
1

Over-the-Air Federated Learning via

Second-Order Optimization

Peng Yang, Student Member, IEEE, Yuning Jiang, Member, IEEE,

Ting Wang, Senior Member, IEEE, Yong Zhou, Member, IEEE,

Yuanming Shi, Senior Member, IEEE, Colin N. Jones, Member, IEEE

Abstract

Federated learning (FL) is a promising learning paradigm that can tackle the increasingly prominent

isolated data islands problem while keeping users’ data locally with privacy and security guarantees.

However, FL could result in task-oriented data traffic flows over wireless networks with limited radio

resources. To design communication-efficient FL, most of the existing studies employ the first-order

federated optimization approach that has a slow convergence rate. This however results in excessive

communication rounds for local model updates between the edge devices and edge server. To address

this issue, in this paper, we instead propose a novel over-the-air second-order federated optimization

algorithm to simultaneously reduce the communication rounds and enable low-latency global model

aggregation. This is achieved by exploiting the waveform superposition property of a multi-access

channel to implement the distributed second-order optimization algorithm over wireless networks. The

convergence behavior of the proposed algorithm is further characterized, which reveals a linear-quadratic

convergence rate with an accumulative error term in each iteration. We thus propose a system optimiza-

tion approach to minimize the accumulated error gap by joint device selection and beamforming design.

Numerical results demonstrate the system and communication efficiency compared with the state-of-

the-art approaches.

Index Terms

Federated learning, over-the-air computation, second-order optimization method

P. Yang and T. Wang are with the Shanghai Key Lab. of Trustworthy Computing, Software Engineering Institute, East China

Normal University, Shanghai 200062, China (e-mail: 51205902030@stu.ecnu.edu.cn, twang@sei.ecnu.edu.cn). Y. Jiang and C. N.

Jones are with the Automatic Control Laboratory, EPFL, Laussane 1015, Switzerland (e-mail: yuning.jiang, colin.jones@epfl.ch).

Y. Zhou and Y. Shi are with the School of Information Science and Technology, ShanghaiTech University, Shanghai 201210,

China (e-mail: zhouyong, shiym@shanghaitech.edu.cn).

ar
X

iv
:2

20
3.

15
48

8v
1

 [
cs

.I
T

]
 2

9
M

ar
 2

02
2

2

I. INTRODUCTION

Artificial intelligence (AI) technologies under rapid development have been widely studied and

deployed in various scenarios. As a data-driven technology, its reliability and accuracy largely

depend on the volume and quality of source data. However, it is recognized as a big challenge for

most enterprises to obtain a dataset with sufficient volume and quality for AI model training. In

the meantime, data privacy is another crucial issue that needs to be considered among different

involved parties [1]. To this end, it is preferred in real-world implementations that data be kept

locally, forming a variety of isolated data islands. This makes it difficult to directly aggregate

data in the cloud and centrally train the AI models. Therefore, federated learning (FL) [2]–[4] has

emerged as a novel paradigm to address these challenges. A generic and practical FL framework

is essentially a distributed training process, and each iteration of FL includes the following

three steps [4]. Firstly, the server broadcasts the current global model parameters to all the

involved devices. Next, each device performs local model training based on its local data and

then sends the local updates back to the server. Finally, the server aggregates the local updates and

generates new global model parameters for the next iteration of distributed training. In essence,

the server and devices aim to collaboratively solve a distributed optimization problem, which

is typically referred to as Federated Optimization [5]. Different from centralized optimization,

federated optimization confronts several practical challenges including communication efficiency,

data heterogeneity, security, system complexity, etc. [6]. Among them, communication efficiency

is of utmost importance since the communication between the server and devices usually suffers

from unreliable network connections, limited resources, and severe latency [7].

To deal with the communication issue, a large amount of research has been conducted in

federated optimization. On the one hand, reducing the communication volume in each iteration

is an effective method. Specifically, quantization and sparsification techniques are employed to

reduce the transmitted bits and remove the redundant updates of parameters, respectively [8],

[9]. These compression techniques have shown remarkable effectiveness for high-dimensional

models. However, their design needs to consider the compatibility for the aggregation operation

in FL [6]. On the other hand, minimizing the total communication rounds is another primary

method. To this end, zeroth-order methods [10], [11] have been investigated for some restrictive

circumstances (e.g., black-box adversarial attack, non-smooth objective function) while show-

ing great potential as only the objective function value is required to approximate derivative

3

information [12]. In the situation where gradients are available, first-order methods are widely

used. By increasing the amount of local computation, various gradient descent based methods

have been shown that can significantly decrease the total number of communication rounds [2],

[13]–[15]. Nevertheless, these existing approaches, i.e., zeroth-order and first-order approaches,

are governed by the linear convergence in the best case. As a result, the total number of iteration

rounds required to achieve the desired accuracy is relatively large [16]. Therefore, the second-

order methods (e.g., Newton-type methods) become attractive in such a wireless environment

due to their fast local quadratic convergence rate. Nevertheless, the construction of the canonical

Newton update requires both the Hessian and gradient information, where the distributed situation

in FL makes gathering Hessian information a severe communication overhead. To this end,

second-order federated optimization algorithms have been investigated to resolve this issue,

which can be divided into two categories [16]. One is to use second-order information implicitly.

In [17], a mirror descent update is carried out on the local function to approximate the Hessian

information. In [18], the dual problems of the objective function are used to serve as the local

subproblems. The other category is to use second-order information explicitly. In [19], a globally

improved approximate Newton method (GIANT) using local Hessian for aggregation is proposed.

In [20], [21], the optimization of the gradient’s norm acts as the surrogate function. In [22],

Hessian-vector product computation and conjugate gradient descent are performed on the devices

and the server, respectively. The fast convergence rate with efficient communication makes the

application of these second-order algorithms a great benefit to FL.

Despite the potential in the application of second-order algorithms to reduce the total com-

munication rounds and improve the communication efficiency, the transmission of FL model

parameters through wireless channels still confronts great challenges as wireless channels are

always noisy with limited resources and high latency [23]–[25]. Based on the conventional

“transmit-then-communicate” principle, the aggregation of FL model parameters can be achieved

by digital coded transmission and orthogonal multiple access (OMA) schemes [26]–[28]. By

taking advantage of OMA and error correction techniques, local updates are transmitted sepa-

rately in the quantized form and then decoded individually at the server. In this way, the model

transmission can be deemed to be reliable and trustworthy. However, the increase in the number

of devices will inevitably lead to a sharp increase in total communication latency and bandwidth

requirement, which is often intolerable. Therefore, a novel technique called over-the-air compu-

tation (AirComp) [29] has emerged in FL algorithm design to decrease the communication cost

4

based on the “compute-when-transmit” principle [26], [27], [30]–[39]. This technique leverages

the superposition property of multiple access channels to realize the aggregation operation.

Through the simultaneous transmission of all local updates, which are aggregated over the air, the

communication overheads are significantly decreased. Specifically, the authors in [30] proposed

an AirComp-based approach for FL with joint design of device selection and beamforming to

improve the statistical learning performance. In [32], a novel Gradient-Based Multiple Access

(GBMA) algorithm was put forward to perform FL with an energy scaling law for approaching

the convergence rate of centralized training. In [35], the authors investigated the power control

optimization for enhancing the learning performance of over-the-air federated learning. In [34],

[40], intelligent reflecting surface (IRS) technology was used to achieve fast yet reliable model

aggregation for over-the-air federated learning. The authors in [36] proposed the dynamic learning

rate design for AirComp-based FL. Overall, the application of over-the-air computation in FL

also improves the communication efficiency a lot.

Based on the above observations, this paper proposes to improve communication efficiency

from two aspects, i.e., reducing communication rounds and the communication overhead in each

round. To reduce the communication rounds, we shall utilize second-order information during the

training process of FL. Due to the fast convergence speed, all these existing second-order state-of-

the-arts have shown substantial improvement in terms of the total iteration rounds compared with

first-order methods. However, their iterative procedures still have at least two communication

rounds per iteration, i.e., the aggregation of gradient and second-order information. To avoid

such two communication rounds, a recently proposed second-order method [41] cuts down the

aggregation of gradients and realizes one communication round per iteration. Motivated by this,

we adopt local Newton step aggregation for wireless FL algorithm design. Specifically, the

product of the local Hessian’s inversion and the local gradient is used to construct a local Newton

step for aggregation. By this means, the devices only need to communicate once with the server

per iteration, cutting down the transmission of local Hessian matrices and local gradients while

keeping the convergence behavior of canonical Newton’s method. Moreover, due to the limited

radio resources, we adopt over-the-air computation, which has been widely used in the existing

wireless FL schemes, to further reduce the communication overheads in each round. Based on

this efficient local Newton step aggregation and AirComp technique, we propose an over-the-air

second-order federated algorithm over wireless networks. Furthermore, we provide a rigorous

theoretical analysis of the convergence behavior of our proposed method. The results show

5

that the transmission of the above-mentioned product is sufficient to guarantee convergence and

our proposed method outperforms first-order algorithms. To be specific, the proposed algorithm

keeps a linear-quadratic convergence rate, which means it can achieve the optimal point with

a quadratic convergence rate and degenerate into the linear convergence rate when it is close

enough to the optimal point. However, as a result of local Newton step aggregation, device

selection, and channel noise, there is an error term in each iteration. As the training proceeds,

this accumulative error term will deflect the model parameters and affect learning performance. In

order to mitigate the impact of this error term, we further propose a joint optimization approach

of device selection and receiver beamforming. Specifically, Gibbs Sampling [42] is adopted to

determine the set of selected devices, and the difference-of-convex-functions (DC) algorithm [43]

is tailored to optimize the receiver beamforming during the iterative process of Gibbs Sampling.

