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Abstract

Radar sensing will be integrated into the 6G communication system to support various applications.

In this integrated sensing and communication system, a radar target may also be a communication

channel scatterer. In this case, the radar and communication channels exhibit certain joint burst sparsity.

We propose a two-stage joint pilot optimization, target detection and channel estimation scheme to

exploit such joint burst sparsity and pilot beamforming gain to enhance detection/estimation performance.

In Stage 1, the base station (BS) sends downlink pilots (DP) for initial target search, and the user

sends uplink pilots (UP) for channel estimation. Then the BS performs joint target detection and

channel estimation based on the reflected DP and received UP signals. In Stage 2, the BS exploits

the prior information obtained in Stage 1 to optimize the DP signal to achieve beamforming gain and

further refine the performance. A Turbo Sparse Bayesian inference algorithm is proposed for joint

target detection and channel estimation in both stages. The pilot optimization problem in Stage 2 is a

semi-definite programming with rank-1 constraints. By replacing the rank-1 constraint with a tight and

smooth approximation, we propose an efficient pilot optimization algorithm based on the majorization-

minimization method. Simulations verify the advantages of the proposed scheme.
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I. INTRODUCTION

It is expected that future 6G communication system will integrate radar sensing and communi-

cation functions to support various important application scenarios, such as autonomous drivin-

gand smart cities [1]. Traditionally, radar sensing and communications are designed separately

as independent systems, and they usually occupy different frequency bands to avoid interference.

However, with the widespread application of the massive multiple input multiple output (MIMO)

and millimeter wave (mmWave) communication technologies, future communication signals will

have higher time and angle resolution, which makes it possible to use communication signals

to achieve high-accuracy sensing. Therefore, integrated sensing and communication (ISAC), in

which the radar sensing and communication sub-systems are jointly designed to simultaneously

achieve high-speed communication and high-accuracy sensing using shared frequency band and

hardware, has emerged as a key technology in future communication systems [1], [2], [3], [4].

Recently, ISAC has attracted tremendous research interest in both academia and industry [5], [6],

[7], [8], [9]. For example, there have been an increasing number of works on ISAC, including the

fundamental limits analysis [10], [11], transceiver architecture and frame structure [1], [9], ISAC

waveform design [7], [12], [13], and temporal-spectral-spatial signal processing [6], [14], [15].

These works show that there exist complex interplays between radar sensing and communication.

On the one hand, there is a tradeoff between radar sensing and communication since they have

to compete for the same radio resource. On the other hand, radar sensing and communication

may help each other by providing useful side information to each other and performing joint

target detection and channel estimation.

In this paper, we focus on an interesting interplay between radar sensing and communication

in massive MIMO ISAC system when the radar and communication channels exhibit certain

joint burst sparsity, as illustrated in Fig. 1. Specifically, in many cases, some radar targets

are also communication scatterers. As such, the angles of arrivals (AoAs) of the radar and

communication channels partially overlap. Moreover, both radar targets and communication

scatterers are usually concentrated in a few clusters, e.g., a large target/scatterer can be viewed

as a cluster of point targets/scatterers. In this case, the AoAs of both radar and communication

channels will concentrate on a few non-zero bursts [16]. Similar correlations between the radar

and communication channels have also been reported in the literature. In [1], the communication

scatterers are assumed to be part of the radar targets, and thus the AoAs of the communication

February 8, 2022 DRAFT



3

channel is a subset of that of the radar channel. In [17], each mobile user is treated as a radar

target and the AoA of the Line-of-Sight (LoS) path of the communication channel is assumed

to coincide with that of the radar channel. In this case, the AoA obtained by the radar sensing

can provide partial channel state information (CSI) about the LoS path of the communication

channel, which can be exploited to design beamforming for communications. The joint burst

sparsity in this paper can be viewed as a generalization of the correlation models for radar and

communication channels considered in [1], [17], and is a more common situation in practical

ISAC systems. Motivated by the above observations, we propose to exploit the joint burst sparsity

of radar and communication channels for joint target detection and channel estimation in massive

MIMO ISAC system. Some related works are summarized below.

×Nã����� �������

×Ö: Communication Support

×æã������ �������

Fig. 1. Illustration of the joint burst sparsity in ISAC channels.

Massive MIMO channel estimation (CE): Many works have been devoted to address this

problem [18], [19], [20]. One major approach is to exploit the sparsity of massive MIMO channels

via compressive sensing (CS) to reduce the pilot overheads. In [20] and [21], the joint sparsity

between user antennas that share some common scatterers has been exploited to design more

efficient compressive CE algorithms. In [22], the burst-sparse structure of massive MIMO channel

has been exploited to design a burst least absolute shrinkage and selection operator (LASSO) CE

algorithm. In [18], [19], [22], the temporal correlation of the channel support has been exploited

to reduce the CSI signaling overhead in massive MIMO systems. There are also algorithms

exploiting the joint burst sparsity of multi-user/multi-carrier massive MIMO channels to further

improve the CE performance, e.g., see [23].

Target detection and CE in massive MIMO ISAC System: Some recent works attempt
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to address target detection and CE in massive MIMO ISAC system. In [1], the communication

scatterers are assumed to be part of the radar targets. However, the channel estimation and

target detection are performed separately based on the radar echo signal and channel estimation

pilots, respectively. In [24], the authors proposed to obtain the partial CSI about the LoS path

of the communication channel by using the BS as a radar to sense the position of each mobile

user. Specifically, they proposed a two-stage target detection and CE scheme, in which the first

stage performs target detection, and the second stage performs super-resolution estimation of the

parameters associated with the radar target (i.e., the LoS path parameters of the user channel).

Pilot optimization for target detection: A few works have addressed the pilot optimization

problem for target detection based on Cramer-Rao Bound (CRB). In [25], a single target detection

problem has been considered and the pilot is optimized by minimizing the trace of the Cramer-

Rao Matrix based on semi-definite relaxation (SDR). However, the SDR approach is only tight for

some special cases such as single target detection but in general suffers from performance loss.

In [26], the pilot has been optimized by minimizing the maximum eigenvalue of the Cramer-Rao

Matrix, also through the SDR approach.

In the aforementioned studies, the radar target detection and communication CE are performed

separately based on the radar echo signal and CE pilots, respectively. Moreover, it is very

important to further enhance the performance of both radar sensing and communication CE in the

low SNR regime in order to extend the coverage of ISAC systems, especially for high-frequency

band with larger path loss. However, how to achieve high-accuracy radar sensing and CE in the

low SNR regime remains a challenging problem. In this paper, we propose a two-stage joint

pilot optimization, target detection and channel estimation (J-PoTdCe) scheme to fully exploit

the pilot beamforming gain and joint burst sparsity of radar and communication channels for

enhancing both the target detection and channel estimation performance in massive MIMO ISAC

systems, especially for the low SNR regime. The main contributions are summarized below.

• Two-stage J-PoTdCe scheme: We propose a two-stage J-PoTdCe scheme so that the

prior information obtained from Stage 1 can be used to optimize the pilots and refine the

detection/estimation performance in Stage 2. Specifically, in Stage 1, the base station (BS)

performs joint target detection and channel estimation based on the reflected omidirectional

DP and received UP signals. In Stage 2, the BS exploits the prior information obtained in

Stage 1 to optimize the DP signal to further refine the performance.

