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Abstract

Unmanned aerial vehicles (UAVs), especially fixed-wing ones that withstand strong winds, have great

potential for oceanic exploration and research. This paper studies a UAV-aided maritime data collection

system with a fixed-wing UAV dispatched to collect data from marine buoys. We aim to minimize the

UAV’s energy consumption in completing the task by jointly optimizing the communication time scheduling

among the buoys and the UAV’s flight trajectory subject to wind effect. The conventional successive convex

approximation (SCA) method can provide efficient sub-optimal solutions for collecting small/moderate data

volume, whereas the solution heavily relies on trajectory initialization and has not explicitly considered wind

effect, while the computational/trajectory complexity both become prohibitive for the task with large data

volume. To this end, we propose a new cyclical trajectory design framework with tailored initialization

algorithm that can handle arbitrary data volume efficiently, as well as a hybrid offline-online (HO2) design

that leverages convex stochastic programming (CSP) offline based on wind statistics, and refines the solution

by adapting online to real-time wind velocity. Numerical results show that our optimized trajectory can

better adapt to various setups with different target data volume and buoys’ topology as well as various

wind speed/direction/variance compared with benchmark schemes. In particular, our proposed HO2 design

can effectively adapt to random wind variations with feasible and robust online operation, and proactively

exploit the wind for further energy savings in both single-buoy and multi-buoy scenarios.

Index Terms

Maritime data collection, unmanned aerial vehicle, wind effect, cyclical trajectory design, stochastic

programming (SP), hybrid offline-online (HO2)

I. INTRODUCTION

Marine areas cover almost 71% of the Earth’s surface and provide us with vast amount of

resources. New technologies to digitalize/intelligentize oceanic exploration and exploitation are

fundamentally changing marine science and information network [2]. More autonomous operations
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can increase the efficiency of managing maritime network [3], while the coordinated use of various

unmanned vehicles helps reducing the risk and mission costs [4]. Recently, unmanned aerial vehicle

(UAV) finds wide applications in wireless communication systems as a mobile base station, relay

or data collector [5]–[12] (see also the recent tutorial [13] and the references therein). Moreover,

thanks to its high mobility, UAV is also a flexible and cost-effective tool that can be applied in a

broad spectrum of marine activities including wireless coverage [14], surveillance [15], rescue [16]

and data collection [17].

On the premise of collecting data from marine buoys quickly and in real-time, several telemetry

activities [18] can be carried out for oceanic monitoring, research and exploitation. Such mar-

itime data collection can be accomplished by satellites, ships and aircrafts [19], whereas satellite

communication is typically costly and bandwidth-limited while manned ships/aircrafts incur high

manpower/mission cost with potential risk. In light of the above, it is promising to employ UAVs,

especially fixed-wing ones that withstand strong winds above sea surface, as agile data collectors.

UAV, with the advantages of flexible deployment and high mobility, can fly closely to the buoys

and exploit the good communication channel to wirelessly and swiftly collect large volume of data.

However, such UAV-aided maritime data collection also faces unique challenges. First, although

fixed-wing UAV typically can be fuel-powered and carry heavier payload than rotary-wing UAV, the

limited energy onboard is still one of the critical bottlenecks for long-distance and long-endurance

operations at sea. Second, the atmospheric drag caused by prominent and stochastic marine winds

cannot be ignored, which affects the UAV’s flight and mission as well as its energy consumption.

To this end, it is of vital importance to jointly optimize the UAV-to-buoys communications and

the UAV’s trajectory such that the data collection task can be completed with minimum energy

consumption subject to wind effect, which motivates this paper.

Note that for terrestrial scenarios, the energy consumption models of fixed-wing or rotary-wing

UAVs are proposed [8] [20] assuming zero wind speed, based on which the UAV’s trajectory can be

jointly optimized with the air-to-ground communications under various setups [21] including data

collection (see, e.g., [9]–[12]), wireless coverage (see, e.g., [22]–[25]), etc. Typically, the objective is

to minimize the flight time duration [12] [26] or a cost function of the propulsion/communication

energy consumption [20], while completing the communication task. The resulted problems are

typically non-convex and solved sub-optimally by variants of the successive convex approximation

(SCA) technique [7]. However, these SCA-based solutions heavily rely on the trajectory initial-

ization. Moreover, for fixed-wing UAVs that must maintain a forward motion to remain aloft, the

computational complexity and resulted trajectory complexity both become prohibitive for the task

of collecting large volume of data from distributed buoys. Therefore, new design challenges arise
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when considering prominent marine wind effect and the practical scenario where each buoy has

accumulated a large volume of historical data to be collected.

For maritime scenarios, a UAV-aided ocean monitoring network is proposed in [17] where a

single UAV hovers above the sink nodes (SNs) on sea surface to relay underwater sensing data

to a ground base station. In particular, the UAV position is jointly optimized with the SN-to-UAV

communications to minimize the transmission delay. In [27], the deployment and optimization of

multi-UAV assisted waterway data collection is investigated, where the problem is simplified into

establishing the Sensor Node - Hover Point (SN-HP) association by using graph theory, followed by

establishing the HP-UAV association. However, the above works [17] and [27] have not explicitly

considered wind effect and contiguous UAV trajectory optimization. In order to prolong the mission

duration, the authors in [28] investigate resonant beam charging-powered UAV-assisted sensing

data collection, and jointly optimize the UAV’s trajectory and the power of the charging station

to maximize the power transmission efficiency, whereas the wind effect and the UAV’s energy

consumption are not explicitly considered. Considering wind effect, the author in [29] formulates

the problem of finding minimum-energy flight paths of the UAV by utilizing or avoiding the wind,

while the authors in [30] propose a model to solve a mission planning problem in which UAVs

must visit some waypoints in the presence of a wind field to maximize the total reward collected

and minimize total flight time. However, the data collection scenario is not explicitly considered

in [29] and [30], and the UAV-to-buoys communication is not jointly optimized. Finally, to deal

with the random line-of-sight (LoS)/non-LoS channel conditions in city environment, the authors in

[31] propose a hybrid offline-online design of the UAV’s trajectory and communication scheduling.

On the other hand, since there is no obvious obstacle at sea while there exist prominent and/or

stochastic marine winds, it is more important for maritime data collection to investigate the impact

of real-time wind on the UAV’s flight as well as its communication tasks.

Motivated by the above, in this paper, we investigate a UAV-aided maritime data collection

system subject to prominent and/or stochastic marine winds, and aim to minimize the UAV’s energy

consumption in collecting all data from distributed buoys by jointly optimizing the UAV’s trajectory

and communication time scheduling. Our main contributions are summarized as follows.

• We propose a new cyclical trajectory design framework that solves the non-convex problem

with arbitrary data volume efficiently subject to wind effect. Specifically, the proposed UAV

trajectory comprises multiple cyclical laps, each responsible for collecting only a subset of

data and hence requiring less mission time in each lap, thereby significantly reducing the

computational/trajectory complexity. Furthermore, a tailored trajectory initialization algorithm

of low complexity is proposed to proactively fit the buoys’ topology and the wind.
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• We propose a novel hybrid offline-online (HO2) optimization method to tackle the stochastic

wind variations, by leveraging the statistical and real-time wind velocity in the offline and

online phases, respectively. In the offline phase, the UAV’s trajectory, airspeed and communi-

cation scheduling are jointly optimized prior to its flight based on given wind statistics. More

specifically, the impact of wind speed and direction on the communication task and energy

consumption is first revealed for the special case with fixed wind. Furthermore, we leverage the

convex stochastic programming (CSP) technique to obtain a refined and more robust solution

for the more challenging case with random wind variations. Based on the offline optimized

path, for each time slot in the online phase, we further optimize the UAV’s airspeed and

communication scheduling in adaptation to the instantaneous wind velocity and the amount of

data collected accumulatively, which can be solved with low complexity and also complements

the offline solution for feasible and flexible operation under real-time wind effect.

