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Abstract—Reconfigurable intelligent surface (RIS) has been
recognized as a potential technology for 5G beyond and attracted
tremendous research attention. However, channel estimation in
RIS-aided system is still a critical challenge due to the excessive
amount of parameters in cascaded channel. The existing com-
pressive sensing (CS)-based RIS estimation schemes only adopt
incomplete sparsity, which induces redundant pilot consumption.
In this paper, we exploit the specific triple-structured sparsity
of the cascaded channel, i.e., the common column sparsity,
structured row sparsity after offset compensation and the common
offsets among all users. Then a novel multi-user joint estimation
algorithm is proposed. Simulation results show that our approach
can significantly reduce pilot overhead in both ULA and UPA
scenarios.

Index Terms—Reconfigurable intelligent surface (RIS), cas-
caded channel estimation, structured compressive sensing

I. INTRODUCTION

Recently, reconfigurable intelligent surface (RIS) has been

recognized as a potential technology for 5G & beyond and

attracted tremendous research attentions [1], [2]. As a new

electromagnetic (EM) material equipped with integrated elec-

tronic circuits, RIS elements can independently reflect incident

signals by controlling phases to form a strong energy focus-

ing without additional power amplifiers. Due to the passive

reflection paradigm, RIS displays great advantages in the low

hardware cost and energy consumption compared with regular

Amplify-and-Forward (AF) relays [3]. More importantly, ad-

ditional non-line-of-sight (NLoS) paths can be complemented

via the deployment of RIS, especially when the line-of-sight

(LoS) channel is obstructed by buildings or trees. In another

word, RIS provides an opportunity to change channels actively

and helps to enhance the wireless cellular network coverage.

Unfortunately, it is a serious challenge to acquire the full

channel state information (CSI) in RIS-assisted system. Since

no radio frequency (RF) chains are equipped at the passive

RIS, CSI can only be estimated through active antennas at base

station (BS) and user equipment (UE) side [1]–[3]. Besides,

compared with conventional direct channel from UE to BS,

the channel in RIS-assisted system contains a quite larger

dimension, as a compound of the channel between RIS and

BS, and channels between UEs and RIS.

To the best of our knowledge, cascaded channel estimation

was first studied in [4], where RIS turns on only one ele-

ment successively in every timeslot for estimation. Another

decomposition-aided RIS channel estimation approach was

then proposed in [5]. However in above schemes, the pilot

overhead is proportional to the size of RIS elements and turns

unacceptable when massive RIS elements are equipped. There-

fore, sparsity-assisted compressive sensing methods [6]–[9]

were further studied to pursuit lower overhead consumption.

Furthermore, some sparse structures were partially analyzed in

[7], [8] including the common RIS-BS sparsity after subspace

projection [8], and a courageous assumption that all users share

partially common paths [7]. But unfortunately, to our best

knowledge, no estimation approach has completely analyzed

the specific structured sparsity in RIS cascaded channel, which

is greatly helpful to reduce pilot overhead.

In this paper, by exploiting the triple-structured sparsity

of the cascaded beamspace channel, we propose a novel

compressive sensing (CS)-based multi-user joint estimation

algorithm. Regardless of the column sparsity which has been

widely used in previous studies [7], [8], two another structures

are first analyzed in this paper, i.e., structured row sparsity after

offset compensation and the common offsets among all users.

Furthermore, we extend the algorithm from uniform linear

array (ULA) configuration to uniform planar array (UPA).

Simulation results show that our proposed algorithm reduces

pilot overhead significantly and outperforms several previous

partial-structured CS-based approaches.

