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Abstract

Using precoding to suppress multi-user interference is a well-known technique to improve spectra

efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high

performance and low complexity precoding method has been the focus in the last decade. The traditional

algorithms including the zero-forcing (ZF) algorithm and the weighted minimum mean square error

(WMMSE) algorithm failed to achieve a satisfactory trade-off between complexity and performance. In

this paper, leveraging on the power of deep learning, we propose a low-complexity precoding design

framework for MU-MIMO systems. The key idea is to transform the MIMO precoding problem into the

multiple-input single-output precoding problem, where the optimal precoding structure can be obtained

in closed-form. A customized deep neural network is designed to fit the mapping from the channels to

the precoding matrix. In addition, the technique of input dimensionality reduction, network pruning, and

recovery module compression are used to further improve the computational efficiency. Furthermore, the

extension to the practical MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) system is

studied. Simulation results show that the proposed low-complexity precoding scheme achieves similar

performance as the WMMSE algorithm with very low computational complexity.
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I. INTRODUCTION

The multiple-input multiple-output (MIMO) antenna technique can dramatically improve the

spectral efficiency by exploiting spatial domain resources, and has become a key enabling

technology for the next generation wireless communication systems. Combining with multi-user

spatial multiplexing, multi-user MIMO (MU-MIMO) can further increase the spectral efficiency

and user capacity, which is crucial for supporting the massive access scenario in the future. To

fully realize the potential of MU-MIMO, it is essential to preform precoding to suppress the

interuser interference.

Many methods have appeared in the literature to tackle the precoding problem in MU-MIMO

systems. Specifically, for the classic weighted sum rate (WSR) maximization problem, two

different types of solution have been proposed, namely, optimization-based iterative algorithm and

intuition-based non-iterative algorithm. The weighted minimum mean square error (WMMSE)

algorithm is one of the most popular iterative algorithms [1], [2]. The original WMMSE al-

gorithm is further improved in [3], [4]. In general, the WMMSE algorithm can achieve near

optimal sum rate performance. Yet, due to slow convergence rate and high-dimensional matrix

inversion in each iteration, the WMMSE algorithm suffers from high computational complexity.

Another feasible way is to solve the WSR problem heuristically, such as the zero-forcing (ZF)

algorithm. Since the heuristic algorithms enjoy a closed-form solution and thus have much

lower computational complexity. The performance of ZF-based algorithm under different system

settings has been studied in [5]–[11]. Since the ZF algorithm ignores the transmission noise and

has a restrict solution space, its performance is unsatisfactory in the low signal-to-noise-ratio

(SNR) regime or the fully loaded scenarios. In conclusion, the existing solutions suffer from

either high computational complexity or unsatisfactory performance.

Recently, deep learning (DL) has demonstrated its superiority in the fields of computer

vision and natural language processing, which motivates its application in the area of wireless

communications. For instance, DL has been used to solve many classic communication problems,

such as resource management [12]–[16], signal detection [17]–[19], channel estimation [20]–

[24] and beamforming [3], [4], [25]–[30]. The main advantage of DL is that, with rich training

samples, the intensive computing task is transferred to the offline training stage, only simple

forward computation is needed in the online predicting stage. As such, DL provides a new
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way to design low complexity precoding algorithm. The DL-based design can be classified into

two different types, namely model-driven design and data-driven design [31], [32]. The model-

driven method tries to construct the neural network by leveraging on the prior expert knowledge.

One of the most popular model-driven approaches is “deep unfolding”, which unfolds the

existing iterative algorithm and embeds some trainable parameters to improve the performance.

The unfolding design of WMMSE algorithm for precoding has been discussed in [3], [27].

Specifically, the authors in [27] first proposed the idea of using deep unfolding of the WMMSE

algorithm for MISO downlink precoding. Different variations of the deep unfolding idea have

been proposed in [2], [3]. Generally speaking, the deep unfolding schemes could achieve decent

performance when compared with the original iterative algorithm. However, since the deep

unfolding method retains the iterative process, the computational complexity is still high. On the

other hand, the data-driven precoding algorithm has low computational complexity [28], albeit

with significant performance degradation. In most cases, it is more efficient to predict the key

features by network and then recover the solution of the original problem through a recovery

module. Aware of this, the authors in [3] and [4] proposed to take the intermediate iterative

variables in WMMSE algorithm as the network output, and then recover the final precoding

matrix through a recovery module. However, even with the recovery module designed in [4],

there is still noticeable performance gap with the WMMSE algorithm.

To realize high-performance data-driven precoding algorithm, the key is to simplify the learn-

ing task of network, which can be achieved by fully exploiting the existing expert knowledge.

Most recently, for the multi-input single-output (MISO) case, capitalizing on the optimal solution

structure derived in [33], [34], the authors in [29], [30] used convolutional neural network (CNN)

to fit the mapping between two power allocation vectors and the channel matrix. Motivated by

this, in the current paper, we first propose to transform the original MIMO precoding problem

into a MISO precoding problem, and then design a low complexity DL-based scheme for the

WSR maximization problem in MIMO systems. The extension to the practical MIMO orthogonal

frequency-division multiplexing (MIMO-OFDM) system is also discussed. The contributions of

the paper are summarized as follows:

• We propose a DL-based low complexity downlink precoding framework for MU-MIMO

systems. Capitalizing on the optimal precoder structure of the MISO systems, an approxi-

mated optimal precoder structure of the MIMO systems is presented.
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• The idea of input dimensionality reduction, network pruning and recovery module compres-

sion is proposed, which not only significantly improves the computational efficiency, but also

provides a simple way to balance the system performance and computational complexity.

• We extend the proposed scheme to the practical MIMO-OFDM scenario where multiple

adjacent resource blocks (RB) share a common precoding matrix. Based on the newly

derived optimal solution structure, a dedicated neural network is proposed to learn the

mapping from the channel to the key features.

• Simulation results show that the proposed scheme can achieve similar performance as the

WMMSE algorithm, but with much lower computational complexity. In addition, it was

demonstrated that the proposed scheme has strong generalization ability, and can adapt

to various scenarios with different number of user streams, varying number of users, or

imperfect channel state information (CSI).