• Numerical results validate our analysis on the influence of wind speed, direction and variation

on the communication task and energy consumption. It is shown that the proposed cyclical

trajectory design outperforms the conventional one-flight-only scheme in general, in terms

of energy consumption, computational time and trajectory complexity. Moreover, compared

with other benchmark trajectories, our optimized trajectory can better adapt to various setups

with different target data volume and buoys’ topology as well as wind conditions (e.g., with

or without wind, fixed or random wind, headwind and/or tailwind, etc.). In particular, under

random wind conditions, our proposed HO2 design can effectively adapt to wind variations

with feasible and robust online operation, and proactively exploit the wind for further energy

savings in both single-buoy and multi-buoy scenarios.

The rest of the paper is organized as follows. Section II introduces the system model, based

on which we formulate an optimization problem in Section III and present the main idea of the

proposed HO2 method for solving it. The special case with fixed wind is introduced in Section

IV. The offline/online phases are designed in Sections V and VI, respectively. Finally, simulation

results and discussions are provided in Section VII, followed by conclusions in Section VIII.

II. SYSTEM MODEL

As shown in Fig.1, we consider a maritime data collection system whereby a fixed-wing UAV is

dispatched as a mobile data collector to gather information from K buoys. Denote bk ∈ R
2×1 as the

horizontal location of buoy k, k ∈ K , {1, · · · , K}, whose total number of information bits to be

collected is denoted by Q̄k. Assume that the UAV has large enough data storage and can store all the

collected data locally, which can be downloaded by the pilot after the UAV returns, or transferred
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back via the backhaul link1 if real-time data reception is required. Assume that the UAV flies at a

constant altitude H meters (m). Denote the UAV’s trajectory projected on the horizontal plane by

q(t) =
[

x(t0), y(t0)
]T ∈ R

2×1, with 0 ≤ t0 ≤ T and T being the flight time. For simplicity, we

discretize the flight time T into N+1 slots, i.e, n = 1, · · · , N +1, each with sufficiently small slot

time Ts. For notation simplicity, we define N , {0, 1, · · · , N}. As a result, the UAV’s trajectory

is discretized into N + 2 waypoints as q[n] = q(nTs), n ∈ N ∪ {N + 1}. At any waypoint n, the

distance between the UAV and buoy k is given by dk[n] =
√

H2 + ‖q[n]− bk‖2, k ∈ K, with ‖ · ‖
denoting the Euclidean distance.
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Fig. 1: Maritime data collection system aided by a fixed-wing UAV in wind.

A. Channel Model

Since the UAV flies at high altitude and there are no obvious obstacles at sea, we assume for

simplicity that the wireless channel between the UAV and buoy k ∈ K is dominated by the LoS

link which follows the free-space path loss model2, given by

hk[n] , β0dk[n]
−2 =

β0

H2 + ‖q[n]− bk‖2
, (1)

where β0 presents the channel power gain at a reference distance of 1 m. Assume that each buoy

transmits with power P0. The achievable rate in bits/second (bps) between buoy k and the UAV is

given by

Rk[n] , Blog2

(

1 +
γ0

H2 + ‖q[n]− bk‖2
)

, (2)

1The backhaul link could be provided by the ground base stations (GBS) deployed along the coastline, ships equipped with

high-gain antennas or the maritime satellites, as shown in Fig. 1.

2The channel fading can be further considered and a tight lower bound of the expected rate can be derived as in [32], which is

a function of the communication distance and hence can be similarly applied in our analytical framework.
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where B denotes the channel bandwidth in hertz (Hz) and γ0 , P0β0/(σ
2Γ) is defined as the

received signal-to-noise ratio (SNR) at a reference distance of 1 m, with σ2 being the noise power

at the receiver and Γ>1 as the channel capacity gap caused by practical modulation and coding.

B. Multiple Access Scheme

Assume that the cyclical time-division multiple access (TDMA) protocol [5] is applied for the

UAV to collect data from the K buoys. At any time instant, each buoy is scheduled to communicate

with the UAV only when the UAV is close enough. The UAV-enabled cyclical multiple access

scheme substantially shortens the communication distance with all buoys by exploiting the mobility

of the UAV, thereby improving the system throughput. For each time slot n, with cyclical TDMA

among the K buoys, denote τk[n] ≥ 0 as the allocated time for the UAV to collect data from buoy

k.3 Then we have
∑K

k=1τk[n] ≤ Ts, n = 1, · · · , N + 1. (3)

Therefore, the total amount of information bits collected from buoy k is a function of the UAV’s

trajectory {q[n]} and allocated time {τk[n]}, which is given by4

Qk

(

{q[n]} , {τk[n]}
)

=

N+1
∑

n=1

τk[n]Rk[n− 1] = B

N+1
∑

n=1

τk[n]log2

(

1+
γ0

H2 + ‖q[n− 1]− bk‖2
)

. (4)

Note that since each time slot n spans the waypoints n− 1 and n, for small enough slot time Ts,

we assume for simplicity that the communication rate at waypoint n− 1 is adopted for the whole

time slot n as in (4). As a result, to complete the data collection from buoy k, we must have

Qk

(

{q[n]} , {τk[n]}
)

≥ Q̄k, ∀k. (5)

C. Energy Consumption Model for Fixed-Wing UAV

The UAV’s energy consumption mainly consists of two parts, namely the communication energy

and the propulsion energy. The communication energy includes that for communication circuitry

and signal transmission/reception, which is much smaller than the propulsion energy [8] and thus

ignored in this paper. For level flight, the instantaneous propulsion energy required by a fixed-wing

UAV with air velocity v and acceleration a is given by [8]

E
(

{v[n]}, {a[n]}
)

≈
N
∑

n=1

(

w1‖v[n]‖3 +
w2

‖v[n]‖

(

1 +
‖a[n]‖2
g2

))

Ts +∆, (6)

3Besides the data channel, we assume a separate control channel for the UAV to disseminate the time scheduling to the buoys.

4For notation simplicity, we use {x} to denote the set of variables x.



7

where ∆ , 1
2
m
(

‖v[N+1]‖2 − ‖v[0]‖2
)

, g is the gravitational acceleration with nominal value of

9.8 m/s2, m is the mass of the UAV, and w1 and w2 are two parameters related to the aircraft’s

weight, wing area, air density, etc.

It can be seen from (6) that the airspeed v should not be too small, otherwise the required energy

to keep the fixed-wing UAV aloft would increase dramatically. In addition, the acceleration a should

not be too large to cause sudden acceleration/deceleration that would consume a lot of energy to

generate the required thrust.

D. Wind Effect

Since v , q̇ and a , v̇ are respectively the time-varying velocity and acceleration vectors

associated with the trajectory point q in the case of zero wind, for small time step Ts, we have the

following results based on the first- and second-order Tayler approximations, i.e.,

v[n+ 1] ≈ v[n] + a[n]Ts, n ∈ N , (7)

q[n + 1] ≈ q[n] + v[n]Ts +
1

2
a[n]T 2

s , n ∈ N . (8)

The effect of wind can be regarded as a shift in the UAV’s frame of reference by the wind

velocity vw , Vw∠φ, with Vw denoting its absolute value and φ denoting its angle with the positive

horizontal axis, as shown in Fig. 2. In general, the wind velocity during the considered period

follows a certain random process. For the purpose of exposition, we assume that vw is a wide-

sense stationary process with a certain mean E(vw), standard deviation σf and correlation parameter

ρc [33].5 The ground velocity ve[n] at waypoint n can thus be expressed in vector form as

ve[n] = v[n] + vw[n], n ∈ N ∪ {N + 1}, (9)

as shown in Fig. 2, where α and ψ denote the angles of the UAV’s airspeed and ground velocity

with regard to the positive horizontal axis, respectively. Accordingly, the acceleration to ground can

be expressed as

ae[n] ≈
ve[n+ 1]− ve[n]

Ts
, n ∈ N , (10)

Since the actual flight path is in the same frame of reference as the ground velocity, equation (8)

is re-written as

q[n+ 1] ≈ q[n] + ve[n]Ts +
1

2
ae[n]T

2
s , n ∈ N (11)

where the airspeed and acceleration in (8) is replaced by the ground velocity and acceleration to

ground. If the angle between the wind direction and the flight direction is less than 90◦, i.e., |φ− ψ|

5Our proposed method is general and can be extended to account for other wind velocity distributions.
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<90◦, the wind is called tailwind. The tailwind promotes the UAV motion by increasing its ground

velocity, so that the UAV can fly a longer distance in a slot time Ts. In other words, given fixed

flight distance and time, the UAV only needs a lower airspeed to fly through the distance in tailwind.