II. SYSTEM MODEL

In this paper we consider a RIS-aided MU-MIMO uplink

narrow-band system, as shown in Fig.1, where K single-

antenna users transmit signals to one base station (BS) through

RIS. The BS and RIS are equipped with NBS antennas and

NI reflective elements respectively, which are inhere assumed

as ULA 1 for convenient analysis. G ∈ CNBS×NI denotes

the channel matrix from NI reflective elements to the BS,

1Actually UPA model is more suitable to reflective elements. The extension
to UPA will be shown in Section V.
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Fig. 1. block diagram of RIS-aided MU-MIMO system.

and hk denotes the channel from the k-th user to the RIS

(k = 1, . . . ,K). Then the channel matrices G and hk can be

represented via Saleh-Valenzuela channel model as follows:

G =

L1
∑

l1=1

αG
l1
aNBS

(

sin(θGr

l1
)
)

aNI

(

sin(θGt

l1
)
)H

, (1)

hk =

L
(k)
2
∑

l2=1

αl2,kaNI
(sin(θl2)) , k = 1, . . . ,K, (2)

where αG
l1

and αl2,k denote gains for the l1-th path of RIS-BS

channel and the l2-th path of k-th UE-RIS channel. L1 and

L
(k)
2 are the total path numbers for channel matrices G and

hk. The angles of arrival (AoAs) and departure (AoDs) for

RIS-BS channel are marked as θGr

l1
and θGt

l1
, l1 = 1, . . . , L1.

Similarly θl2 represents AoA of the l2-th UE-RIS path for the

k-th user. aN (·) denotes the ULA array steering vector and

can be formulated as:

aN (ψ) =
1√
N

[

1, ej2π
d
λ
ψ, . . . , ej2π

d
λ
(N−1)ψ

]

, (3)

where d is the fixed antenna spacing with d = λ/2 and λ
denotes the carrier wavelength.

In practical scenarios the total channel between UE and BS

can be divided into direct LoS path and RIS-aided channel.

Since the LoS path can be directly estimated when RIS turns

off all reflective elements, we neglect the LoS part here and

only consider the RIS-aided channel estimation. Thus the

received signals at BS can be written as follows

yk,t =G · diag(φt) · hksk,t + nk,t

=G · diag(hk) · φtsk,t + nk,t

(4)

In (4), φt ∈ CNI×1 denotes the phase shifting vector of

RIS at t timeslot and nk,t ∼ CN (0, σ2
N INBS

) represents the

additive white Gaussian noise (AWGN) at the receiver. After

T timeslots, we can combine the T equations from t = 1 to T

and rewrite (4) as

Ŷk = G · diag(hk) ·Φ+Nk, (5)

where Ŷk,Nk ∈ CNBS×T are the combinations of yk,t and nk,t
along the timeline respectively. With the property of sparsity

for Saleh-Valenzuela model, we reformulate (5) via beamspace

channel representation Ĝ = FGFH and Ĥk = Fdiag(hk)F
H

(F is the FFT matrix) and we can obtain:

FŶk = Ĝ · Ĥk · FΦ+Nk, (6)

Notice that ĜĤk is the beamspace cascaded channel marked

as HH
k . Let Yk = ŶkF

H denote measurement signals and

A = ΦHFH denote sensing matrix. Then we can reformulate

it as conventional compressive sensing model for estimation:

Yk = A ·Hk +NH
k . (7)

To estimate the sparse cascaded beamspace channel Hk with

lower pilot overhead, CS theory can be utilized here such as the

conventional single measurement vector (SMV) and multiple

measurement vectors (MMV) problems [10]. Unfortunately,

direct applications of those CS methods usually lead to per-

formance loss due to the neglected useful prior information,

i.e., the specific triple-structured sparsity. Consequently, more

pilot overhead is required to guarantee enough estimation

performance in conventional CS-based methods.

III. STRUCTURED SPARSITY ANALYSIS

In this section, we illuminate the specific triple-structured

sparsity in the cascaded beamspace channel Hk. We depict the

procedure for Hk = ĤH
k ĜH in Fig.2, where the darkness of

color indicates the corresponding channel gains in the angular

domain.

As shown in Fig.2, the RIS-BS beamspace channel Ĝ has

both row and column sparsity and the UE-RIS beamspace

channel Ĥk = Fdiag(hk)F
H displays a generalized diagonal

sparsity. It is uncomplicated to get that, assume only one path

exists in hk with AoA θ = 0 and path gain α = α0, then the

beamspace UE-RIS channel Ĥk will be diagonal with diagonal

elements Ĥk(i, i) = α0. When the AoA θ 6= 0, it turns

to a circulant-shift permutation matrix with shift distance as

NI sin(θ).
2 Generally, when there exist several paths in hk,

the cascaded channel Ĥk is composed of several circulant-

shift permutation matrices, where each generalized diagonal

corresponds to one uniform-quantized AoA as shown in Fig.2.