• Turbo-SBI algorithm: We propose a hidden Markov model (HMM) to capture the joint
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burst sparsity of the radar and communication channels. Based on this model, a Turbo Sparse

Bayesian inference (Turbo-SBI) algorithm is proposed for joint target detection and channel

estimation in both stages. Note that a Turbo-Orthogonal Approximate Message Passing

(OAMP) algorithm has been proposed in [27] to exploit the joint burst sparsity of multi-

user massive MIMO channels under partially orthogonal (PO) measurement/pilot matrix. In

this paper, the associated measurement matrix is no longer PO because it contains optimized

pilot matrix and dynamic AoA grid parameters for super-resolution AoA estimation. We

show that the Turbo-OAMP can be viewed as an approximation of the proposed Turbo-SBI

for PO measurement matrix.

• Pilot optimization based on rank-1 approximation and majorization-minimization

(MM): The pilot optimization problem in Stage 2 is formulated as a semi-definite pro-

gramming with rank-1 constraints, which aims at exploring the beamforming gain and

minimizing the worst-case Cramer-Rao Bound (CRB) of the target parameters. By replacing

the rank-1 constraint with a tight and smooth approximation, we propose an efficient pilot

optimization algorithm based on the MM method. Compared with the conventional SDR

algorithm in [25], [26], the proposed pilot optimization algorithm has similar complexity

order but better performance since it directly takes into account the rank 1 constraints in

the algorithm design.

Finally, the advantages of the proposed J-PoTdCe scheme and the associated Turbo-SBI and

pilot optimization algorithms are verified by simulations under the clustered delay line (CDL)

channel model in 3GPP R15 [28]. The rest of the paper is organized as follows. In Section II,

we describe the system model and the overall two-stage J-PoTdCe scheme. In Section III, we

present the Turbo-SBI algorithm for joint target detection and channel estimation in both stages.

In Section IV, we present the CRB analysis and the pilot optimization algorithm in Stage 2. The

simulation results and conclusions are given in Section V and VI, respectively.

II. TWO-STAGE J-POTDCE SCHEME

In this section, we describe the system model and the proposed two-stage J-PoTdCe scheme.

Consider a TDD massive MIMO ISAC system with one BS serving a single-antenna mobile

user while detecting K targets indexed by k ∈ {1, . . . , K}, as illustrated in Fig. 1. The BS is

equipped with M ≫ 1 antennas. In the channel estimation phase, we will focus on one single-

antenna user for clarity. However, the proposed J-PoTdCe scheme can be readily extended to the
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case with multiple multi-antenna users, by assigning orthogonal uplink pilots (UPs) for different

antennas. While all targets reflect back the echo wave to the BS, not all of them contribute to

communication paths between the BS and the user [1]. Therefore, it is natural to assume that

there is a partial overlap between K targets and L communication scatterers. Note that we do

not explicitly add clutters in the system model due to the following reasons. On one hand, the

effects of weak clutters can be absorbed into the noise. On the other hand, the strong clutters

can be treated as targets of non-interest, whose parameters will also be estimated to mitigate

the interference caused by strong clutters and enhance the detection performance of the targets

of interest. After detecting all the targets (interest or non-interest), the targets of interest can be

further identified by exploiting the properties/features of their parameters. For ISAC systems,

detecting the strong clutters may also help enhancing the channel estimation performance of the

user because some strong clutters may also contribute to the communication paths.

A. Outline of the Two-Stage J-PoTdCe

In the two-stage J-PoTdCe scheme, the time axis is divided into frames, and each frame

contains two phases: target detection and channel estimation phase and data transmission phase.

In this paper, we will focus on the first phase, which can be further divided into the following

two stages as shown in Fig. 2:

• Initial target detection and channel estimation (Stage 1): Stage 1 is to search for potential tar-

gets, and provide an initial estimation for the target parameters and communication channels.

After Stage 1, the BS will have some prior information about the target/channel parameters,

e.g., whether there is a target or communication scatterer in a certain direction. Such prior

information can be exploited to optimize the pilots in the second stage. Specifically, the

BS first sends P1 omnidirectional DPs for initial target search. Then the user sends Q UPs

to the BS for channel estimation. Finally, the BS performs the joint target detection and

channel estimation based on the reflected DP and received UP signals.

• Refined target detection and channel estimation (Stage 2): Based on the prior information

about the targets and channel obtained in the initial stage, the BS optimizes the pilots and

sends P2 directional DPs towards the targets and communication scatterers for more accurate

observations. Finally, the BS refines the joint target detection and channel estimation based

on the reflected DP signals in both stages as well as the UP signals in Stage 1.
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Note that in the above descriptions, we have ignored the data transmissions for conciseness. In

the frame structure in Fig. 2, the omnidirectional DPs in Stage 1 are actually transmitted at the

end of the downlink subframe. Then the UPs in Stage 1 are transmitted at the beginning of

the uplink subframe followed by the uplink data transmission. Finally, the DPs in Stage 2 are

transmitted at the beginning of the next downlink subframe. Therefore, the channel and target

parameters are assumed to be (approximately) constant with the duration of one subframe.

DP Downlink Data DP Guard DPUP Uplink Data DPDownlink Data

Stage 2 Stage 1 Stage 2

Y

Downlink Subframe Uplink Subframe

Omnidirectional Pilot

Optimized Pilot

Fig. 2. Frame structure of the two-stage J-PoTdCe scheme.

B. Reflected DP Signal Model for Target Detection

In the p-th DP symbol duration of Stage t (t ∈ 1, 2), the BS transmits a DP vt,p ∈ CM , and

the corresponding received signal can be expressed as

yr
t,p = H

rvt,p + nr
t,p, (1)

where H
r ∈ CM×M is the radar channel matrix and nr

t,p ∼ CN
(
0, (σr

n)
2
I
)
∈ CM is the additive

white Gaussian noise (AWGN) with variance (σr
n)

2. For convenience, define the aggregate re-

ceived DP signal (radar measurements) of all the Pt pilot symbols as yr
t ,

[
(yr

t,1)
T , ..., (yr

t,Pt
)T
]T ∈

CPtM×1. The radar channel matrix depends on the AoAs and radar cross sections (RCSs) of the

targets and can be modeled as

H
r =

K∑

k=1

xr
ka (θrk)a

H (θrk) , (2)

where θrk and xr
k are the AoA and RCS of the k-th target, a (θ) ∈ CM is the array response

vector for the BS antenna array. For a half-wavelength space uniform linear array (ULA), the

array response vector is given by

a (θ) =
1√
M

[
1, e−jπ sin θ, . . . , e−j(M−1)π sin θ

]T
.
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C. Received UP Signal Model for Channel Estimation

In the q-th UP symbol duration of Stage 1, the user transmits an uplink pilot uq ∈ C and the

corresponding received signal can be expressed as

yc
q = h

cuq + nc
q, (3)

where h
c ∈ CM is the communication channel vector and nc

q ∼ CN
(
0, (σc

n)
2
I
)
∈ CM is the

AWGN. For convenience, define the aggregate received UP signal (channel measurements) of all

the Q pilot symbols as yc ,
[
(yc

1)
T , ..., (yc

Q)
T
]
∈ CQM×1. The communication channel vector

can be modeled as

h
c =

L∑

l=1

xc
la (θcl ) , (4)

where θcl and xc
l are the AoA and complex gain of the l-th channel path, respectively.

Note that for clarity, we focus on a narrowband ISAC system with low-speed targets and users

in this paper. In a wideband ISAC system with range and/or Doppler estimation capability, the

model in (2) and (4) should also include the range/delay and Doppler of the targets/channel

paths. Typically, in these ISAC systems, the estimation for the direction (AoA), range and

Doppler of the targets/channel paths is implemented by processing the receiving channels over

time and obtaining multi-channel measurements for each considered range-Doppler bin [29].

The model in (2) and (4) refers to a single range-Doppler bin [29]. Therefore, the joint target

detection and channel estimation algorithm in this paper can be applied to detect/estimate multiple

targets/channel paths for each range-Doppler bin in a wideband ISAC system.

