory for a given time slot duration τ . However, directly

expressing the total power consumption in terms of UAV’s trajectory or expressing the effective channel gain in terms of
UAV’s flight velocity would lead to an intractable formulation. Thus, we introduce variables of the UAV’s trajectory and
flight velocity to simplify the problem at hand.
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since minimizing pcomm[n] can limit the induced interference level imposed to conventional

terrestrial cellular networks.

IV. PROBLEM SOLUTION

The formulated problem in (16) is a non-convex optimization problem and there is no

systematic and efficient method to obtain the globally optimal solution. In the following, we

first simplify the studied problem by exploiting its special structure at the optimality. Then, a

computationally-efficient suboptimal algorithm is proposed to obtain a high-quality solution.

A. Phase Control and Outage-guaranteed Effective Channel Gain

Since the randomly scattered components of the channels, e.g. ∆hAG
k [n] and ∆hRG

k [n], are

unknown, optimizing the phase control policy of the IRS has to rely on the LoS components

of the channels, hAR[n], hAG,LoS
k [n], and hRG,LoS

k . To facilitate our design, we propose a

efficient closed-form suboptimal phase control policy and derive the effective channel gain

based on the distributions of ∆hAG
k [n] and ∆hRG

k [n]. Note that the proposed design can

significantly reduce the required signaling overhead for CSI acquisition and phase control.

To determine the IRS phase control, since GU k is designed to perform SIC decoding and

it is more likely to suffer from the channel outage than GU k′, we assume that the IRS is

always controlled to coherently combine the LoS channels of GU k when sk,k′ [n] = 1. In

the following, we summarize a suboptimal phase control policy in a theorem.

Theorem 1. A suboptimal phase control policy of the IRS at time slot n φmRx,mRy
[n] for

minimizing the total system power consumption is given by

φmRx,mRy
[n] =

K∑
k=1

K∑
k′=1

sk,k′ [n]

(
2π∆Rx

λc

(mRx − 1)
(
sin θRG

k cos ξRG
k − sin θRA[n] cos ξRA[n]

)
+

2π∆Ry

λc

(mRy−1)
(
sin θRG

k sin ξRG
k −sin θRA[n] sin ξRA[n]

)
+

2π

λc

(
dAR
k [n]+dRG

k −dAG
k [n]

))
.(17)

Proof: Please refer to the appendix for a proof of Theorem 1.

Applying (17) to (4)–(7) yields the effective channels from the UAV to GU k and GU k′

at time slot n are given by

hk[n] =

√
β0κAG

k [n]

Ak[n]
+

√
β2

0κ
RGM2

R

Bk[n]
+

√
β0

Ak[n]
∆hAG

k [n] +

√
β2

0M
2
R

Bk[n]
∆hRG

k [n] and (18)

hk′ [n] =

√
β0κAG

k′ [n]

Ak′ [n]
e−j

2π
λ

(dAG
k′ [n]+dAG

k [n]) +

√
β2

0κ
RG

Bk′ [n]
e−j

2π
λ

(dRG
k′ −d

RG
k )

MRx∑
mRx=1

MRy∑
mRy=1

exp

(
−j 2π

λ[
∆Rx(mRx− 1)(sin θRG

k′ cos ξRG
k′ − sin θRG

k cos ξRG
k )+∆Ry(mRy− 1)(sin θRG

k′ sin ξRG
k′

− sin θRG
k sin ξRG

k )
])

+

√
β0

Ak′ [n]
∆hAG

k′ [n] +

√
β2

0

Bk′ [n]
∆hRG

k′ [n], (19)
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respectively, where Ak[n] = (dAG
k [n])α

AG
(1 + κAG

k [n]), Bk[n] = (dAR[n])α
AR

(dRG
k )α

RG
(1 +

κRG), Ak′ [n] = (dAG
k′ [n])α

AG
(1 + κAG

k′ [n]), and Bk′ [n] = (dAR[n])α
AR

(dRG
k′ )α

RG
(1 + κRG). We

can observe that hk[n] and hk′ [n] follow the Gaussian distribution with mean,
√

β0κAG
k [n]

Ak[n]
+√

β2
0κ

RGM2
R

Bk[n]
and

√
β0κAG

k′ [n]

Ak′ [n]
+
√

β2
0κ

RG

Bk′ [n]
, as well as variance, β0

Ak[n]
+

β2
0M

2
R

Bk[n]
and β0

Ak′ [n]
+

β2
0

Bk′ [n]
,

respectively. In other words, the end-to-end effective channels of GUs still follows the altitude-

dependent Rician fading with our proposed phase control policy12. Note that the outage

probability constraints C6 − C8 of the formulated optimization problem (16) are active at

the optimal point. Then, constraints C6− C8 can be rewritten as13

1−εSIC
k = Pr

(
sk,k′ [n]rk′ [n] ≤ sk,k′ [n]CI,SIC

k,k′ [n], sk,k′ [n]rk[n] ≤ sk,k′ [n]CII,SIC
k,k′ [n]

)
= Pr

(
σ2
k(2

rk′ [n] − 1)

pk′ [n]− pk[n](2rk′ [n] − 1)
≤ |hk[n]|2, σ

2
k(2

rk[n] − 1)

pk[n]
≤ |hk[n]|2

)
= max

{
1− Fn,k

(
σ2
k(2

rk′ [n] − 1)

pk′ [n]− pk[n](2rk′ [n] − 1)

)
, 1− Fn,k

(
σ2
k(2

rk[n] − 1)

pk[n]

)}
, (20)

1−εNSIC
k = Pr

(
sk′,k[n]rk[n] ≤ sk′,k[n]CNSIC

k′,k [n]
)

= Pr
(

σ2
k(2

rk[n]v −1)

pk[n]−pk′ [n](2rk[n]−1)
≤|hk[n]|2

)
=1−Fn,k

(
σ2
k(2

rk[n]−1)

pk[n]−pk′ [n](2rk[n]−1)

)
,(21)

1−εOMA
k = Pr

(
sk,k[n]rk[n] ≤ sk,k[n]CII,SIC

k,k [n]
)

= Pr
(
σ2
k(2

rk[n] − 1)

pk[n]
≤ |hk[n]|2

)
= 1− Fn,k

(
σ2
k(2

rk[n] − 1)

pk[n]

)
, (22)

respectively. Note that Fn,k(·) is the cumulative distribution function (CDF) of the random

variable |hk[n]|2, which is given by [12], [35]

Fn,k(χ) = 1−Q1

(√
β0κAG

k [n]Bk[n]

Dk[n]
+

√
β2

0κ
RGM2

RAk[n]

Dk[n]
,

√
Ak[n]Bk[n]

Dk[n]
χ

)
and(23)

Fn,k(f
NSIC
k [n]) = 1−Q1

(√
β0κAG

k [n]Bk[n]

Dk[n]
+

√
β2

0κ
RGAk[n]

Dk[n]
,

√
Ak[n]Bk[n]

Dk[n]
fNSIC
k [n]

)
, (24)

where χ ∈ {f I,SIC
k [n], f II,SIC

k [n], fOMA
k [n]}, fSIC

k [n] = min
{
f I,SIC
k [n], f II,SIC

k [n]
}

, and Dk[n] =

β0Bk[n]+β2
0M

2
RAk[n]. Note that fSIC

k [n], fNSIC
k [n], and fOMA

k [n] denote the outage-guaranteed

effective channel gain for GU k when it is selected as a SIC user, a non-SIC user, and

an OMA user, respectively. Function Q1(a, b) is the standard Marcum-Q function [36].

In general, there is no closed-form expression for (23) and (24). More importantly, their

inverse functions, i.e., F−1
n,k(f I,SIC

k [n]), F−1
n,k(f II,SIC

k [n]), F−1
n,k(fNSIC

k [n]), and F−1
n,k(fOMA

k [n]),

12The obtained closed-form IRS phase shift in (17) is the optimal solution for the case of OMA.
13Note that since outage constraints C6−C8 are inactive if sk,k′ [n] = 0, we only consider the situation of sk,k′ [n] = 1

while handling the intractable constraints C6− C8 in the following process.
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Fig. 3. The structure of the employed three-layer feedforward neural network.

for returning outage-guaranteed effective channel gains, f I,SIC
k [n], f II,SIC

k [n], fNSIC
k [n], and

fOMA
k [n] are intractable functions with respect to (w.r.t.) the 3D trajectory of the UAV, t[n].