And the triple-structured sparsity is analyzed in detail as

follows:

1) Column sparsity:

Several previous studies have explored this sparsity such as

[7], [8], which is caused from the common sparse scatters at

BS side. As shown in Fig.2, the beamspace cascaded channel

Hk is column-sparse due to the limited AoAs θGr

l1
in RIS-BS

2We only consider on-grid situation and assume that sin θ = n/NI, n ∈ Z

here. Off-grid estimation is left for works in future.
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k
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Fig. 3. Block diagram of the triple-structured sparsity among users.

channel. Let ICol
k denote the indices set of non-zero columns

in Hk, from [8] we can get that

ICol
1 = ICol

2 = · · · = ICol
K , |ICol

k | = L1. (8)

This sparsity has been widely adopted before and we omit

detailed illumination here for brevity.

2) Structured row sparsity (after offset compensation):

The cascaded sparse channel Hk can be regarded as a

diffusion of ĜH , where each element is extended by scatters

in UE-RIS channel. We mark θl2,k as the extensive pattern and

regard the path locations of Ĝ as initial points. For example

in Fig.2, the three non-zero elements in ĜH are extended to

three columns in Hk, where the extensive pattern is directly

controlled by the distribution of θl2 , l2 = 1, 2, 3, 4. Therefore

we can get that, after compensating the offsets caused by

different AoDs θGt

l1
, there exists a specific structured sparsity

on the rows of cascaded beamspace channel Hk. As marked

by blue circles in Fig.3, the offset value for the k-th user in the

l1-th non-zero column is marked as ∆θl1,k compared with the

first non-zero column. Let IRow
l1,k

denote the indices of non-zero

values in the l1-th non-zero column of Hk. For example in

Fig.2 (NI = 64), we have IRow
1,k = {20, 35, 38, 50}, IRow

2,k =

{4, 19, 22, 34} and IRow
3,k = {10, 25, 28, 40}, and the offset

values for each non-zero column are ∆θ1,k = 0, ∆θ2,k = −16
and ∆θ3,k = −10. Therefore the bias-structured sparsity with

several offsets inside the k-th user can be formulated as

IRow
1,k −∆θ1,k = IRow

2,k −∆θ2,k = · · · = IRow
L1,k
−∆θL1,k (9)

Besides, we can also analyze this type of sparsity via (1)

and (2) mathematically. The beamspace cascaded channel with

ULA configuration can be formulated as follows according to

[8]:

G · diag(hk) =

LG
∑

l1=1

Lk
∑

l2=1

αG
l1
αl2,kaNR

(

sin(θGr

l1
)
)

×aNI

(

sin(θGt

l1
)− sin(θl2,k)

)H

,

(10)

And we can obtain similar conclusion via (10).

3) Common offsets shared by all users:

As analyzed above, bias-structured row sparsity exists inside

the cascaded channel Hk for each user k. Moreover, from

all users’ joint point of view, as shown in Fig.3, it can be

observed that all users share the common offsets corresponding

to the sparse column index l1. This is because the offset ∆θk,l1
between the 1-th and l1-th columns is only related to AoDs at

RIS side, and UE-RIS channel hk has no influence on it. This

structured sparsity here can be formulated mathematically as

∆θl1,1 = ∆θl1,2 = · · · = ∆θl1,K = sin(θGt

l1
)−sin(θGt

1 ). (11)

And (11) can be regarded as a beneficial prior information

for multi-user cascaded channel estimation, especially when

Structure 2 is exploited with unknown offsets to be estimated.

Remark 1: It is worth noting that the three types of structures

are first jointly analyzed and exploited in this paper. Actually

Structure 1 has been widely applied in [7], [8] and brings a

high improvement in estimation accuracy. But unfortunately,

in [7] it is impractical to assume that all users share certain

common paths among UE-RIS channels hk, k = 1, . . . ,K .



