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Abstract—Federated learning (FL) is a powerful distributed
machine learning framework where a server aggregates models
trained by different clients without accessing their private data.
Hierarchical FL, with a client-edge-cloud aggregation hierarchy,
can effectively leverage both the cloud server’s access to many
clients’ data and the edge servers’ closeness to the clients
to achieve a high communication efficiency. Neural network
quantization can further reduce the communication overhead
during model uploading. To fully exploit the advantages of
hierarchical FL, an accurate convergence analysis with respect
to the key system parameters is needed. Unfortunately, existing
analysis is loose and does not consider model quantization. In
this paper, we derive a tighter convergence bound for hierarchical
FL with quantization. The convergence result leads to practical
guidelines for important design problems such as the client-
edge aggregation and edge-client association strategies. Based on
the obtained analytical results, we optimize the two aggregation
intervals and show that the client-edge aggregation interval
should slowly decay while the edge-cloud aggregation interval
needs to adapt to the ratio of the client-edge and edge-cloud
propagation delay. Simulation results shall verify the design
guidelines and demonstrate the effectiveness of the proposed
aggregation strategy.

Index Terms—Federated Learning, Convergence Analysis,
Edge Learning.

I. INTRODUCTION

Federated Learning (FL) [2] is a promising and power-
ful training framework for privacy-preserving Deep Learning
(DL), where clients train their models locally and then upload
to a parameter server for model aggregation. This process
is repeated for many rounds until the aggregated model at
the server reaches a target accuracy. With FL, model training
occurs at the clients and only the trained models are required
to be aggregated at the server. This eliminates the need for
sharing private user data and thus preserves data privacy. The
feasibility of FL has been verified in real-world DL applica-
tions, e.g., the Google keyboard prediction [3]. However, the
long propagation delay, the increasing size of the DL models
and limited resources make communication efficiency one of
the most critical challenges in FL. Specifically, hundreds to
thousands of rounds of communications may be required to
reach a desired model accuracy. Furthermore, the overhead
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of one round of communication, including upload and down-
load, is proportional to the model size, making it inefficient
for employing large models, especially when the clients are
connected to the server by wireless links.

Most initial studies on FL assumed one cloud node as the
parameter server, while some recent works [4], [5] proposed
to address the communication challenge by leveraging Mobile
Edge Computing (MEC) platforms [6]. This transition led to
Federated Edge Learning (FEL) [7], which enables FL at the
network edge to support ultra-low latency applications [8], [9].
Although edge-based FL enjoys a lower round-trip latency, the
number of clients that can participate in the training process is
small, which degrades the training performance. Thus, a trade-
off between the round-trip latency and learning performance
exists when choosing between the cloud server and the edge
server for the two-layer architecture. This trade-off motivated a
hierarchical architecture for FL [1], [10], [11], which includes
one cloud server, multiple edge servers and many clients.
There are two levels of aggregation in hierarchical FL, namely,
the efficient and parallel edge aggregation and the time-
consuming cloud aggregation. It was shown in our previous
work [1], both theoretically and empirically, that hierarchical
FL achieves a faster convergence speed than the conventional
two-layer cloud-based FL. Furthermore, empirical experiments
showed that the hierarchical architecture reduces training time
compared with the single-server architecture.

Quantized message passing during the aggregation stage
is another important technique to improve the communica-
tion efficiency and presents a similar communication-accuracy
trade-off. The size of a full-precision model can be up to
hundreds of megabytes for large DL models. By transmitting
a low-precision approximate of the model, the communication
cost can be greatly reduced. However, it is noted that an
appropriate level of quantization can accelerate the training
while a very coarse approximation will fail the training. Thus,
model quantization shares a similar communication-accuracy
trade-off as the hierarchical structure. As such, we shall
investigate them together in this paper. Typical quantization
techniques include low-rank approximation [12], sparsification
[13] and low-bit quantization [14]. In the two-layer FL system,
both theoretical analyses and experimental results have shown
that quantization can significantly improve the communication
efficiency [15], [16], [17]. However, the associated analysis for
hierarchical FL is not available yet.