A. Contributions

In this paper, we propose a novel over-the-air FL algorithm via the second-order optimization

method. Then, we theoretically analyze its convergence behavior, which shows that the proposed

algorithm keeps a linear-quadratic convergence rate, with an accumulative error term arising

during the FL process. To minimize the error gap and achieve better performance, we formulate

this problem as a combinatorial non-convex problem and propose a system optimization approach

to solve it. The main contributions of this paper are summarized as follows:

1) We design a novel AirComp-based FL algorithm by leveraging the principles of distributed

second-order optimization methods and exploiting the waveform superposition property of

a wireless multi-access channel for model aggregation. This algorithm is fundamentally

different from most existing works which only consider gradient descent/SGD in training.

The utilization of second-order information significantly reduces the total communication

rounds in Aircomp-based FL, which further improves the communication efficiency.

2) We theoretically analyze the convergence behaviors of our proposed over-the-air second-

order federated optimization algorithm with the presence of data heterogeneity (i.e., the

different data sizes), device selection, and channel noise. The results show that our algorithm

keeps a linear-quadratic convergence rate and outperforms first-order methods;

3) We formulate a system optimization problem to minimize the accumulative error gap during

the execution of our proposed algorithm. Correspondingly, we propose a system optimization

6

approach. Through the combination of Gibbs Sampling and DC algorithm, we jointly

optimize the device selection and receiver beamforming;

4) We conduct extensive experiments to demonstrate that our proposed algorithm and system

optimization approach can achieve better performance than other state-of-art approaches.

B. Organization and Notations

The remainder of this paper is organized as follows. Section II presents the federated learning

model and our FL algorithm. Section III provides the convergence analysis of our proposed

algorithm. Section IV analyzes the system optimization problem arising from the error term, and

describes our joint optimization method of device selection and beamforming. The experimental

results are given in Section V. Finally, Section VI concludes the whole paper.

‖ · ‖p is the `p-norm, ‖ · ‖F is the Frobenius norm. Italic, boldface lower case and upper case

letters represent scalars, vectors and matrices, respectively. For a given set X , |X | denotes the

cardinality of X . The operators (·)T, (·)H, Tr(·) and diag(·) denote the transpose, Hermitian

transpose, trace, and diagonal matrix, respectively. E[·] denotes the statistical expectation.

II. FEDERATED LEARNING MODEL AND ALGORITHM

A. Federated Learning System

Device 𝑚

𝒟𝑚

Selected Devices 𝒮𝓉

𝒟1

Device 1

𝒟2

Device 2

Server

Local Updates
Global Model

Disseminates

Fig. 1: Illustration of wireless FL systems.

A typical wireless federated learning system consists of a group of distributed devices and one

server, where the communication takes place over wireless channels. As depicted in Fig. 1, there

are m single-antenna devices and a server equipped with k antennas to collaboratively complete

7

a learning task. We denote D as the entire sample set used in the FL task. Each device i ∈ S

stores a sample set Di = {zi,j := (ui,j, vi,j)} and D =
⋃m
i=1Di with |D| = n, where S denotes

the index set of devices, ui,j is the feature vector and vi,j is the corresponding label.
As an important part of the learning task, the loss function is usually used for model parameter

estimation. Here, the loss function of the i-th device is defined by

Fi (w) =
1

|Di|
∑

zi,j∈Di

f (w, zi,j) +
γ

2
‖w‖22 . (1)

The first term is the average of f (w, zi,j), where w ∈ Rd is the model parameter vector and
function f is used to measure the prediction error of w. The second term is for regularization with
γ being the weighting parameter. FL aims to train a suitable model at the server by aggregating
the results collected from multiple devices, on which the distributed models are trained based
on local datasets. Specifically, the server needs to optimize the following global loss function:

F (w) =
1

n

m∑
i=1

|Di|Fi (w) . (2)

B. Federated Second-Order Optimization Algorithm

As typical training algorithms, gradient descent methods (e.g., SGD [44], batch gradient de-

scent) are widely used. However, the relatively slow convergence rate of gradient descent results

in too many communication rounds between the server and devices to complete the learning task.

Thus, many research works have been done to improve the communication efficiency of gradient

descent in FL. For example, some methods utilize multiple local updates to reduce the number

of communication rounds [2], [13], while several algorithms employ compression techniques to

reduce transmitted bits and save communication costs [8], [9], [45]. Although these schemes

have greatly improved the communication efficiency of gradient descent in FL, they are still

limited by the linear convergence rate.
To address this issue, this paper considers second-order algorithms with a faster convergence

rate such that the communication rounds can be significantly reduced. The descent direction
vector of canonical Newton’s method [46] is given by

p =
(
∇2F (w)

)−1∇F (w) . (3)

The canonical Newton’s method can achieve a locally quadratic convergence rate so that its total

iteration rounds needed to complete the learning task are much fewer than first-order algorithms.

However, in the distributed scenario, the computation of ∇2F (w) = 1
m

∑m
i=1∇2Fi (w) requires

8

the aggregation of the local Hessian ∇2Fi (w). The transmission of such d×d matrices inevitably

brings huge communication overheads. To resolve this issue, numerous second-order distributed

machine learning algorithms have been proposed, such as DANE [17], DISCO [22], GIANT [19],

DINGO [20], and DINO [21]. These methods approximate Hessian information in varied forms

to avoid the direct transmission of Hessian matrices and approach the performance of canonical

Newton’s method. However, at least two communication rounds per iteration are required,

including the aggregation of local gradients and second-order descent directions. Different from

these second-order algorithms, which require the aggregation of local gradients ∇Fi (w) to

compute the global gradient ∇F (w) = 1
m

∑m
i=1∇Fi (w), a recently proposed COMRADE [41]

method cuts down this aggregation. By this means, the number of communication rounds required

per iteration is reduced to one, further improving the communication efficiency. Motivated by

this, we leverage the local Newton step aggregation as in [41] to achieve a faster convergence

rate with fewer communication rounds. The product of the inversion of the local Hessian matrix

(∇2Fi (w))
−1 and the local gradient∇Fi (w) is used to serve as the local descent direction vector

pi = (∇2Fi (w))
−1∇Fi (w) for model aggregation. In this way, with the preserved convergence

behavior of Newton’s method, only one aggregation of the d-dimensional local descent direction

vectors will be carried out in each iteration. To be specific, at t-th iteration, the procedure of

our proposed method is summarized as follows:

1) Device Selection: The server decides the set of devices, denoted as St, to participate in this

iteration.

2) Global Model Broadcast: The server disseminates the current global model parameter

vector wt to the selected devices through the wireless channel.
3) Local Model Update: After the i-th device receives global model parameter vector wt, it

first computes the local gradient based on local data samples:

gt,i = ∇Fi (wt) =
1

|Di|
∑

zi,j∈Di

∇f (wt, zi,j) + γwt , (4)

where the derivatives are taken with respect to the first argument. Afterwards, the i-th device
calculates the local Hessian matrix according to local gradient and local data samples:

Ht,i = ∇2Fi (wt) =
1

|Di|
∑

zi,j∈Di

∇2f (wt, zi,j) + γId . (5)

The i-th device then gets a local Newton descent direction vector from previous results:

pt,i = H−1t,i gt,i =
(
∇2Fi (wt)

)−1∇Fi (wt) . (6)

9

In practice, this step involves the computation of Hessian matrix and its inverse operation.

To reduce the computational complexity, we adopt the conjugate gradient method [46] to

obtain an approximate local Newton descent direction vector. According to the analysis

in [19], this approximate solution will not have a significant impact on the convergence

behavior.
4) Model Aggregation: The devices participating in the t-th iteration transmit local Newton

descent direction vectors {pt,i} to the server through the wireless channel, and the server
aggregates them to obtain the global descent direction vector for this iteration:

p̃t =
1∑

i∈St
|Di|

∑
i∈St

|Di|pt,i . (7)

5) Global Model Update: Finally, the server updates the model parameter vector wt through

global descent direction vector p̃t and learning rate α.

wt+1 = wt − αp̃t . (8)

Notably, the Newton’s method has a faster convergence rate than the gradient descent methods

because it makes full use of the curvature information of the loss function, but the aggregation of

the d×d local Hessian matrices for Newton descent direction in (3) aggravates the communication

overheads in another way. As implied in Step 3) of our proposed FL scheme, it does not need

to compute the global gradient ∇F (w) and Hessian ∇2F (w) to get a precise Newton descent

direction by aggregating the local ∇Fi (w) and ∇2Fi (w). Note that this approximation also

brings a controllable error gap with the exact descent direction vector, and its impact on the

convergence rate will be analyzed in Section III.