And in [8], the structured sparsity is summarized as a common

subspace projection into beamspace RIS-BS channel Ĝ, where

the authors didn’t give a mathematically clear analysis. Actu-

ally the common subspace property, regarded as an intuitive

description for Structure 3, is insufficient and can be further

improved. Until now little research has exploited Structure 1,

2 and 3 jointly for enhanced estimation to our best knowledge.

IV. ON-GRID CASCADED CHANNEL ESTIMATION

In this section, based on the triple-structured sparsity an-

alyzed in Section III, we propose a novel multi-user joint

cascaded channel estimation scheme named as MTSCS-CE.

Three-phase procedure is designed to apply Structure 1, 3

and 2 successively. The calculational complexity is close to

conventional OMP method but pilot overhead can be remark-

ably reduced under the same NMSE accuracy. Our proposed

algorithm in this paper focus on on-grid scenarios, while super-

resolution estimation based on the triple-structured sparsity and

the tradeoff between estimation accuracy and complexity will

be further studied to overcome the energy leakage problem.

A. Sparse-column estimation: Phase 1

Since the common column sparsity (Structure 1) has been

well studied before, we directly utilize methods in [7] for the

common column support estimation as Phase 1. Calculate the

total power of each column in measurement signals Yk. Since

users’ channels are all column-supported by the same AoAs

at BS, we sum up powers along different users to jointly

estimate the maximum L1 supporting beams, which is written

as follows:

Ωc = Γ

(

diag(

K
∑

k=1

YH
k Yk ), L1

)

, (12)

The operator Γ(v, L1) represents to extract the column indices

corresponding to the largest L1 values in vector v. When we

obtain the column support set Ωc, we neglect the rest NI−L1

columns and cut off the matrix column dimension to L1, i.e.,

set Yk ← Yk(:,Ω
c), Hk ← Hk(:,Ω

c) for the following row-

structured estimation.

B. Offset-structured sparse-row estimation: Phase 2

In this phase we assume the offset ∆θl1 is already known.

By exploiting Structure 2, the cascaded channel estimation

problem for user k can be reformulated as:

min
Hk

supp(Hk(:, l1))

s.t. C1 : ‖Yk −AHk‖2F ≤ ǫ

C2 : {supp(Hk(:, l1))−∆θl1}◦NI
= Sk, ∀ l1 = 1, . . . , L1

(13)

where the {a}◦N = a − ⌊a/N⌋ × N denotes the period-shift

operator moving all elements of a into the interval [1, N ]. C1

confirms the accuracy of channel estimation and C2 denotes

that user k’s all columns Hk(:, l1) share a common pattern Sk

through corresponding offsets ∆θl1 (Structure 2), where the

pattern Sk is controlled by UE-RIS channel hk and offsets

∆θl1 are controlled by AoDs in RIS-BS channel G.

Then the supporting vectors among different columns in

Hk can be regrouped depending on ∆θl1 , l1 = 1, . . . , L1. In

another word, if the j-th element in column 1 is non-zero, there

must exist a corresponding non-zero value at the {j −∆θ1 +
∆θi}◦NI

row of i-th column due to the offset-structured sparsity.

Therefore, let {p, p+α1−α2, . . . , p+α1−αLk
}◦NI

denote the

p-th grouped indices set and we only need to search for the

dominant L
(k)
2 grouped sets from p = 1, . . . , NI to reconstruct

the offset-structured sparse beamspace channel, which is quite

similar to simultaneous OMP method.

C. Multi-user joint offset estimation: Phase 3

However, notice that the particular offset-structured sparsity

cannot be exploited directly in Phase 2 because actually the

offsets are unknown, which means we should first estimate the

offset values before Phase 2, or estimate the pattern Sk and

offset values αi simultaneously and iteratively.

From previous work [8], a coarse estimated beamspace

channel can be easily obtained, which can be utilized here

as an initial resolution and marked as H
(0)
k . Although under

conventional OMP scheme the gains may keep a large bias

compared with the real channel, the offset is little affected by

OMP accuracy. Since the overall columns in Hk are shifted

from a common pattern Sk when user index k is fixed, we

can take a periodic cross-correlation between the first column

and every other column in H
(0)
k to obtain the offset ∆θl1 .