The rest of this paper is organized as follows. Section II introduces the system model and

problem formulation. Section III gives the method of transforming the MIMO precoding problem

into MISO precoding problem. Based on the optimal solution structure, the novel learning based

low complexity precoding design is presented in Section IV. Then, Section V discusses the

extension to MIMO-OFDM systems. Extensive simulation results are presented in Section VI.

Finally, Section VII concludes the paper.

Notations: We use italic, bold-face lower-case and bold-face upper-case letter to denote scalar,

vector and matrix, respectively. AT and AH denote the transpose and Hermitian or complex

conjugate transpose of matrix A, respectively. A−1 denotes the inversion of matrix A. E{·}
denotes the statistical expectations. Tr{·} denotes the trace operation. ‖x‖ denotes the l-2 norm

of vector x. Cx×y denotes the x × y complex space. CN (µ, σ2) denotes the distribution of a

circularly symmetric complex Gaussian random variable with mean µ and variance σ2. U [a, b]

denotes the uniform distribution between a and b.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a single cell downlink MU-MIMO system, where the BS is equipped with Nt

transmit antennas and serves K users each with Nr antennas. The received signal at the k-th
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user yk ∈ C
Nr×1 is given by

yk = HkVksk +
K∑

m=1,m6=k

HkVmsm + nk, ∀k ∈ K (1)

where Hk ∈ CNr×Nt denotes the channel matrix from the BS to user k, Vk ∈ CNt×dk denotes

the precoding matrix for user k, dk is the number of data streams, nk ∈ C
Nr×1 denotes the

additive white Gaussian noise with distribution CN (0, σ2I), sk ∈ Cdk×1 denotes the transmitted

data for user k that satisfies E[sks
H
k ] = I, and it is assumed that the transmitted data between

different users is independent, K = {1, 2, ..., K} denotes the set of users.

B. Problem Formulation

For the downlink precoding design, we consider to maximize the weighted sum rate (WSR)

under total transmit power constraint, the problem is given below

P1 : max
{Vk}

K∑

k=1

αkRk, (2)

s.t.
K∑

k=1

Tr(VkV
H
k ) ≤ PT ,

where PT denotes the transmit power budget of the BS, αk is a weighted scalar which represents

the priority of user k. The achievable rate of user k, Rk is given by

Rk = log det


I+HkVkV

H
k H

H
k

(
∑

m6=k

HkVmV
H
mH

H
k + σ2I

)−1

 . (3)

It is obvious that P1 is nonconvex, and thus hard to solve. In prior works, an iterative WMMSE

algorithm has been proposed to find the optimal solution. Yet, it incurs high computational cost

and substantial delays, which makes it difficult to implement in practice. In the rest of the paper,

leveraging on the power of DL technique, we propose a DL-based method which achieves

comparable performance as the WMMSE algorithm with much lower complexity.

III. PROBLEM TRANSFORMATION

In this section, we start with the special MISO case, and present the optimal structure of the

downlink precoding matrix. Then by transforming the MIMO precoding problem into the MISO

precoding problem, the optimal structure in the general MIMO scenario is designed.
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A. Optimal Solution Structure

We first introduce the principles of the well known WMMSE algorithm [2], [3]. It repeats the

following three steps until convergence:

Uk =

(
σ2

PT

K∑

k=1

Tr
(
VkV

H
k

)
INr

+

K∑

m=1

HkVmV
H
mH

H
k

)−1

HkVk, ∀k, (4)

Wk =
(
Idk −UH

k HkVk

)−1
, ∀k, (5)

Vk = αk

[
K∑

m=1

(
σ2

PT
Tr
(
αmUmWmU

H
m

)
INt

+ αmH
H
mUmWmU

H
mHm

)]−1

HH
k UkWk, ∀k.

(6)

Therefore, the optimal precoding matrix V∗
k should meet the form of (6). For the MISO system

(i.e., Nr = dk = 1, ∀k), the intermediate iteration variables Uk and Wk reduce to scalars. To

avoid confusion, we use {hk, uk, wk,vk} to denote {Hk,Uk,Wk,Vk} in the MISO scenario.

Then the optimal precoding vector in (6) can be rewritten as

v∗
k = γk

(
σ2I+

K∑

m=1

λkh
H
mhm

)−1

hH
k , (7)

where λk = PT
αmumwmuH

m∑K
n=1

αnunwnuH
n

, γk = PT
αmumwm∑K

n=1
αnunwnuH

n

are scaling factors. It can be observed that

vk and ejθkvk have the same objective value in P1 [34], thus we have the following proposition.

Proposition 1. For the MU-MISO system with channel {hk, k = 1, ..., K}, the optimal solution

of P1 can be expressed as

v∗
k =

√
pkf



(
σ2I+

K∑

m=1

λmh
H
mhm

)−1

hH
k


 , (8)

where λk and pk are positive scaling factors satisfying
∑K

k=1 λk =
∑K

k=1 pk = PT . f [x] =

x/ ‖x‖2 is the normalization function.

Remark 1. For the WSR problem in the MISO system, the optimal solution depends on

two factors, namely the item

{(
σ2I+

∑K
m=1 λmh

H
mhm

)−1

hH
k

}
determining the beamforming

direction, and the item
{√

pk
}

determining the beamforming power. Moreover, to obtain the

optimal precoding vector v∗, only p and λ need to be calculated, where p is the downlink

power allocation vector, and λ can be viewed as the virtual uplink power allocation vector [34].
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With the optimal solution in hand, the original WSR problem P1 can be converted to two

power allocation problems. The powerful neural network can be used to learn the mapping from

the channel to λ = [λ1, ..., λK ]
T and p = [p1, ..., pK ]

T , as discussed in [29].

However, to the authors’ best knowledge, there is no such optimal solution structure of P1 for

MIMO systems (i.e., Nr > 1). To utilize the optimal solution structure in (8) for MIMO systems,

we resort to transforming the MIMO precoding problem into the MISO precoding problem.