To complete the proposed two-stage J-PoTdCe scheme, we need to design the joint target

detection and channel estimation algorithm for both stages, as well as the pilot optimization

algorithm in Stage 2, which will be elaborated in Section III and IV, respectively.

III. JOINT TARGET DETECTION AND CHANNEL ESTIMATION ALGORITHM

A. Sparse Angular Domain Channel with Dynamic Grid

We first describe the sparse angular domain representation for the radar and communication

channels, which is a necessary step in order to apply the sparse recovery methods such as sparse

Bayesian inference. One commonly used method to obtain a sparse representation of the channel

is to define a uniform grid
{
θ1, ..., θM̃

}
of M̃ ≫ K+L AoA points, such that [sinθ1, ..., sinθM̃ ]

is uniformly spaced over [−1, 1]. If the AoAs of the targets and channel paths indeed take values
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in the discrete set
{
θ1, ..., θM̃

}
, the radar and communication channels in (2) and (4) can be

rewritten as

H
r = ADiag(xr)AH =

M̃∑

m=1

xr
ma
(
θm
)
aH
(
θm
)
, (5)

h
c = Axc =

M̃∑

m=1

xc
ma
(
θm
)
, (6)

where A ,
[
a
(
θ1
)
, · · · ,a

(
θ
M̃

)]
is a fixed array response matrix corresponding to the uniform

grid, xr
m is the radar cross section(RCS) of the target in the m-th AoA direction θm, and xc

m is

the complex gain of the channel path from the user to the m-th AoA direction θm at the BS.

For convenience, we define xr ,

[
xr
1, ..., x

r

M̃

]T
∈ C

M̃ as the angular domain radar channel, and

xc ,

[
xc
1, ..., x

c

M̃

]T
∈ CM̃ as the angular domain communication channel. If there is no target

(active channel path) in the m-th AoA direction, we have xr
m = 0 (xc

m = 0). Therefore, there are

K (L) non-zero elements in xr (xc) corresponding to the K targets (L active channel paths).

Note that, we use xr
m and xc

m to denote the RCS of the target and complex channel gain in the

m-th AoA direction, respectively, even though xr
k and xc

l have been used to denote the RCS of

the k-th radar target and complex gain of the l-th active channel path in Section II.

In practice, however, the true AoA may not lie exactly on the M̃ discrete AoA grid points.

As a result, we need to use a very large M̃ in order to achieve a high AoA estimation accuracy,

leading to a high computational complexity. To overcome the above mismatch and complexity

issues of using a fixed grid, we adopt dynamic grid parameters θ ,
[
θ1, ..., θM̃

]T
. In this case,

as long as M̃ ≥ K +L, there always exist a set of unknown (and potentially non-uniform) grid

parameters θ that can exactly represent the true radar and communication channels by

H
r = A(θ)Diag(xr)A(θ)H ,

h
c = A(θ)xc,

where A(θ) ,
[
a (θ1) , · · · ,a

(
θ
M̃

)]
. However, if we set M̃ = K + L exactly, the likelihood

function associated with the estimation of the dynamic grids θ will have many local maxima,

making it difficult to obtain an accurate estimation of θ using the maximum likelihood (ML)

method, as the algorithm can easily get stuck in a “bad” local maxima. If M̃ is sufficiently

large, then by using a uniform grid as the initial point for θ, each true AoA will be very close
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10

to one initial grid point, making it much easier for the algorithm to find a near-optimal solution

for the ML estimation problem. In the rest of the paper, we set M̃ = M to achieve a good

tradeoff between the AoA estimation performance and complexity, since the AoA resolution for

a massive MIMO array with M ≫ 1 is roughly O
(

1
M

)
.

One may argue that when M̃ = M , the total number of radar and channel measurements

M(P1+P2+Q) is no less than the total number of parameters 3M , and thus there is no need to

use sparse recovery methods. However, a properly designed sparse recovery algorithm can fully

exploit the joint burst sparsity to mitigate the noise effect and significantly enhance the overall

performance in the low SNR regime, as will be shown in the simulations.

B. Hidden Markov Model for Joint Burst Sparsity

In practice, the radar and communication channels exhibit certain joint burst sparsity as

explained in the introduction and illustrated in Fig. 1. In this section, we shall introduce a

hidden Markov model to capture the joint burst sparse structure of the radar and communication

channels. Specifically, let sr = [sr1, ..., s
r
M ]T and sc = [sc1, ..., s

c
M ]T denote the support vectors of

the radar and communication channels, respectively, where srm = 1 (scm = 1) indicates there is

a radar target (communication scatterer) around the m-th AoA grid θm, and srm = 0 (scm = 0)

indicates the opposite. Therefore, in Fig. 1, Ωr , {m : srm = 1} indicates the set of (coarse)

AoAs of radar targets, Ωc , {m : scm = 1} indicates the set of (coarse) AoAs of user, and

Ωs , Ωr

⋃
Ωc indicates the common AoA set.

Conditioned on the channel support vectors sr and sc, the elements of xr and xc are inde-

pendent and the conditional prior distributions are respectively given by

p(xr
m|srm) = (1− srm)δ(x

r
m) + srmCN

(
xr
m; 0, (σ

r
m)

2
)

(7)

p(xc
m|scm) = (1− scm)δ(x

c
m) + scmCN

(
xc
m; 0, (σ

c
m)

2
)
, (8)

where (σr
m)

2 and (σc
m)

2 are the variance of xr
m and xc

m conditioned on srm = 1 and scm = 1,

respectively.

To represent the common AoAs of the radar and communication channels, a joint support

vector s = [s1, ..., sM ] ∈ {0, 1}M with sm = srm ∨ scm is introduced in the HMM, where ∨
represents the logical “or” operator. The joint distribution for the channel support vectors s, sr

and sc is given by p(s, sr, sc) = p(s)p(sr|s)p(sc|s), where
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p(sr|s) =
∏

m

p(srm|sm) =
∏

m

(1− sm)δ(s
r
m) + smρ

srm
r (1− ρr)

1−srm , (9)

p(sc|s) =
∏

m

p(scm|sm) =
∏

m

(1− sm)δ(s
c
m) + smρ

scm
c (1− ρc)

1−scm (10)

where ρr = |Ωr |
|Ωs|

(ρc = |Ωc|
|Ωs|

) is the probability of srm = 1 (scm = 1) conditioned on sm = 1,

which measures the degree of overlapping between the targets and communication scatterers.

Furthermore, to capture the burst sparse structure of the joint communication and radar channel,

the joint support vector s is modeled as a Markov chain:

p(s) = p (s1)

M−1∏

m=1

p(sm+1|sm), (11)

with the transition probability given by p(sm+1 = 1|sm = 0) = ρ0,1 and p (sm+1 = 0|sm = 1) =

ρ1,0. The initial distribution p (s1) is set to be the steady state distribution of the Markov chain

in (11), i.e.,

λ , p (sm = 1) =
ρ0,1

ρ0,1 + ρ1,0
. (12)

The transition probabilities ρ0,1 and ρ1,0 determine the average length of each non-zero burst

and the total number of non-zero bursts in s, and λ determines the sparsity level of s.