Besides, notice that offset values are controlled by AoDs of

RIS-BS channel G, which is shared by all user k = 1, . . . ,K
(Structure 3). Thus we can process an enhancement with all

users considered together as:

∆θl1 = Υ1

(

K
∑

k=1

[

Hk(:, 1)⊛
1 Hk(:, l1)

]

)

(14)

where Υ1(·) denotes an operator to extract 1-dim index of

the element with the largest amplitude and ⊛
1 represents 1-

dim periodic cross-correlation operator between two vectors.

Finally, the detailed specific algorithm can be summarized in

Algorithm 1, which contains the triple-structured sparsity in

cascaded channel.

V. EXTENSION TO UPA MODEL

Instead of ULA, RIS is more widely configured with UPA

elements, whose size is marked as N1×N2. Correspondingly,

the steering vector at RIS side is reformulated as:

ā(θ, φ) = aN1(θ) ⊗ aN2(φ), (15)

where θ and φ denote the azimuth and elevation angles in

the path. The DFT codebook for UPA is rewritten as F̄ =
FN1 ⊗ FN2 . Channel and system models here are similar to

those in ULA scenario after replacing aN by ā.

It is worth pointing out that the structured sparsity in UPA-

RIS scenario is partially different from the analysis in Section



Algorithm 1 Multi-user joint Triple-Structured CS-based

Channel Estimation (MTSCS-CE)

Input: measurement matrices Yk, sensing matrix A, coarse

estimation results H
(0)
k via conventional OMP, sparsity L1

and L
(k)
2 , k = 1, . . . ,K

Output: beamspace cascaded channel Hk, k = 1, . . . ,K
% Phase 1: Sparse column estimation

1: select the dominant L1 column indices Ωc depending on

the signal power via (12). Then set Yk ← Yk(:,Ω
c) and

H
(0)
k ← H

(0)
k (:,Ωc)

% Phase 3: Multi-user joint offset estimation

2: calculate offsets ∆θl1 from coarse estimation results H
(0)
k

via multi-user circular correlation in (14).

% Phase 2: Structured row estimation

3: rk,l1 ← Yk(:, l1); Hk = 0

4: for k = 1 to K do

5: for l2 = l to L
(k)
2 do

6: p̂← argmax
p

L1
∑

l1=1

∥

∥AH(:, p+∆θl1)rk,l1
∥

∥

2

7: Pk ← Pk ∪ {p̂}
8: for l1 = 1 to L1 do

9: Ξk,l1 ← {Pk +∆θl1}◦NI

10: rk,l1 ← [I−A(Ξk,l1)A
†(Ξk,l1)] ·Yk(:, l1)

11: end for

12: end for

13: end for

% Output

14: Hk(:,Ω
c(l1)) = A†(Ξk,l1) ·Yk(:, l1),

∀ k = 1, . . . ,K, l1 = 1 . . . , L1
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Fig. 4. Block diagram of the triple-structured sparsity for single user under
UPA configuration.

III. The RIS-BS channel G can be similarly transformed into

beamspace as a row-column double-sparse matrix. However,

the beamspace sparsity for Ĥk = F̄diag(hk)F̄
H changes. Due

to the two azimuth and elevation periodic angles θ and φ,

the beamspace channel Ĥk shows a two-hierarchical diagonal

sparsity, which means that no evident column correlation exist

in the final cascaded beamspace channel Hk.

To handle this challenge and apply offset-structured sparsity

property in UPA-RIS estimation, we rewrite the cascaded

beamspace channel Hk ∈ CN1N2×NBS as a tensor form

H′
k ∈ CN1×N2×NBS . As depicted in Fig.4, each column of Hk

is reshaped to N1×N2 and arranged horizontally. Then a direct

2-dim correlation clearly appears among different horizontal

planes.

For on-grid triple-structured CS estimation, since the basic

idea is similar to that in Section IV, we only demonstrate

certain differences here. Assume the solution via OMP with-

out structured property is known and marked as H
(0)
k =

[h
(0)
k,1, . . . ,h

(0)
k,NBS

]. First, we should take each non-zero column

into one matrix H
(0)
k,l1

, i.e.