C. Communication Model

To further reduce the communication overheads, this subsection focuses on the design of the

communication model between the server and devices. Specifically, there are two communication-

related steps in each iteration of our FL algorithm. One is global model broadcasting in the

downlink. Since only one global parameter vector needs to be broadcasted, the total communi-

cation cost of this step is negligible [26], [28], [32], [47]. The other is model aggregation in the

uplink, which involves the transmission of |St| local descent direction vectors. Accordingly, the

uploading process of this step brings the primary communication overhead in FL, which is also

the focus of our communication model design.
In this paper, we consider a block fading channel. Each block is divided into d time slots,

ensuring the transmission of one local descent direction vector. Suppose the traditional orthogonal

10

multiple access channel is used to perform the model aggregation procedure. Each device will
use one coherent block to transmit its local descent direction vector. Consequently, the time
consumed for transmission in this step will increase linearly with the number of participating
devices |St|. Unfortunately, the number of devices |St| is usually very large, which inevitably
leads to unacceptable communication overheads. In order to eliminate this issue, we adopt a
state-of-the-art technique named over-the-air computation (AirComp) [29], which is shown to be
effective in assisting the analog aggregation in FL studies [26], [27], [30]–[35]. This technique
captures the nomographic function form of averaging the local descent direction vectors and
implements the summation operation by the superposition property of the wireless channel. In
this way, the server can receive the summation by letting all devices transmit their local descent
direction vectors simultaneously in each block. Therefore, the entire process of model aggregation
can be completed over the air in a single coherent block, and the communication overheads can
be significantly reduced. More specifically, in the t-th iteration, the over-the-air computation can
be represented as the nomographic function form [48] : p̂t = ψ

(∑
i∈St ϕi (pt,i)

)
. To reduce

the transmission power, the pre-processing function φi and post-processing function ψ can be
designed to normalize and de-normalize the local descent direction vector pt,i [31]. However, due
to the variety of pt,i among devices, the stationary of the information-bearing symbols obtained
by such normalization methods can not be guaranteed, which further leads to the inapplicability
of the uniform-forcing transceiver design in the following. Therefore, to guarantee the stationary
of the information-bearing symbols, we adopt the data-and-CSI-aware design as in [49]. Before
transmission, pt,i is first pre-processed and encoded as st,i ∈ Rd at the i-th device:

st,i = φi (pt,i) =
|Di|pt,i
p̄t,i

, (9)

where p̄t,i = |Di| ‖pt,i‖ is the product of the size of local dataset and the magnitude of pt,i.
In this way, the stationary of the information-bearing symbols {st,i} can be guaranteed. Hence,
we have ‖st,i‖2 = 1 and E (|st,i[j]|2) = 1

d
, ∀j ∈ d, where st,i[j] denotes the j-th entry of st,i.

Thereafter, each entry of the transmitted signal sent by the i-th device is given by:

xt,i[j] = bt,ist,i[j] , (10)

where xt,i[j] ∈ R and st,i[j] ∈ R denote two representative entries of xt,i and st,i, respectively.
bt,i ∈ R is the transmitted power control factor, and the power constraint for each device in the
whole process is given by:

E
(
|bt,ist,i[j]|2

)
= b2t,i/d ≤ P0, ∀t, i , (11)

where P0 denotes the maximum transmitted power of each device.
Let ht,i ∈ Ck be the channel coefficient vector between the i-th device and the server in the t-th

block, which remains unchanged in each block but differs among blocks. In addition, we assume

11

that perfect channel state information (CSI) is available at all devices to adjust their transmitted
signals based on channel coefficients [26], [30]–[33], [40], [50]–[52]. Then the received signal
yt ∈ Ck at the server can be represented as follows:

yt =
∑
i∈St

ht,ixt,i[j] + et =
∑
i∈St

h̃t,ibt,i |Di|pt,i[j] + et , (12)

where h̃t,i =
ht,i

p̄t,i
is the effective channel coefficient introduced in [49], et ∈ Ck denotes the

additive white Gaussian noise vector with the power of σ2. We define the signal-to-noise ratio

(SNR) as P0/σ
2.

After the server receives yt, it can obtain the value rt[j] ∈ C before post-processing:

rt[j] =
1
√
ηt
aH
t yt =

1
√
ηt

(
aH
t

∑
i∈St

h̃t,ibt,i |Di|pt,i[j] + aH
t et

)
, (13)

where at ∈ Ck represents the receiver beamforming vector and ηt is the scaling factor. For con-
venience, we use Ht = [h̃t,1, . . . , h̃t,|St|] to denote the effective channel coefficient matrix, Bt =

diag
(
bt,1, . . . , bt,|St|

)
to denote the power transmission matrix, Gt = [|D1|pt,1, . . . ,

∣∣D|St|∣∣pt,|St|]T
to denote the signal transmission matrix, and Et = [et,1, . . . , et,d] to denote the noise matrix. So
the total estimated value vector rt = [rt[1], . . . , rt[d]] can be written as:

r =
1
√
ηt

(
aHHtBtGt + aH

t Et

)
. (14)

To alleviate the influence of the distortion caused by noise and improve the performance of
over-the-air computation, each entry of Bt follows the uniform-forcing transceiver design [53]:

bt,i =
√
ηt

(
aH
t h̃t,i

)H
∥∥∥aH

t h̃t,i

∥∥∥2 . (15)

where the transmission scalar bt,i can be computed after the calculation of receiver beamforming
vector in system optimization, and then feed back to each device [30]. Substituting (15) into (14),
we can get a simplified version of rt:

rt =
∑
i∈St

|Di|pT
t,i +

1
√
ηt
aH
t Et . (16)

Finally, through the post-processing function of ψ, the server obtains the global descent direction
vector p̂t:

p̂t = ψ (rt) =
1∑

i∈St |Di|
rHt = p̃t +

1(∑
i∈St |Di|

)√
ηt

(
aH
t Et

)H
, (17)

where p̃t,i is the averaged local descent direction vector as defined in (7).

Based on the AirComp-based communication model and second-order optimization algorithm,

we propose our over-the-air second-order federated algorithm, as shown in Algorithm 1.

12

Algorithm 1: Over-the-Air Second-Order Federated Algorithm

for each iteration t do
server chooses devices participating in this iteration and stores them as St.

server broadcasts the current model parameter vector wt to all devices.

for each participating device i in parallel do
compute local gradient gt,i = 1

|Di|
∑

zi,j∈Di
∇f (wt, zi,j) + γwt.

compute local Hessian matrix Ht,i = 1
|Di|

∑
zi,j∈Di

∇2f (wt, zi,j) + γId.

compute local Newton descent direction pt,i = H−1t,i gt,i.

encode pt,i as st,i according to (9).

transmit the signal xt,i = bt,ist,i through wireless channel.

end

server receives the signal yt (12) and maintains p̂t (17).

server performs an update step wt+1 = wt − αp̂t.
end

III. THEORETICAL CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of our proposed algorithm. A major

challenge of convergence analysis is to tackle the distortion of the descent direction vector

caused by channel noise, device selection, and the use of local Newton step. To address this

issue, we study the impact of distortion with respect to these influencing factors. In particular,

we exploit the idea of sketching to analyze the approximation of local gradients and Hessian

matrices. To better elaborate our analysis, some preliminaries are firstly presented.

A. Preliminaries

The core of our proposed algorithm is using local Hessian matrices and local gradients, which

is calculated through subsets of the total data set, to construct local Newton descent directions

and aggregate them. This brings the benefits of fewer communication rounds between the server

and the devices. However, since we rely on local information to approximate Newton descent

directions, the quality of local Hessian/gradients, in other words, the difference between the

local ones and global ones, are of concern. In order to tackle this issue, we adopt the idea of

matrix sketching [54], [55]. Specifically, for a given input matrix M ∈ Rn×d, we can replace it

with C = LTM ∈ Rs×d, where matrix C acts as the sketch of M with the sketching matrix

L ∈ Rn×s. In this way, the original problem related to M can be solved more efficiently using the

13

smaller alternative matrix C without losing too much information. The construction of the sketch

is similar to the calculation of local Hessian/gradients, where we adopt partial information of the

global Hessian/gradients to serve as the local Hessian/gradients. In this paper, we consider the

row sampling scheme in matrix sketching. The sketch C is constructed by the uniform sampled

and re-scaled subset of rows of M with sampling probability P
(
ci =

mj√
sp

)
= p, p = 1

n
, where

ci and mj are the i-th row of C and j-th row of M , respectively. Consequently, the sketching

matrix L has only one non-zero entry in each column, and we shall measure the difference

between the local Hessian/gradients and global ones with the help of such sketching matrices.
In the following, we consider a linear predictor model ` : R→ R, which is frequently used in

machine learning research, e.g., logistic and linear regression, support vector machines, neural
networks and graphical models. The function f (w, zi,j) can thus be rewritten as `

(
wTui,j

)
.

Accordingly, we define Mt =
[
mT

1 , . . . ,m
T
n

]T ∈ Rn×d with mt,j =
√
`′′ (wTui,j) /nui,j ∈ Rd,

so the global Hessian matrix can be represented as Ht = MT
t Mt + γId. Moreover, by defining

Nt = [n1, . . . ,nn] ∈ Rd×n with ni = ∇f (wt, zi), the global gradient ∇F (wt) can be denoted
by gt = 1

n
Nt1 + γwt. Let {Li}mi=1 be the sketching matrices, the local Hessian matrices and

local gradients can be reformulated as:

Ht,i = MT
t LiL

T
i Mt + γId , gt,i =

1

n
NtLiL

T
i 1 + γw . (18)

In addition, we define an auxiliary quadratic function as follows to facilitate our analysis:

φ(p) =
1

2
pTHtp− gT

t p =
1

2
pT
(
MT

t Mt + γId
)
p− gT

t p . (19)

As a quadratic function, the minimum point of φ(p) denoted by p∗ can be analytically obtained,
which is the same as the exact Newton descent direction vector in (3), i.e.,

p∗ = arg minφ(p) = ∇2F−1 (wt)∇F (wt) = H−1t gt =
(
M>

t Mt + γId
)−1

gt . (20)

Due to the effect of channel noise, device selection, and the use of local Newton step, the actual
descent direction rather than the exact Newton step p∗ is given by:

p̂t =p∗ + (p̄t − p∗)︸ ︷︷ ︸
Local Hessian

+ (pt − p̄t)︸ ︷︷ ︸
Local Gradient

+ (p̃t − pt)︸ ︷︷ ︸
Device Selection

+ (p̂t − p̃t)︸ ︷︷ ︸
Channel Noise

, (21)

where p̂t and p̃t are defined in (17) and (7), respectively, pt = 1∑
i∈S
|Di|
∑

i∈S |Di|pt,i is the

averaged local descent direction vector without device selection, and p̄t = 1∑
i∈S
|Di|
∑

i∈S |Di| p̄t,i =

1∑
i∈S
|Di|
∑

i∈S |Di|H
−1
t,i gt is the Newton descent direction with the exact global gradient. In the

following analysis, we will use the quadratic function (19) to illustrate how close p̂t and p∗ are.