Finally, the joint prior distribution of all the random variables in HMM is given by

p(s, sr, sc,xr,xc) = p(s)
∏

m

p(srm|sm)
∏

m

p(scm|sm)
∏

m

p(xr
m|srm)p(xc

m|scm). (13)

C. Sparse Bayesian Inference Formulation for Joint Detection and Estimation

The problem formulation and algorithm design for the two stages can be unified by using the

same notation v1, ..., vP and yr
1, ...,y

r
P to denote the DPs and the received DP signals in both

stages. Specifically, in Stage 1, we have P = P1 and vp = v1,p,y
r
p = yr

1,p, p = 1, ..., P1. In Stage

2, we have P = P1 + P2, vp = v1,p,y
r
p = yr

1,p, p = 1, ..., P1 and vP1+p = v2,p,y
r
P1+p =

yr
2,p, p = 1, ..., P2. For convenience, we define the radar and communication measurement
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matrices F
r(θ) , VÃ(θ) ∈ C

PM×M and F
c(θ) , UA(θ)∈ C

QM×M , where

V =




vT
1 ⊗ IM

. . .

vT
P ⊗ IM


 , U =




u1IM

. . .

uQIM


 ,

Ã(θ) ∈ CM2×M consists of the (m− 1)M +m-th column of A∗(θ)⊗A(θ) for m = 1, ....,M ,

and ⊗ means the Kronecker product. Using these notations, (1) and (3) can be rewritten as a

linear observation model as

y = F(θ)x+ n, (14)

where yc =
[
(yr)T , (yc)T

]T
, yr =

[
(yr

1)
T , ..., (yr

P )
T
]T

, x =
[
(xr)T , (xc)T

]T
, n is the aggre-

gated noise vector and F(θ) = BlockDiag (Fr(θ),Fc(θ)).

For given gird parameter θ and observation y, we aim at computing the conditional marginal

posteriors p (xr|y, θ), p (xc|y, θ), p (srm|y, θ) , ∀m (i.e., perform Bayesian inference for xr,xc

and srm, s
c
m, ∀m). On the other hand, the grid parameter is obtained by ML estimation as

θ∗ = argmax
θ

ln p(y|θ). (15)

Once we have the ML estimate of θ and the associated conditional marginal posteriors, the MAP

estimate of the communication channel as xc∗ = argmaxxcp (xc|y, θ∗) and hc∗ = A(θ∗)xc∗ can

be obtained. Moreover, p (srm|y, θ∗) gives the probability that a target exists at the AoA direction

θ∗m.

It is very challenging to calculate the above conditional marginal posteriors because the factor

graph of the underlying probability model has loops. In the following subsections, we shall

propose a Turbo-SBI algorithm which approximately calculates the marginal posteriors and finds

an approximate solution for (15). The proposed Turbo-SBI algorithm is shown in the simulations

to achieve a good performance.

D. Outline of the Turbo-SBI Algorithm

Based on the Expectation-maximization (EM) method, the Turbo-SBI algorithm starts from the

uniform grid θ0 and performs iterations between the following two major steps until convergence.
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• Turbo-SBI-E Step: For given grid parameter θi in the i-th iteration, we approximately cal-

culate the posteriors p
(
xr|y, θi

)
, p
(
xc|y, θi

)
, p
(
srm|y, θi

)
, ∀m by combining the message

passing and LMMSE approaches via the turbo framework;

• Turbo-SBI-M Step: Using the approximate posterior p
(
x|y, θi

)
obtained in the Turbo-

SBI-E Step, calculate the gradient for the likelihood function ln p(y|θ) at θi, then use

gradient ascent update to obtain the next iterate θi+1.

In the following two subsections, we first elaborate how to approximately calculate the

posterior p
(
x|y, θi

)
and the other marginal posteriors p

(
srm|y, θi

)
, ∀m in the Turbo-VBI-E

Step. Then we present the Turbo-VBI-M Step, which requires the posterior p
(
x|y, θi

)
calculated

in the Turbo-SBI-E step. Note that similar to the grid parameter θ, the parameters ρr, ρc, ρ0,1, ρ1,0

in the HMM prior model can also be automatically learned based on the EM method. Please

refer to [30] for the details of the EM method to learn the parameters in the prior model.

E. Turbo-SBI-E Step with Given Grid Parameters

The Turbo-SBI-E Step contains two modules, as shown in Fig. 3. Module A is a LMMSE

estimator based on the observation y and extrinsic messages from Module B. Module B, which is

called the HMM-MMSE estimator, performs MMSE estimation that combines the HMM prior

and the extrinsic messages from Module A. The two modules are executed iteratively until

convergence. In the following, we elaborate the two modules in Fig. 3. Since the grid is fixed

in the Turbo-SBI-E Step, we shall omit the grid θ in F(θ) in this subsection.

Fig. 3. Modules of the Turbo-SBI-E step and message flow between different modules.

A. LMMSE in Module A: In Module A, we assume that x follows a Gaussian distribution

with a prior mean x
pri
A = xext

B→A and covariance V
pri
A = V ext

B→A, where xext
B→A and V ext

B→A are the

extrinsic message output from Module B, as will be given in (24). Note that V ext
B→A is a diagonal
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matrix. With this assumption and the linear observation model y = Fx+n, the posterior mean

of x is given by the LMMSE estimator

x
post
A = V

post
A

(
(V pri

A )−1x
pri
A +

F
Hy

σ2
n

)
(16)

and V
post
A is the posterior covariance of x given by

V
post
A =

(
F

H
F

σ2
n

+ (V pri
A )−1

)−1

. (17)

In the simulations, we note that the off-diagonal elements of V inv
A , FHF

σ2
n

+(V pri
A )−1 are usually

much smaller than its diagonal elements, and most non-zero off-diagonal elements concentrate

on the five-diagonal sub-matrix of V inv
A . In fact, for uniform grid θ, V inv

A reduces to a diagonal

matrix. Let V inv
A,0 denote the five-diagonal sub-matrix of V inv

A . By applying the first-order Taylor

expansion of (V inv
A )−1 at V inv

A,0, the calculation of V post
A can be safely approximated as

V
post
A ≈ 2V inv

A,0 − (V inv
A,0)

−1V inv
A (V inv

A,0)
−1. (18)

Then the extrinsic message passed to Module B can be calculated by excluding the prior

information x
pri
A ,V pri

A as

V ext
A→B =

(
(V

post

A )−1 − (V pri
A )−1

)−1

,

xext
A→B = V ext

A→B

(
(V

post

A )−1x
post
A − (V pri

A )−1x
pri
A

)
, (19)

where V
post

A is a diagonal approximation of V post
A by setting the off-diagonal elements to zeros.

The above approximations in (18) and V
post

A can greatly simplify the calculations with little

performance loss, as verified by simulations.

B. Message Passing in Module B: In Module B, a message passing scheme is used for the

HMM-MMSE estimator to calculate the posterior of x and sr, based on the HMM channel prior

and the extrinsic messages xext
A→B,V

ext
A→B from Module A. Specifically, the extrinsic messages

xext
A→B,V

ext
A→B are equivalently modeled as a virtual AWGN observation model:

x
r,pri
B = xr + z

r,

x
c,pri
B = xc + z

c,
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where the extrinsic mean xext
A→B = [(xr,pri

B )T , (xc,pri
B )T ]T is treated as observations obtained via

a virtual AWGN channel with zero mean noise vectors z
r and z

c, and the extrinsic covariance

V ext
A→B = BlockDiag

(
V

r,pri
B ,V c,pri

B

)
is treated as the noise covariance, i.e., zr ∼ CN

(
0;V r,pri

B

)
,

z
c
∼ CN

(
0;V c,pri

B

)
. Similar treatment has been used in various approximate message passing

algorithms, see e.g., [31], [32], [33] for justifications of this treatment. The factor graph GB of

the joint distribution associated with this virtual AWGN observation model is shown in Fig. 4,

where the function expression of each factor node is listed in Table I. In Table I, xr,pri
B,m and xc,pri

B,m

are the m-th elements of xr,pri
B and x

c,pri
B , respectively, and vr,priB,m and vc,priB,m are the m-th diagonal

elements of V r,pri
B and V

r,pri
B , respectively.