On the contrary, the headwind hinders the UAV’s forward motion.

q[n+1]

q[n+1]

q[n]

a

Lower bound on 

airspeed

Lower bound on 

airspeed

(a) (b)

v
v
a

q[n]

Fig. 2: Illustration of (a) tailwind and (b) headwind using the wind velocity vw[n], as well as the UAV’s airspeed v[n]
and ground velocity ve[n].

1) Effect on Communication Task and Energy Consumption: There are two objectives to be

optimized in our task, namely the energy consumption E and data volume Q, which affect each other

through some intermediate variables as shown in Fig. 3. Substituting (9) into (11), the wind affects

the UAV’s ground velocity ve and hence its trajectory q, which in turn affects the communication

rates R with the buoys given by (2) and hence also the communication time scheduling τ among

the buoys, thereby affecting the overall energy consumption given by (6) in completing the data

collection task given by (5). More specifically, when the UAV gets close to the buoy, the headwind

reduces the ground velocity and shortens the flight distance in each time slot, allowing the UAV

to maintain a good communication channel to collect data. In addition, after finishing the data

collection task, the tailwind increases the ground velocity and thereby helps the UAV to reach the

next trajectory point quickly. On the contrary, adversarial effect can happen if the UAV encounters

influence

Fig. 3: The logical relationship between the variables.
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wind of the reverse direction in the above scenarios.

To see the wind effect on the energy consumption, we first consider the special case where the

UAV has a constant velocity with zero acceleration in a short time slot. In this case, the energy

function (6) is a convex function and there exists an optimal velocity v∗ in achieving the minimum

propulsion power P ∗, while too fast or too slow airspeed will lead to increased energy consumption.

For a given communication task that requires a certain profile of {ve} and {τ}, the wind velocity

vw affects the airspeed v = ve − vw and thus affects the UAV’s energy consumption. Therefore,

it is of great importance to jointly optimize the UAV’s trajectory, airspeed and communication

scheduling such that the wind effect can be properly utilized for the UAV to complete its mission

with high energy efficiency.

2) Constraints on Minimum Airspeed: There are two constraints on the UAV’s minimum air-

speed. First, there is a minimum airspeed for the UAV to maintain level flight, which is known as

the stall speed and denoted by Vs. Second, the UAV needs to fly from q[n] to q[n+1] within a slot

time Ts subject to the wind effect. In the case with tailwind as shown in Fig. 2(a), it is required that

||v[n]|| ≥ Vw |sin(φ− ψ)|. On the other hand, in the case with headwind as shown in Fig. 2(b), it

is required that ||v[n]|| ≥ Vw.

III. PROBLEM FORMULATION AND HYBRID OFFLINE-ONLINE DESIGN

Based on the above system model, for the considered UAV-aided maritime data collection

problem, we aim to minimize the UAV’s energy consumption in collecting the required data volume

Q̄k from each of the K buoys, by jointly optimizing the communication time scheduling among

the buoys and the UAV’s flight trajectory subject to wind effect. The problem can be formulated

as problem (P1), i.e.,

(P1) : min
{q[n]},{v[n]},
{a[n]},{τk [n]}

E
(

{v[n]}, {a[n]}
)

s.t. (3), (5), (7), (11),

q[0] = q0,q[N + 1] = qF , (12)

v[0] = v0,v[N + 1] = vF , (13)

‖a[n]‖ ≤ amax, n ∈ N , (14)

τk[n] ≥ 0, ∀k, n = 1, · · · , N + 1, (15)

Vmin ≤ ‖v[n]‖ ≤ Vmax, n ∈ N \ {0}, (16)

where E
(

{v[n]}, {a[n]}
)

denotes the energy consumption in (6), q0 and qF ∈ R
2×1 represent the

UAV’s initial and final locations projected onto the horizontal plane, respectively; Vmax and amax
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represent the maximum speed and acceleration, respectively; and Vmin represents the minimum

airspeed subject to the two constraints discussed in II-D. For simplicity, we choose Vmin based on

the upper bound of these two constraints, i.e., Vmin = max{Vw, Vs}.

The optimal solution to problem (P1), in general, is difficult to obtain due to the lack of the

exact wind velocity information at each time slot prior to flight. To address this difficulty, we

assume that the wind statistics are known for the considered time period, and the instantaneous

wind velocity can be obtained in real time along the UAV’s flight. Thereby, we propose a novel

and general method to obtain a suboptimal solution to problem (P1), called hybrid offline-online

(HO2) optimization, by leveraging both the statistical and real-time wind velocity information. Our

proposed method consists of the following two phases as illustrated in Fig. 4, which are briefly

described as follows and will be elaborated in more details in the subsequent sections.

UAV path

Waypoints

Offline phase

Planned communication 

scheduling

N+1
1

2

Wind direction

Online phase

Actual communication 

scheduling

N+11

2

Actual

UAV path

Planned 

communication 

scheduling

Increase UAV 

airspeed

Statistical average 

of wind velocity

Real-time 

wind velocity

Adaptive UAV airspeed

+

Communication time scheduling

4
3 3 4

a ab b

Fig. 4: The proposed HO2 optimization for UAV-aided maritime data collection in wind.

1) Offline phase: Prior to the UAV’s flight, we design an initial UAV trajectory and commu-

nication scheduling policy based on the statistical distribution of wind velocity. The policy is

computed offline by solving an optimization problem to minimize the UAV’s energy consumption

in collecting the required data volume from marine buoys. The resultant UAV trajectory yields

a statistically favorable UAV path that is specified by a sequence of ordered waypoints and line

segments connecting them.

2) Online phase: In the online phase, we set the UAV trajectory (waypoints) as that obtained from

the offline phase. Then, for the online flight from q[n] to q[n + 1], we formulate a convex problem

to minimize the UAV’s current energy consumption subject to the scheduled data collection volume
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in the current line segment, by slightly adjusting the UAV’s trajectory and optimizing airspeed and

communication scheduling with buoys in adaptation to the current wind velocity.

Note that different from prior works on UAV trajectory and communication design which neglect

the wind effect, especially the variance of wind in real time, our proposed method decouples

the design into the UAV trajectory optimization in the offline phase, followed by the real-time

adjustment of the UAV flying speed and communication time scheduling in the online phase. This

is motivated by the fact that the path optimization to complete the whole task requires solving a

complex non-linear optimization problem (as will be detailed in Sections IV and V) which is desired

to be implemented offline; while the online adaptation can be optimized by solving a simpler convex

problem for the current time slot to complete the flight between two planned waypoints under real-

time wind condition, which requires low computational complexity and thus can be implemented

by the UAV in real time.

Our proposed hybrid design is expected to achieve good performance owing to the following

reasons. First, the offline phase ensures a statistically favorable UAV trajectory that well considers

the statistical wind effect for minimizing the UAV’s energy consumption. Second, our proposed

online design, built upon the trajectory obtained offline, endows the UAV with self-adaptation to

the actual wind velocity to further improve the performance. As discussed in II-D1 about the wind

effect on energy consumption and communication tasks, it is beneficial to optimize the UAV’s

airspeed and the communication time scheduling at each line segment according to real-time wind

conditions. For instance, as illustrated in Fig. 4, suppose that the UAV is scheduled to collect data

from buoys a and b at waypoints 3 and 4, respectively. If the UAV encounters additional wind at

waypoint 3 in real time which causes the UAV to deviate from its original trajectory and reach a

position farther away from buoy a, then it still needs to communicate with buoy a at waypoint 4 to

collect enough data. Besides adjusting the communication scheduling, it can also adjust its airspeed

to reach a suitable position to collect the targeted data volume planned offline. For example, if the

UAV is far away from the buoys and encounters headwind, it can increase airspeed to reach next

waypoint quickly.