Besides, the error of model parameter vector in the iterates ∆t = wt −w∗ acts as the metric,

where w∗ denotes the optimal solution.

14

Throughout this paper, we consider the following assumptions, which are widely adopted in

FL problems [34], [35], [56].

Assumption 1. The global loss function F is L-smooth.

Assumption 2. The global loss function F is strongly convex, which indicates the unique optimal

model parameter vector w∗ of the FL task.

Assumption 3. The local loss function Fi is twice-differentiable, smooth and convex.

B. Convergence Analysis

Since the local gradients and Hessian matrices are adopted to approximate the global descent

direction, the gap between the local direction and the global direction is essential for the

convergence analysis. Therefore, we first recall two lemmas to reveal their relationships.

Lemma 1 ([41, variant of Lemma 2]). Let λ, δ =
∑m

i=1 δi, {δi} ∈ (0, 1) be fixed parameters,
r = rank (Mt), and U ∈ Rn×r be the orthonormal bases of the matrix Mt. Let µ ∈

[
1, n

d

]
be

the coherence of Mt defined in [30]. Let
{
Li ∈ Rn×|Di|

}m
i=1

be independent uniform sampling
sketching matrices with |Di| ≥ 3µd

λ2
log d

δi
. It holds with the probability exceeding 1− δ that:∥∥UTLiL
T
i U − I

∥∥
2
≤ λ , ∀i ∈ S . (22)

Lemma 2 ([41, variant of Lemma 3]). Let
{
Li ∈ Rn×|Di|

}m
i=1

be independent uniform sampling
sketching matrices, δ =

∑m
i=1 δi, {δi} ∈ (0, 1) be fixed parameters, then with the probability

exceeding 1− δ, we have:∥∥∥∥ 1

n
NtLiL

T
i 1− 1

n
Nt1

∥∥∥∥ ≤
(

1 +

√
2 ln

(
1

δi

))√
1

|Di|
max
j
‖nj‖ . (23)

With Lemma 1 and Lemma 2, we further propose Lemma 3 to characterize the gap between

p̂t and p∗ via the support quadratic function.

Lemma 3. Let {Li}mi=1 ∈ Rn×|Di| be independent uniform sampling sketching matrices, φt be

the quadratic function as defined in (19), λ, {δi} ∈ (0, 1) be fixed parameters with δ̃ = min{δi}

and p̂t be the approximate descent direction vector defined in (21). It holds that:

φt(p
∗) ≤ φt (p̂t) ≤ ε2 +

(
1− ζ2

)
φt(p

∗) ,

where
ζ2 = 3τ2

(
λ+

λ2

1− λ

)2

+ 24ϑ2
(
τ

(
λ+

λ2

1− λ

)
+ 1

)2

(24)

15

with τ =
σmax(M>M)

σmax(M>M)+nγ
, ϑ = maxt

(
1−

∑
i∈St
|Di|

n

)
< 1 and

ε2 =
3

σmin (Ht)

∥∥∥∥∥ 1(∑
i∈St |Di|

)√
ηt
aH
t Et

∥∥∥∥∥
2

+

[
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n

]

·
[

1

1− λ
1√

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖

]2
.

(25)

The proof of Lemma 3 can be found in Appendix A. To illustrate that p̂t is a good descending

direction, we introduce Lemma 4 supported by the property of the quadratic function introduced

in Lemma 3.

Lemma 4 ([41, Lemma 6]). Let ζ ∈ (0, 1), ε be any fixed parameter, if p̂t satisfies φ (p̂t) ≤ ε2 +

(1− ζ2) minp φ(p), then under Assumption 1, the error of model parameter vector ∆t = wt−w∗

in iterations satisfies

∆T
t+1Ht∆t+1 ≤ L ‖∆t+1‖ ‖∆t‖2 +

ζ2

1− ζ2
∆T
tHt∆t + 2ε2 , (26)

Based on Lemma 3 and Lemma 4, we can derive the main result:

Theorem 1. Suppose the size of local dataset at each device |Di| ≥ 3µd
λ2

log d
δi

for some λ, δi ∈
(0, 1), then under Assumption 1 with the probability exceeding 1− δ we have

E (‖∆t+1‖) ≤ max

{√
κt

(
ζ2

1− ζ2

)
‖∆t‖ ,

L

σmin (Ht)
‖∆t‖2

}
+ ε′ ,

where the expectation takes with respect to the channel noise et, ζ is defined as (24), κt =

σmax(Ht)
σmin(Ht)

denotes the condition number of Ht, and

ε′ =
2
√

3

σmin (Ht)

dσ∑
i∈St |Di|

‖at‖√
ηt

+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n

· 1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖ .

The proof can be found in Appendix B. From Theorem 1, we have the following observations.

1) The proposed algorithm keeps a linear-quadratic convergence rate: From the analysis

results, it can be seen that the term ‖∆t‖ = ‖wt −w∗‖ keeps the property in this form:

E (‖∆t+1‖) ≤ max
{
ω1 ‖∆t‖ , ω2 ‖∆t‖2}+ε′. When ‖∆t‖ > ω1

ω2
, this property can be simplified

as E (‖∆t+1‖) ≤ ω2 ‖∆t‖2+ε′. It is obvious that the proposed algorithm keeps the same quadratic

convergence rate as the canonical Newton’s method. At the beginning of the algorithm it can

converge to the neighbor of the optimal point quickly. When ‖∆t‖ < ω1

ω2
, this property turns into

E (‖∆t+1‖) ≤ ω1 ‖∆t‖+ ε′, which means when ‖∆t‖ is small enough during the process of the

16

algorithm, it degenerates into the linear convergence rate. In conclusion, the proposed algorithm

keeps a linear-quadratic convergence rate and performs better than first-order algorithms.
2) The proposed algorithm is accompanied by an accumulative error term: Notice that

there is an error term ε′ in each iteration, which comes from the approximation, device selection
and channel noise. Consider the noise-free case without device selection, which means σ = 0

and |St| = m, this error term degenerates to:

ε′1 =
1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))√
m

n
max
j
‖nj‖ , (27)

which is exactly the same as the error term introduced in [41]. With the algorithm executed

iteratively, the gap between the expected global loss function value and the optimal one is

upper bounded by this accumulative error term. Therefore, the active device set St, the receiver

beamforming vectors {at} and the scaling factors {ηt} need to be tuned in each iteration so as

to reduce the error gap.

IV. SYSTEM OPTIMIZATION

In this section, we first formulate a system optimization problem to minimize the error term

in the convergence analysis results. Then, we propose our approach for joint optimization of

device selection and receiver beamforming vector.

A. Problem Formulation

In light of convergence analysis, to obtain a precise model parameter vector, minimizing the
error gap demonstrated in Theorem 1 is a key issue. It is observed that the coefficients of the two
iterative terms ∆t and ∆t+1 in Theorem 1 are independent of variables St, at and ηt. Therefore,
in order to achieve the minimization of the total error gap, we only need to minimize the error
term ε′ in each iteration as follows

min
St,at,ηt

2
√

3

σmin (Ht)

dσ∑
i∈St |Di|

‖at‖√
ηt

+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n

· 1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖

s.t.
ηt∥∥∥aH

t h̃t,i

∥∥∥2 ≤ dP0 ∀i ∈ St

(28)

The power constraint in (28) can be rewritten in the form of the restriction of scaling factor: ηt ≤
dP0

∥∥∥aH
t h̃t,i

∥∥∥2

, ∀i ∈ St. We take the negative correlation between the scaling factor ηt and the

17

objective function value ε′ into consideration. ηt can be set as ηt = dP0 mini∈St

∥∥∥aH
t h̃t,i

∥∥∥2

[53],
and the problem can be simplified as P:

P : min
St,at

√
3dσ√

P0

∑
i∈St |Di|

max
i∈St

 ‖at‖∥∥∥aH
t h̃t,i

∥∥∥
+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n

· 1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖ .

(29)

We have the following key observations for solving (29):

• Intuitively, to achieve the minimization of the objective value of P , the number of selected

devices is supposed to be maximized, then P will degenerate into the form of traditional

beamforming optimization. However, the term maxi∈St

(
‖at‖
‖aH

t h̃t,i‖

)
is related to device

selection, which further results in the incorrectness to directly maximize |St|.

• By searching over all the possible participating device sets, the optimal St can be determined.

Still, the number of devices m can be very large, leading to an exponential growth of the

optimization procedure in the number of devices m.

• After the search of participating devices, the remaining problem is a typical beamforming

optimization problem, but it is still non-convex and intractable.