Fig. 4. Factor graph of the joint distribution p(s, sr
, s

c
,x

r
,x

c
,x

r,pri
B ,x

c,pri
B |θ).

TABLE I
FACTORS, DISTRIBUTIONS AND FUNCTIONAL FORMS IN FIG. 4.

Factor Distribution Functional form

grm

(
x
r,pri

B,m , xr
m

)

gcm

(
x
c,pri

B,m , xc
m

) p
(
xr
m|xr,pri

B,m

)

p
(
xc
m|xc,pri

B,m

) CN
(
xr
m;xr,pri

B,m , v
r,pri

B,m

)

CN
(
xc
m;xc,pri

B,m , v
c,pri

B,m

)

f r
m (xr

m, srm)
f c
m (xc

m, scm)
p (xr

m|srm)
p (xc

m|scm)

(1− srm) δ (xr
m) + srmCN

(
xr
m; 0, (σr

m)
2
)

(1− scm) δ (xc
m) + scmCN

(
xc
m; 0, (σc

m)
2
)

ηrm (srm, sm)
ηcm (scm, sm)

p (srm|sm)
p (scm|sm)

p (srm = 1|sm = 0) = 0, p (srm = 1|sm = 1) = ρr

p (scm = 1|sm = 0) = 0, p (scm = 1|sm = 1) = ρc

hs
1(s1) p (s1) (λ)

s1 (1− λ)
1−s1

hs
m+1 (sm+1, sm) p (sm+1|sm)

{
(ρ0,1)

sm+1 (1− ρ0,1)
1−sm+1 , sm = 0

(1− ρ1,0)
sm+1 (ρ1,0)

1−sm+1 , sm = 1

We now outline the message passing scheme over the factor graph GB . The details are
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elaborated in Appendix A. According to the sum-product rule, the message passing over xr
m →

f r
m → srm → ηrm → sm and xc

m → f c
m → scm → ηcm → sm are given by (45) - (48). Then

a forward backward message passing is performed over the Markov chains s through (49) -

(52). After this, the message is passed back over the path sm → ηrm → srm → f r
m → xr

m and

sm → ηcm → scm → f c
m → xc

m using (53) - (55).

After calculating the updated messages {vfr
m→xr

m
}, the approximate posterior distributions are

given by

p̂(xr
m|y) ∝ vfr

m→xr
m
× vxr

m→fr
m
, (20)

p̂ (srm|y) =
πin
sr ,mπ

out
sr ,m

πin
sr,mπ

out
sr,m + (1− πin

sr ,m)(1− πout
sr ,m)

, ∀m, (21)

where vfr
m→xr

m
, vxr

m→fr
m

, πin
sr ,m, πout

sr,m are given in Appendix A. Then the posterior mean x
r,post
B =

[
xr,post
B,1 , ..., xr,post

B,M

]T
and variance V

r,post
B = Diag([vpostB,1 , ..., v

post
B,M ]) for xr can be respectively

calculated as

xr,post
B,m =

∫

xr
m

xr
mp̂(x

r
m|y), (22)

vpostB,m =

∫

xr
m

|xm − xr,post
B,m |2p̂(xr

m|y), (23)

for m = 1, ...,M . The posterior mean x
c,post
B and variance V

c,post
B for xc can be calculated

similarly. Then the extrinsic message passed to Module A can be calculated as

V ext
B→A =

(
(V post

B )−1 − (V pri
B )−1

)−1
,

xext
B→A = V ext

B→A

(
(V post

B )−1x
post
B − (V pri

B )−1x
pri
B

)
, (24)

where xpri
B = [(xr,pri

B )T , (xc,pri
B )T ]T , xpost

B = [(xr,post
B )T , (xc,post

B )T ]T , V pri
B , BlockDiag

(
V

r,pri
B ,V c,pri

B

)

and V
post
B ,BlockDiag

(
V

r,post
B ,V c,post

B

)
.

Finally, we point out that the Turbo-OAMP in [27] is an approximation of the proposed Turbo-

SBI-E Step when F is PO. Specifically, in Turbo-OAMP, by assuming a PO measurement matrix

F, the F
H
F in the LMMSE Step in (17) is approximated as F

H
F ≈ tr(FH

F)
2M

I. Moreover, when

calculating the extrinsic messages in (19) and (24), V post
B and V

post
B are approximated as vpostA I

and vpostB I , respectively, where vpostA and vpostB are the mean values of the diagonal elements of

V
post
B and V

post
B , respectively.
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F. Turbo-SBI-M Step

In the M step, we need to maximize the log-likelihood function ln p(y|θ), which is difficult

because ln p(y|θ) does not have a closed-form expression. Inspired by the EM method, we

construct a surrogate function for ln p(y|θ) around the current iterate θi as follows

Q(θ; θi) =

∫
p(x|y, θi)ln

p(y,x|θ)
p(x|y, θi)

dx

= −||y − F(θ)xpost||22 + tr(F(θ)V post
F(θ)H)

σ2
n

+ c,

where xpost and V post denote the posterior mean and covariance associated with p(x|y, θi),

and c is a constant. It can be shown that Q(θ; θi) ≤ ln p(y|θ), ∀θ, Q(θi; θi) = ln p(y|θi) and

∇θQ(θi; θi) = ∇θ ln p(y|θi). Based on this, the next iterate θi+1 can be obtained using the

gradient ascent method as

θi+1 = θi + τ i∇θQ(θi; θi), (25)

where τ i is the step size which can be determined by applying the Arjimo rule to Q(θ; θi).

The Arjimo rule ensures that Q(θi+1; θi) ≥ Q(θi; θi) and the equality only holds when θi is

already a stationary point of the ML estimation problem. Therefore, we have ln p(y|θi+1) ≥
Q(θi+1; θi) ≥ Q(θi; θi) = ln p(y|θi), i.e., the Turbo-SBI-M Step can strictly increase the

likelihood function until convergence to a stationary point. Finally, the gradient ∇θQ(θi; θi) =[
∂Q(θi;θi)

∂θ1
, ..., ∂Q(θi;θi)

∂θM

]T
is given by

∂Q(θi; θi)

∂θm
=2Re[a′(θim)

H
U

H
Ua(θim)c

i
1 + a′(θim)

H
U

Hci2]

+2Re[ã′(θim)
H
V

H
Vã(θim)c

i
3 + ã′(θim)

H
V

Hci4], (26)

where ã(θim) is the m-th column of Ã(θ), yc,i
−m = yc −U

∑
j 6=m

(
xc,post
A,j · a

(
θij
))

,

y
r,i
−m = yr −V

∑
j 6=m

(
xr,post
A,j · ã

(
θij
))

, a′ (θim) = da
(
θi
)
/dθim, ã

′
m (θim) = dãm(θ

i)/dθim,

ci1 = −σ−2
n

(∣∣xc,post
A,m

∣∣2 + v
c,post
A,m

)
, ci2 = σ−2

n

(
(
xc,post
A,m

)∗
y
c,i
−m −U

∑
j 6=m

v
r,post
A,j a

(
θij
)
)

,

ci3 = −σ−2
n

(∣∣xr,post
A,m

∣∣2 + v
r,post
A,m

)
, ci4 = σ−2

n

(
(
xr,post
A,m

)∗
y
r,i
−m −V

∑
j 6=m

v
r,post
A,j ã

(
θij
)
)

.