On the other hand, although the value of the Marcum-Q function can be found via a lookup

table, it does not facilitate the overall resource allocation design.

To overcome the intractability in (23) and (24), also, to strike a balance between the system

performance and the computational complexity, in this paper, we adopt a DNN approach14

[39], [40] to approximate the outage-guaranteed effective channel gain f ik[n] for different

schemes i ∈ {SIC,NSIC,OMA} as a tractable function w.r.t. the 3D trajectory of the UAV

and location of GUs. Fig. 3 shows the structure of a three-layer feedforward neural network

[41]. Thus, for each location of the UAV, t[n], the location of GU k, lk, and a given outage

probability, εik as the generated data sets for the DNN approach, we can generate the numerical

data of 1
f ik[n]

based on (2)–(7), (20)–(24) which serve as labels for neural network training15.

After offline training based on the generated samplings, we can then obtain a well-trained

neural network. That is, for given maximum tolerable outage probabilities εik, we obtain the

approximated outage-guaranteed user location-aware effective channel gain for GU k as

f ik[n] ≈ 1

(wi
3)H
[
wi

2 [wi
1qk[n] + bi1]

+
+ bi2

]+

+ bi3

. (25)

Note that [wi
1qk[n] + bi1]

+ is the rectified linear unit (ReLU) function for GU k adopting

scheme i, which is a convex function w.r.t. qk[n]. Vector qk[n] = [t[n]; lk] ∈ R6×1 collects

the trajectory of the UAV and the location of GU k at time slot n. Parameters wi
1 ∈ R200×6,

14Note that although existing data regression methods, e.g. discriminant analysis and stochastic modeling, can be adopted
to approximate the sophisticated effective channel gains [37], [38], they either incur high computational complexity or
result in limited performance. Besides, their intractability do not facilitate the design of computationally efficient resource
allocation policy.

15The reason for adopting 1
fi
k

[n]
as a label rather than f ik[n] is that the former can be interpreted as the path loss between

the UAV and the desired GU’s location which directly depends on the UAV’s trajectory. Besides, the training and testing
data sets are prepared by the mentioned generated data sets that adopt 70% and 30% of the data sets, respectively.
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bi1 ∈ R200×1, wi
2 ∈ R100×200, bi2 ∈ R100×1, wi

3 ∈ R100×1, and bi3 ∈ R are the well-trained

weights and biases for scheme i between layer 1 and layer 2, layer 2 and layer 3, as well as

layer 3 and layer 4, respectively, as shown in Fig. 3. To verify the approximation accuracy, as

shown in Fig. 4 and Fig. 5, we present the numerical result of f ik[n] based on (23) and (24) as

well as the approximated value by the neural network model according to (25) for different

dimensions, respectively. We can observe from them that the numerical result of f ik[n] based

on (2)–(7), (20)–(24) closely match their predicted effective channel gains obtained by our

well-trained numerical network model. Besides, with a sufficient number of training data the

normalized mean square error (NMSE) between the numerical channel gain and the outage-

guaranteed effective channel gain via the DNN approach is less than 0.005 in our considered

setting that is negligible for resource allocation design [42], [43]. In particular, there is a non-

trivial trade-off between the flight altitude, outage-guaranteed effective channel gain, and the

horizontal distance between the UAV and the GUs. For example, as shown in Fig. 5, when

the horizontal distance between the UAV and the desired users (e.g. GU 1 and GU 2) is

large, increasing the flight altitude to a certain extent would increase the effective channel

gain. Specifically, a higher flight altitude can reduce the variance of Rician fading channel in

(4) which facilitates a more power-efficient UAV communication. However, an exceedingly

high flight altitude would cause the decrease in outage-guaranteed effective channel gain, as

the increased path loss outweights the gain brought by reduced channel uncertainty. On the

other hand, when the horizontal distance between the UAV and the user (e.g. GU 3) is short,

increasing the flight altitude is not beneficial to the effective channel gain since the increased

path loss is dominated. As a result, we set the outage-guaranteed transmission rate for GU

k as a SIC user, a non-SIC user, and an OMA user16 are given by

rk[n] = log2

(
1 +

pk[n]fSIC
k [n]

σ2
k

)
,∀n, k 6= k′, if sk,k′ [n] = 1, (26)

rk[n] = log2

(
1 +

pk[n]fNSIC
k [n]

pk′ [n]fNSIC
k [n] + σ2

k

)
,∀n, k 6= k′, if sk′,k[n] = 1, and (27)

rk[n] = log2

(
1 +

pk[n]fOMA
k [n]

σ2
k

)
,∀n, k, if sk,k[n] = 1, (28)

respectively. Then, by applying (26) and (27) to constraint C5a, we can readily reformulate

the original optimization formulation in (16) as the following problem:

16Note that we will verify the accuracy of the outage probability obtained by using (25) as the outage-guaranteed effective
channel gain in the simulation section.
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Fig. 4. Comparisons between the numerical data and the
neural network model versus the UAV’s location at the x-
dimension and the y-dimension for a specific altitude, i.e.,
140 m, when the maximum tolerable outage probability =
0.01 and κmin = 0 dB. The location of GUs and the IRS
are listed in Table II.
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GU 3, respectively, when the maximum tolerable outage
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minimize
S,P,T ,V,Q

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

Pfly[n] (29)

s.t. C1− C4,C9− C14,

C5 :
1

N

N∑
n=1

[
K∑
k′=1
k′ 6=k

(
sk,k′ [n] log2

(
1+

pk[n]fSIC
k [n]

σ2
k

)
+sk′,k[n] log2

(
1+

pk[n]fNSIC
k [n]

pk′ [n]fNSIC
k [n]+σ2

k

))

+ sk,k[n] log2

(
1 +

pk[n]fOMA
k [n]

σ2
k

)]
≥ Rmink ,∀k, C16 : qk[n] = [t[n]; lk], ∀n, k,

where Q = {qk[n],∀n, k}. Note that we can rewrite C5 as

C5 :
1

N

N∑
n=1

[
K∑
k′=1
k′ 6=k

RSIC
k,k′ [n] +

K∑
k′=1
k′ 6=k

(
RI
k′,k[n]−RII

k′,k[n]
)

+ROMA
k,k [n]

]
≥ Rmink ,∀k, (30)

where

RSIC
k,k′ [n] = sk,k′ [n] log2

(
1 +

pk[n]fSIC
k [n]

σ2
k

)
, (31)

RI
k′,k[n] = sk′,k[n] log2

(
(pk[n] + pk′ [n])fNSIC

k [n] + σ2
k

)
, (32)

RII
k′,k[n] = sk′,k[n] log2

(
pk′ [n]fNSIC

k [n] + σ2
k

)
, and (33)

ROMA
k,k [n] = sk,k[n] log2

(
1 +

pk[n]fOMA
k [n]

σ2
k

)
. (34)

Although the reformulated problem in (29) is more tractable, it is still non-convex due to the

coupling between the communication resource allocation variables and the UAV’s trajectory

design variables. Now, to obtain an efficient suboptimal solution, we adopt the alternating

optimization (AO) method [44] by separating the optimization problem in (29) into two

subproblems and address them iteratively. The solution structure is shown in a flow chart in
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Fig. 6. A flow chart for the illustration of the proposed iterative algorithm.

Fig. 6. In particular, subproblem 1 optimizes the user scheduling S = {sk,k′ [n], ∀n, k, k′} and

the power allocation P = {pk[n],∀n, k} for a given UAV’s 3D trajectory T = {t[n],∀n}, 3D

flight velocity V = {v[n],∀n}, and Q = {qk[n],∀n, k}; Subproblem 2 optimizes the UAV’s

3D trajectory T = {t[n],∀n}, its 3D flight velocity V = {v[n],∀n}, and Q = {qk[n],∀n, k}

for a given user scheduling S = {sk,k′ [n],∀n, k, k′} and power allocation P = {pk[n],∀n, k}.

Now, we study the solution of subproblem 1.

B. Subproblem 1: Optimizing User Scheduling and Power Allocation

In this subproblem, for any given UAV’s trajectory and flight velocity, the user scheduling

and power allocation can be formulated as:

minimize
S,P

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

Pfly[n] (35)

s.t. C1− C4,C5.