To fully exploit the potential of these communication-
efficient techniques and architectures, we need an accurate
convergence analysis based on which system optimization can

ar
X

iv
:2

10
3.

14
27

2v
2 

 [
cs

.L
G

] 
 8

 J
an

 2
02

3



2

be performed [4], [18]. For example, when minimizing the
communication cost in a FL system, a typical and critical
question to ask is how to optimize the aggregation interval for
a given training time budget 𝑇 . The solution of this problem
highly depends on the variance term caused by the local steps
in the derived convergence upper bound [5], [15], [19]. Thus,
deriving tighter convergence bounds is of crucial importance
not only to the theoretical understanding, but also to practical
system design. There have been many recent efforts on this
aspect, e.g., [20], [21], but the focus is on the server-based
two-layer structure, and the investigation. More importantly,
the theoretical understanding of hierarchical FL is primitive.
Existing analyses and system design for the hierarchical
FL system [10], [11], [22] were carried out assuming full-
precision model updates, and the obtained convergence bound
was loose [10], [11], which made the optimization formulation
inaccurate. The analysis developed in our previous work [1]
has a complex expression and thus is difficult to be utilized for
further system optimization. Thus, getting a sharp and tighter
bound for hierarchical quantized FL is critical.

In this paper, we consider a communication-efficient hi-
erarchical FL system, where two levels of aggregation and
quantization are adopted. The aim is to provide an accurate
theoretical analysis to support further system design. Based
on the analytical results, system design guidelines will be
provided and an adaptive aggregation interval selection scheme
is proposed.

A. Related Works

The convergence of the two-layer FL has been well estab-
lished for convex and non-convex loss functions in [23], [20],
[24]. In [20], [24], the additional error term caused by multiple
local updates was shown to grow linearly with the aggregation
interval and this is the tightest error bound proved so far in the
literature. In [17], the convergence of the FedAvg algorithm
considering a random client selection strategy and model
quantization was also investigated, where the communication
cost is reduced with client partial participation and model
quantization. Recently, Federated Dropout [25] was proposed.
Such a method adopts a random model pruning approach, i.e.,
dropout, to reduce the local computation and communication
cost. Clearly, this is another direction to improve the communi-
cation efficiency and can be combined with model quantization
methods to further reduce the communication cost.

System optimization is critical to improve the commu-
nication efficiency of the FL system. Current research for
system design mainly focused on the following three aspects:
spectrum allocation, power control [4], and local aggregation
interval control [5], [19]. In these works, the system design
was formulated as an optimization problem to minimize the
latency of the FL system subject to a given accuracy constraint.

The convergence analysis for hierarchical FL has been less
well studied. Our previous work [1] analyzed the convergence
of hierarchical FL with the full-precision model update for
both convex and non-convex loss functions. However, the op-
timizer at the client side is a full-batch gradient descent, which
may not be practical for devices with a limited computation

power. In [11], the authors provided a convergence analysis
of hierarchical FL for non-convex loss functions, where the
obtained error bound is quadratic with the aggregation interval.
Later, a tighter error bound was provided in [22] for non-
convex loss functions. The analyses in [11], [22] both consid-
ered full-precision model updates. In addition to the theoretical
convergence analysis, a typical and unique system design
problem for hierarchical FL, i.e., the edge-client association
and resource allocation problem, were investigated in [26],
[27],.

B. Contributions

This paper investigates a hierarchical FL system with model
quantization. A communication-efficient training algorithm,
Hier-Local-QSGD, is proposed, where clients upload quan-
tized updates to their associated edge servers after 𝜏1 steps of
local updates, and the edge servers upload quantized updates
to the cloud server after 𝜏2 steps of edge aggregation. We
summarize the paper contributions as follows:

• A tighter convergence bound of the Hier-Local-QSGD
algorithm is provided for non-convex loss functions,
where the variance caused by the aggregation interval
is reduced from a quadratic term to a linear term. We
show that after 𝐾 communication rounds with the cloud
server, i.e., 𝐾𝜏1𝜏2 local update iterations, Hier-Local-
QSGD converges to a first-order stationary point at a rate
of O(1/

√
𝐾𝜏1𝜏2).