B. Transform MIMO Precoding to MISO Precoding

Without loss of generality, we assume Nr < Nt. Performing the truncated singular value

decomposition (SVD) for Hk, we have

Hk = QkΣkT
H
k , (9)

where Qk ∈ CNr×Nr , T ∈ CNt×Nr , Σk = diag (σ1,k, ..., σNr ,k) denote the left singular matrix,

right singular matrix and square matrix composed of singular values, respectively.

As Qk can be regarded as a part of recovery precoding at the receiver, for downlink precoding

design, ΣkT
H
k can be interpreted as the equivalent channel matrix. Thus the equivalent received

signal ỹk = Q−1
k yk is given as follows.

ỹk = [σ1,kt1,k, ..., σNr,ktNr,k]
H

M∑

m=1

[v1,m, ...,vdm,m] sm + ñk, (10)

where σi,k denotes the i-th largest singular value, with ti,k ∈ C
Nt×1 being the corresponding

right singular vector, vi,k being the precoding vector for data si,k, si,k being the i-th stream of

sm.

Further separating the received signal of the i-th antenna of user k, we have

ỹi,k = σit
H
i,k

M∑

m=1

dm∑

j=1

vj,msj,m + ñi,k

= ĥi,kvi,ksi,k︸ ︷︷ ︸
desired signal

+ ĥi,k

M∑

m=1,m6=k

dm∑

j=1

vj,msi,m

︸ ︷︷ ︸
interference from other user′s streams

+ ĥi,k

dk∑

l=1,l 6=i

vl,msl,k

︸ ︷︷ ︸
interference from same user′s streams

+ñi,k, (11)

It can be seen that the transmission process of each data stream can be viewed as a MISO system

with the channel ĥi,k = σi,kt
H
i,k, where ĥi,k can be considered as the virtual channel. As shown

in (11), we propose to manually assign a virtual channel to each data stream, other streams from
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both other users and the same user are treated as interference. From the perspective of SVD

for the channel, there are Nr mutually orthogonal channels with different channel gains, among

which, we assign the channels with the highest gains to the dk data streams 1, which is given

below.

Ĥk = [σ1,kt1,k, ..., σdk,ktdk,k]
H , (12)

where σi,k denotes the i-th largest singular value, with ti,k ∈ CNt×1 being the corresponding right

singular vector. The virtual channel σi,kti,k is used for user k’s i-th data stream transmission.

Now define
{
Ĥk

}
as follows.

Ĥ =
[
ĤH

1 , ..., Ĥ
H
K

]
=
[
ĥH
1 , ..., ĥ

H
M

]
, (13)

where M =
∑K

k=1 dk denotes the number of total data streams, ĥm ∈ C1×Nt can be viewed

as the channel between the BS and a user with single receiving antenna, and has a priority

weight coefficient inherited from the original MIMO problem βm = αn, where
∑n−1

k=1 dk < m ≤
∑n

k=1 dk. To this end, the original MIMO WSR precoding problem becomes equivalent to the M

users MISO WSR problem with the channel
{
ĥm, m ∈ M

}
, where M = {1, 2, ...,M} denotes

the equivalent user set. The detailed process is summarized in Algorithm 1. It is worth noting

that the transforming process incurs a performance loss by discarding some available channels.

As demonstrated in Section VI-B, the performance loss is in general negligible.

IV. LEARNING BASED LOW COMPLEXITY PRECODING DESIGN

In this section, we will give the DL-based solution for the step 6 in Algorithm 1. We first

discuss the design of neural network. Then to further reduce complexity, we consider the

compression of recovery module and network pruning. Finally, the generalization ability of

the proposed scheme and computational complexity are discussed.

A. Neural Network Design

To realize high-performance precoding algorithm, instead of using the “black-box” approach,

it is essential to exploit expert knowledge, which can be achieved through pre-processing and

1Notice that, the proposed transformation method is only applicable when Nr ≥ dk,∀k. In case of Nr < dk, proper scheduling

algorithm can be applied in practice.
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Algorithm 1 MIMO precoding transformation

Input: Original channel matrix {Hk}.

Output: Precoding matrix {Vk}.

1: for: k = 1 : 1 : K do

2: Do truncated SVD for Hk: Hk = QkΣkT
H
k , where Σk = diag (σ1,k, ..., σNr ,k), Tk =

[t1,k, ..., tNr,k].

3: Ĥk = [σ1,kt1,k, ..., σdk,ktdk,k]
H

.

4: end for

5: Ĥ =
[
ĤH

1 , ..., Ĥ
H
K

]
=
[
ĥH
1 , ..., ĥ

H
M

]
.

6: Obtain the precoding matrix {v̂m} by solving the MISO WSR problem, where there are

M =
∑K

k=1 dk users in total, with the channel
{
ĥm

}
and priority weight {βm = αn}, satisfying

∑n−1
k=1 dk < m ≤∑n

k=1 dk.

7: for: k = 1 : 1 : K do

8: Vk =
[
v̂(k−1)dk+1, v̂(k−1)dk+2, ..., v̂kdk

]
.

9: end for

Pre-

processing

Neural 

network

Recovery

module
Channel 

matrix

Precoding 

matrix

Deep learning precoding framework

Figure 1: A general DL-based solution for MIMO precoding

post-processing. In general, an efficient deep learning based precoding method should consist

of the following three key steps as illustrated in Fig 1: 1) input pre-processing, which aims to

remove the redundant information and reduce the input dimension; 2) feature extraction, which

intends to extract the most significant features from the compressed input; 3) efficient recovery,

which enables high quality recovery based on the key features leveraging the expert knowledge.

The specific implementation of each sub module will be discussed below.

1) Pre-processing and Post-processing: The objective of pre-processing and post-processing

is to simplify the input and output of the network as much as possible. To simplify the output,

we need to leverage the optimal solution structure in (8), which is achieved by transforming the



10

original MIMO precoding problem to MISO precoding problem according to Algorithm 1. In

this way, the network only needs to output two power allocation vectors p and λ instead of the

whole precoding matrix, then (8) can be used as the recovery module to recover the precoding

matrix from p and λ. Moreover, for such a feature learning task, the existing works [29], [30]

directly use the channel matrix as the network input, while it is actually redundant for predicting

p and λ. To compress the network input, here we first give the following proposition.