Note that constraint C2 is an affine constraint w.r.t. the user scheduling sk,k′ [n]. First, to

address the nonconvexity of the problem, we handle the coupling between the paired user

scheduling sk,k′ [n] and transmit power allocation pk[n] variables by introducing one slack

variable17 p̃k,k′,k[n] = sk,k′ [n]pk[n]. Then, by adopting the big-M formulation [5], [21], [45],

we introduce the following auxiliary constraints:

C17 : p̃k,k′,k[n] ≤ pk[n],∀n, k, k′, C18 : p̃k,k′,k[n] ≤ sk,k′ [n]Ppeak, ∀n, k, k′,

C19 : p̃k,k′,k[n] ≥ 0,∀n, k, k′, C20 : p̃k,k′,k[n] ≥ pk[n]− (1− sk,k′ [n])Ppeak,∀n, k, k′. (36)

Then, we can rewrite the binary constraint C1 in its equivalent form as

C1a :
N∑
n=1

K∑
k=1

K∑
k′=1

(
sk,k′ [n]− (sk,k′ [n])2

)
≤ 0, C1b : 0 ≤ sk,k′ [n] ≤ 1,∀n, k, k′, (37)

17Note that the slack variable with different subscripts have different physical meanings, i.e., p̃k,k′,k[n] = sk,k′ [n]pk[n],
p̃k,k′,k′ [n] = sk,k′ [n]pk′ [n], p̃k′,k,k[n] = sk′,k[n]pk[n], p̃k′,k,k′ [n] = sk′,k[n]pk′ [n], and p̃k,k,k[n] = sk,k[n]pk[n] are the
power allocation for GU k and k′ when GU k as the SIC user and GU k′ as the non-SIC user, the power allocation for
GU k and k′ when GU k′ as the SIC user and GU k as the non-SIC user, and the power allocation for GU k when it as
the OMA user, respectively. In this paper, we adopt p̃k,k′,k[n] to represent the slack variable to simplify the presentation.
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where variable sk,k′ [n] is a continuous value between zero and one. However, constraint C1a

is a reverse convex function [46]. To handle this non-convexity, we reformulate the problem

formulation in (35) based on [5], [34] as its equivalent form:

minimize
S,P,P̃

1

N

N∑
n=1

K∑
k=1

[
η

( K∑
k′=1
k′ 6=k

(p̃k,k′,k[n] + p̃k,k′,k′ [n]) + p̃k,k,k[n]

)

+
K∑
k′=1

ζ
(
sk,k′ [n]− (sk,k′ [n])2

) ]
+

1

N

N∑
n=1

Pfly[n] (38)

s.t. C1b,C2,C17− C20,

C̃3 : p̃k,k′,k[n] ≥ 0,∀n, k, k′, C̃4 :
K∑
k=1

(
K∑
k′ 6=k

(p̃k,k′,k[n] + p̃k,k′,k′ [n]) + p̃k,k,k[n]

)
≤ Ppeak,∀n,

C̃5 :
1

N

N∑
n=1

[
K∑
k′=1
k′ 6=k

R̃SIC
k,k′ [n] +

K∑
k′=1
k′ 6=k

(
R̃I
k′,k[n]− R̃II

k′,k[n]
)

+ R̃OMA
k,k [n]

]
≥ Rmink ,∀k,

where

R̃SIC
k,k′ [n] = sk,k′ [n] log2

(
1 +

p̃k,k′,k[n]fSIC
k [n]

sk,k′ [n]σ2
k

)
, (39)

R̃I
k′,k[n] = sk′,k[n] log2

(
(p̃k′,k,k[n] + p̃k′,k,k′ [n])fNSIC

k [n]

sk′,k[n]
+ σ2

k

)
, (40)

R̃II
k′,k[n] = sk′,k[n] log2

(
p̃k′,k,k′ [n]fNSIC

k [n]

sk′,k[n]
+ σ2

k

)
, and (41)

R̃OMA
k,k [n] = sk,k[n] log2

(
1 +

p̃k,k,k[n]fOMA
k [n]

sk,k[n]σ2
k

)
, (42)

P̃ = {p̃k,k′,k[n],∀n, k, k′}, and ζ � 1. Note that the optimization problem in (38) is still non-

convex and the non-convexity arises from the objective function and constraint C̃5. Thus,

we handle the penalty terms in the objective function and R̃II
k′,k[n] in nonconvex constraints

C̃5 in problem (38) via the iterative successive convex approximation (SCA) technique [47],

[48]. Specifically, for given sj1k,k′ [n] and pj1k,k′,k[n] in the j1-th iteration, an upper bound of the

penalty term and R̃II
k′,k[n] can be obtained by their first-order Taylor expansions as

sk,k′ [n]−(sk,k′ [n])2 ≤ (Aup
k,k′ [n])j1 =sk,k′ [n]−(sj1k,k′ [n])2+2sj1k,k′ [n](sk,k′ [n]−sj1k,k′ [n]) and (43)

R̃II
k′,k[n] ≤ (R̃II,up

k′,k [n])j1

= sj1k′,k[n] log2

(
p̃j1k′,k,k′ [n]fNSIC

k [n]

sj1k′,k[n]
+σ2

k

)
+ log2

(
p̃j1k′,k,k′ [n]fNSIC

k [n]

sj1k′,k[n]
+σ2

k

)
(sk′,k[n]−sj1k′,k[n])

−
p̃j1k′,k,k′ [n]fNSIC

k [n](sk′,k[n]− sj1k′,k[n])

(p̃j1k′,k,k′ [n]fNSIC
k [n] + sj1k′,k[n]σ2

k) ln 2
+
sj1k′,k[n]fNSIC

k [n](p̃k′,k,k′ [n]− p̃j1k′,k,k′ [n])

(p̃j1k′,k,k′ [n]fNSIC
k [n] + sj1k′,k[n]σ2

k) ln 2
, (44)

respectively.
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Algorithm 1 Proposed Algorithm for Handling Sub-problem 1
1: Initialize the convergence tolerance ε1 → 0, the maximum number of iterations I1,max, the initial iteration index j1 = 0,

the initial variables {sj1k,k′ [n], p̃j1k′,k,k′ [n]}, and the initial objective value P̃total

2: repeat {Main Loop: SCA}
3: Set j1 = j1 + 1 and {sj1k,k′ [n], p̃j1k′,k,k′ [n]} = {sk,k′ [n], p̃k′,k,k′ [n]}
4: Solving optimization problem in (45) to obtain {sk,k′ [n], pk[n], p̃k,k′,k[n]} and P̃total

5: Update P̃ j1total = P̃total

6: until j1 = I1,max or |P̃
j1
total

−P̃ (j1−1)
total

|

P̃
j1
total

≤ ε1
7: Return {s∗k,k′ [n], p∗k[n]} = {sk,k′ [n], p̃k,k′,k[n]} and P̃ ∗total = P̃ j1total

After applying (43) and (44) to the transformed optimization problem in (38), we obtain

a suboptimal solution by

minimize
S,P,P̃

N∑
n=1

K∑
k=1

[
1

N

( K∑
k′=1
k′ 6=k

(p̃k,k′,k[n]+p̃k,k′,k′ [n])+p̃k,k,k[n]

)
+

K∑
k′=1

ζ(Aup
k,k′ [n])j1

]
+

1

N

N∑
n=1

Pfly[n]

s.t.C1b,C2, C̃3, C̃4,C17− C20, (45)

˜̃
C5 :

1

N

N∑
n=1

[
K∑
k′=1
k′ 6=k

R̃SIC
k,k′ [n] +

K∑
k′=1
k′ 6=k

(
R̃I
k′,k[n]− (R̃II,up

k′,k [n])j1
)

+ R̃OMA
k,k [n]

]
≥ Rmink ,∀k.

Note that solving (45) leads to an upper bound of the optimal objective value of problem

(38). Furthermore, in order to tighten the obtained upper bound, we iteratively update the

feasible solution, sj1k,k′ [n] and p̃j1k′,k,k′ [n], by solving the optimization problem in (45) with a

standard convex optimization solver, such as CVX [49] in the j1-th iteration. The proposed

SCA-based algorithm is summarized in Algorithm 1 and the convergence of the algorithm

to a suboptimal solution is guaranteed [20].

C. Subproblem 2: Optimizing UAV’s 3D Trajectory and Flight Velocity

In this subproblem, for a given user scheduling and power allocation strategy, we can

express the optimization problem as

minimize
T ,V,Q

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

Pfly[n] (46)

s.t. C5,C9− C14,C16.