In conclusion, since a combinatorial search of participating devices and minimization of the

non-convex objective function are involved, it is evident that P is a mixed-integer non-convex

problem. In order to tackle the complexity of computation and the difficulty of non-convexity,

we propose an efficient method to iteratively search the optimal set of selected devices St while

jointly optimizing the receiver beamforming vector at for each given St.

B. Receiver Beamforming Optimization

For a given set of selected devices St, P can be simplified as P1 : minat maxi∈St
‖at‖
‖aH

t h̃t,i‖ ,

which is equivalent to: minat maxi∈St
‖at‖2

‖aH
t h̃t,i‖2

. This can be further reformulated as P ′
1 accord-

ing to the analysis in [53]:

P ′
1 : min

at

‖at‖2 s.t.
∥∥∥aH

t h̃t,i

∥∥∥2 ≥ 1 ∀i ∈ St .

It can be seen that P ′
1 is actually a quadratically constrained quadratic programming problem,

which is difficult to solve. We first use the matrix lifting technique to pre-process P ′
1 and

turn it into a low-rank optimization form. Specifically, let A = ata
H
t with rank (A) = 1 and

Qi = h̃t,ih̃
H
t,i, P ′

1 can be recast as:

min
A

Tr (A) s.t. A � 0, rank(A) = 1, Tr (AQi) ≥ 1 ∀i ∈ St .

18

The key to solving this low-rank optimization problem is to deal with the troublesome rank-one
constraint. A common method to solve such a problem is semidefinite relaxation (SDR) [57],
[58], which drops the rank-one constraint to obtain a relaxed problem in the form of semidefinite
programming. By this means, SDR can arrive at an approximate solution efficiently through
solving the relaxed problem. However, as the size of the problem grows, the rank-one constraint
is usually unsatisfied. In this situation, the approximate solution needs to be scaled through
randomization methods, leading to an alternative solution with low accuracy [53], which will
further affect the learning performance of FL. To guarantee the rank-one constraint, we can
replace it with its equivalent form [30], [59]: Tr (A) − ‖A‖2 = 0 with Tr (A) > 0 . Then,
the original problem turns into a difference-of-convex-function (DC) program. By solving this
DC program, a more precise solution can be obtained since all constraints are satisfied. Therefore,
we develop a DC Algorithm (DCA) based on the principles in [43], [60] to solve this problem.
Specifically, we can get the following problem by taking the new constraint as a penalty term:

min
A

Tr (A) + θ (Tr (A)− ‖A‖2) s.t. A � 0, Tr(A) > 0, Tr (AQi) ≥ 1 ∀i ∈ St ,

where θ is the penalty factor. Although this is still a non-convex problem owing to the concave
term −‖A‖2, we can take the linearization of ‖A‖2 and convert it into a convex subproblem:

PDCA : min
A

(1 + θ) Tr(A)− θ
〈
∂ ‖Aj‖2 ,A

〉
s.t. A � 0, Tr(A) > 0, Tr (AQi) ≥ 1 ∀i ∈ St,

where 〈·, ·〉 denotes the inner product of two matrices and ∂ ‖Aj‖2 represents the subgradient of

‖Aj‖2 at Aj . Therefore, the result can be obtained by iteratively solving PDCA until Tr (A)−

‖A‖2 is sufficiently small. The overall procedure of DCA is as summarized in Algorithm 2.

Algorithm 2: DC Algorithm for Receiver Beamforming Optimization (DCA)

input: effective channel coefficients
{
h̃t,i

}
, penalty factor θ, threshold ξ

turn P into the DCA form PDCA.

choose A0 � 0, set j = 1.

while
∣∣Tr (Aj−1)− ‖Aj−1‖2

∣∣ ≥ ξ do
compute the subgradient ∂ ‖Aj−1‖2.

substitute ∂ ‖Aj−1‖2 into PDCA, solve the subproblem and set the result as Aj .

j ← j + 1 .

end

C. Device Selection Optimization

As mentioned above, the device selection is a combinatorial optimization problem, which is

impossible to perform a traversal in the whole solution space. Thus, we adopt the well-known

19

Algorithm 3: System optimization approach GS+DCA

input: effective channel coefficients
{
h̃t,i

}
, T (0), ρ, K

output: S(k+1) and its corresponding a(K+1).

initialization: S(0) = S

for iteration k = 0, 1, 2, ...,K do
generate the neighboring solution set F (k).

for each S̃ ∈ F (k) do
substitute S̃ into P1, then solve the problem using DCA to get the corresponding optimal ã.

end

sample S̃(k) according to the probability P
(
S̃(k)

)
=

exp(−J(S̃(k),ã(k))/T (k))∑
S̃∈F(k) exp(−J(S̃,ã)/T (k))

.

S(k+1) ← S̃(k), T (k+1) ← ρT (k).
end

Gibbs Sampling (GS) [42] method to optimize the selection of device set iteratively. The main

idea of GS is that in each iteration, a device set is sampled from the neighbors of the current

device set according to an appropriate distribution. In this way, the set of selected devices can

gradually approach the global optimal solution.

To be specific, we treat different sets of selected devices as states, and the goal is to find

the state which can minimize the objective value in P . For the sake of such state, at iteration

k of GS’s process, with the set of selected devices S(k−1) given in the last iteration, we first

generate the neighboring solution set of S(k−1). The neighboring solution set, denoted by F (k),

contains the device sets that differ from the S(k−1) in only one entry. For example, by assuming

S = {0, 1, 2} and S(k−1) = {1, 2}, then we have F (k) = {{0, 1, 2}, {2}, {1}}.
After the identification of the neighboring solution set, the candidate states are also determined

according to the sets in F (k), and we need to choose a state to approach the optimal set. Based
on the distribution introduced in [61], we sample a device set in F (k) with the probability

P
(
S̃(k)

)
=

exp
(
−J

(
S̃(k), ã(k)

)
/T (k)

)
∑
S̃∈F(k) exp

(
−J

(
S̃, ã

)
/T (k)

) , (30)

where J(x,y) denotes the objective function value of P . Here, the receiver beamforming

vector is calculated through DCA with the given set of selected devices.

In the distribution (30), there is a special parameter T (k) serving as the temperature. The

algorithm starts from a relatively high temperature T (0) in order to move around the solution

space freely, rather than being stuck in a local minimum point. As the algorithm proceeds, the

20

algorithm slowly decreases the temperature by the factor ρ to focus on the states that minimize the

objective function. Besides, to reduce the computational complexity, we have adopted a similar

warm start technique as in [34]. The optimal beamforming vector in the previous iteration is

used to serve as the initial point to accelerate the process of beamforming optimization. The

overall process of system optimization is outlined in Algorithm 3.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed schemes to demonstrate the advan-

tage of our proposed second-order federated optimization algorithm and the effectiveness of our

system optimization approach. Code for our experiments are available at: https://github.com/Golden-

Slumber/AirFL-2nd. We first consider logistic regression with the loss function of the i-th device

Fi (w) = 1
|Di|
∑

zi,j=(ui,j ,vi,j)∈Di
log
(
1 + exp

(
−vi,juT

i,jw
))

+ γ
2
‖w‖2

2, where the regularization

parameter is set to be γ = 10−8. As for datasets, we adopt four different standard datasets from

the LIBSVM library: Covtype, a9a, w8a, and phishing. In this paper, we consider a distributed

wireless scenario, where these data samples are uniformly distributed in m = 20 devices, the

server is equipped with k = 5 antennas. The channel coefficients are given by the small-scale

fading coefficients {h′t,i} multiplied by the path loss gain PLi, i.e., ht,i = PLih
′
t,i. Here, the

small-scale fading coefficients follow the i.i.d complex normal distribution CN (0, I). The path

loss gain is given by PLi =
√
G0 (d0/di)

ν/2, where G0 = 10−3.35 is the average channel power

gain with the distance to the server d0 = 1 m, di ∈ [100, 120] stands for the distance between

the i-th device and the server, and ν = 3.76 represents the path loss exponent factor. For the step

size α, we use backtracking line search to find α satisfying the Armijo–Goldstein condition [46,

Chapter 3]. For the system optimization, we set λ = 0.1, δ̃ = 0.01, penalty factor θ = 1, threshold

ξ = 10−10, initial temperature T0 = 100, ρ = 0.9, and K = 30. Besides, we use Baseline 0 to

denote the centralized training setting in all experiments.

Furthermore, we also consider an image classification problem on a non-i.i.d dataset con-

structed from the Fashion-MNIST dataset at the end of this section. To address it, we train a

softmax classifier with cross-entropy loss and `2 regularization term. To be specific, the loss func-

tion of the i-th device is given as Fi (W) = 1
|Di|
∑

(u,v)∈Di

∑C
c=1 1{v = c} log exp(uTwc)∑C

j=1 exp(uTwj)
+

γ
2

∑C
c=1 ‖wc‖2

2, where W = [w1, . . . ,wC] is the concatenation of parameter vectors related to

different classes, and C = 10 represents the total number of classes.

21

A. Comparison with First-Order Algorithms

We compared our proposed algorithm with two existing AirComp-based first-order algorithms

in this experiment, where SNR is set to 80 dB:

1) Baseline 1: AirComp-based Federated Averaging (FedAvg) algorithm with DC-based opti-

mization framework [30], where the threshold of MSE is set to 5 dB.

2) Baseline 2: AirComp-based Fedsplit algorithm [62], where the threshold for device selection

is set to 0.5.