Proposition 2. For WSR maximization problem in MISO system with channels {hk, ∀k} and

weights {αk, ∀k} of M users, the beamforming matrix’s key features {pk, λk, ∀k} in (8) is

determined by
{
αk,hih

H
j , ∀i, j, k

}
.

Proof: See Appendix A.

Let H ,

[√
β1ĥ

H
1 , ...,

√
βM ĥH

M

]
, where ĥk is the virtual channel. With Proposition 2 in

hand, we just need the inner product of each equivalent user channel vector as the network input

rather than the full channel state information. Therefore, H
H
H is taken as the input of the neural

network, compared with the full channel matrix H, the input dimension has been reduced from

(Nt ×M) to (M ×M). On the other hand, as the neural network only supports real number

operation, it is necessary to convert the input to the real number field. The conventional method

is to split the real and imaginary parts and then stack them together. However, since H
H
H is

a Hermitian matrix, the upper triangular part or lower triangular part of the matrix contains all

the input information. Therefore we adopt a more compact way proposed in [4], that is, we first

take the upper triangle of H
H
H, then reassemble the real part and imaginary part into a square

matrix.

2) Network Backbone Design: With pre-processing and post-processing, we adopt the network

architecture in [29] to fit the mapping between H
H
H and {pk, λk, ∀k}. As shown in Fig. 2, the

input of the network is the correlation matrix of the equivalent channels, hence, the powerful

convolutional neural network is a suitable choice for feature extraction [35]. The combination of

the 2D convolutional layer, the batch normalization layer and the leaky relu activation layer

composes the backbone of the network. Then the fully-connected layer combined with the
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Conv2D

BN

Leaky ReLU

FC

Recovery 

module

real

imaginary

preprocessing

Precoding 

matrix

Sigmoid + L1 normalization

Figure 2: Network structure for MIMO precoding

sigmoid activation layer are responsible for predicting p and λ from the extracted information.2

Considering that p and λ have constant l-1 norm, the outputs are further normalized by the

respective l-1 norm. The network is trained by combining supervised and unsupervised learning.

In the supervised learning stage, the label is obtained using the WMMSE algorithm, and the

model is trained with the MSE loss function. Then, unsupervised learning for WSR maximization

is used to further improve the performance.

B. Model Compression

1) Recovery Module Compression: To obtain the final precoding matrix, the recovery module

is needed to recover the precoding matrix from p and λ, which conducts the process as in (8).

Unfortunately, there exists a high-dimensional matrix inverse operation in (8), which introduces

high computational cost. So here we consider a low complexity recovery method. First let

V = [v1, ...,vM ], the recovery process can be rewritten as follows.

V̂ = F

((
σ2INt

+ ĤΛĤH
)−1

Ĥ

)
P

1

2 , (14)

where Ĥ is defined in (13), Λ = diag (λ1, ..., λM), P = diag (p1, ..., pM), and F ([a1, ..., aN ]) =[
a1

‖a1‖
2 , ...,

aN

‖aN‖2

]
is the column-wise normalization function.

2In [30], the authors proposed to estimate λ by p to further reduce the complexity. Since the p and λ share a common network

backbone, this method can not efficiently reduce the complexity and will cause a performance loss, thus is not considered in

this paper.
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Let H̃ = ĤΛ
1

2 , then (14) can be rewritten as V̂ = F

((
σ2INt

+ H̃H̃H
)−1

H̃Λ− 1

2

)
P

1

2 . With

the equivalent transformation
(
aI+AAH

)−1
A = A

(
aI+AHA

)−1
[36], where a > 0, finally

we have

V̂ = F

(
H̃
(
σ2IM + H̃HH̃

)−1

Λ− 1

2

)
P

1

2 . (15)

With the equivalent transformation from (14) to (15), the dimension of the inverse matrix is

reduced from Nt to M , in most of the practical MIMO systems, M < Nt, therefore, the

computational complexity of the restore module can be reduced.

2) Network Pruning: Artificially designed neural network generally have redundant parts,

so it is necessary to do model compression. For the CNN model in Fig 2, network structured

pruning is an efficient way to remove the unnecessary filters of the convolutional layers. We

adopt the pruning algorithm in [37], which removes the filters as well as their connecting parts.

We apply it to remove the redundant filters of the first two convolutional layers. The whole

pruning process can be divided into three steps:

• Large Model Training: In this stage, the complexity concern is omitted. Each convolutional

layer is assigned enough filters to guarantee the best convergence performance.

• Model Pruning: With the well-trained large model, for each convolutional layer, the filters

are sorted based on their l-2 norm, and the filter has the smallest l-2 norm is viewed as

unimportant [37], [38], thus needs to be pruned.

• Fine-Tuning: Perform fine-tuning training on the pruned model with a small learning rate

until convergence.

By repeating the last two steps above, the redundant parts can be gradually removed. In addition,

it is worth noting that with network pruning, the deep learning based precoding algorithm can

achieve dynamic adjustment between complexity and performance. In practice, different systems

may have different requirements for the computational complexity. By pruning more filters,

the complexity of network can be further reduced, at the cost of performance loss. Compared

with the conventional iteration based algorithms (e.g., WMMSE algorithm), which reduce the

computational complexity by adjusting the number of iterations, network pruning has a finer

adjustment range, and thus is more practical.
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C. Generalization

The main advantage of deep learning method is that it offloads most of the high complexity

operations to the training stage. Only simple forward calculation is required in the application

stage. However, the major issue is that the model is trained for a specific system configuration.

In the current wireless communication system, the system configuration may often change

dynamically, such as number of users, number of data streams and imperfect CSI caused by

the channel estimation. In this subsection, we will discuss the generalization performance of the

proposed method in the above scenarios.

1) Varying number of user streams: In the practical system, due to different data transmission

requirements, the number of user streams may change. This problem has not been properly

addressed in existing deep learning based methods. For the proposed algorithm, since the original

MIMO precoding problem is transformed into the MISO precoding problem, the neural network

only needs to predict the key feature of the MISO precoding problem with M =
∑K

k=1 dk user

streams. Therefore, as long as the total number of data streams remains unchanged, the trained

network is applicable for any MIMO system with {dk}, where dk satisfies 1 ≤ dk ≤ dmax and
∑K

k=1 dk = M .