Note that the optimization problem in (46) is nonconvex and the nonconvexity arises from

constraint C5 and the function of the UAV’s flight power consumption Pfly[n] w.r.t. t[n] and

v[n], respectively. Thus, to tackle these nonconvexities, we first introduce two slack variables

ν[n] and uik[n] to rewrite the problem in (46) into its equivalent form:
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minimize
T ,V,Q,Υ,U

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

P̂fly[n] (47)

s.t. C9− C14,C16,

Ĉ5 :
1

N

N∑
n=1

(
K∑
k′=1
k′ 6=k

R̂SIC
k,k′ [n] +

K∑
k′=1
k′ 6=k

(
R̂I
k′,k[n]− R̂II

k′,k[n]
)

+ R̂OMA
k,k [n]

)
≥ Rmink ,∀k,

C21 : v2
x[n] + v2

y[n] ≥ ν2[n],∀n, C22 : ν[n] ≥ 0,∀n,

C23 : uik[n] ≥ (wi
3)H
[
wi

2

[
wi

1qk[n] + bi1
]+

+ bi2

]+

+ bi3,∀n, k, i,

where Υ = {ν[n],∀n}, U = {uik[n],∀k, n},

R̂SIC
k,k′ [n] = sk,k′ [n] log2

(
1+

p̃k,k′,k[n]

uSIC
k [n]σ2

k

)
, R̂I

k′,k[n] = sk′,k[n] log2

(
p̃k′,k,k′[n]+p̃k′,k,k[n]

uNSIC
k [n]

+σ2
k

)
,(48)

R̂II
k′,k[n] = sk′,k[n] log2

(
p̃k′,k,k′[n]

uNSIC
k [n]

+σ2
k

)
, R̂OMA

k,k [n] = sk,k[n] log2

(
1+

p̃k,k,k[n]

uOMA
k [n]σ2

k

)
, and (49)

P̂fly[n] = Po

(
1 +

3(v2
x[n] + v2

y[n])

Ω2r2

)
+
Piv0

ν[n]
+

1

2
d0ρsAr(v

2
x[n] + v2

y [n])3/2 +Gvz[n]. (50)

Note that the additional inequality constraints C21−C25 in problem (47) are all active at the

optimal point. Thus, the formulated problems in (46) and (47) are equivalent to each other.

Moreover, the nonconvexity of constraint C23 in problem (47) is attributed to the vector

parameter wi
2 involving both positive and negative values, although the ReLU function is

convex w.r.t. qk[n]. To address this issue, we introduce two indicator variables ai1,k[n] ∈

R200×200 and ai2,k[n] ∈ R100×100 as

C24 : ai1,k[n] ∈ {0, 1},∀n, k, i, C25 : ai2,k[n] ∈ {0, 1}, ∀n, k, i, (51)

where ai1,k[n] = 1 when wi
1qk[n] + bi1 > 0. Otherwise, ai1,k[n] = 0. Similarly, ai2,k[n] = 1

when wi
2 (wi

1qk[n] + bi1) + bi2 > 0. Otherwise, ai2,k[n] = 0. Thus, constraint C23 can be

rewritten as

Ĉ23 : uik[n] ≥ (wi
3)Hai2,k[n]

(
wi

2a
i
1,k[n]

(
wi

1qk[n] + bi1
)

+ bi2
)

+ bi3,∀n, k, i. (52)

Note that similar to the solution of subproblem 1, we handle the coupling of ai1,k[n], ai2,k[n],

and qk[n] by introducing two slack variables q̂ik[n] = ai1,k[n] (wi
1qk[n] + bi1) ∈ R200×1 and

ˆ̂qik[n] = ai2,k[n] (wi
2q̂

i
k[n] + bi2) ∈ R100×1, and introduce the following constraints based on

big-M formulation:
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C26 : q̂ik[n] ≥ wi
1qk[n] + bi1, ∀n, k, i, C27 : q̂ik[n] ≥ 0,∀n, k, i,

C28 : q̂ik[n] ≤ ai1,k[n]
(
wi

1 [tmax; lk] + bi1
)
,∀n, k, i,

C29 : q̂ik[n] ≤ wi
1qk[n] + bi1 + (1− ai1,k[n])

(
wi

1 [tmax; lk] + bi1
)
,∀n, k, i,

C30 : ˆ̂qik[n] ≥ wi
2q̂

i
k[n] + bi2,∀n, k, i, C31 : ˆ̂qik[n] ≥ 0,∀n, k, i,

C32 : ˆ̂qik[n] ≤ ai2,k[n]
(
wi

2

(
wi

1 [tmax; lk] + bi1
)

+ bi2
)
,∀n, k, i,

C33 : ˆ̂qik[n] ≤ wi
2q̂

i
k[n] + bi2 + (1− ai2,k[n])

(
wi

2

(
wi

1 [tmax; lk] + bi1
)

+ bi2
)
, ∀n, k, i. (53)

Then, we rewrite the binary constraints C24 and C25 in their equivalent forms as

C24a : ai1,k[n]−
(
ai1,k[n]

)2 ≤ 0,∀n, k, i, C24b : 0 ≤ ai1,k[n] ≤ 1,∀n, k, i,

C25a : ai2,k[n]−
(
ai2,k[n]

)2 ≤ 0,∀n, k, i, C25b : 0 ≤ ai2,k[n] ≤ 1,∀n, k, i, (54)

respectively. Next, we handle the nonconvex constraints Ĉ5, C21, C24a, and C25a via SCA.

In particular, for a given feasible solution, (uik[n])j2 , vj2x [n], vj2y [n], (ai1,k[n])j2 , and (ai2,k[n])j2

in the j2-th iteration, the lower bound function of Ĉ5, C21, C24a, and C25a can be constructed

based on their first-order Taylor expansions [20], respectively, which are given by

R̂SIC
k,k′ [n] ≥ (R̂SIC,lb

k,k′ [n])j2 (55)

= sk,k′ [n] log2

(
1 +

p̃k,k′,k[n]

(uSIC
k [n])j2σ2

k

)
− sk,k′ [n]p̃k,k′,k[n](uSIC

k [n]− (uSIC
k [n])j2)

(uSIC
k [n])j2((uSIC

k [n])j2σ2
k + p̃k,k′,k[n]) ln 2

,

R̂I
k′,k[n] ≥ (R̂I,lb

k′,k[n])j2 = sk′,k[n] log2

(
p̃k′,k,k[n] + p̃k′,k,k′[n]

(uNSIC
k [n])j2

+ σ2
k

)
(56)

− sk′,k[n](p̃k′,k,k[n] + p̃k′,k,k′[n])(uNSIC
k [n]− (uNSIC

k [n])j2)

(uNSIC
k [n])j2((uNSIC

k [n])j2σ2
k + p̃k′,k,k[n] + p̃k′,k,k′[n]) ln 2

,

R̂OMA
k,k [n] ≥ (R̂OMA,lb

k,k [n])j2

= sk,k[n] log2

(
1 +

p̃k,k,k[n]

(uOMA
k [n])j2σ2

k

)
− sk,k[n]p̃k,k,k[n](uOMA

k [n]− (uOMA
k [n])j2)

(uOMA
k [n])j2((uOMA

k [n])j2σ2
k+p̃k,k,k[n]) ln 2

,

v2
x[n] + v2

y[n] ≥ (vj2x [n])2 + (vj2y [n])2 + 2vj2x [n](vx[n]− vj2x [n]) + 2vj2y [n](vy[n]− vj2y [n]),(57)

ai1,k[n]−
(
ai1,k[n]

)2 ≤ ai1,k[n]−
(
(ai1,k[n])j2

)2
+ 2(ai1,k[n])j2

(
ai1,k[n]− (ai1,k[n])j2

)
, and (58)

ai2,k[n]−
(
ai2,k[n]

)2 ≤ ai2,k[n]−
(
(ai2,k[n])j2

)2
+ 2(ai2,k[n])j2

(
ai2,k[n]− (ai2,k[n])j2

)
, (59)

respectively.