In the following sections, we first introduce the UAV trajectory design under fixed wind and also

propose an offline design based on given distribution of random wind. By leveraging the above

designs as initial scheduling/trajectory, we then introduce the online phase to adjust the UAV’s

airspeed and communication time scheduling according to the real-time wind velocity.

IV. SPECIAL CASE WITH FIXED WIND

To better analyze the effect of wind on the UAV’s trajectory/resulted energy consumption and

investigate how to utilize the wind to complete the task with lower energy consumtion, we first
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consider the fixed wind situation, i.e., vw is constant for all time slots. The obtained solution can

also provide a good initial trajectory for the hybrid design.

Even when vw is fixed, problem (P1) still requires joint optimization of the trajectory {q[n]},

airspeed {v[n]}, acceleration {a[n]} and communication scheduling {τk[n]}, which are coupled with

each other through the cost function as well as constraints (3), (5), (7) and (11). Due to the non-

convex constraints (5) and (16), and the non-convex cost function E
(

{v[n]}, {a[n]}
)

in (6) for the

fixed-wing UAV’s energy consumption, problem (P1) is complicated and cannot be directly solved

by using standard convex optimization techniques. To tackle this problem, we leverage the SCA

technique as the basic optimization tool, which approximates each non-convex function involved

in (P1) by a convex and differentiable function based on the first-order Taylor approximation at

a certain local point [8]. A sub-optimal solution to the original non-convex problem can then be

obtained by solving a series of convex sub-problems with successively updated local points at each

iteration. Assuming that the initial and final airspeed of the UAV are equal, we have ∆ = 0. In

addition, to deal with the non-convex constraint (16) and the objective function, we reformulate

(P1) by introducing slack variables {δn} as

(P2.1) : min
{q[n]},{v[n]},

{τk [n]},{a[n]},{δn}

N
∑

n=1

(

w1‖v[n]‖3 +
w2

δn

(

1 +
‖a[n]‖2
g2

))

Ts

s.t. (3), (5), (7), (11) − (15),

δn ≥ Vmin, n ∈ N \ {0}, (17)

‖v[n]‖2 ≥ δ2n, n ∈ N \ {0}, (18)

‖v[n]‖ ≤ Vmax, n ∈ N \ {0}. (19)

Note that at the optimal solution to (P2.1), we must have δn = ‖v[n]‖, ∀n, since otherwise

we can always increase δn to obtain a strictly larger objective value. Thus, (P2.1) is equivalent

to (P1). With such a reformulation, the objective function is now jointly convex with respect to

{v[n], a[n], δn}, but with the new non-convex constraint (18). To tackle this difficulty, notice that

the left-hand side (LHS) of (18) is a convex and differentiable function which can be lower bounded

by its first-order Taylor approximation at a certain local point v(l)[n] in the l-th iteration, i.e.,

‖v[n]‖2 ≥
∥

∥v(l)[n]
∥

∥

2
+ 2v(l)T [n](v[n]− v(l)[n]), n ∈ N \ {0}, (20)

where the equality holds at the point v[n] = v(l)[n]. Furthermore, at the local point v(l)[n], both

the function ‖v[n]‖2 and its lower bound have identical gradient. Define the new constraint,

∥

∥v(l)[n]
∥

∥

2
+ 2v(l)T [n](v[n]− v(l)[n]) ≥ δ2n, n ∈ N \ {0}, (21)

which is convex since its LHS is linear with v[n]. Then the inequality (20) shows that the convex
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constraint (21) always implies the non-convex constraint (18), but the reverse is not true in general.

Similarly, to deal with the non-convex constraint (5), we introduce slack variables {Ak[n]} with

A2
k[n] = τk[n]log2

(

1 +
γ0

H2 + ‖q[n− 1]− bk‖2
)

. (22)

Therefore, based on similar transforms as in (20) and (21), it suffices to replace (5) by the following

two convex constraints, i.e.,

B
N+1
∑

n=1

(

A
(l)2
k [n] + 2A

(l)
k [n]

(

Ak[n]− A
(l)
k [n]

))

≥ Q̄k, ∀k, (23)

A2
k[n]

τk[n]
≤ R

(l)
k [n], ∀k, n = 1, . . . , N + 1, (24)

where A
(l)
k [n] is the value of Ak[n] at the l-th iteration, R

(l)
k [n] = log2

(

1 + γ0

H2+‖q[n](l)−bk‖2

)

−

βk[n]
(

‖q[n]− bk‖2 −
∥

∥q(l)[n]− bk

∥

∥

2
)

, with βk[n] = (log2e)γ0
(

H2+‖q(l)[n]−bk‖2
)(

‖q(l)[n]−bk‖2
+γ0

) . As a

result, problem (P2.1) can be reduced to the following problem, i.e.,

(P2.2) : min
{q[n]},{v[n]},{a[n]},
{τk[n]},{Ak [n]},{δn}

N
∑

n=1

(

w1‖v[n]‖3 +
w2

δn

(

1 +
‖a[n]‖2
g2

))

Ts

s.t. (3), (7), (11) − (15), (17), (19), (21), (23), (24),

which is now a convex problem whose optimal value provides an upper bound for the original

problem (P2.1), and its optimal solution can be used as the local point in the next iteration l + 1.

By successively updating the local point at each iteration via solving (P2.2), we thus obtain an

iteratively-refined sub-optimal solution for the non-convex problem (P2.1).

The computational complexity of each convex sub-problem (P2.2) can be shown to grow in the

order of O((KN)3.5) based on similar analysis as in [10], where N is the number of time slots

required to complete the data collection task in our considered setup. Such a SCA-based solution

can be obtained efficiently for small/moderate data volume to be collected, which corresponds

to short mission time required and hence small number of time slots N in completing the task.

However, in our considered maritime data collection scenario, it is likely that each buoy stores a

large volume of historical maritime/undersea monitoring data, which requires prolonged mission

time for the UAV to complete the data collection. As a result, for a fixed-wing UAV that must

maintain a forward motion to remain aloft, the computational complexity and resulted trajectory

complexity both become prohibitive for the task of collecting large volume of data from distributed

buoys. In addition, the SCA-based solution heavily relies on the trajectory initialization and may

trap in some locally optimal solution. Moreover, the effect of wind on the data collection task has

not been explicitly considered in the literature, which in fact could be exploited to design tailored
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trajectories for minimizing the UAV’s energy consumption in completing the data collection task.

To address the above challenges, we propose a new cyclical trajectory design framework that can

handle arbitrary data volume efficiently subject to the prominent marine wind effect. Specifically,

the proposed UAV trajectory comprises M ≥ 1 cyclical laps, each responsible for collecting only

a fraction 1/M of data and hence requiring less mission time in each lap, thereby significantly

reducing the computational/trajectory complexity. Furthermore, the saved computational effort al-

lows us to design tailored algorithms to search for better trajectory initialization that fits the buoys’

topology and the wind. For the purpose of exposition, we consider two simple patterns of initial

trajectories, namely the circular trajectory and the 8-shape trajectory, and assume for simplicity that

each buoy has the same data volume Q to be collected. The detailed algorithms are summarized in

Algorithms 1 and 2.

Algorithm 1 Cyclical Trajectory Optimization

Input: Buoy locations bk, k ∈ K, wind velocity vw, data volume Q and the number of laps M .

Output: Cyclical trajectory {q∗[n]}, airspeed {v∗[n]}, acceleration {a∗[n]} and communication scheduling {τ∗k [n]}.

1: Set Q0 = Q/M and initialize the maximum number of iterations l0.

2: Choose one pattern of initial trajectory (e.g., circular or 8-shape).

3: Call InitialTrajectory
(

Q0, {bk},vw

)

and obtain the time period T0 and initialization {q0[n]}, {v0[n]} and
{

τ0k [n]
}

.

4: Solve problem (P2.1) based on SCA and obtain the solution {q[n]}, {v[n]}, {a[n]} and {τk[n]}. Record the energy

consumption E.

5: repeat

6: Fine-tune the time period T around T0 (For 8-shape trajectory: search for optimal orientation θ), with

corresponding modification on the initialization obtained in Step 3.

7: Call step 4.

8: until The optimal solution is found or l0 is reached.

9: Output the solution with the minimum E recorded.