2) Varying number of users and antennas: The change of the number of users (K) and

antennas (Nr, Nt) is also very common. We assume that we have obtained the well-trained

model for a group of specific system parameters. For the system with the same antennas but less

user, the zero filling method can be applied. For the system with different numbers of receive or

transmit antennas but serve same number of users, the proposed precoding scheme can be directly

applied without any additional processing. This is because with the pre-processing in Section

IV-A1, the input dimension is decreased to (M ×M), the information in antenna dimension has

been well extracted in the pre-processing stage.

3) Imperfect CSI: Many existing works on MIMO precoding assume that the CSI is perfect.

However, in the practical system, the CSI is obtained through channel estimation, and thus may

have errors (i.e., H̃k = Hk + n). The advantage of data-driven method is that it can adapt to

such an error through training. When preparing channel data for offline training, we assume that

both the noisy channel and noiseless channel can be obtained, the former is obtained through a

practical channel estimator, while the latter is obtained through an ideal channel estimator that

does not account for channel estimation overhead. The noisy channel H̃k is used for forward
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calculation of network and precoding recovery, and the noiseless channel Hk is used to calculate

the final sum-rate loss function for unsupervised learning. In this way, the relationship between

H̃k and Hk can be obtained by the network itself through back propagation, so that in the online

prediction stage, to obtain the desired precoding matrix for Hk, only H̃k is needed.

D. Computational Complexity

In this subsection, we discuss the computational complexity of the proposed low complexity

precoding (LCP) scheme and the WMMSE algorithm. For the proposed LCP algorithm, it is

divided into three steps. The first step includes SVD operations and matrix multiplication of

the merged channel, with a complexity of O (KNtN
2
r +KN3

r +NtM
2), where M denotes the

number of the total data streams; the second steps includes the forward calculation of the network,

with the complexity of O
(∑L−2

l=1 FlJ
2
l Cl−1Cl + FL−1Fout

)
, where the Fl, Jl, Cl−1, Cl denotes

the feature map size, kernel size, number of input channel, number of output channel respectively,

the computational complexity of offline training is omitted; the third steps includes the recovery

operation in (15), with a complexity of O (NtM
2 +M3). In conclusion, the computational

complexity of the proposed LCP scheme is given by

O
(
KNtN

2
r +NtM

2 +M3 +KN3
r +

L−2∑

l=1

FlJ
2
l Cl−1Cl + FL−1Fout

)
. (16)

According to [2] and [3], the computational complexity of WMMSE algorithm is given by:

O
(
Lw

(
K2NtN

2
r +K2N2

t Nr +KN3
t +K2N3

r

))
, (17)

where Lw denotes the number of iterations.

Compared (16) with (17), and with M < 1
2
Nt in most scenarios, it can be found that by

carefully setting the parameters of network, the computational complexity of the proposed LCP

algorithm could be even less than one iteration of WMMSE algorithm.

V. EXTENTION TO MIMO-OFDM SYSTEMS

In the practical OFDM system, as shown in Fig. 3, one resource block (RB) contains 12

adjacent subcarriers [39], the same precoding matrix is used across a set of physical RBs. The
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Precoding granularity

Time
Frequency

Slot

12 subcarriers
Resource Block

Figure 3: Precoding for the MIMO-OFDM system

corresponding WSR maximization problem can be written as follows

P2 : max
{Vk}

K∑

k=1

B∑

b=1

αkRk,b, (18)

s.t.

K∑

k=1

Tr(VkV
H
k ) ≤ PT .

where K and B denotes the number of users and precoding granularity respectively, the achiev-

able rate of user k’s b-th RB channel Rk,b is given by

Rk,b = log det


I+Hk,bVkV

H
k H

H
k,b

(
∑

m6=k

Hk,bVmV
H
mH

H
k,b + σ2I

)−1

 . (19)

Different from P1, the B RB channels {Hk,b, b = 1, ..., B} share a common precoding matrix

Vk. Following the previous idea of dealing with P1, we first transform the original MIMO

precoding problem to the MISO precoding problem, then we derive the optimal solution structure

for P2 in MISO scenario, as shown in the following proposition.

Proposition 3. For MU-MISO-OFDM system with the channels {hk,b, ∀k, b} of M users, the

optimal solution {v∗
k} of P2 can be expressed as

v∗
k =

√
pkf



(
σ2INt

+

M∑

m=1

B∑

b=1

λm,bh
H
m,bhm,b

)−1( B∑

b=1

qk,bh
H
k,b

)
 , ∀k, (20)
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where pk and λk,b meet
∑M

k=1 pk =
∑M

k=1

∑B
b=1 λk,b = PT , qk,b ∈ C is a weighted scalar for

hH
k,b, f [·] is the normalization function.

Proof: See Appendix B.

Remark 2. For WSR problem with the precoding granularity of multiple RBs, the opti-

mal solution structure has three key features to be determined, e.g., p = [p1, ., , , .pM ], λ =

[λ1,1, ..., λM,B],q = [q1,1, ...qM,B]. The precoding design should first consider suppressing the

interference between users, controlled by the feature λ. Then, since the channels of multiple RBs

share a common precoding vector, for the sum rate maximization problem, the MRT beamformer

is obtained by the weighted sum of the channels of each RB, with the weight factor q. Finally,

similar to the optimal solution structure in (8) for B = 1 scenario, the transmitted power is

allocated according to p.