Now, applying the lower bounds in (55)–(59) to (47) yields the following convex opti-

mization problem:
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Algorithm 2 Proposed Algorithm for Handling Sub-problem 2
1: Initialize the convergence tolerance ε2 → 0, the maximum number of iterations I2,max, the initial iteration index j2 = 0,

the initial variables {vj2x [n], vj2y [n]}, and the initial objective value P̂total

2: repeat {Main Loop: SCA}
3: Set j2 = j2 + 1, {(uik[n])j2 , vj2x [n], vj2y [n]}={uik[n], vx[n], vy[n]}
4: Solving optimization problem in (60) to obtain {t[n],v[n], ν[n], uik[n]} and P̂total

5: Update P̂ j2total = P̂total,

6: until j2 = I2,max or |P̂
j2
total

−P̂ (j2−1)
total

|

P̂
j2
total

≤ ε2
7: Return {t∗[n],v∗[n]} = {t[n],v[n]} and P̂ ∗total = P̂ j2total

Algorithm 3 Overall Algorithm for Addressing Problem (16)
1: Initialize the convergence tolerance ε3 → 0, the maximum number of iterations I3,max, the initial iteration index j3 = 0,

and the initial trajectory {t[n],v[n]}
2: repeat
3: Set j3 = j3 + 1
4: Using Algorithm 1 to obtain a suboptimal result P̃total, {sk[n], pk[n]}, given the UAV’s trajectory and flight velocity

{t[n],v[n]}
5: Using Algorithm 2 to obtain a suboptimal result P̂total, {t[n],v[n]}, given the resource allocation {sk[n], pk[n]}
6: Update P̂ j3total = P̂total

7: until j3 = I3,max or |P̂
j3
total

−P̂ (j3−1)
total

|

P̂
j3
total

≤ ε2
8: return {s∗k[n], p∗k[n], t∗[n],v∗[n]} = {sk[n], pk[n], t[n],v[n]} and P ∗total = P̂ j3total

minimize
T ,V,Q,Υ,U ,A,Q̂

1

N

N∑
n=1

Pcomm[n] +
1

N

N∑
n=1

P̂fly[n] (60)

s.t.C9− C14,C16,C22,C24b,C25b,C26− C33,

̂̂
C5 :

1

N

N∑
n=1

(
K∑
k′=1
k′ 6=k

(R̂SIC,lb
k,k′ [n])j2 +

K∑
k′=1
k′ 6=k

(
(R̂I,lb

k′,k[n])j2− R̂II
k′,k[n]

)
+(R̂OMA,lb

k,k [n])j2

)
≥Rmink ,∀k,

Ĉ21 : (vj2x [n])2+(vj2y [n])2+2vj2x [n](vx[n]− vj2x [n])+2vj2y [n](vy[n]− vj2y [n])≥ν2[n],∀n,̂̂
C23 : uik[n] ≥ (wi

3)H ˆ̂qik[n] + bi3,∀n, k, i,

Ĉ24a : ai1,k[n]−
(
(ai1,k[n])j2

)2
+ 2(ai1,k[n])j2

(
ai1,k[n]− (ai1,k[n])j2

)
≤ 0,∀n, k, i,

Ĉ25a : ai2,k[n]−
(
(ai2,k[n])j2

)2
+ 2(ai2,k[n])j2

(
ai2,k[n]− (ai2,k[n])j2

)
≤ 0,∀n, k, i,

where A = {ai1,k[n], ai2,k[n],∀n, k, i} and Q̂ = {q̂ik[n], ˆ̂qik[n],∀n, k, i}. Note that similar to

the solution of subproblem 1, the optimization problem in (60) is convex formulations, which

can be easily solved by CVX [49]. The proposed algorithm is summarized in Algorithm 2.

D. Overall Algorithm

The overall algorithm for solving the two subproblems in (35) and (46) iteratively are sum-

marized in Algorithm 3. The convergence of the overall proposed algorithm to a stationary

point monotonically can be guaranteed due to the compactness of the feasible solution set in

(16) and the nonincreasing objective value over iterations. Besides, we adopt the solution of

subproblem 2 as an input for subproblem 1 over iterations while solving the subproblem in

(35) and (46) iteratively. Besides, the overall iterative algorithm can be shown to converge

to a suboptimal solution of the optimization problem in (16), c.f. [44], [50]–[52].
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TABLE II
SIMULATION PARAMETERS [15], [56].

Notations Simulation value Notations Simulation value Notations Simulation value Notations Simulation value
K 1 ∼ 10 t0 [0; 0; 150] m Vmax 30 m/s εSIC

k 0.01
N 500 ∼ 1,000 tF [500; 500; 150] m Vacc 4 m/s2 εNSIC

k 0.01
σ2
k -160 dBm/Hz tmin [0; 0; 100] m τ 0.1 s εOMA

k 0.01
β0 -50 dBW tmax [500; 500; 300] m Ppeak 36 dBm αAR 2
λC 0.1 m l1 [300; 150; 0] m A1 0 dB αRG 3.6
MR 100 l2 [50; 400; 0] m A2 6.43 dB αAG 3.6
lR [0; 400; 30] m l3 [100; 450; 0] m Rmink

0.5 ∼ 5 bits/s/Hz κRG 2 dB
I1,max 10 I2,max 10 κmin 0 dB κmax 30 dB

Furthermore, the computational complexity of the proposed suboptimal algorithm is given

by [53], [54]

O
(
I1,max

(
M1N 2

1 ×
√
M1 log

(
1

∆1

)
︸ ︷︷ ︸

Subproblem 1

+M2N 2
2 × I2,max

√
M2 log

(
1

∆2

)
︸ ︷︷ ︸

Subproblem 2

))
, (61)

where M1 = 6NK2 + 2N +K, N1 = NK3 +NK2 +NK, M2 = 40NK + 6N +K + 1,

and N2 = 24NK + (1002 + 2002)3NK + 7N represent the number of inequalities and the

number of variables of subproblem 1 and subproblem 2, respectively. Besides, ∆1 > 0 and

∆2 > 0 denote the thresholds of convergence tolerance of subproblem 1 and subproblem

2, respectively. Note that we did not take into account the computational complexity of the

adopted DNN approach to approximate the outage-guaranteed channel gain when calculating

the complexity of the algorithm, as it is computed for once before the execution of the

algorithm when the system parameters are determined. Thus, the computational complexity

of the proposed suboptimal algorithm is with polynomial time which is suitable for fast

implementation [55].

V. NUMERICAL RESULTS

In this section, we discuss the system performance of the proposed scheme (PS) based

on the following simulation results. The simulation parameters are summarized in Table II.

Generally, we set K = 3 for illustration to unveil the assistance brought by the IRS to the

UAV communications. In addition, the initial trajectory of the UAV for Algorithm 3 is set

as a piecewise linear flight locus at a fixed altitude of 100 meters which the UAV passes

by all the GUs in between the starting point and the final point with a constant velocity. In

order to illustrate the performance gain of the IRS to the UAV communications, we compare

the system performance of the PS with different numbers of the IRS elements and some

baseline schemes. In particular, we compare the PS with five baseline schemes: (a) OMA

consideration only (OMA), where the UAV only serve one GU at each time slot for the OMA

scheme and all the other setups remain the same as the PS; (b) No IRS consideration (NI),

which removes the IRS from the considered UAV communication system; (c) Constant flight

altitude of the UAV (CFA), where the UAV operates at a constant altitude (i.e., 100 meters)
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Fig. 7. Convergence of the PS and baseline schemes for
different setups.
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and only the horizontal trajectory of the UAV is optimized; (d) Perfect CSI (PCSI), where

the signal model is based on perfect known CSI and all channels are pure LoS dominated;

(e) Straight trajectory of the UAV (ST), where the UAV flies with a straight line trajectory

from the initial location to the final location with a constant flight velocity, i.e., 11 m/s. Note

that the corresponding resource allocation for NI, CFA, and ST is a subcase of the PS which

can be obtained by Algorithm 3 with some straightforward modifications.

A. Convergence of the Proposed Scheme and Baseline Schemes

Fig. 7 and Fig. 8 illustrates the convergence behavior of the proposed alternating opti-

mization algorithm in Algorithm 3 for minimizing the average total power consumption. In

order to compare the system performance of the PS with baseline schemes, we consider the

PS with two different time durations, T = 50 s and T = 100 s in Fig. 7. In other words,

there are N = 500 and N = 1, 000 time slots in these settings, respectively. Also, we set

the minimum per GU required data rate as Rmink = 3 bits/s/Hz. It can be observed that the

system average total power consumption for the PS with different T and MR can rapidly

converge to a suboptimal solution within only 5 iterations, which confirms the practicality

of the proposed algorithm. On the other hand, the NI scheme and CFA scheme enjoy a

similar convergence rate as the PS but with worse performance. The average total power

consumption of the PCSI scheme converges to the lowest value among all the considered

schemes since the PCSI scheme is the performance upper bound as perfect CSI is available

which avoids outages and inefficient flight detour. Detailed discussions comparing the PS

and baseline schemes in terms of system performance and their corresponding trajectories

will be presented in next sections. Moreover, as shown in Fig. 8, it can be observed that the

PS converges quickly within 10 iterations for different number of GUs. Also, more number
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Fig. 9. The bird’s eye view of the locations of the GUs and the IRS as well as the trajectory of the UAV for the PS and
baseline schemes with different setups.

of iterations are needed for the PS as the increase in the number of users enlarges the

solution space substantially. Therefore, based on the aforementioned theoretical discussion

and simulation results, the proposed problem is still tractable while increasing the number

of users. In the sequel, the maximum number of iterations of Algorithm 3 of the PS is set

as 10 for illustration.