Note that to calculate Q(θ; θi) and its gradient, we need to know the posterior mean and

covariance xpost and V post associated with p(x|y, θi), which can be approximated using the
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x
post
B and V

post
B calculated in the Turbo-SBI-E Step. Finally, the overall Turbo-SBI algorithm is

summarized in Algorithm 1.

Algorithm 1 Turbo-SBI algorithm

Input: y, θ0, maximum iteration numbers Iin, Iout, threshold ǫ.
Output: θ∗, x∗, p̂ (srm|y, θ∗) , ∀m.

for i = 1, · · · , Iout do

Turbo-SBI-E Step:

Initialize iin = 1, xpri
A = 0 and V

pri
A .

while not converge and iin ≤ Iin do

iin = iin + 1.
%Module A: LMMSE Estimator

Update x
post
A and V post

A , using (16) and (17)/(18).
Update x

pri
B = xext

A→B and V
pri
B = V ext

A→B, using (19).
%Module B: HMM-MMSE Estimator

Perform message passing over the factor graph GB using (45) - (55).
Calculate the approximate posterior distributions p̂(xr

m|y, θi), p̂
(
srm|y, θi

)
, ∀m using

(20), (21).
Update x

post
B and V

post
B using (22) and (23).

Update x
pri
A = xext

B→A and V
pri
A = V ext

B→A, using (24).
end while

Turbo-SBI-M Step:

Calculate the gradient ∂Q(θi;θi)
∂θm

in (26) using the x
post
B and V

post
B from the E step.

Obtain θi+1 using the gradient ascent update in (25).
if
∥∥θi+1 − θi

∥∥ ≤ ǫ then

break

end if

end for

Output θ∗, x∗ = x
post
B and p̂ (srm|y, θ∗).

G. Complexity Analysis of Turbo-SBI

The complexity of Module A is mainly dominated by the matrix inverse operation in (17),

whose complexity is O (M3). By using the first-order Taylor expansion in (18), we can reduce

the complexity of Module A to O (M2). The complexity of Module B is O(M) since it only

involves scalar or diagonal matrix operations. Finally, the complexity of the gradient ascent

update for the off-grid parameter in (25) is dominated by the matrix multiplication Vã(θim),

whose complexity is O (M2P ). Therefore, the overall per outer iteration complexity of the

Turbo-SBI is O (IinM
2 +M2P ).
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IV. OPTIMAL PILOT DESIGN BASED ON CRAMER-RAO BOUND

In this section, we present the pilot design based on the estimated AoAs in Stage 1. We first

derive the Cramer-Rao Bound (CRB) of the AoAs. Then we formulate the pilot optimization

problem as a worst-case CRB minimization problem. Finally, we propose an efficient algorithm

to solve the pilot optimization problem.

A. Derivation of Cramer-Rao Bound

In this subsection, we derive the CRB of the AoAs under the assumption of known channel

coefficients xr
k’s and xc

l ’s. The unknown AoA parameters θ =
[
(θr)T , (θs)T , (θc)T

]T
are

divided into three subsets, namely, the AoAs of the purely radar targets θr, the AoAs of the

purely communication paths θc, and the common AoAs θs. Note that, we use θ to denote the

set of all AoA parameters in this section, even though θ has been used to denote the dynamic

grid in Section III. As in [34], the Fisher Information Matrix (FIM) J (θ) is defined by

J (θ) = E

{[
∂ ln p (y | θ)

∂θ

] [
∂ ln p (y | θ)

∂θ

]T}
, (27)

where p (y | θ) is the likelihood function of the observation y and ∂ ln p(y|θ)
∂θ

is the gradient vector

of the log-likelihood function with respect to θ. According to this definition, the FIM based on

the reflected DP signals and received UP signals is given by

J (θ) =




J (θr, θr) J (θr, θs) J (θr, θc)

J (θr, θs)T J (θs, θs) J (θs, θc)

J (θr, θc)T J (θs, θc)T J (θc, θc)


 , (28)

and the submatrices in J (θ) are given by

J (θr, θc) = 0,J (θc, θc) = 2 (σc
n)

−2Re

{
∂hc

∂θc (Ψ
c)T (Ψc)∗

(
∂hc

∂θc

)H
}

(29)

J (θr, θr) = 2 (σr
n)

−2Re

{
∂hr

∂θr (Ψ
r
1)

T (Ψr
1)

∗

(
∂hr

∂θr

)H
}
+2 (σr

n)
−2Re

{
∂hr

∂θr (Ψ
r
2)

T (Ψr
2)

∗

(
∂hr

∂θr

)H
}
,

(30)

J (θr, θs) = 2 (σr
n)

−2Re

{
∂hr

∂θr (Ψ
r
1)

T (Ψr
1)

∗

(
∂hr

∂θs

)H
}
+2 (σr

n)
−2Re

{
∂hr

∂θr (Ψ
r
2)

T (Ψr
2)

∗

(
∂hr

∂θs

)H
}
,

(31)

February 8, 2022 DRAFT



20

J (θs, θs) = 2 (σr
n)

−2Re

{
∂hr

∂θs (Ψ
r
1)

T (Ψr
1)

∗

(
∂hr

∂θs

)H
}

+ 2 (σr
n)

−2Re

{
∂hr

∂θs (Ψ
r
2)

T (Ψr
2)

∗

(
∂hr

∂θs

)H
}

+ 2 (σc
n)

−2Re

{
∂hc

∂θs (Ψ
c)T (Ψc)∗

(
∂hc

∂θs

)H
}
, (32)

J (θc, θs) = 2 (σc
n)

−2Re

{
∂hc

∂θc (Ψ
c)T (Ψc)∗

(
∂hc

∂θs

)H
}
. (33)

where hr
, vec

[
(Hr)T

]
and the aggregated pilot matrices Ψ

r
1,Ψ

r
2 and Ψ

c are given by

Ψ
r
1 =




IM ⊗ vT
1,1

. . .

IM ⊗ vT
1,P1


 ,Ψr

2 =




IM ⊗ vT
2,1

. . .

IM ⊗ vT
2,P2


 ,Ψc =




u1,1IM

. . .

u1,QIM


 (34)

In this section, we shall optimize the radar pilot (DP) in Stage 2 to refine the estimation

performance of the AoAs θr, θs for radar targets. The Cramer-Rao (CR) matrix for θr, θs is

given by

CRB, J
−1

eff , (35)

where Jeff denotes the Equivalent Fisher Information Matrix (EFIM) of radar targets given by

(36). The diagonal elements of the CR matrix provide a lower bound for the MSE of any unbiased

estimator of θr, θs.

Jeff =


 J (θr, θr) J (θr, θs)

J (θr, θs)T J (θs, θs)− J (θs, θc)J−1 (θc, θc)JT (θs, θc)


 (36)

B. Problem Formulation for Pilot Design

There are three commonly used criteria involving a scalar measure of the CR matrix [26].

The first criterion is associated with the minimization of the log-determinant of the CR matrix

corresponding to the minimization of the volume of the confidence ellipsoid. The second criterion

is the minimization of the trace of the CR matrix, which is associated with the sum of squared

errors. The third criterion is the minimization of the maximal eigenvalue, λmax, of the CR matrix.

This criterion is associated with minimizing the worst-case (largest) squared error. In practice,

the desired pilot must guarantee the sensing performance of the worst target. Therefore, we adopt

the third criterion in this paper.
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Since the minimization of the maximal eigenvalue, λCR
max, of the CR matrix is equivalent to

maximizing of the minimal eigenvalue, λEFIM
min , of the EFIM Jeff, the optimization problem for

DP (radar pilot) design can be formulated as

P : max
{v2,p}

P2
p=1

λ

s.t. tr
(
v2,pv

H
2,p

)
≤ Pt, (37)

Jeff

(
{v2,p}P2

p=1

)
� λI,

where Pt is the transmit power for target detection, and we have explicitly written Jeff as a

function of the optimization variables. Note that the constraint Jeff

(
{v2,p}P2

p=1

)
� λI ensures

that λEFIM
min ≥ λ. Therefore, Problem P maximizes the minimal eigenvalue λEFIM

min of the EFIM

Jeff.