0 10 20 30 40 50

Communication Rounds
10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss Baseline 0

Proposed Algorithm
Baseline 1
Baseline 2

(a) Covtype

0 10 20 30 40 50

Communication Rounds

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(b) a9a

0 10 20 30 40 50

Communication Rounds
10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(c) w8a

0 10 20 30 40 50

Communication Rounds
10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss Baseline 0

Proposed Algorithm
Baseline 1
Baseline 2

(d) phishing

Fig. 2: Training loss of the proposed algorithm and two first-order algorithms.

0 10 20 30 40 50

Communication Rounds
40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(a) Covtype

0 10 20 30 40 50

Communication Rounds
10%

20%

30%

40%

50%

60%

70%

80%

90%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(b) a9a

0 10 20 30 40 50

Communication Rounds
60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(c) w8a

0 10 20 30 40 50

Communication Rounds
40%

50%

60%

70%

80%

90%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2

(d) phishing

Fig. 3: Test accuracy of the proposed algorithm and two first-order algorithms.

Fig. 2 and Fig. 3 show the performance of these algorithms in training loss and test accuracy.

Regarding the optimality gap, benefiting from the linear-quadratic convergence rate, the proposed

algorithm reaches a small optimality gap in the first few dozen communication rounds, while

that of the first-order methods remains at a relatively higher level. As for the test accuracy, our

proposed algorithm can quickly reach and stabilize at a high accuracy level, while the first-order

methods have relatively low and fluctuating accuracy. Overall, our proposed algorithm keeps a

quadratic convergence rate at the beginning of FL process, resulting in fewer communication

22

rounds to complete the learning task than first-order algorithms. This further leads to less wireless

channel impact and better learning performance, as illustrated in the simulation results.

0 10 20 30 40 50

Communication Rounds
10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss Baseline 0

Proposed Algorithm
Baseline 3
Baseline 4

(a) Covtype

0 10 20 30 40 50

Communication Rounds

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(b) a9a

0 10 20 30 40 50

Communication Rounds
10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(c) w8a

0 10 20 30 40 50

Communication Rounds
10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss Baseline 0

Proposed Algorithm
Baseline 3
Baseline 4

(d) phishing

Fig. 4: Training loss of the proposed algorithm and two second-order algorithms.

0 10 20 30 40 50

Communication Rounds
40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(a) Covtype

0 10 20 30 40 50

Communication Rounds
10%

20%

30%

40%

50%

60%

70%

80%

90%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(b) a9a

0 10 20 30 40 50

Communication Rounds

20%

30%

40%

50%

60%

70%

80%

90%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(c) w8a

0 10 20 30 40 50

Communication Rounds
40%

50%

60%

70%

80%

90%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 3
Baseline 4

(d) phishing

Fig. 5: Test accuracy of the proposed algorithm and two second-order algorithms.

B. Comparison with Second-Order Algorithms

In this experiment, we compared our proposed algorithm with the following two state-of-the-

art second-order algorithms under over-the-air computation:

1) Baseline 3: GIANT [19] with over-the-air computation. GIANT requires an extra aggre-

gation of local gradients, leading to two communication rounds in each iteration. The

communication model of this gradients aggregation is implemented in the same way of

pt, as illustrated in Section II-C. Here, we set |St| = m, and the receiver beamforming

vector is optimized through DCA.

2) Baseline 4: DANE [17] with over-the-air computation. Similar to GIANT, It also requires

an aggregation of local gradients, so its implementation is the same as GIANT.

Fig. 4 and Fig. 5 plot the training loss and the test accuracy, respectively, where SNR is

set to 70 dB. It is observed that our proposed algorithm converges faster and remains stable at

a relatively high level of accuracy, while the compared methods, AirComp-based GIANT and

23

AirComp-based DANE, have a slower convergence rate. This is because both the procedures of

GIANT and DANE involve aggregating local gradients to calculate the global gradient in each

iteration. This extra transmission of local gradients through a wireless environment aggravates

the impact of channel noise, leading to a relatively poor convergence rate. Therefore, we can see

that our proposed algorithm outperforms AirComp-based GIANT and AirComp-based DANE.

C. Effectiveness of Proposed System Optimization Approach

In this experiment, we evaluated the performance using GS+DCA to accomplish system

optimization with four settings:

1) perfect aggregation, where the model is aggregated without wireless channel impact.

2) GS+SDR, where the receiver beamforming optimization is performed through SDR.

3) DCA only, where we only perform beamforming optimization through DCA.

4) SDR only, where we only perform beamforming optimization through SDR.

0 5 10 15 20 25

SNR(dB)

0

2

4

6

8

10

12

14

16

Ob
jec

tiv
e V

alu
e

GS+DCA
DCA only
GS+SDR
SDR only
Perfect Aggregation

3 5 7 9 11 13 15 17

Number of Antennas

5

10

15

20

25

Ob
jec

tiv
e V

alu
e

GS+DCA
DCA only
GS+SDR
SDR only
Perfect Aggregation

Fig. 6: Objective value of system optimization problem P versus SNR and number of antennas.

To verify the effectiveness of the device selection, we consider the distance heterogeneity and

data size heterogeneity in this experiment. Specifically, as for distance heterogeneity, we set the

distance of 10% devices to be di ∈ [200, 220] while the rest to be di ∈ [50, 60]. As for data size

heterogeneity, we set the data size of 10% devices to be |Di| ∈ [0.008 n
m
, 0.01 n

m
] while the rest

to be |Di| ∈ [1.01 n
m
, 1.11 n

m
].

We first numerically evaluate the objective value of the system optimization problem P under

different settings in Fig. 6 by averaging 100 channel realizations. The objective value of perfect

aggregation does not depend on SNR and the number of antennas since the error during the

FL process in this situation only comes from the approximation as (27) indicates. The objective

values of all settings decrease as SNR and the number of antennas increase, due to the mitigation

24

of noise effect and the increase of diversity gain [53], respectively. However, the objective value

of GS+DCA is smaller than that of other settings. On the one hand, SDR fails to give a precise

solution for the receiver beamforming vector as the size of the problem grows. This further

leads to the ineffectiveness of device selection in GS+SDR and worse performance compared

with the settings using DCA to perform beamforming optimization. On the other hand, device

selection in GS+DCA mitigates the straggler issue caused by distance heterogeneity and data

size heterogeneity, resulting in a better performance compared with DCA only.

0 10 20 30 40 50

Communication Rounds
10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(a) Covtype

0 10 20 30 40 50

Communication Rounds

10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(b) a9a

0 10 20 30 40 50

Communication Rounds
10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(c) w8a

0 10 20 30 40 50

Communication Rounds
10 3

10 2

10 1

100

Tr
ain

in
g

Lo
ss

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(d) phishing

Fig. 7: Training loss of the proposed algorithm in different system optimization settings.

0 10 20 30 40 50

Communication Rounds
60.0%

62.0%

64.0%

66.0%

68.0%

70.0%

72.0%

74.0%

76.0%

Te
st

Ac
cu

ra
cy

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(a) Covtype

0 10 20 30 40 50

Communication Rounds
70.0%

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

84.0%

86.0%

Te
st

Ac
cu

ra
cy

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(b) a9a

0 10 20 30 40 50

Communication Rounds
60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Te
st

Ac
cu

ra
cy

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(c) w8a

0 10 20 30 40 50

Communication Rounds
70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Te
st

Ac
cu

ra
cy

Baseline 0
GS+DCA
Perfect Aggregation
DCA only
GS+SDR
SDR only

(d) phishing

Fig. 8: Test accuracy of the proposed algorithm in different system optimization settings.

Fig. 7 plots the training loss for our proposed algorithm in different system optimization

settings, where SNR is set to 35 dB. The results show that with device selection and a more

precise solution given by DCA, the error term can be minimized in each iteration and a smaller

optimality gap close to that of perfect aggregation can be obtained. As revealed in Fig. 8, this

smaller optimality gap further leads to higher test accuracy, demonstrating that our proposed

system optimization approach effectively improves learning performance.

D. Fashion-MNIST Data Set

We consider an image classification problem on a non-i.i.d dataset constructed from the

Fashion-MNIST dataset in this experiment, where m = 10 and SNR is set to 90 dB. The related

25

0 5 10 15 20 25

Communication Rounds

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Tr
ain

in
g

Lo
ss

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2
Baseline 3
Baseline 4

0 5 10 15 20 25

Communication Rounds

10%

20%

30%

40%

50%

60%

70%

80%

Te
st

Ac
cu

ra
cy

Baseline 0
Proposed Algorithm
Baseline 1
Baseline 2
Baseline 3
Baseline 4

Fig. 9: Simulation results on the Fashion-MNIST dataset.

parameters are set to be the same as the previous experiments, and we use the percentage of

correctly classified test images to evaluate the learning performance.

Fig. 9 presents the training loss and test accuracy versus communication rounds of our pro-

posed algorithm and four baseline algorithms. It reveals that our proposed algorithm significantly

outperforms the baseline algorithms. On the one hand, it keeps a better convergence rate than

first-order algorithms, leading to fewer communication rounds between the devices and the server.

On the other hand, compared with other second-order algorithms under over-the-air computation,

the aggregation operation only occurs once per iteration in our proposed algorithm. Therefore,

our proposed algorithm is more communication-efficient than baseline algorithms in terms of

both the total iteration rounds and the communication within each iteration, which further benefit

learning performance, as illustrated in Fig. 9.