B. 3D Trajectory of the UAV

Fig. 9 shows the bird’s eye view of the UAV’s trajectory obtained by the PS and baseline

schemes with different setups. In this figure, we set Rmink = 3 bits/s/Hz. For the PS with a

sufficiently long service time duration, i.e., T = 100 s, the UAV tends to maintain at a constant

horizontal flight speed, i.e., 11 m/s, as indicated by the spaces between two consecutive

simulation points, to reduce the total power consumption at the expense of longer flight

duration. In contrast, for the case of short service time duration, i.e., T = 50 s, the UAV

quickly flies over the service area with a relatively high velocity as there is insufficient time

for adopting a slow speed or a long detour. In such cases, since reducing the communication

distances between the UAV and the desired GUs are not always possible, the PS would also

increase the transmit power to satisfy the minimum individual data rate leads to high system

power consumption.

For comparison, we also plot the UAV’s trajectories for baseline schemes in Fig. 9. For

the OMA scheme, the UAV’s horizontal trajectory is similar to the PS for both short and

long service time duration, i.e., T = 50 s and T = 100 s, respectively, as both schemes

can efficiently exploit the extra degrees of freedom (DoF) offered by the IRS to optimize

the UAV’s trajectory. For the NI scheme with a sufficiently long service time duration, i.e.,

T = 100 s, the UAV first flies towards GU 2 and GU 3 since these two users are close to

each other creating a bottleneck in the system performance due to their minimum individual
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Fig. 11. The 3D view of the locations of the GUs and the
IRS as well as the trajectory of the UAV for the PS and
baseline schemes with different setups.

data rate constraints. When the UAV is on the way to GU 2 and GU 3, the UAV would first

deviate from the direct path to the centroid formed by GU 2 and GU 3 and fly towards GU 1

for communication such that it can effectively serve GU 1 to satisfy its data rate requirement.

Besides, the UAV would spend a sufficient number of time slots on GU 1 circling at the

beginning of flight with a large transmit power to satisfy minimum data rate requirement

of GU 1 before approaching GU 2 and GU 3. Thus, the UAV does not require to fly close

enough to GU 1 to establish good channel conditions. Moreover, for a shorter service time

duration (i.e., T = 50 s) of the NI scheme, due to the insufficient number of time slots, the

UAV has to fly with an exceedingly high flight velocity, on average 27 m/s, and approach

each GU to establish a strong gain channel for fulfilling the minimum date rate requirement

for each GU. In fact, this trajectory consumes a significantly high flight power due to the

longer trajectory and higher flight velocity of the UAV. Also, the UAV’s 2D trajectory for

the CFA scheme is the same as that for the PS with the same setups, e.g. T = 100 s, since

the only differences between these schemes is whether to optimize the vertical dimension

of the UAV or not. As for the PCSI scheme, with a sufficient service time duration, i.e.,

T = 100 s, the UAV approaches closely to each GU to satisfy the individual minimum data

rate requirement with the most power-efficient flight velocity, i.e., 11 m/s with the current

setting, to effectively reduce the total system power consumption. On the other hand, the ST

scheme shares a similar route as the PS for the case of T = 50 s, which is the shortest path

between the starting point and the destination. However, the PS consumes much less system

power consumption than that of the ST scheme, as will be shown in Fig. 15.

Fig. 10 demonstrates the flight altitude of the UAV’s trajectory for the PS and baseline

schemes with different setups. Since the UAV for the CFA scheme and the ST scheme have
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to flight at a constant altitude of 100 m, we do not analyze the performance of these two

baseline schemes in this figure. For the PS with the two considered setups, i.e., T = 50 s

and T = 100 s, the UAV prefers a high altitude with an optimized velocity in the journey to

fully utilize the higher outage-guaranteed effective channel gain, c.f. Fig. 5, since a higher

outage-guaranteed effective channel gain can be obtained by adopting a moderately higher

flight altitude when the UAV is far away from the GU in terms of horizontal distance. Also,

the flight altitude of the UAV adopting NOMA protocol is generally higher than the one

adopting OMA. Indeed, a higher altitude generally provides more freedom to the UAV to

promote channel gain disparities of the selected two users for improving the performance

of NOMA. On the other hand, as OMA does not have the DoF in serving multiple users

at each time instant, the UAV flying with a low to moderate altitude is good enough for it

to strike a balance between data rate and outage probability. However, for the NI scheme,

without the assistance of the IRS, the effective channel gain of the desired GUs is much

lower than that of the PS. Indeed, maintaining high-quality channels by reducing the path

loss between the UAV and the selected GUs remains the key to satisfy the minimum data

rate constraint in the NI scheme. Nevertheless, the UAV of the NI scheme is still willing to

adopt a higher altitude occasionally to strike a balance among the total power consumption,

outage-guaranteed effective channel gain, and path loss. In fact, as shown in Fig. 10, the

parabolic patterns of the UAV’s trajectory of the NI scheme appears in those time slots when

the UAV is far away from any GUs, since in these locations, the outage-guaranteed effective

channel gains are larger when the UAV operates at a higher altitude. In contrast, for the PCSI

scheme, the UAV’s flight altitude remains at the lowest possible altitude of 100 m. In fact,

there is no channel outage event as the CSI is perfect known. Thus, the UAV does not have

any incentive to maintain a higher altitude as it would only consume more system energy but

leading to a lower data rate. To offer a better visualization of the trajectory of the PS and the

baseline scheme, we also plot its 3D trajectory in Fig. 11. It can be seen from the optimized

3D trajectory that except the PCSI scheme, to effectively combat channel outages, the UAV

should adopt a relatively high flight altitude to reduce the channel uncertainty caused by the

altitude-dependent Rician fading, which not only reducing the communication power but also

reducing the flight power of the UAV while achieving the same channel conditions.

C. Outage Probability

Fig. 12 demonstrates the outage probability versus the time slots for GUs of the PS and

the baseline schemes for T = 100 s. We take the PS, OMA, and NI with T = 100 s
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the PS and the baseline scheme for T = 100 s.

as examples to calculate the outage probability as stated in constraint C5. The outage

probabilities in Fig. 12 were averaged over 1,000 random channel realizations by comparing

the actual effective channel in (18) with the outage-guaranteed effective channel gain in (25).

Thanks to the proposed DNN approach, the outage probability not only satisfies the required

values, but also is close to its upper bound value, i.e., ε = 0.001, for any GU and time slots.

This illustrates the effectiveness of the DNN approach to approximate the outage-guaranteed

effective channel gain and to be used for resource allocation design.

D. Communication Power Consumption

Fig. 13 illustrates the communication power consumption and the achievable data rate

versus the time slots for each GUs of the PS and baseline schemes for T = 100 s. As shown

in the sub-figures for the communication power (left hand side y-axis) and the achievable

data rate (right hand side y-axis) of the PS, the UAV serves GU 2 and GU 3 from time

slots n = 420 to n = 830, simultaneously, via the NOMA protocol. Note that for those time

slots adopting NOMA, the UAV allocates a significantly large portion of the communication

power to the weak channel user to satisfy the corresponding minimum individual data rate

requirement while a small power is allocated to the user with good channel condition. This

power allocation mechanism aligns with the one in the literature [21], [34], [57]. In contrast,

the total communication power consumption for the OMA scheme is much higher than the

PS due to the less flexibility of the resource allocation.

E. Average Total Power Consumption

Fig. 14 shows the average power consumption versus the number of GUs for the PS

and the baseline schemes with different setups. In this simulation, we vary the number
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of GUs, K, from 1 to 10 to illustrate the impact of the number of GUs on the system

performance. We set the locations of these GUs in x-dimension and y-dimension as xk =

[300; 50; 100; 200; 150; 400; 100; 250; 300; 100] and yk = [150; 400; 450; 100; 350; 400; 250; 250;

400; 50], respectively. Besides, we assume that the minimum individual data rate is Rmin,k = 3

bits/s/Hz in this section. It can be observed that the average power consumption of the PS

increases with the number of the GUs as the system becomes less flexible in allocating

resources when there are more numbers of GUs imposing more stringent QoS constraints.