C. Pilot Optimization Algorithm

Notice that Problem P is not a convex optimization problem since the constraint Jeff

(
{v2,p}P2

p=1

)
�

λI is not convex w.r.t {v2,p}P2

p=1. It can be observed that each submatrix of the FIM can be

rewritten as a function of
{
V2,p , v2,pv

H
2,p

}P2

p=1
as follows,

J (θr, θr) = 2 (σr
n)

−2Re

{
∂hr

∂θr (Ψ
r
2)

T (Ψr
2)

∗

(
∂hr

∂θr

)H
}

+ constant

=2 (σr
n)

−2Re

{
∂hr

∂θr BlockDiag

(
∑

p

V2,p, · · · ,
∑

p

V2,p

)(
∂hr

∂θr

)H
}

+ constant. (38)

Motivated by the above observation, we convert the original problem into a semi-definite

programming with rank-1 constraints by introducing new variables
{
V2,p = v2,pv

H
2,p

}P2

p=1
. The

optimization problem can then be equivalently reformulated as
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P1 : max
{V2,p}

P2
p=1

λ

s.t. tr (V2,p) ≤ Pt, (39)

Jeff

(
{V2,p}P2

p=1

)
� λI, (40)

rank (V2,p) = 1, p = 1, 2 . . . , P2.

It can be shown that Jeff

(
{V2,p}P2

p=1

)
� λI is a convex constraint. However, the rank-1 con-

straints rank (V2,p) = 1, p = 1, 2 . . . , P2 are still non-convex. To overcome this challenge, we

propose to replace the rank-1 constraint with a tight and smooth approximation as stated in the

following lemma.

Lemma 1. The rank of a positive semi-definite matrix V ∈ CM×M satisfies

rank (V) = lim
ε→0

M log
(
1
ε

)
+ log |V + εI|

log
(
1 + 1

ε

) . (41)

Moreover, for any given ε > 0, the RHS of (41) is a concave function of V.

Proof: Please refer to Appendix B for the proof.

Using Lemma 1, P1 can be well approximated by the following problem for small ε

Pε : max
{V2,p}

P2
p=1

λ

s.t.(39) and (40),

M log

(
1

ε

)
+ log |V2,p + εI| ≤ log

(
1 +

1

ε

)
, ∀p. (42)

In fact, it can be shown that the optimal solution of Pε converges to that of P1 as ε → 0.

Since M log
(
1
ε

)
+ log |V2,p + εI| is concave, we can apply the MM method to find a stationary

point of P1. Specifically, the MM method starts from an initial point
{
V

0
2,p

}P2

p=1
, and in the i-th

iteration, it solves a locally convex approximation of P1 around
{
V

i−1
2,p

}P2

p=1
to obtain the next
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iterate
{
V

i
2,p

}P2

p=1
as:

Pc : max
{V2,p}

P2
p=1

λ

s.t. (39) and (40), (43)

tr
{[

V
i−1
2,p + εI

]−1 [
V2,p −V

i−1
2,p

]}

≤ log

(
1 +

1

ε

)
−M log

(
1

ε

)
− log

∣∣Vi−1
2,p + εI

∣∣ , ∀p, (44)

where (43) is obtained by the first-order Taylor expansion of the constraint function in (42).

The overall algorithm is summarized as in Algorithm 2. To ensure the rank-1 constraints are

strictly satisfied, a rank-1 projection is adopted in the final step as v∗
2,p = Ṽ

∗
2,p (:, 1), where

Ṽ
∗
2,p (:, 1) is the dominant eigenvector of V

∗
2,p. Note that since the constraint function in (42)

is a very good approximation of the rank-1 constraint, V∗
2,p will be close to a rank-1 matrix

and thus the performance loss caused by the rank-1 projection is tiny. Algorithm 2 requires the

knowledge of AoAs θ and radar/communication channels hc,hr, whose estimated values can

be obtained using the Turbo-SBI algorithm in Stage 1. In the simulations, we show that the

performance loss caused by using the estimated values of θ and hc,hr in Stage 1 is acceptable.

Algorithm 2 The Pilot Optimization Algorithm

Input: Pt, a feasible V
0
2,p, maximum iteration numbers Imax, threshold ǫ.

Output: v∗
2,p,∀p.

for i = 1, · · · , Imax do

Obtain the next iterate (V2,p)
i by solving the locally convex approximation problem Pc.

if

∥∥∥Jeff

({
V

i
2,p

}P2

p=1

)
− Jeff

({
V

i−1
2,p

}P2

p=1

)∥∥∥ ≤ ǫ then

break

end if

end for

Let v∗
2,p = Ṽ

∗
2,p (:, 1),∀p and output V∗

2,p,∀p.

V. SIMULATION RESULTS

In this section, we shall use simulations under the CDL channel model in 3GPP R15 [28] to

verify that the proposed J-PoTdCe scheme can achieve superior performance over the following

baseline schemes/algorithms.
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• Separate design using ML-based two-step detection and estimation (SD-MLTS) [17]:

The target detection and channel estimation are performed separately using the ML-based

two-step detection and estimation algorithm in [17] with omidirectional pilots.

• Separate design using Turbo-SBI (SD-SBI): The target detection and channel estimation

are performed separately using the proposed Turbo-SBI algorithm (i.e., assuming indepen-

dent sparse channel priors for communication and radar sensing), with omidirectional pilots.

• Joint design with random pilots (JDRP): The target detection and channel estimation are

performed jointly using the proposed Turbo-SBI algorithm with omidirectional pilots.

• Joint design with SDR-based pilots (JDSDR): The target detection and channel estimation

are performed jointly using the proposed Turbo-SBI algorithm with the pilots optimized

using the SDR method.

• Genie-aided J-PoTdCe: This is the proposed scheme with the pilots optimized based on

the genie-aided information, i.e., the true values of AoAs θ and channels hc,hr.

In the simulation, the BS is equipped with a ULA of M = 64 antennas. We set P1 = P2 = 1.

For convenience, define the common sparsity ratio as ρc = |Ωr ∩ Ωc| /Ωs. When ρc = 1, the

radar and communication channels share the same common AoA set ΩS . Therefore, ρc reflects

the correlation among the AoA sets of the two channels. To control the common sparsity ratio

ρc in the simulations, we first generate the communication channel according to the CDL model.

Then we randomly choose a proper number of the AoAs of the communication channel as part

of the AoAs of the radar channel and the other AoAs of the radar channel are generated similar

to the CDL model. The received SNR is set as 3dB. For estimation performance, we compare

the average and worst-case MSE of the target AoA and the normalized MSE (NMSE) of the

communication and radar channels. We also compare the target detection performance in terms

of both false alarm probability and miss detection probability. Specifically, for SD-MLTS, the

target detection method is given in (20) in [17]. For all other algorithms, the BS claims a target

is detected around the m-th AoA direction if ppost(srm = 1) > 0.5, where ppost(srm = 1) is the

posterior probability of srm = 1 obtained by the detection algorithm.