Note that for large data volume, the communication time that the UAV enters/leaves the cyclical

trajectory can be practically ignored. Our proposed cyclical trajectory optimization in Algorithm

1 consists of two main phases, i.e., the initialization phase (steps 1∼4) and the fine-tuning phase

(steps 5∼9). The initialization phase efficiently finds a simple feasible solution of problem (P2.1)

by fixing the trajectory pattern (e.g., circular trajectory with one circle of radius r centered at the

origin, or 8-shape trajectory with two circles of radius r tangent to each other). Given the trajectory

pattern, the InitialTrajectory procedure searches for the optimal time period T0 and trajectory

parameters (e.g., the radius r and/or the orientation θ of the 8-shape trajectory, illustrated later in

Fig. 9(a)) that achieve the least possible energy consumption within a certain maximum number of

iterations (denoted by l1, l2, etc.) while satisfying the throughput constraint. Note that the throughput

feasibility test under a given trajectory pattern only involves simple linear inequalities with the time

allocation {τk[n]}, which can be done much faster than solving the original problem (P2.1) using
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SCA. Based on the obtained feasible time period T0 and initialization {q0[n]}, {v0[n]} and {τ 0k [n]},

we can then fine-tune the time period T around T0 (for a maximum of l0 iterations), and apply

SCA in each iteration to fine-tune the trajectory and time allocation, hence further reducing the

energy consumption but with much fewer calls of the SCA routine.

Finally, note that by partitioning into M laps, the mission time and hence the number of time

slots in each lap can be roughly reduced to 1/M of the one-flight-only scheme, whereby the

computational complexity can be reduced to around 1/O(M3.5) of the one-flight-only scheme when

SCA is applied. Furthermore, the saved computational effort allows us to search for better trajectory

initialization that fits the buoys’ topology and the wind, which is reduced to feasibility tests on linear

inequalities and hence involves much lower complexity than SCA. Moreover, thanks to the reduced

time period T and the simpler cyclical trajectory, it is typically much easier to search and fine-tune

the mission time and trajectory initialization6 before feeding to the SCA routine. Therefore, our

proposed cyclical trajectory design framework can efficiently reduce the UAV’s energy consumption

in completing the data collection task, especially for large data volume to be collected.

Algorithm 2 InitialTrajectory Procedure
[

T0, {q0[n]}, {v0[n]},
{

τ0k [n]
} ]

=InitialTrajectory
(

Q0, {bk},vw

)

1: Assume constant ground speed V (0 ≤ V ≤ Vmax). Set the geometric center of {bk} as the origin. Initialize l1,

l2 and l3.

2: repeat

3: Search for T0.

4: repeat

5: Search for r. Obtain V based on 2πr = V T for circular trajectory and 2πr = V T/2 for 8-shape trajectory.

6: Given T0, r, V and vw , obtain the energy consumption. Find feasible
{

τ0k [n]
}

by solving (P2.1) via linear

programming.

7: If it is infeasible, return to step 5.

8: until The optimal solution is found or l2 is reached.

9: If it is infeasible, return to step 3.

10: until T0 that minimizes the energy is found or l1 is reached.

11: Given T0, r, V and vw, obtain {q0[n]}, {v0[n]} and
{

τ0k [n]
}

.

V. OFFLINE DESIGN BASED ON SP

The above section describes the UAV’s trajectory design under fixed wind. However, in practice,

the wind velocity changes randomly which affects the UAV’s ground velocity and hence its trajectory

and further the communication rate and energy consumption. Therefore, this section aims to offline

design the UAV trajectory and communication time scheduling by explicitly considering the random

wind variations, such that when the offline solution is applied in real time, the online operation is

6Note that these steps are also needed in the one-flight-only scheme.
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more robust to wind changes in the sense that the flight and communication constraints are less

likely to be violated. To this end, stochastic programming (SP) is leveraged to model the robust

optimization problem with uncertain data, i.e., the random wind in our case.

Specifically, by first substituting (7), (9) and (10) into (6) and other constraints, problem (P2.2)

can be rewritten as

(P3.1) : min
{q[n]},{ve[n]},{τk[n]},

{Ak[n]},{δn}

N
∑

n=1

(

w1‖v[n]‖3 +
w2

δn
+

w2‖v[n+ 1]− v[n]‖2

(gTs)
2δn

)

Ts

s.t. (3), (12), (15), (17), (23), (24),

∥

∥v(l)
e [n]− v(l)

w [n]
∥

∥

2
+ 2
(

v(l)
e [n]− v(l)

w [n]
)T (

ve[n]− vw[n]− v(l)
e [n] + v(l)

w [n]
)

≥ δ2n, n ∈ N \ {0}, (25)

q[n+ 1] ≈ q[n] +
1

2
(ve[n+ 1] + ve[n])Ts, n ∈ N , (26)

ve[0]− vw[0] = v0,ve[N + 1]− vw[N + 1] = vF , (27)

‖ve[n]− vw[n]‖ ≤ Vmax, n ∈ N \ {0}, (28)
∥

∥

∥

∥

ve[n+ 1]− vw[n+ 1]− ve[n] + vw[n]

Ts

∥

∥

∥

∥

≤ amax, n ∈ N , (29)

where v[n] = ve[n]−vw[n], and v
(l)
e [n] (or v

(l)
w [n]) is the local point of ground velocity (or wind

velocity) in each iteration. Then, in order to improve the robustness against wind variations, we

transform the wind-related constraints (25) and (27) - (29) into expected inequality constraints. In

particular, the equality constraints in (27) are transformed into the form of E{vw} (‖hj(x)‖) ≤ ε,

where ε is a small tolerance value [34]. By taking the wind statistics into account, such transforma-

tion increases the robustness and flexibility of the obtained offline solution, which, when applied in

real time, is less likely to cause violation of the flight and communication constraints. As a result,

problem (P3.1) can be reformulated as

(P3.2) : min
{q[n]},{ve[n]},{τk[n]},

{Ak[n]},{δn}

N
∑

n=1

(

w1‖ve[n]− E(vw)‖3 +
w2

δn
+

w2‖ve[n+ 1]− ve[n]‖2

(gTs)
2δn

)

Ts

s.t. (3), (12), (15), (17), (23), (24), (26),

E

(

∥

∥v(l)
e [n]− E(vw)

∥

∥

2
+ 2
(

v(l)
e [n]− E(vw)

)T (

ve[n]− vw[n]− v(l)
e [n] + E(vw)

)

)

≥ δ2n, n ∈ N \ {0},
(30)

E

(∥

∥

∥

∥

ve[n+ 1]− vw[n+ 1]− ve[n] + vw[n]

Ts

∥

∥

∥

∥

)

≤ amax, n ∈ N , (31)

E (‖ve[0]− vw[0]− v0‖) ≤ ε1,E (‖ve[N + 1]− vw[N + 1]− vF ‖) ≤ ε2, (32)

E (‖ve [n]− vw [n]‖) ≤ Vmax, n ∈ N \ {0}, (33)

where ε1 and ε2 are small tolerance values. Since expectations preserve convexity, the expected

inequality constraints (30) - (33) are still convex. In addition, for simplicity, we choose the local
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point with v
(l)
w [n] = E(vw) in (30). Similarly, we substitute v[n] = ve[n]−E(vw) into the objective

function of (P3.2), which, by Jensen’s inequality, provides a lower bound for the mean of cost

function in problem (P3.1). As a result, problem (P3.2) is a convex stochastic program (CSP).

To solve the expectation constraints in problem (P3.2), we use simple Monte Carlo evaluation,

i.e, Ef(x, ω) ≈ 1
S

S
∑

i=1

f(x, ωi), where f is assumed to be convex in the optimization variable x for

each value of the random variable ω, and ωi, i = 1, . . . , S are samples of ω; this approximation is

referred to as the sample average approximation (SAA) in the SP literature, and methods that use it

are often referred to as scenario-based methods. Furthermore, both the optimal value and optimal

set of a SAA converge almost surely to the optimal value and optimal set of the true problem

(P3.2) [35]. Based on the above, all the expectation constraints in problem (P3.2) can be re-written

in the approximate form Ef(ve[n],vw) ≈ 1
S

S
∑

i=1

f(ve[n],vw,i). For example, the inequality (33) is

approximated as 1
S

S
∑

i=1

(‖ve [n]−vw,i [n]‖) ≤ Vmax, n ∈ N \ {0}.