VI. CONCLUSION

In this paper, we developed a communication-efficient FL system by over-the-air second-

order federated optimization algorithm. The communication rounds and communication latency

at each round can be simultaneously reduced. This is achieved by leveraging the second-order

information of the learning loss function for achieving fast convergence rates and exploiting

the signal superposition property of a multiple access channel for fast model aggregation. The

characterized convergence behavior reveals a linear-quadratic convergence rate for the proposed

algorithm. As the proposed algorithm is accompanied by an accumulative error term in each

iteration, a system optimization problem was formulated to minimize the total error gap while

achieving a precise model. We then presented Gibbs Sampling and DC programming methods to

jointly optimize device selection and receiver beamforming. The experimental results illustrated

that our proposed algorithm and network optimization approach can achieve high communication

efficiency for FL systems.

26

APPENDIX A

PROOF OF LEMMA 3

In order to bound p̂t through p∗, the difference between the values of their quadratic functions
is essential. According to (21), here we decompose this difference as

φt (p̂t)− φt (p∗) =
1

2

∥∥∥H 1
2
t (p̂t − p∗)

∥∥∥2 =
1

2

∥∥∥H 1
2
t [(p̄t − p∗) + (pt − p̄t) + (p̃t − pt) + (p̂t − p̃t)]

∥∥∥2
≤
∥∥∥H 1

2
t (pt − p̄t)

∥∥∥2︸ ︷︷ ︸
Term 1

+ 3
∥∥∥H 1

2
t (p̄t − p∗)

∥∥∥2︸ ︷︷ ︸
Term 2

+ 3
∥∥∥H 1

2
t (p̃t − pt)

∥∥∥2︸ ︷︷ ︸
Term 3

+ 3
∥∥∥H 1

2
t (p̂t − p̃t)

∥∥∥2︸ ︷︷ ︸
Term 4

,

As for Term 1, by Lemma 1, we have (1 − λ)MT
t Mt � MT

t LiL
T
i Mt � (1 + λ)MT

t Mt.
Through this we can get (1− λ)Ht �Hi,t � (1 + λ)Ht. Thus, there exists matrix ξi satisfying
H

1
2
t H

−1
t,i H

1
2
t = I+ξi and − λ

1+λ
� ξi � λ

1−λ , which leads to a useful property:
∥∥∥H 1

2
t H

−1
t,i H

1
2
t

∥∥∥ ≤
1 + λ

1−λ = 1
1−λ . With this property and Lemma 2, we can get the following inequality:∥∥∥H 1

2
t (pt − p̄t)

∥∥∥ ≤ 1

n

∑
i∈S
|Di|

∥∥∥H 1
2
t H

−1
t,i H

1
2
t

∥∥∥∥∥∥H− 1
2

t (gt,i − gt)
∥∥∥

≤ 1

1− λ
1

σmin (Ht)

1

n

∑
i∈S
|Di|

(
1 +

√
2 ln

1

δi

)√
1

|Di|
max
j
‖nj‖

≤ 1

1− λ
1

σmin (Ht)

1

n

(
1 +

√
2 ln

1

δ̃

)
max
j
‖nj‖

√∑
i∈S

m |Di|

=
1

1− λ
1

σmin (Ht)

(
1 +

√
2 ln

1

δ̃

)√
m

n
max
j
‖nj‖ .

For convenience, we denote: G = 1
1−λ

1
σmin(Ht)

(
1 +

√
2 ln 1

δ̃

)
maxj ‖nj‖ , and Term 1 is

bounded by Term 1 ≤ m
n
G2. As for Term 2, based on the analysis in [19, Lemma 6], we

have ∥∥∥H 1
2
t (p̄t − p∗)

∥∥∥ ≤ ∥∥∥∥∥ 1

n

∑
i∈S
|Di|H

1
2
t (p̄t,i − p∗)

∥∥∥∥∥ ≤ 1

n

∑
i∈S
|Di|

∥∥∥H 1
2
t (p̄t,i − p∗)

∥∥∥ ≤ ζ1 ∥∥∥H 1
2
t p
∗
∥∥∥ ,

with ζ1 = τ
(
λ+ λ2

1−λ

)
and τ =

σmax(M>M)
σmax(M>M)+nγ

. Then Term 2 is bound by:

Term 2 = 3
∥∥∥H 1

2
t (p̄t − p∗)

∥∥∥2 ≤ 3ζ21

∥∥∥H 1
2
t p
∗
∥∥∥2 = −3ζ21φ (p∗) .

As for Term 3, it can be reformulated as follows:

Term 3 = 3
∥∥∥H 1

2
t (p̃t − pt)

∥∥∥2 = 3

∥∥∥∥∥H 1
2
t

(
1∑

i∈St |Di|
∑
i∈St

|Di|pt,i −
1

n

∑
i∈S
|Di|pt,i

)∥∥∥∥∥
2

.

According to the analysis in [63, Section 3.1], it follows:

Term 3 ≤12

(
1−

∑
i∈St |Di|
n

)2 (∥∥∥H 1
2
t pt,i −H

1
2
t p̄t,i

∥∥∥+
∥∥∥H 1

2
t p̄t,i −H

1
2
t p
∗
∥∥∥+

∥∥∥H 1
2
t p
∗
∥∥∥)2

27

(a)

≤12

(
1−

∑
i∈St |Di|
n

)2
(√

1

mini∈St |Di|
G +

∥∥∥H 1
2
t p̄t,i −H

1
2
t p
∗
∥∥∥+

∥∥∥H 1
2
t p
∗
∥∥∥)2

(b)

≤12

(
1−

∑
i∈St |Di|
n

)2
(√

1

mini∈St |Di|
G + (ζ1 + 1)

∥∥∥H 1
2
t p
∗
∥∥∥)2

≤24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
G2 − 24ϑ2 (ζ1 + 1)

2
φ (p∗)

where ζ1 = τ
(
λ+ λ2

1−λ

)
, τ =

σmax(M>M)
σmax(M>M)+nγ

, ϑ = maxt

(
1−

∑
i∈St
|Di|

n

)
< 1, (a) and (b) are

obtained in the way similar to the analysis of Term 1 and Term 2. As for Term 4, we have:

Term 4 = 3

∥∥∥∥∥H 1
2
t

1(∑
i∈St |Di|

)√
ηt
aH
t Et

∥∥∥∥∥
2

≤ 3

σmin (Ht)

∥∥∥∥∥ 1(∑
i∈St |Di|

)√
ηt
aH
t Et

∥∥∥∥∥
2

.

We can get the final result by combining the bound of Term 1, 2, 3 and 4 together:

φ (p̂t)− φ (p∗) ≤ ε2 − ζ2φ (p∗)⇒ φ (p∗) ≤ φ (p̂t) ≤ ε2 +
(
1− ζ2

)
φ (p∗) ,

where ε and ζ are defined as (24) and (25).

APPENDIX B

PROOF OF THEOREM 1

Based on Lemma 3 and Lemma 4, we have:

∆>t+1Ht∆t+1 ≤L ‖∆t+1‖ ‖∆t‖2 +
ζ2

1− ζ2
∆>t Ht∆t + 2ε2 ≤ L ‖∆t+1‖ ‖∆t‖2 +

(
ζ2

1− ζ2
σmax (Ht)

)
‖∆t‖2 + 2ε2 .

According to the analysis in [41, Appendix A], this leads to:

‖∆t+1‖ ≤max

{√
σmax (Ht)

σmin (Ht)

(
ζ2

1− ζ2

)
‖∆t‖ ,

L

σmin (Ht)
‖∆t‖2

}
+

2ε√
σmin (Ht)

. (31)

As for the error term ε, we have:

ε =

{
3

σmin (Ht)

∥∥∥∥∥ 1(∑
i∈St |Di|

)√
ηt
aH
t Et

∥∥∥∥∥
2

+

[
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n

]
G2
} 1

2

≤

√
3

σmin (Ht)

d(∑
i∈St |Di|

)√
ηt
‖at‖ ‖et‖+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n
· G .

To handle the random variable et in ε, we take expectations over et on both sides of (31) :

E (‖∆t+1‖) ≤max

{√
σmax (Ht)

σmin (Ht)

(
ζ2

1− ζ2

)
‖∆t‖ ,

L

σmin (Ht)
‖∆t‖2

}
+

2
√

3

σmin (Ht)

d ‖at‖E (‖et‖)(∑
i∈St |Di|

)√
ηt

+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n
· 1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖

(c)

≤ max

{√
σmax (Ht)

σmin (Ht)

(
ζ2

1− ζ2

)
‖∆t‖ ,

L

σmin (Ht)
‖∆t‖2

}
+

2
√

3

σmin (Ht)

dσ ‖at‖(∑
i∈St |Di|

)√
ηt

+

√
24

(
1−

∑
i∈St |Di|
n

)2
1

mini∈St |Di|
+
m

n
· 1

1− λ
2

σmin (Ht)

(
1 +

√
2 ln

(
1

δ̃

))
max
j
‖nj‖ .

28

REFERENCES

[1] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” Ieee Access,

vol. 2, pp. 1149–1176, 2014.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks

from decentralized data,” in Artificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017.

[3] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B.

McMahan, et al., “Towards federated learning at scale: System design,” arXiv preprint arXiv:1902.01046, 2019.

[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Trans Intell, vol. 10,

no. 2, pp. 1–19, 2019.

[5] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed machine learning for

on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[6] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data,

et al., “A field guide to federated optimization,” arXiv preprint arXiv:2107.06917, 2021.

[7] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient edge ai: Algorithms and systems,” IEEE

Commun. Surv, vol. 22, no. 4, pp. 2167–2191, 2020.

[8] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd: Compressed optimisation for non-convex

problems,” in ICML, pp. 560–569, PMLR, 2018.

[9] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient descent,” arXiv preprint arXiv:1704.05021,

2017.