A. Convergence Performance of Pilot Optimization Algorithm

Fig. 5 illustrates the convergence of the MM-based pilot optimization algorithm. As can be

observed, the proposed pilot optimization algorithm converges quickly within about 5 iterations,

and the achieved objective value is better than that of the SDR-based pilot optimization algorithm.
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Fig. 5. The convergence of the pilot optimization algo-
rithm.
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Fig. 7. Average and worst-case MSE of the target AoA
versus common sparsity ratio ρc.
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Fig. 8. False alarm probability and miss detection prob-
ability versus common sparsity ratio ρc.

B. Impact of Common Sparsity Ratio

In Fig. 6 - 8, we compare the parameter estimation and target detection performance versus

the common sparsity ratio ρc, respectively. It can be seen that the joint design achieves a better

overall performance than the separate design. Moreover, as ρc increases, the performance gap

between the joint design and separate design increases in general. This shows that the joint

design approach can exploit the joint sparsity between the radar and communication channels to

enhance the estimation/detection performance. Note that however, the radar estimation/detection
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performance itself does not necessarily improve with ρc because the statistics (AoAs) of the

radar channel also changes with ρc. The proposed J-PoTdCe can achieve a better performance

than all practical baseline schemes (i.e., excluding the genie-aided J-PoTdCe) for any given ρc,

due to the exploitation of the joint burst sparsity as well as the optimization of pilot. Note that

the performance gap between the proposed J-PoTdCe and gene-aided J-PoTdCe is small, which

verifies the feasibility of pilot optimization based on the estimated information in Stage 1.

VI. CONCLUSION

We proposed a two-stage joint pilot optimization, target detection and channel estimation

scheme to exploit the pilot beamforming gain and joint burst sparsity of ISAC channels for

enhanced target detection and channel estimation performance. In Stage 1, the BS performs joint

target detection and channel estimation based on the reflected omidirectional DP and received

UP signals. In Stage 2, the BS exploits the prior information obtained in Stage 1 to optimize the

DP signal to achieve beamforming gain and further refine the detection/estimation performance.

Specifically, a Turbo-SBI algorithm, which is a generalization of the Turbo-OAMP in [27] from

the PO measurement matrix to arbitrary measurement matrix with dynamic grid parameters,

has been proposed for joint target detection and channel estimation in both stages. The pilot

optimization problem in Stage 2 is formulated as a worst-case CRB minimization problem,

which contains non-smooth rank-1 constraints. By replacing each rank-1 constraint with a tight

and smooth approximation, we developed an efficient pilot optimization algorithm based on the

MM method. Simulations verified that the proposed scheme can achieve significant gain over

baseline schemes.

APPENDIX

A. Message Update Equations for Module B of Turbo-SBI

1) Message Passing Over the Path xr
m → f r

m → srm → ηrm → sm:

The message from variable node xr
m to factor node f r

m is

νxr
m→fr

m
(xr

m) = CN (xr
m; x

r,pri
B,m , vr,priB,m ). (45)
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The message from factor node f r
m to variable node srm is

νfr
m→srm

(srm) ∝
∫

νxr
m→fr

m
(xr

m)× f r
m(x

r
m, s

r
m)dx

r
m

∝πin
sr ,mδ(s

r
m − 1) + (1− πin

sr ,m)δ(s
r
m), (46)

where πin
sr,m = (1+

CN (0;xr,pri
B,m

,v
r,pri
B,m

)

CN (0;xr,pri
B,m

,v
r,pri
B,m

+(σr
m)2)

)−1. Then the message from variable node srm to factor

node ηrm is the same as νfr
m→srm

(srm). The message from factor node ηrm to variable node sm is

νηrm→sm(sm) =
∑

sr

ηrm(s
r
m, sm)× νsrm→ηrm

(srm)

=πr,in
s,mδ(sm − 1) + (1− πr,in

s,m)δ(sm), (47)

where πr,in
s,m = (1 +

1−πin
sr,m

1+2πin
sr,m

ρr−πin
sr,m

−ρr
)−1.

2) The message passing over the path xc
m → f c

m → scm → ηcm → sm is similar to that in 1)

and thus is omitted for conciseness. The final result is given by

νηcm→sm(sm) = πc,in
s,mδ(sm − 1) + (1− πc,in

s,m)δ(sm), (48)

where πc,in
s,m = (1 +

1−πin
sc,m

1+2πin
sc,m

ρc−πin
sc,m

−ρc
)−1 and πin

sc,m = (1 +
CN (0;xc,pri

B,m
,v

c,pri
B,m

)

CN (0;xc,pri
B,m

,v
c,pri
B,m

+(σc
m)2)

)−1.

3) Message Passing Over the Markov Chain of s:

νhm→sm(sm) ∝ γf
msm + (1− γf

m)(1− sm), (49)

νhm+1→sm(sm) ∝ γb
msm + (1− γb

m)(1− sm), (50)

where

γf
m =

ρ0,1(1− πin
m−1)(1− γf

m−1) + ρ1,1π
in
m−1γ

f
m−1

(1− πin
m−1)(1− γf

m−1) + πin
m−1γ

f
m−1

, (51)

γb
m =

ρ1,0((π
in
R,m)

−1 − 1)((γb
m+1)

−1 − 1) + (1− ρ1,0)

(ρ0,0 + ρ1,0)((π
in
m+1)

−1 − 1)((γb
m+1)

−1 − 1) + ρ1,1 + ρ0,1
, (52)

with γf
1 =

ρ0,1
ρ0,1+ρ1,0

, γb
M = 1

2
and πin

m =
π
r,in
s,mπ

c,in
s,m

π
r,in
s,mπ

c,in
s,m+(1−π

r,in
s,m )(1−π

c,in
s,m )

.

4) Message Passing Over the Path sm → ηrm → srm → f r
m → xr

m:

The message from variable node sm to factor node ηrm is
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νsm→ηrm
(sm) ∝νhm→sm(sm)× νhm+1→sm(sm)× νηcm→sm(sm)

=πr,out
s,m δ(sm − 1) + (1− πr,out

s,m )δ(sm), (53)

where πr,out
s,m = γ

f
mγb

m

γ
f
mγb

m+((πc,in
s,m )−1−1)(1−γ

f
m)(1−γb

m)
. The message from factor node ηrm to variable node

srm is

νηrm→srm
(srm) ∝

∑

sm

ηrm(s
r
m, sm)× νsm→ηrm

(sm)

=πout
sr,mδ(s

r
m − 1) + (1− πout

sr ,m)δ(s
r
m), (54)

where πout
sr,m = πr,out

s,m ρr.The message from variable node srm to the factor node f r
m is the same

as νηrm→srm
(srm). The message from variable node f r

m to factor node xr
m is

νfr
m→xr

m
(srm) =

∑

srm

νηrm→srm
(srm)× f r

m(x
r
m, s

r
m)

=πout
sr,mCN (xr

m; 0, (σ
r
m)

2) + (1− πout
sr ,m)δ(x

r
m). (55)

5) The message passing over sm → ηcm → scm → f c
m → xc

m is similar to that in 4).

B. Proof of Lemma 1

The rank of a positive semi-definite matrix V ∈ C
M×M is given by

rank (V) =
∑

m

u (λm) (56)

where {λm}Mm=1 denote the eigenvalues of V and u (x) denotes the step-function. It is easy to

see that

u (λm) =
log
(
1 + λm

ε

)

log
(
1 + 1

ε

) + o (ε) , (57)

where limε→0 o (ε) = 0. Therefore, we have

rank (V) =
∑

m

log
(
1 + λm

ε

)

log
(
1 + 1

ε

) + o (ε)

=
M log

(
1
ε

)
+ log (|V + εI|)

log
(
1 + 1

ε

) + o (ε) (58)
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Moreover, for any given ε > 0, the RHS of (41) is a concave function of V since log |V + εI|
is a concave function of V.
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