Besides, for the PS with different numbers of IRS elements and time durations, the total

power consumption of the system has only a marginal increase when the number of GUs

is K ≥ 2. This can be attributed to the fact that the proposed optimization framework can

achieve a better utilization of the system resources for serving a large number of GUs via

jointly optimizing the UAV’s 3D trajectory, IRS passive beamforming, and resource allocation.

Besides, when K = 1, the power consumptions of the PS and the baseline schemes OMA and

NI are roughly the same since GU 1 is located far away from the IRS. This result illustrates

that the performance gain brought by the IRS is sensitive to its distances to the desired GUs.

In contrast, although the average power consumption for the NI scheme and the CFA scheme

have a similar trend as the PS w.r.t. the number of GUs, the former two schemes consume

a higher power than that for the PS under the same setting. Indeed, the power consumption

differences between these two schemes illustrate the performance gain brought by the IRS and

the benefits of optimizing the UAV’s flight altitude. Also, the PCSI scheme is a performance

upper bound of the PS which illustrates the influence of the altitude-dependent Rician fading

channel to the proposed problem.

Fig. 15 depicts the average total power consumption of the considered system versus the

June 14, 2022 DRAFT



30

minimum individual data rate requirement for the PS and baseline schemes. For the PS,

the average power consumption slowly increases with the minimum individual data rate

requirement compared with baseline schemes, since the IRS-assisted system can effectively

optimize the system resources to minimize the average power consumption via optimizing

the resource allocation and UAV’s 3D trajectory. In contrast, the average power consumption

of the NI scheme and the CFA scheme scales with the minimum data rate requirement much

faster than that of the PS. The reason is that both the NI and CFA systems do not have

sufficient DoF to optimize the system resources for the minimization of the total power

consumption. In particular, the former is due to lack of the contribution of the large number

of elements equipped at the IRS and the latter is due to the fixed UAV’s flight height.

As for the PCSI scheme, the average power consumption scales slowly with the minimum

individual data rate requirement since the UAV’s trajectory and resource allocation can be

efficiently optimized due to the assistance of the IRS, which is similar to the PS. As for the

ST scheme, the average power consumption remains almost a constant between Rmin = 0.5

bits/s/Hz and Rmink = 3 bits/s/Hz. Besides, since there are insufficient DoF and flexibility for

optimizing the system resources, an exceedingly stringent minimum data rate requirement,

i.e., Rmink ≥ 3.5 bits/s/Hz, would lead to an infeasible result, which are not plotted in the

figure.

VI. CONCLUSIONS

In this paper, we minimized the average total power consumption in an IRS-assisted UAV-

NOMA communication system via jointly optimizing the communication resource allocation,

the 3D trajectory design of the UAV, and the phase shift control of the IRS. The proposed

formulation was a non-convex optimization problem taking into account the minimum outage

probability and the minimum achievable data rate. To handle the intractability of the outage

constraint, we approximated the effective channel function via exploiting the DNN approach

to facilitate an outage-guaranteed effective channel gain. A suboptimal solution was achieved

by the proposed iterative algorithm based on the alternating optimization method. Numerical

results illustrated that the proposed algorithm converges within a small number of iterations

and revealed some interesting insights. Particularly, (1) deploying an IRS to assist the UAV

communication serves as a key to improve the system performance when the total service time

is insufficient; (2) employing the IRS-assisted UAV communication system offers enhanced

flexibility in designing the UAV’s trajectory; (3) optimizing the 3D trajectory of the UAV

can strike a balance between the communication path loss and the altitude-dependent outage

probability for improving the system power efficiency; (4) NOMA communications offer a
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higher DoF for effective resource allocation design than that of the OMA scheme to minimize

the average power consumption.

VII. APPENDIX-PROOF OF THEOREM 1

In the formulated problem in (16), we can observe that the phase control policy of the

IRS, Φ, only affects the distribution of CI
k,k′ [n], CII

k,k′ [n], CNSIC
k′,k [n], and CII

k,k[n] in constraints

C6 − C8, respectively. Thus, for any given optimization variables S, P , R, T , and V , a

suboptimal Φ can be obtained by maximizing the feasible probability of GU k exploiting

SIC decoding with stage II at C6 in (16), e.g.

maximize
Φ

Pr

(
sk,k′ [n]rk[n] ≤ sk,k′ [n] log2

(
1 +

pk[n]|hk[n]|2

σ2
k

))
. (62)

Note that the effective channel follows hk[n] ∼ CN (µh(Φ[n]), σ2
h), where µh(Φ[n]) and σ2

h

denote the mean and variance of the effective channel, respectively, such that |hk[n]|2 is

noncentral chi-squared distributed. Besides, the variance of the effective channel, i.e., σ2
h, is

independent of Φ[n] as the introduced phase rotation does not change the distribution of the

scattering component in (9). Based on the CDF of |hk[n]|2 in (20), problem in (62) can be

rewritten as the following equivalent form

minimize
Φ

Fn,k

(
σ2
k(2

rk[n] − 1)

pk[n]
, λ

)
= 1−Qς

(√
λ,

√
σ2
k(2

rk[n] − 1)

pk[n]

)
, (63)

where λ = |µh(Φ[n])|2
σ2
h

and Qς(a, b) represent the noncentral parameter and the Marcum Q-

function of the noncentral chi-square distribution with 2ς DoF, respectively. Moreover, it

can be verified that the derivative of Fn,k(·, λ) w.r.t. λ is less than 0 and problem (63) is

equivalent to maximize the noncentral parameter λ of |hk[n]|2, which is directly proportional

to |µh(Φ[n])|2. Therefore, the optimal phase control can be obtained by solving

maximize
Φ

|µh (Φ[n]) |2, (64)

where µh (Φ[n]) for a given Φ[n] can be expressed as√
β0κAG

k [n]

(dAG
k [n])αAG(1 + κAG

k [n])
e−j

2πd
AG[n]
k
λc +

√
β2

0κ
RG

(dAR[n])αAR(dRG
k )αRG(1 + κRG)

e−j
2π(dRG

k +dAR[n])

λc

×
[
1, e−j

2π∆Rx
λc

sin θRG
k cos ξRG

k , . . . , e−j
2π∆Rx
λc

(MRx−1) sin θRG
k cos ξRG

k
]

⊗
[
1, e−j

2π∆Ry
λc

sin θRG
k sin ξRG

k , . . . , e−j
2π∆Ry
λc

(MRy−1) sin θRG
k sin ξRG

k
]
Φ[n]

×
[
1, e−j

2π∆Rx
λc

sin θRA[n] cos ξRA[n], . . . , e−j
2π∆Rx
λc

(MRx−1) sin θRA[n] cos ξRA[n]
]H

⊗
[
1, e−j

2π∆Ry
λc

sin θRA[n] sin ξRA[n], . . . , e−j
2π∆Ry
λc

(MRy−1) sin θRA[n] sin ξRA[n]
]H
. (65)

Note that maximizing the norm of the mean for the effective channel gain is equivalent

to align the LoS component of the reflect link with that of the direct link. Therefore, the

suboptimal phase control policy of the IRS is obtained as in (17).

June 14, 2022 DRAFT



32

REFERENCES

[1] Y. Cai, Z. Wei, S. Hu, D. W. K. Ng, and J. Yuan, “Resource allocation for power-efficient IRS-assisted UAV
communications,” in Proc. IEEE Intern. Commun. Conf. Workshops (ICC Workshops), Jun. 2020, pp. 1–7.

[2] Z. Wei, L. Zhao, J. Guo, D. W. K. Ng, and J. Yuan, “Multi-beam NOMA for hybrid mmwave systems,” IEEE Trans.
Commun., vol. 67, no. 2, pp. 1705–1719, Feb. 2019.

[3] H. Li, W. Cai, Y. Liu, M. Li, Q. Liu, and Q. Wu, “Intelligent reflecting surface enhanced wideband MIMO-OFDM
communications: From practical model to reflection optimization,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4807–
4820, Jul. 2021.

[4] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and
challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May. 2016.

[5] Y. Cai, Z. Wei, R. Li, D. W. K. Ng, and J. Yuan, “Joint trajectory and resource allocation design for energy-efficient
secure UAV communication systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4536–4553, Mar. 2020.