Next, we discuss the computational complexity for solving problem (P3.2) using the standard

interior-point method, based on the complexity analysis method in [36]. Specifically, the problem

involves 2N+3 second-order cone (SOC) constraints of size 2S in (31)-(33), KN+K+N SOC

constraints of size 2 in (24) and (30), 1 SOC constraints of size 2N in the first term of the

objective function, KN+2N+K+3 linear matrix inequality (LMI) constraints of size 2 in (12),

(24), (26) and the second term of the objective function, KN +2N +2K+1 LMI constraints

of size 1 in (3), (15), (17) and (23), and N LMI constraints of size 3 in the third term of the

objective function, while the total number of optimization variables is u,2KN+3N . Therefore,

based on the analysis in [36], the number of iterations required for obtaining the optimal solution

scales as
√
5KN+15N+6K+15, while the required complexity in each iteration is given by

u[(9KN+45N+10K+25)+u (5KN+19N+6K+13)+(4(2NS2+3S2+N2+KN+N+K))+u2].

Then the required complexity for solving problem (P3.2) scales as O(a1(KN)3.5+a2K
1.5S2N2.5),

with coefficients a1 and a2. Since the number of time slots N is generally greater than the number

of samples S, the complexity is still dominated by N , and thus the SAA involves only moderate

increase in complexity. Finally, note that the solution obtained in Section IV under fixed wind (with

vw[n] = E(vw), ∀n) provides a good initial solution for the SP-based solution in this section, which

also helps to speed up the computation in practice.

VI. ONLINE ADAPTATION TO REAL-TIME WIND EFFECT

The above offline design based on fixed-wind assumption in Section IV or SP method in Section

V, strives to minimize the overall energy consumption by jointly optimizing the UAV trajectory and

communication time scheduling across the whole mission period subject to statistical wind effect.
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Despite being statistically favorable, the obtained solution may not be optimal or even feasible when

faced with real-time wind. This issue is addressed in this section by designing the online policy that

adjusts the UAV’s flying speed along the offline optimized UAV path as well as its communication

time scheduling in adaption to the real-time wind velocity and the buoys’ individual amount of

data received accumulatively. Specifically, the offline solution obtained in Section IV or V, denoted

as {qoff[n]}, {voff
e [n]} and {τ off

k [n]}, serves as a reference for real-time operation. As such, the

online adaptation should not deviate too much from the offline reference in order to minimize the

overall energy consumption. On the other hand, due to the randomness of real-time wind velocity, it

could happen that the planned UAV trajectory and airspeed as well as the scheduled data collection

may not be executed exactly during online operation. Therefore, for each current time slot n, we

introduce slack variables to relax the flight and communication constraints in order to make the

online adaptation feasible and more flexible.

In particular, regarding data collection, the amount of collected data in bits at the UAV from each

buoy k over the n-th time slot is given by τk[n]Rk[n − 1], and thus the amount of data collected

accumulatively up to the beginning of each time slot n, denoted by Qacc
k,n, evolves as

Qacc
k,1 , 0, Qacc

k,n ,

n−1
∑

m=1

τk[m]Rk[m− 1], n > 1, ∀k. (34)

Furthermore, the amount of data to be collected over all the subsequent time slotsm=n+1, · · · , N+1,

can be obtained from the offline phase, which is denoted by Qoff
k,n ,

N+1
∑

m=n+1

τ off
k [m]Roff

k [m−1], ∀k,

where Roff
k [m] is the communication rate along the offline time slot m. To satisfy the overall data

volume requirement Q̄k, the throughput constraint in (5) for the current time slot n is re-written as

Bτk[n]log2

(

1 +
γ0

H2 + ‖q[n−1]− bk‖2
)

≥ Q̄k −Qacc
k,n −Qoff

k,n − ζ, ∀k, (35)

where q[n−1] is the previous waypoint traversed online; and the data volume to be collected in the

current time slot n is determined by the accumulated volume Qacc
k,n so far and the volume Qoff

k,n to

be collected in the subsequent time slots. Moreover, a slack variable ζ ≥ 0 is introduced to relax

the data collection constraint in order to achieve a feasible and more flexible solution. The larger ξ

is, the easier it is to satisfy the data collection constraint in the current time slot, which, however,

has a larger impact on the completion of subsequent collection tasks. In order to limit the scope

of relaxation, a cost term w3ζ is added to the objective function. As a result, the online adaptation
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problem at each time slot n can be modified from that for the offline design as follows, i.e.,

(P4.1) : min
ve[n];τk[n],k∈K;ζ≥0

w1‖v[n−1]‖3Ts +
w2

‖v[n−1]‖Ts +
w2‖v[n]− v[n−1]‖2

g2‖v[n−1]‖Ts
+ w3ζ

s.t. (35),

∑K
k=1τk[n] ≤ Ts; τk[n] ≥ 0, ∀k, (36)

∥

∥

∥

∥

q[n− 1] +
1

2
(ve[n] + ve[n− 1])Ts − qoff[n]

∥

∥

∥

∥

≤ ξq, (37)

∥

∥ve[n]− voff
e [n]

∥

∥ ≤ ξv, (38)
∥

∥

∥

∥

ve[n]− vw[n]− ve[n−1] + vw[n−1]

Ts

∥

∥

∥

∥

≤ amax, (39)

Vmin ≤ ‖ve[n]− vw[n]‖ ≤ Vmax, (40)

where v[n] = ve[n]− vw[n], and ξq and ξv are two small tolerance values to restrict the extend of

deviation from the offline trajectory and ground velocity, respectively. Note that we record q[n−1],

ve[n−1] and vw[n−1] from the previous time slot, and also measure the wind velocity vw[n] for the

current time slot. Therefore, it can be verified that the objective function and the constraints except

(40) are convex in the optimization variables ve[n], ζ and τk[n], k ∈ K. To deal with the non-convex

constraint of ‖ve[n]− vw[n]‖ ≥ Vmin, we follow similarly the transforms as in (20) and (21), i.e.,

we introduce a slack variable δn and employ the first-order Taylor expansion at the sub-optimal

local point of airspeed v′[n] , voff
e [n]− E(vw). As a result, problem (P4.1) is reformulated as

(P4.2) : min
ve[n];τk[n],k∈K;

δn;ζ≥0

w1‖v[n−1]‖3Ts +
w2

‖v[n−1]‖Ts +
w2‖v[n]− v[n−1]‖2

g2‖v[n−1]‖Ts
+ w3ζ

s.t. (35) − (39),
∥

∥voff
e [n]− E(vw)

∥

∥

2
+ 2
(

voff
e [n]− E(vw)

)T
(ve[n]− vw[n]− voff

e [n] + E(vw)) ≥ δ2n, (41)

δn ≥ Vmin, ‖ve[n]− vw[n]‖ ≤ Vmax, (42)

which can be verified to be a convex quadratically constrained quadratic program (QCQP) with

only K + 3 variables, and thus can be solved efficiently. In particular, based on similar analysis

as in Sections IV and V, the complexity of solving problem (P4.2) using the interior-point method

is reduced to O(K3.5), which does not require global optimization involving all N time slots.

Therefore, problem (P4.2) can be solved efficiently, rendering the online adaptation amenable to

practical implementation.

Finally, note that refining the trajectory, airspeed and time scheduling in each time slot helps

ensure the feasibility of the reference solution obtained in the offline phase. Specifically, at each

time slot online, the UAV acquires the real-time wind velocity and then adjusts the airspeed to
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achieve lower energy consumption. Moreover, by relaxing the constraints on the next trajectory

point and ground speed in (37) and (38), as well as the amount of data volume to be collected in

(35), the optimization space is expanded, and online adaptation becomes more flexible and robust.