M
(0)
k,l1

= unvecN1,N2

(

h
(0)
k,l1

)

, (16)

and then tune (14) from 1-dim correlation to 2-dim correlation:

(∆θl1 ,∆Φl1) = Υ2

(

K
∑

k=1

[

M
(0)
k,l1

⊛
2 M

(0)
k,1

]

)

, (17)

where Υ2(·) denotes an operator to extract 2-dim index of the

element with the largest amplitude and ⊛
2 represents 2-dim

periodic cross-correlation operator between two matrices.

When offsets are obtained via (17), we rearrange N1N2

supporting vectors in sensing matrix A to 2-dim N1 × N2

plane, marked as vn1,n2 , and combine

Sn1,n2 = {vn1+∆θ1,n2+∆Φ1 , . . . ,vn1+∆θL1 ,n2+∆ΦL1
} (18)

as a joint supporting set for the structured sparsity. Then

sparse results can be achieved by greedily traversing all N1N2

set from (n1 = 1, n2 = 1) to (n1 = N1, n2 = N2) via

simultaneous OMP.

VI. SIMULATION RESULTS

In this section we depict our simulation results for the

proposed structured CS-based estimation scheme. Simulation

results in the UPA scenario are similar to ULA and thus

we only display ULA simulations here for brevity and space

restriction. Assume L1 = 4 paths exist in the RIS-BS channel

G and path number in hk is independently selected from 4

to 8, i.e., 4 ≤ L
(k)
2 ≤ 8. Path gains follow complex Gaussian

distribution, while only on-grid AoAs and AoDs are generated

in the channels G and hk. In ULA configuration, we set

NBS = 64, NI = 128 and K = 16. Signal-to-noise ratio (SNR)

is set as 0 dB. Other detailed parameter settings can be found

in [7]. Normalized mean square error (NMSE) is chosen as the

accuracy metric for estimation.

Fig.5 and Fig.6 compare the NMSE performance of the pro-

posed MTPCS-CE algorithm, conventional CS based scheme

[6], the row-structured sparsity based scheme [8], DS-OMP

method [7] and the oracle LS algorithm (lower bound). The

row-structured-based scheme and DS-OMP method both adopt

incomplete sparsity in the cascaded channel. The former only
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Fig. 5. NMSE against pilot length T with SNR fixed as 0 dB.

utilize the sparsity of BS AoAs and the latter is processed under

a courageous assumption that all users share Lc common paths

in communication. In our simulation for convenience we set

Lc = 4. It is worth noting that this parameter Lc only effect

the performance of DS-OMP method but has no influence on

other schemes including our proposed MTPCS-CE algorithm.

Fig. 5 shows the impacts of pilot overhead timeslot number

T on the NMSE with SNR fixed to 0 dB. As shown in Fig.5,

all estimation performances turn quite close to the oracle LS

algorithm when pilot timeslots are large enough (T ≥ 128),

which can be illuminated via CS property with extremely

large measurement. As for our proposed algorithm, it can be

easily observed that the MTPCS-CE algorithm outperforms

other partial sparsity-based schemes, since more helpful prior

information (more sparse structures) are exploited in our pro-

posed scheme. Consider T = 32 and SNR = 0 dB as an

example, we can find that the new algorithm achieves an

extreme enhancement about almost 10 dB compared with DS-

OMP scheme, and only keeps a quite close gap about 1 dB to

oracle LS method. The same conclusions can be obtained in

the simulation of NMSE against SNR, as shown in Fig.6.

VII. CONCLUSION

In this paper, by exploiting specific triple-structured sparsity

of the cascaded channel, we propose a novel CS-based multi-

user joint estimation algorithm. Sparse column supports and

common offsets among users are estimated first. After offset

compensation, the row-structured sparsity is further exploited

via SOMP for estimation. Moreover, we extend our algorithm

to UPA configuration, which is more practical in wireless

communications. The complexity is quite low and simulation

results show that the proposed approach can significantly

reduce pilot overhead.
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Fig. 6. NMSE against SNR with pilot overhead length fixed as T = 64 .
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