With the optimal solution structure in Proposition 3, we then give the deep learning based

precoding scheme, as shown in Fig. 4. First, by conducting SVD for the MIMO channel, the

corresponding MISO channel
{
ĥk,b, ∀k, b

}
is obtained. Then, it still can be proved that the key

features p, λ, q are the function of
{
βk, ĥi,bĥ

H
j,c, ∀i, j, k, b, c

}
. Similar with the preprocessing

in Section IV-A1, let H =
[√

β1ĥ1,1, ...,
√
βM ĥM,B

]
, we use H

H
H rather than H as the input

of the network. For the prediction task of p and q, due to the increase of network input and

output dimensions, we use more convolutional layers and fully connected layers to enhance the

fitting ability. In addition, for the prediction of q, as it is responsible for adjusting the MRT

beamforming direction within the user, so the qk is predicted separately through three fully

connected layers, where the input Rk denotes H
H

k Hk, with Hk = [
√
βkĥk,1, ...,

√
βkĥk,B].

VI. SIMULATION RESULTS

A. Simulation Setup

System setup. We consider the wideband mmWave MIMO-OFDM system in [40], each

resource block contains 12 adjacent subcarriers. The first subcarrier channel in each RB is

viewed as the channel for the corresponding RB. The channel model of the k-th user on the b-th
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Figure 4: Network structure for MIMO-OFDM precoding

RB is given as follows.

Hk,b =
L∑

l=1

ζk,le
−j2πτk,lfsb/Bar (θk,l) a

T
t (ϕk,l) (21)

where L is the number of path, ζk,l is the path gain of the l-th path, fs denotes sampling rate, τk,l

denotes the path delay, θk,l and ϕk,l are the azimuth angles of arrival and departure (AoA/AoD)

at the receiver and the transmitter, respectively. The simulation setting of the above parameters

are given in Table I(a).

For the MIMO system setting, we consider two cases, including a standard case (Nt = 16) and

a massive case (Nt = 64). The detailed system settings are presented in Table II(b). The number

of filters and the kernel size for the three convolution layers in Fig. 2 are {16, 7}, {8, 5}, {4, 3}.

The Adam optimizer is used for network parameter updating. We adopt the learning rate decay

strategy, with an initial value of 0.01 at supervised learning stage and 0.001 at unsupervised

learning stage.

Benchmark schemes. We compare the proposed low complexity precoding (LCP) scheme

with three benchmark schemes including: 1) high performance baseline, WMMSE algorithm

[2]; 2) data-driven baseline, learning to u and w (LUW) algorithm [3], [4], which achieves

a good tradeoff between performance and complexity; 3) low complexity baseline, eigen-based

zero-forcing (EZF) algorithm, which obtains the precoding matrix by the Moore-Penrose pseudo-

inverse of Ĥ defined in (13).
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Table I: System parameter
(a) Channel parameters

Parameter Value

L 10

τk,l U [0, 100]/ns

θk,l, ϕk,l U [0, 2π]

fs 0.32 GHz

ζk,l CN (0, 1)

(b) System configuration

Parameters case 1 case 2

Nt 16 64

Nr 2 4

K 4∼8 8∼16

dk 1 2

SNR ( p

σ2 ) 0 dB 0 dB

B. Problem Transformation Loss

Under the typical system setting in case 2, the performance loss caused by Algorithm 1 in

different transmission SNR and number of users is shown in Table II, where WMMSE denotes the

performance of WMMSE algorithm, and LCP (ideal) denotes the optimal performance solved

by Algorithm 1 (obtained by running WMMSE algorithm to solve the corresponding MISO

precoding problem in step 6), it can be viewed as the performance of the proposed LCP algorithm

when the neural network is able to fit the mapping between the channel and key features perfectly.

First, it can be seen that in all the simulation setting, the performance loss caused by the

problem transformation is no more than 3%. Second, as the SNR increases, the performance

loss increases slightly. This is because Algorithm 1 discards some available channels with small

channel gains, which can still be used to transmit some information when the channel noise

is small enough. Third, an increase in the number of users will not have a significant impact

on the performance loss. It can be concluded that the performance loss caused by problem

transformation in Algorithm 1 is small enough and can be neglected in most practical scenarios.

C. Performance and Complexity Evaluation

1) Sum-Rate Performance: In this subsection, we evaluate the performance of the proposed

LCP algorithm. The sum rate performance under two system cases in Table II(b) are illustrated

in Fig 5. Under the system setting of case 1, the sum rate performance of the proposed LCP

scheme has a similar performance with WMMSE algorithm, then followed by LUW and EZF

algorithm. With the increase of the number of users, the performance gap between LCP and
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Table II: Performance loss caused by problem transformation
(a) case 2, K = 10, SNR = −5 ∼ 15dB

SNR (dB) -5 0 5 10 15

WMMSE 24.921 44.325 70.317 100.550 132.320

LCP (ideal) 24.715 (99.2%) 43.601 (98.4%) 68.505 (97.4%) 97.550 (97.0%) 128.822 (97.3%)

(b) case 2, SNR= 0dB, K = 8 ∼ 16

# of user 8 10 12 14 16

WMMSE 40.242 44.325 47.658 50.458 52.843

LCP (ideal) 39.643 (98.5%) 43.601 (98.4%) 46.836 (98.3%) 49.561 (98.2%) 51.877 (98.2%)

(a) case 1 (b) case 2

Figure 5: Performance comparison in two system cases

WMMSE algorithm increases, the same trend also appears in the system setting of case 2. This

is because with the increase of K, the input-output dimension of the network increases, resulting

in the increase of the loss caused by network fitting. But the gap still holds in an acceptable

range. Similarly, as the LUW algorithm has a larger output, the performance gap between the

LUW algorithm and the proposed LCP algorithm also increases with the increase of K. As for

EZF algorithm, due to the limitation of solution space dimension, its performance is significantly

worse than other algorithms in the scenario of large K. In conclusion, the proposed LCP scheme

not only outperforms the LUW and EZF algorithm, but also achieves comparable performance

to WMMSE algorithm.
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(a) case 1 (b) case 2

Figure 6: Execution time comparison in two system setting cases

2) Computational Complexity: Fig 6 presents the CPU processing time of the four precoding

schemes in the prediction stage. In the small system setting case, the execution time of the

proposed LCP algorithm is slightly less than that of the LUW algorithm, and slightly more

than twice that of EZF. Reasonably, due to the inversion of high-dimensional matrix in each

iteration and multiple iteration, WMMSE algorithm takes much longer time to complete the

iterative process, preventing it to be applied in the real-time communication systems. A similar

phenomenon can also be found in the large system setting case. However, as the computational

complexity of the recovery module in LUW is O (KNtN
2
r +KN2

t Nr +KN3
t +KN3

r ), the

execution time of LUW algorithm is clearly increased. Fortunately, the proposed LCP algorithm

still holds its execution time about twice that of EZF algorithm. In conclusion, the proposed

LCP algorithm achieves similar performance of WMMSE algorithm with only twice execution

time of EZF algorithm, and has better performance of LUW algorithm with smaller execution

time, which shows its superiority in terms of both performance and complexity.