VII. NUMERICAL RESULTS

This section provides numerical results to validate the proposed design. The following parameters

are used if not mentioned otherwise: H = 100 m, B = 1 MHz, γ0 = 70 dB, Vmax = 50 m/s, Vs = 3

m/s, amax = 5 m/s2, w1 = 9.26× 10−4, w2 = 2250 [8], w3 = 100 , ρc = 0.5, S = 100, ε1 = ε2 = 1

m/s, ξq = 3 m and ξv = 0.2 m/s. We first consider the single-buoy scenario and investigate two

cases including the chain-like flight (explained later) and cyclical flight, which help illustrate the

effect of wind on the data collection task as well as energy consumption, for scenarios with/without

wind, or under different wind speed/direction/variance. Then we extend to the multi-buoy case, and

investigate the situations where the distributed buoys are far from/close to each other.

A. Single Buoy Setup

1) Fixed Wind:

a) Chain-Like Flight: Assume q0 = [−600, 0]T m and qF = [600, 0]T m with the single buoy

at the origin. In this case, the initial point q0, the buoy and the final point qF make up a chain-like

topology, and hence the UAV’s flight is termed as the chain-like flight. The UAV’s initial trajectory

is set to be the direct path from q0 to qF . Assume that the wind speed is Vw = 5 m/s, which

either blows from q0 to qF (i.e., tailwind) or reversely (i.e., headwind). We use SCA to optimize

the UAV’s trajectory and airspeed, and also compare with the benchmark scheme where the UAV

flies along a straight line at a constant but optimized airspeed. The resulted energy consumption

for collecting different data volume Q is shown in Fig. 5, under different wind conditions.

For the benchmark scheme, in the case with small Q (e.g., Q ≤ 200 Mbits), it is observed that

the tailwind helps achieve lower energy consumption compared with the headwind or no-wind case.

This is because collecting small data volume Q can be done easily, and the main task of the UAV

is to fly from q0 to qF , for which the tailwind helps. On the other hand, as Q increases (e.g.,

Q ≥ 400 Mbits), the tailwind consumes the most energy while the headwind consumes the least

energy, which might be against the intuition that the tailwind adds thrust to the UAV and hence

should help save energy. The underlying reason is that, to collect more data, the UAV has to slow

down to allow more time to communicate with the buoy, and hence might not fly at the most
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energy-saving airspeed7. Note that due to the limited communication time, the UAV might not be

able to collect too large data volume (e.g., Q > 1000 Mbits) in the tailwind case.
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Fig. 5: Energy consumption versus data volume requirement under different wind conditions.

In comparison, regardless of the wind conditions, our proposed SCA-based scheme is able to

adapt to the wind and achieve significant energy savings compared with the benchmark scheme.

However, it is worth noting that as the required data volume increases, the computational complexity

and the resulted trajectory complexity of the SCA-based solution both increase dramatically. Two

examples of the UAV trajectory under different Q are shown in Fig. 6. This thus motivates our

cyclical trajectory design to achieve lower energy consumption with less computational time and

simpler UAV trajectory.
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Fig. 6: The SCA-based UAV trajectory for the chain-like flight without wind, under (a) Q = 1400 Mbits and (b)

Q = 2200 Mbits.

7Based on (6), there exists a most energy-saving airspeed, since the UAV consumes much energy at both high airspeed and also

low airspeed (in order to keep the UAV aloft).
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b) Cyclical Trajectory: Consider a large data volume, e.g., Q = 6 Gbits. For our considered

single-buoy setup, the proper amount of data volume Q0 = Q/M for each lap should be around 200

to 1000 Mbits, based on the observations in Section VII-A1a. Therefore, we choose the number

of laps M in the range of 6 to 30. Based on our proposed cyclical trajectory optimization in

Algorithm 1, the resulted total energy consumption of all M laps is shown in Fig. 7, under different

trajectory initializations and wind conditions. It is observed that with our proposed cyclical trajectory

optimization, both the optimized circular and 8-shape trajectories can proactively exploit the wind

to reduce the energy consumption under a certain Q0 per lap, compared with the case without

wind. In particular, the 8-shape trajectory can even make better use of the wind and outperform

the circular trajectory in some cases (e.g., under Q0 = 400 Mbits and Vw = 10 m/s). We provide

more detailed discussions next.
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Fig. 7: Total energy consumption of all M laps under different trajectory initializations, with or without wind.

Without Wind: In this case, the circular trajectory performs better than the 8-shape trajectory

when M ≥ 15, where the minimum total energy consumption occurs at M = 20 (i.e., Q0 = 300

Mbits) with the circular trajectory. This is because when Q0 is relatively small, the UAV can collect

data by flying circularly with a moderate acceleration, without incurring much turning energy as in

the 8-shape trajectory. On the other hand, when Q0 is large, it is more beneficial to adopt the 8-shape

flight whose trajectory points are overall closer to the buoy and hence enjoy better communication

channel.

With Wind: Consider wind blowing from south to north. The optimized UAV trajectory and

airspeed for the circular and 8-shape trajectories are shown in Fig. 8 and Fig. 9, respectively. The

circular trajectory is divided into two halves, where the left half experiences headwind and the right

half experiences tailwind. The trajectory optimization needs to balance between the UAV’s airspeed
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and angular acceleration in achieving lower energy consumption subject to wind effect. As for the

8-shape trajectory, it becomes more flatten in wind in order to reduce the overall distance to the

buoy. Moreover, the optimized orientation θ, i.e., the angle between the wind and the axis of the

8-shape, is around 90◦ as shown in Fig. 9(a), and hence the UAV experiences headwind in both

ends of the 8-shape, whereby the UAV can exploit the wind to slow down and hence reduce the

turning energy.
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Fig. 8: Optimized UAV (a) trajectory and (b) airspeed for circular trajectory.

-250 -150 -50 50 150 250

x (m)

-250

-150

-50

50

150

250

y
 (

m
)

Without wind

Vw=10m/s
(a)

axis

Wind

0 15 30 45

Time (second)

20

24

28

32

S
p

e
e

d
 (

m
/s

)

Without wind

Vw=10m/s
(b)

Fig. 9: Optimized UAV (a) trajectory and (b) airspeed for 8-shape trajectory.

Finally, it is worth noting that the recommended data volume per lap (e.g, Q0 = 300 Mbits using

the optimized circular trajectory for the case without wind, or Q0 = 400 Mbits using the optimized

8-shape trajectory for the case with wind) serves as a good reference for partitioning arbitrarily

large data volume Q into M = ⌈Q/Q0⌉ laps.

2) Wind Velocity Change:

a) Wind Direction: For a given wind speed, we first investigate the effect of wind direction

on the optimized trajectory and energy consumption. For illustration, we investigate the 8-shape
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trajectory whose trajectory orientation can be optimized in adaptation to the wind direction and

achieve lower energy consumption. Assuming that Vw = 10m/s and Q0 = 400 Mbits, Fig. 10

shows the energy consumption for the 8-shape trajectory under different trajectory orientation. The

benchmark scheme is exact 8-shape trajectory with two circles tangent to each other, just optimizing

speed V , radius r and period T0. It can be seen that our proposed scheme outperforms the benchmark

scheme regardless of the initial orientation, whereby the optimized orientation (e.g., θ = 10◦) in

adaptation to the wind direction can further lower the energy consumption. The underlying reason

can be similarly explained as in the previous paragraph.

-250 -150 -50 50 150 250

x (m)

-250

-150

-50

50

150

250
y
 (

m
)

Benchmark

Wind
0

(b)

-250 -150 -50 50 150 250

x (m)

-250

-150

-50

50

150

250

y
 (

m
)

Benchmark

Wind

(c)

0

Fig. 10: The effect of different initial trajectory orientation θ0 on energy consumption. (a) Energy consumption versus

trajectory orientation, (b) Benchmark and SCA-based 8-shape trajectory with θ0=10◦, (c) Benchmark and SCA-based

8-shape trajectory with θ0=275◦.

b) Wind Speed: Consider Q0 = 400 Mbits and a given wind direction from south to north.