[10] X. Chen, S. Liu, K. Xu, X. Li, X. Lin, M. Hong, and D. Cox, “Zo-adamm: Zeroth-order adaptive momentum method for

black-box optimization,” Adv. Neural Inf. Process. Syst., vol. 32, pp. 7204–7215, 2019.

[11] H. Gao and H. Huang, “Can stochastic zeroth-order frank-wolfe method converge faster for non-convex problems?,” in

ICML, pp. 3377–3386, PMLR, 2020.

[12] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex functions,” FoCM, vol. 17, no. 2, pp. 527–566,

2017.

[13] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan, O. Shamir, and N. Srebro, “Is local sgd better than

minibatch sgd?,” in ICML, pp. 10334–10343, PMLR, 2020.

[14] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,” arXiv preprint arXiv:2006.08950, 2020.

[15] R. Pathak and M. J. Wainwright, “Fedsplit: An algorithmic framework for fast federated optimization,” arXiv preprint

arXiv:2005.05238, 2020.

[16] S. Bischoff, S. Günnemann, M. Jaggi, and S. U. Stich, “On second-order optimization methods for federated learning,”

arXiv preprint arXiv:2109.02388, 2021.

[17] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimization using an approximate newton-type

method,” in ICML, pp. 1000–1008, PMLR, 2014.

[18] V. Smith, S. Forte, M. Chenxin, M. Takáč, M. I. Jordan, and M. Jaggi, “Cocoa: A general framework for communication-

efficient distributed optimization,” J Mach Learn Res, vol. 18, p. 230, 2018.

[19] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “Giant: Globally improved approximate newton method for distributed

optimization,” in Adv. Neural Inf. Process. Syst., pp. 2332–2342, 2018.

[20] R. Crane and F. Roosta, “Dingo: Distributed newton-type method for gradient-norm optimization,” arXiv preprint

arXiv:1901.05134, 2019.

[21] R. Crane and F. Roosta, “Dino: Distributed newton-type optimization method,” in ICML, pp. 2174–2184, PMLR, 2020.

29

[22] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant empirical loss,” in ICML, pp. 362–370, PMLR,

2015.

[23] K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated machine learning for intelligent iot via reconfigurable

intelligent surface,” IEEE Network, vol. 34, no. 5, pp. 16–22, 2020.

[24] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6g: Ai empowered wireless networks,”

IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, 2019.

[25] L. Li, L. Yang, X. Guo, Y. Shi, H. Wang, W. Chen, and K. B. Letaief, “Delay analysis of wireless federated learning

based on saddle point approximation and large deviation theory,” arXiv preprint arXiv:2103.16994, 2021.

[26] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air,”

IEEE Trans. Signal Process., vol. 68, pp. 2155–2169, 2020.

[27] A. Elgabli, J. Park, C. B. Issaid, and M. Bennis, “Harnessing wireless channels for scalable and privacy-preserving federated

learning,” IEEE Trans Commun, 2021.

[28] W.-T. Chang and R. Tandon, “Communication efficient federated learning over multiple access channels,” arXiv preprint

arXiv:2001.08737, 2020.

[29] B. Nazer and M. Gastpar, “Computation over multiple-access channels,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–

3516, 2007.

[30] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wirel. Commun.,

vol. 19, no. 3, pp. 2022–2035, 2020.

[31] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans.

Wirel. Commun., vol. 19, no. 1, pp. 491–506, 2019.

[32] T. Sery and K. Cohen, “On analog gradient descent learning over multiple access fading channels,” IEEE Trans. Signal

Process, vol. 68, pp. 2897–2911, 2020.

[33] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning via uncoded transmission with adaptive power

control,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 170–185, 2020.

[34] H. Liu, X. Yuan, and Y.-J. A. Zhang, “Reconfigurable intelligent surface enabled federated learning: A unified

communication-learning design approach,” arXiv preprint arXiv:2011.10282, 2020.

[35] C. Xiaowen, Z. Guangxu, X. Jie, W. Zhiqin, and C. Shuguang, “Optimized power control design for over-the-air federated

edge learning,” arXiv preprint arXiv:2106.09316, 2021.

[36] C. Xu, S. Liu, Z. Yang, Y. Huang, and K.-K. Wong, “Learning rate optimization for federated learning exploiting over-

the-air computation,” arXiv preprint arXiv:2102.02946, 2021.

[37] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggregation for communication-efficient federated edge

learning: Design and convergence analysis,” IEEE Trans. Wirel. Commun, vol. 20, no. 3, pp. 2120–2135, 2020.

[38] X. Wei and C. Shen, “Federated learning over noisy channels: Convergence analysis and design examples,” IEEE

Transactions on Cognitive Communications and Networking, 2022.

[39] X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Joint optimization of communications and federated learning over the air,” arXiv

preprint arXiv:2104.03490, 2021.

[40] Z. Wang, J. Qiu, Y. Zhou, Y. Shi, L. Fu, W. Chen, and K. B. Lataief, “Federated learning via intelligent reflecting surface,”

arXiv preprint arXiv:2011.05051, 2020.

[41] A. Ghosh, R. K. Maity, and A. Mazumdar, “Distributed newton can communicate less and resist byzantine workers,” arXiv

preprint arXiv:2006.08737, 2020.

[42] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,” IEEE PAMI,

no. 6, pp. 721–741, 1984.

30

[43] P. D. Tao and L. T. H. An, “Convex analysis approach to dc programming: theory, algorithms and applications,” Acta

mathematica vietnamica, vol. 22, no. 1, pp. 289–355, 1997.

[44] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade, pp. 421–436, Springer, 2012.

[45] T. Vogels, S. P. Karinireddy, and M. Jaggi, “PowerSGD: Practical low-rank gradient compression for distributed

optimization,” Adv. Neural Inf. Process. Syst. 32 (Nips 2019), vol. 32, no. CONF, 2019.

[46] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media, 2006.

[47] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wirel. Commun., vol. 19,

no. 5, pp. 3546–3557, 2020.

[48] G. Zhu and K. Huang, “Mimo over-the-air computation for high-mobility multimodal sensing,” IEEE Internet Things J.,

vol. 6, no. 4, pp. 6089–6103, 2018.

[49] H. Guo, A. Liu, and V. K. Lau, “Analog gradient aggregation for federated learning over wireless networks: Customized

design and convergence analysis,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 197–210, 2020.

[50] M. Seif, R. Tandon, and M. Li, “Wireless federated learning with local differential privacy,” in 2020 IEEE International

Symposium on Information Theory (ISIT), pp. 2604–2609, IEEE, 2020.

[51] Z. Wang, Y. Shi, Y. Zhou, H. Zhou, and N. Zhang, “Wireless-powered over-the-air computation in intelligent reflecting

surface-aided iot networks,” IEEE Internet Things J., vol. 8, no. 3, pp. 1585–1598, 2020.

[52] W. Fang, Y. Jiang, Y. Shi, Y. Zhou, W. Chen, and K. B. Letaief, “Over-the-air computation via reconfigurable intelligent

surface,” arXiv preprint arXiv:2105.05113, 2021.

[53] L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design for over-the-air function computation,” IEEE Wireless

Commun. Lett., vol. 7, no. 6, pp. 942–945, 2018.

[54] P. Drineas and M. W. Mahoney, “Randnla: randomized numerical linear algebra,” Communications of the ACM, vol. 59,

no. 6, pp. 80–90, 2016.

[55] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” arXiv preprint arXiv:1411.4357, 2014.

[56] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated

learning over wireless networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 1, pp. 269–283, 2020.

[57] Z.-Q. Luo, N. D. Sidiropoulos, P. Tseng, and S. Zhang, “Approximation bounds for quadratic optimization with

homogeneous quadratic constraints,” SIAM J. Optim, vol. 18, no. 1, pp. 1–28, 2007.

[58] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beamforming for physical-layer multicasting,” IEEE Trans.

Signal Process., vol. 54, no. 6, pp. 2239–2251, 2006.

[59] S. Hua, K. Yang, and Y. Shi, “On-device federated learning via second-order optimization with over-the-air computation,”

in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–5, IEEE, 2019.

[60] K. Khamaru and M. Wainwright, “Convergence guarantees for a class of non-convex and non-smooth optimization

problems,” in International Conference on Machine Learning, pp. 2601–2610, PMLR, 2018.

[61] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues, vol. 31. Springer Science & Business

Media, 2013.

[62] S. Xia, J. Zhu, Y. Yang, Y. Zhou, Y. Shi, and W. Chen, “Fast convergence algorithm for analog federated learning,” arXiv

preprint arXiv:2011.06658, 2020.

[63] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic methods for data fitting,” SIAM J Sci Comput, vol. 34,

no. 3, pp. A1380–A1405, 2012.

	I Introduction
	I-A Contributions
	I-B Organization and Notations

	II Federated Learning Model and Algorithm
	II-A Federated Learning System
	II-B Federated Second-Order Optimization Algorithm
	II-C Communication Model

	III Theoretical Convergence Analysis
	III-A Preliminaries
	III-B Convergence Analysis

	IV System Optimization
	IV-A Problem Formulation
	IV-B Receiver Beamforming Optimization
	IV-C Device Selection Optimization

	V Simulation Results
	V-A Comparison with First-Order Algorithms
	V-B Comparison with Second-Order Algorithms
	V-C Effectiveness of Proposed System Optimization Approach
	V-D Fashion-MNIST Data Set

	VI Conclusion
	Appendix A: Proof of Lemma 3
	Appendix B: Proof of Theorem 1
	References