D. Impact of Network Pruning

Table III shows the performance and the complexity when removing different number of

convolution filters. Firstly the large model (J1 = 16, J2 = 8, J3 = 4) is carefully trained, and

then different size of model is obtained by pruning convolution filters recursively. With more

convolution filters being pruned, the sum rate only decreases slightly, which indicates there are
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Table III: Model pruning results

#users (K)
# of pruning filters

sum rate relative complexity of the network part
first layer second layer

10

0 0 43.34 1.00

8 4 43.30 0.35

12 6 43.26 0.14

15 7 43.13 0.05

some redundant parts in the network. Moreover, according to the complexity requirements of

different systems, the dynamic adjustment between complexity and performance can be realized

by cutting off different number of convolution filters.

E. Generalization

1) Varying Number of User Streams: Fig 7 shows the performance of users with the same or

different number of data streams under case 2’s system setting, as dicussed in Section IV-C1,

the total number of streams is set to 2K, for the same dk case, the number of data streams

per user dk is fixed to 2; for the different dk case, dk could vary from 1 to 4 between users.

First, compared with the same dk case, both algorithms have a worse performance when dk is

different between users. For a specific user, allocating too many data streams will not increase

the sum rate, while too few will have a great impact on the sum rate performance since the

channel between the base station and the user is not fully utilized. Second, it is found that the

performance gap between WMMSE and LCP in the same dk setting (blue shadow) and the gap in

the different dk setting (red shadow) are almost the same, which shows that even in the scenario

with dynamic changes of user streams, with the transformation in Algorithm 1, the proposed

scheme can still maintain a performance close to WMMSE algorithm without any change to the

network design.

2) Varying Number of Users: Fig 8 presents the user number generalization performance

of the proposed method under different training settings, where the abscissa represents the

actual number of users in the system. For a specific number of users K0, three training settings

are considered, including 1) trained with data of specific K: training a K = K0 model with

{Hk, k ≤ K0}, testing on {Hk, k ≤ K0}; 2) trained without zero filling data: training a K = 12

model with {Hk, k ≤ 12}, testing on {Hk, k ≤ K0} and {Hk = 0, K0 < k ≤ 12}; 3) trained with
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WMMSE with same dk

LCP with same dk

WMMSE with different dk

LCP with different dk

Figure 7: Performance comparison in the scenario of users with same or different dk

zero filling data: training a K = 12 model with {Hk, k ≤ K0} and {Hk = 0, K0 < k ≤ 12},

testing on {Hk, k ≤ K0} and {Hk = 0, K0 < k ≤ 12}. For the WMMSE algorithm, it can

naturally adapt to the zero filling input, so it maintains nearly optimal performance, and thus can

be used as a performance baseline of generalization ability. For the proposed algorithm, when

the training data does not contain zero filling data, the network can not adapt to the input of

zero filling data, the performance decreased obviously. Fortunately, with the help of zero filling

data for training, it can be seen that the K = 12 model trained on zero filling data achieves

almost the same performance with the customized model trained on specific data, and a close

performance to the WMMSE algorithm, which shows its strong generalization ability on number

of users. In conclusion, the data-driven method should try to make the training data and test

data have similar statistical characteristics. Once the proposed scheme has partial zero filling

data samples for auxiliary training, the generalization ability can be greatly improved.

3) Imperfect CSI: Fig. 9 shows the performance of the four precoding schemes with imperfect

CSI, where the precoding matrix is designed based on the noisy channel, i.e., H̃ = H+ n, and

the actual sum rate is calculated based on the noiseless channel H. For WMMSE algorithm

and EZF algorithm, their performance drops a lot due to the strong dependence on the accurate

channel. For the proposed LCP algorithm, it can adapt to such noise through a large number

of training samples in the offline training stage, so as to performance better. Though the LUW
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WMMSE

LCP trained with data of specific K

LCP trained without zero filling data

LCP trained with zero filling data

Figure 8: The generalization ability comparison in different training settings

Figure 9: The sum-rate performance in the scenario of imperfect CSI

algorithm, another learning based scheme, enjoys such adaptive process as well, the proposed

LCP algorithm outperforms the LUW algorithm in all the error settings. With the decrease of

channel estimation error, the channel becomes relatively more accurate, the WMMSE algorithm

leads the performance again at the cost of huge computational complexity, but still the proposed

LCP algorithm has a close performance with the WMMSE algorithm, which demonstrates the

robustness of the proposed LCP algorithm in imperfect CSI scenarios.
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(a) case 1 (b) case 2

Figure 10: Performance comparison in the MIMO-OFDM system

Figure 11: Performance comparison in different precoding granularity

F. Precoding with Granularity of Multi-RB Channels

Fig 10 shows the sum rate performance of the four precoding schemes when the precoding

granularity B = 4. It can be found that in the two system setting cases, the WMMSE algorithm,

still leads the performance. For the proposed LCP algorithm, it achieves nearly 90% performance

of WMMSE algorithm, while has much lower computational complexity. Moreover, compared

with EZF and LUW algorithm which has a similar computational complexity, LCP algorithm

significantly outperforms them in the sum-rate performance. It can be concluded that the proposed

LCP algorithm has good practicability in MIMO-OFDM system. Fig 11 shows the sum rate
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performance of the four schemes in different precoding granularity, where the sum rate is divided

by the precoding granularity B. When B increases, there are more RB that needs to share a

common precoding matrix, the precoding algorithm needs to take all of them into account,

and thus the per RB’s sum-rate decreases. It can be found that the proposed LCP algorithm

outperforms the LUW algorithm and the EZF algorithm a lot, and still has the closest performance

to WMMSE algorithm. The performance gap between the proposed LCP algorithm and WMMSE

algorithm increases with the increase of B. This is because when B increases, the key feature

{qk,b} has a greater impact on the performance, and the learning performance of neural network

drops due to the more complex mapping from the channel to q. This problem can be solved by

designing a more effective network, which is worthy of further study to promote the application

of the proposed algorithm in the practical system.