The energy consumption of two trajectory initializations under different wind speed are shown

in Fig. 11. For the benchmark schemes (exact circular/8-shape, just optimizing V , r and T0), it

is observed that the energy consumption increases with the wind speed. On the other hand, our

proposed scheme optimizes the trajectory in adaption to the wind, and surprisingly, even reduces

more energy consumption at higher wind speed in this example setup. In particular, due to the

anisotropy of the 8-shape trajectory, it can make better use of wind to reduce energy consumption,

which is consistent with the conclusions of Figures 7 to 10. Therefore, in the presence of prominent

marine wind, it is of vital importance to adapt to or even proactively utilize the wind for energy

efficient trajectory design.

c) Wind Variance: Consider stochastic wind velocity with mean 10 m/s (from south to north)

and different standard deviation σf . For illustration, consider 8-shape trajectory with Q = 6 Gbits

and Q0 = 400 Mbits. The results are plotted in Fig. 12.

First, for the special case under fixed wind, the energy consumption of our optimized 8-shape

trajectory and that of the benchmark trajectory (exact 8-shape with optimized V , r and T0) are
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Fig. 11: Energy consumption of two trajectory initializations under different wind speed.

shown by dash-dotted lines in the lower and upper graphs of Fig. 12, respectively, whereby the

former (around 85 kJ) is significantly lower than the latter (around 109 kJ). This confirms the

effectiveness of our offline optimization that minimizes the overall energy consumption.

Second, for the random wind case with different variance, we compare our proposed HO2 design

with the baseline scheme which completely follows the offline path without any online adaptation.

Since the baseline scheme may violate the airspeed and acceleration constraints, it may not be

feasible in online operation.8 Nevertheless, for comparison with our proposed HO2 scheme, we still

record its theoretical energy consumption regardless of the constraint violation. From Fig. 12, it

can be seen that the energy consumption increases with wind variance, since a larger wind variance

would enlarge the gap between the airspeed online and the optimized airspeed offline. On the other

hand, it can be observed that our proposed HO2 scheme consumes less energy than the baseline

while ensuring feasible online operation, and the gap becomes obvious as the wind increases. The

underlying reason is that the HO2 scheme is able to refine the trajectory and airspeed in each time

slot in adaptation to real-time wind velocity.

Finally, for both the proposed HO2 scheme and the baseline scheme, we consider three types of

offline trajectories, i.e., 1) benchmark (exact 8-shape with optimized V , r and T0 under fixed wind),

2) optimized under fixed wind (offline optimization based on Section IV) and 3) optimized using

SP (offline optimization based on Section V). Several interesting observations are made as follows.

First, compared with the benchmark trajectory, the optimized offline trajectory based on fixed wind

or SP has much lower energy consumption. Second, the trajectory based on SP offline performs

8In fact, for the example setup here, the baseline scheme almost surely violates one or more constraints along the whole path.
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the best, which optimizes all the constraints considering the wind statistics. Third, it is worth

mentioning that even with online adaptation, the benchmark trajectory may not be feasible when

the wind velocity changes greatly (e.g., when σf = 2.0 m/s). Therefore, our optimized trajectory

can better adapt to the wind variations in practice.
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B. Multi-buoy Case

1) Long Buoy Distance: In this case, the buoys are distributed in a large area and are far from

each other. If the data volume Q to be collected from each buoy is large, we could devise a proper

visiting order of the buoys, and then apply our cyclical trajectory design for each one of them; if the

data volume Q is small/moderate, we could jointly optimize the trajectory and communication to

reduce the UAV’s energy consumption, subject to wind effect. For illustration, consider q0 = [0, 0]T

m, qF = [1200, 0]T m, Vw = 10 m/s (headwind, from east to west), and three buoy locations as

shown in Fig. 13(a). Assume that each buoy has the same required Q = 200 Mbits and the UAV

needs to complete the task in time T = 90 s.

We first discuss the optimized UAV trajectory and communication time allocation for the fixed-

wind situation. It can be seen from Fig. 13(b) that more time is allocated to a buoy when the UAV

flies closer to it, which conforms to the cyclical TDMA principle to exploit the good channel asso-

ciated with short UAV-buoy distance. Then, under the headwind condition, by properly optimizing

the UAV’s trajectory and airspeed, the UAV can have more time to communicate with each buoy at
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a shorter distance, which helps to shorten the flight trajectory and thus reduce energy consumption

by 10.4% (e.g., 10.49 kJ without wind and 9.40 kJ with wind). This thus validates the effectiveness

of our joint trajectory and communication design in minimizing the UAV’s energy consumption

subject to wind effect.

Next, we study the effectiveness of the proposed HO2 design for random wind. Assuming standard

deviation σf of wind equal to 1.0 m/s, the offline optimized trajectory based on SP via SAA is shown

by the yellow line while the online fine-tuned trajectory is shown by the blue line in Fig. 13(a).

The energy consumption after HO2 optimization is about 9.46∼9.52 kJ, which is still lower than

that of the case without wind. Therefore, the online adaptation further refines the UAV airspeed and

communication time for feasible online operation as shown in Fig. 13(b), which can also effectively

utilize the wind for reducing energy consumption. These results are consistent with those obtained

under single-buoy setup.

Fig. 13: (a) Optimized UAV trajectory with/without wind. (b) Communication time allocation, with wind (similar for

the case without wind).

2) Short Buoy Distance: In this case, the buoys are clustered in a small region. We can then

design cyclical trajectories to fit the buoys’ topology and also cater for the wind effect. For

illustration, consider two topologies each with five buoy locations shown in Fig. 14(a) and (c),

respectively. Assume that the wind blows from south to north. For the case with large data volume

to be collected, we consider two kinds of data partitions with Q0 = 100 Mbits and Q0 = 200

Mbits in each lap, respectively. The optimized UAV trajectories for different buoy topology and Q0

with/without wind are shown in Fig. 14.

For the topology in Fig. 14(a) and (b) with spreaded buoys, as Q0 increases, it is observed that

the optimized trajectory gets closer to each of the buoys in order to collect data at a higher rate.

Similar results are observed for the line topology in Fig. 14(c) and (d). In addition, by comparing
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Fig. 14(a) and (c) under the same Q0, it is observed that the optimized trajectory becomes flat in Fig.

14(c), which tends to fit the buoys’ topology and get closer to the buoys. The above results further

validate our proposed joint trajectory and communication design in adapting to the buoys’ topology

under different data volume requirement. Meanwhile, similar to the single-buoy case, the optimized

trajectory can proactively exploit the wind and achieve lower energy consumption. For instance,

consider the topology with spreaded buoys with Q0 = 200 Mbits in Fig. 14(b). We compare our

optimized trajectory with the benchmark trajectory (not shown in the figure for brevity) which is

exact circular with optimized V , r, T and equal time allocation for each buoy. First, for the case

without wind, it is observed that the energy consumption of our optimized trajectory is much lower

than the benchmark (e.g., 19.50 kJ for optimized scheme and 26.51 kJ for benchmark). Second,

for the fixed-wind case, the optimized trajectory can even utilize the wind to further reduce the

energy consumption, while the benchmark scheme experiences increase in the consumed energy

(e.g., 18.36 kJ for optimized scheme and 27.25 kJ for benchmark). Finally, for the case with random

wind, the proposed HO2 design can still adapt to the wind variations effectively in these multi-buoy

setups with low energy consumption (e.g., 18.45 kJ∼18.74 kJ with σf = 1.0 m/s).
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VIII. CONCLUSIONS

This paper investigates a maritime data collection system with a fixed-wing UAV dispatched as

a mobile data collector, and aims to minimize its energy consumption by joint trajectory and

communications optimization, subject to marine wind effect. This problem is non-convex and

difficult to solve, especially when the target data volume is large. We propose a new cyclical

trajectory design framework that can handle arbitrary data volume efficiently subject to wind effect,

with reduced trajectory/computational complexity. Furthermore, we propose the HO2 optimization

which adapts to wind variations by leveraging both the statistical and real-time wind velocity.

Numerical results show that our proposed cyclical scheme can proactively utilize the wind and fit

the buoys’ topology, which achieves significant energy savings compared with benchmark schemes.

Moreover, the HO2 design can effectively adapt to wind variations with feasible and robust online

operation, as well as low energy consumption. Finally, the proposed HO2 optimization framework

is general and can potentially be applied to other scenarios with stochastic environmental factors.
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