[6] Y. Wu, W. Yang, X. Guan, and Q. Wu, “UAV-enabled relay communication under malicious jamming: Joint trajectory
and transmit power optimization,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8275–8279, Aug. 2021.

[7] Z. Wei, F. Liu, D. W. K. Ng, and R. Schober, “Safeguarding UAV networks through integrated sensing, jamming,
and communications,” CoRR, vol. abs/2110.04733, 2021. [Online]. Available: https://arxiv.org/abs/2110.04733

[8] Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-trajectory design and resource allocation for
solar-powered UAV communication systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4281–4298, Jun. 2019.

[9] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Optimal transport theory for power-efficient deployment of
unmanned aerial vehicles,” in 2016 IEEE Intern. Conf. Commun. (ICC), May 2016, pp. 1–6.

[10] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing UAV,” IEEE Trans.
Wireless Commun., vol. 18, no. 4, pp. 2329–2345, Apr. 2019.

[11] C. You and R. Zhang, “Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels,”
IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 3753–3768, Jun. 2020.

[12] C. You and R. Zhang, “3D trajectory optimization in Rician fading for UAV-enabled data harvesting,” IEEE Trans.
Wireless Commun., vol. 18, no. 6, pp. 3192–3207, Jun. 2019.

[13] T. Z. H. Ernest, A. S. Madhukumar, R. P. Sirigina, and A. K. Krishna, “NOMA-aided UAV communications over
correlated rician shadowed fading channels,” IEEE Trans. Signal Process., vol. 68, pp. 3103–3116, May 2020.

[14] Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with
discrete phase shifts,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.

[15] ——, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans.
Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[16] S. Li, B. Duo, X. Yuan, Y. Liang, and M. Di Renzo, “Reconfigurable intelligent surface assisted UAV communication:
Joint trajectory design and passive beamforming,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 716–720, May
2020.

[17] J. Yao, C. Zhong, Z. Liu, and J. Xu, “3D trajectory optimization for secure UAV communication with CoMP reception,”
in 2019 IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[18] S. Hu, C. Liu, Z. Wei, Y. Cai, D. W. K. Ng, and J. Yuan, “Beamforming design for intelligent reflecting surface-
enhanced symbiotic radio systems,” 2021.

[19] W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, “Integrated sensing and communication-assisted orthogonal
time frequency space transmission for vehicular networks,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp.
1515–1528, Oct 2021.

[20] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Trans. Wireless
Commun., vol. 16, no. 6, pp. 3747–3760, Jun. 2017.

[21] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Robust and secure resource allocation for full-duplex MISO multicarrier
NOMA systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 4119–4137, Sep. 2018.

[22] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with
randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Jul. 2014.

[23] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on UAVs for wireless networks: Applications,
challenges, and open problems,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334–2360, Third-quarter 2019.

[24] M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D. Phan-Huy, O. Simeone,
R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov, and S. Shamai, “Reconfigurable intelligent surfaces vs.
relaying: Differences, similarities, and performance comparison,” pp. 798–807, Jun. 2020.

[25] M. M. Azari, H. Sallouha, A. Chiumento, S. Rajendran, E. Vinogradov, and S. Pollin, “Key technologies and system
trade-offs for detection and localization of amateur drones,” IEEE Commun. Mag., vol. 56, no. 1, pp. 51–57, Jan.
2018.

[26] F. Classen and H. Meyr, “Frequency synchronization algorithms for OFDM systems suitable for communication over
frequency selective fading channels,” in Proc. IEEE Veh. Techn. Conf. (VTC). IEEE, Jun. 1994, pp. 1655–1659.

[27] D. Ma, M. Ding, and M. Hassan, “Enhancing cellular communications for UAVs via intelligent reflective surface,” in
2020 IEEE Wireless Commun. Netw. Conf. (WCNC), May 2020, pp. 1–6.

June 14, 2022 DRAFT

https://arxiv.org/abs/2110.04733


33

[28] X. Lin, V. Yajnanarayana, S. D. Muruganathan, S. Gao, H. Asplund, H. Maattanen, M. Bergstrom, S. Euler, and
Y. . E. Wang, “The sky is not the limit: LTE for unmanned aerial vehicles,” IEEE Commun. Mag., vol. 56, no. 4, pp.
204–210, Apr. 2018.

[29] A. Colpaert, E. Vinogradov, and S. Pollin, “Aerial coverage analysis of cellular systems at LTE and mmwave
frequencies using 3D city models,” Sensors, vol. 18, no. 12, p. 4311, Oct. 2018.

[30] S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, “Robust and secure sum-rate maximization for multiuser
MISO downlink systems with self-sustainable IRS,” IEEE Trans. Commun., vol. 69, no. 10, pp. 7032 – 7049, Oct.
2021.

[31] C. Liu, X. Liu, Z. Wei, S. Hu, D. W. K. Ng, and J. Yuan, “Deep learning-empowered predictive beamforming for
IRS-assisted multi-user communications,” in 2021 IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 01–07.

[32] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE. The Prentice Hall communications
engineering and emerging technologies series, 2010.

[33] T. Shen and H. Ochiai, “A UAV-aided data collection for wireless powered sensor network over Rician fading channels,”
in 2019 16th IEEE Annual Consumer Commun. & Networking Conf. (CCNC). IEEE, 2019, pp. 1–5.

[34] Z. Wei, D. W. K. Ng, J. Yuan, and H. M. Wang, “Optimal resource allocation for power-efficient MC-NOMA with
imperfect channel state information,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3944–3961, Sep. 2017.

[35] N. C. Beaulieu and K. T. Hemachandra, “New simple solutions for the bivariate Rician PDF and CDF,” in 2010 IEEE
Wireless Commun. Netw. Conf., Apr. 2010, pp. 1–4.

[36] A. Nuttall, “Some integrals involving the QM function (corresp.),” IEEE Trans. Inf. Theory, vol. 21, no. 1, pp. 95–96,
Jan. 1975.

[37] A. O. Kaya, L. J. Greenstein, and W. Trappe, “Characterizing indoor wireless channels via ray tracing combined with
stochastic modeling,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 4165–4175, Aug. 2009.

[38] T. Fan, S. Yang, H. Wu, and D. Wang, “Two novel channel estimation for OFDM systems by time-domain cluster
discriminant analysis based on parametric channel modeling,” Wireless Personal Commun., vol. 68, no. 2, pp. 349–360,
2013.

[39] C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for spectrum sensing in cognitive radio,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2306–2321, Oct. 2019.

[40] C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual learning for channel estimation in intelligent reflecting
surface-assisted multi-user communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 898–912, Feb. 2022.

[41] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-forward neural networks,” Chemometrics
and intelligent laboratory systems, vol. 39, no. 1, pp. 43–62, 1997.

[42] R. V. Hogg, J. McKean, and A. T. Craig, Introduction to mathematical statistics. Pearson Education, 2005.
[43] J. K. Tugnait, “Identification and deconvolution of multichannel linear non-gaussian processes using higher order

statistics and inverse filter criteria,” IEEE Trans Signal Process., vol. 45, no. 3, pp. 658–672, Mar. 1997.
[44] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating optimization,” Neural, Parallel & Scientific Comput.,

vol. 11, no. 4, pp. 351–368, Dec. 2003.
[45] J. Lee and S. Leyffer, Mixed integer nonlinear programming. Springer Science & Business Media, 2011, vol. 154.
[46] Q. T. Dinh and M. Diehl, “Local convergence of sequential convex programming for nonconvex optimization,”

in Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, and
W. Michiels, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 93–102.

[47] Z. Wei, L. Yang, D. W. K. Ng, J. Yuan, and L. Hanzo, “On the performance gain of NOMA over OMA in uplink
communication systems,” IEEE Trans. Commun., vol. 68, no. 1, pp. 536–568, Jan. 2020.

[48] W. Yuan, N. Wu, A. Zhang, X. Huang, Y. Li, and L. Hanzo, “Iterative receiver design for FTN signaling aided sparse
code multiple access,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 915–928, Feb. 2020.

[49] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, Mar. 2004.
[50] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,”

IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.
[51] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bulletin Am.

Math. Soc., vol. 73, no. 4, pp. 591–597, Jul. 1967.
[52] N. Vucic, S. Shi, and M. Schubert, “DC programming approach for resource allocation in wireless networks,” in 8th

International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, May 2010, pp.
380–386.

[53] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming. Siam, 1994, vol. 13.
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