VII. CONCLUSION

In this paper, we have proposed a novel data-driven precoding algorithm. Firstly, we develop

a method to transform the MIMO precoding problem into MISO precoding problem. Then, we

present a DL-based solution for the corresponding MISO precoding problem, and further reduce

the complexity through recovery module compression and model pruning. The extension to the

MIMO-OFDM systems is also discussed. Experimental results show that the proposed scheme

achieves similar performance with the WMMSE algorithm, and has a much lower computational

cost. For future work, it is interesting to extend the proposed scheme to hybrid precoding

scenarios and multi-cell systems.

APPENDIX

A. Proof of Proposition 2

Proof: From (7), it can be found that {pk, λk} is determined by the final
{
uN
k , w

N
k

}
, where

N denotes the number of iterations to convergence. Therefore, to establish proposition 2, we

only needs to prove that {uk, wk} is determined by
{
hih

H
j

}
. For convenience of expression, we

use x → y to denote that y is a function of x.

With the intermediate variable
{
vt−1
k , ut−1

k , wt−1
k

}
, the WMMSE algorithm obtains {vt

k, u
t
k, w

t
k}
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by performing the following three steps.

vt
k =

(
σ2INt

+
M∑

m=1

λt−1
m hH

mhm

)−1

hH
k γ

t−1
k , ∀k, (22)

ut
k =

(
σ2

PT

M∑

m=1

(
vt
m

)H
vt
m + hkv

t
m

(
vt
m

)H
hH
k

)−1

hkv
t
k, ∀k, (23)

wt
k =

(
1− (ut

k)
Hhkv

t
k

)−1
, ∀k. (24)

where λt−1
m = PT

αmut−1
m wt−1

m (ut−1
m )

H

∑M
n=1

αnu
t−1
n wt−1

n (ut−1
n )

H , γt−1
m = PT

αmut−1
m wt−1

m
∑M

n=1
αnu

t−1
n wt−1

n (ut−1
n )

H .

Let Λt
, diag (λt

1, ..., λ
t
K), Γ

t , diag (γt
1, ..., γ

t
K), H ,

[
hH
1 , ..,h

H
M

]
, Vt , [v1, ...,vM ]. Then

Vt can be expressed as

Vt =
(
σ2INt

+HΛt−1HH
)−1

HΓt−1 =
(
σ2INt

+ H̃H̃H
)−1

H̃
(
Λt−1

)− 1

2 Γt−1, (25)

where H̃ = H
(
Λt−1

) 1

2 .

Then we have

Vt =
(
σ2INt

+ H̃H̃H
)−1

H̃
(
Λt−1

)− 1

2 Γt−1 (26)

= H̃
(
σ2IM + H̃HH̃

)−1 (
Λt−1

)− 1

2 Γt−1 (27)

= H
(
Λt−1

) 1

2

(
σ2IM +

((
Λt−1

) 1

2

)H
HHH

(
Λt−1

) 1

2

)−1 (
Λt−1

)− 1

2 Γt−1

︸ ︷︷ ︸
Bt−1

(28)

From the definition of Bt−1, we have

{
αk, u

t−1
k , wt−1

k ,hih
H
j , ∀i, j, k

}
→ Bt−1. (29)

Moreover, vt
k can be expressed as

vt
k =

M∑

m=1

bt−1
m,kh

H
m, (30)

where bt−1
m,k is the element of row m and column k of Bt−1.

Substituting (30) into (23) and (24), we have

{{
bt−1
i,j

}
,
{
hih

H
j

}}
→
{
ut
k, w

t
k

}
. (31)

Combining (29) and (31), we further have

{
αk, u

t−1
k , wt−1

k ,hih
H
j

}
→
{
ut
k, w

t
k

}
. (32)
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Therefore, with a fixed initial variable, the final {uk, wk} is only determined by
{
αk,hih

H
j , ∀i, j, k

}
,

which ends the proof.

B. Proof of Proposition 3

The WSR maximization problem P2 in MISO scenario is given as follows.

P3 : max
{vk}

M∑

k=1

B∑

b=1

αk,blogdet


1 + hk,bvkv

H
k h

H
k,b

(
∑

m6=k

hk,bvmv
H
mh

H
k,b + σ2

)−1

 , (33)

s.t.

M∑

k=1

Tr
(
vkv

H
k

)
≤ PT . (34)

Then the weighted least mean square error problem can be formulated as

P4 : min
{uk,b,wk,b,vk}

K∑

k=1

B∑

b=1

αk,b (wk,bek,b − log (wk,b)) (35)

where ek,b is given by

ek,b =
(
1− uH

k,bhk,bvk

) (
1− uH

k,bhk,bvk

)H
+
∑

m6=k

uk,bu
H
k,bhk,bvmv

H
mh

H
k,b

+

∑M
n=1Tr

(
vnv

H
n

)

PT
σ2uH

k,buk,b (36)

Similar to [2] and [3], it can be proven that P3 and P4 is equivalent. Therefore, we can obtain

the iterative based solution for P3 by solving P4 as follows.

uk,b =

(
M∑

m=1

σ2

PT
vH
k vk + hk,bvmv

H
mh

H
k,b

)−1

hk,bvk (37)

wk,b =
(
1− uH

k,bhk,bvk

)−1
(38)

vk =

(
M∑

m=1

B∑

b=1

αm,bum,bwm,bu
H
m,b

(
σ2

PT
INt

+ hH
m,bhm,b

))−1( B∑

b=1

hH
k,bαk,buk,bwk,b

)
(39)

Therefore, the optimal precoding matrix v∗
k should meet the form of (39). Proposition 3 can be

obtained by reorganizing (39), which ends the proof.
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