• The obtained analytical result leads to two interesting
design guidelines: 1) when the quantization variance
exceeds a threshold, infrequent client-edge aggregation
is preferred; and 2) the edge-client association strategy
has no influence on the convergence for a given number
of clients and edge servers.

• The derived convergence upper bound is utilized to for-
mulate the aggregation interval selection problem, which
is solved by an adaptive aggregation interval control al-
gorithm. It will be shown that the client-edge aggregation
interval 𝜏1 is expected to decay at a rate that depends on
the training loss while the edge-cloud aggregation interval
𝜏2 is determined by the ratio of the propagation delay and
the number of edge servers and clients.

To the best of our knowledge, this is the first work that proves
the linear error term with respect to the local update, as well
as presenting a system design for hierarchical quantized FL.

The rest of this paper is organized as follows. In Section II,
we will introduce the learning problem in FL, the hierarchical
FL system, and the Hier-Local-QSGD algorithm. In Section
III, we present the convergence analysis with a sketch of the
proof while a detailed proof can be found in the appendix.
Discussions on the convergence results are included to pro-
vide a connection between the analysis and system design
guidelines. In Section IV, we will introduce the adaptive
aggregation interval selection scheme. In Section V, empirical
results, as applied on the CIFAR-10 dataset, are presented. We
will also verify the two guidelines of the system design and
the effectiveness of the adaptive aggregation interval selection
scheme.
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TABLE I: Key Notations for the Hier-Local-QSGD algorithm

Symbol Definitions

𝑥 𝑥 ∈ R𝑝 , parameters of the learning model

𝑥𝑡
Model parameters after total 𝑡 steps of local
updates

𝑛
The number of participated clients in the
whole hierarchical FL system

𝑠 The number edge servers in the whole system

𝑚ℓ
The number of participated clients under edge
parameter server ℓ

Cℓ The set of the clients under edge ℓ

𝜏2 The edge-cloud aggregation interval

𝜏1 The client-edge aggregation interval

𝑘 The index of the cloud aggregation round

𝑡1
The index of the client local update step from
the last edge aggregation, 0 ≤ 𝑡1 < 𝜏1

𝑡2
The index of the edge-aggregation round from
the last cloud aggregation, 0 ≤ 𝑡2 < 𝜏2

𝑥𝑘,𝑡2 ,𝑡1

Local model parameters on client 𝑖 at local
update step (𝑘, 𝑡2, 𝑡1), where the total number
of local updates 𝑡 = 𝑘𝜏1𝜏2 + 𝑡2𝜏1 + 𝑡1

𝑢ℓ
𝑘,𝑡2

Edge model parameters on edge ℓ after the
𝑡2-th edge aggregation in the 𝑘-th cloud ag-
gregation interval

𝑥𝑘
Cloud model parameters after the 𝑘-th cloud
aggregation

II. SYSTEM DESCRIPTION

In this section, we will introduce the FL learning problem
and different FL architectures. The standard single-server FL
system and its algorithm will be briefly reviewed. We will then
introduce the hierarchical FL system with one cloud server, 𝑠
edge servers, 𝑛 users, and the corresponding Hier-Local-QSGD
training algorithm.

A. FL Problem

For FL, suppose that there are 𝑛 clients, and the 𝑖-th client is
with dataset {D𝑖} of size 𝐷𝑖 . Based on the local dataset {D𝑖},
the empirical local loss function for the 𝑖-th user is 𝑓𝑖 (𝑥) =
1
𝐷𝑖

∑
b 𝑗 ∈D𝑖

L(𝑥, b 𝑗 ). The goal of the FL training algorithm is
to learn a global model that performs well on the joint data
distributions. Denote the joint dataset as D =

⋃𝑛
𝑖=1 D𝑖 . Then,

the final loss function that needs to be minimized is given by
𝑓 (𝑥) = 1∑𝑛

𝑖=1 𝐷𝑖

∑
b 𝑗 ∈D L(𝑥, b 𝑗 ) = 1∑𝑛

𝑗=1 𝐷 𝑗

∑𝑛
𝑖=1 𝐷𝑖 𝑓𝑖 (𝑥).

B. Training Algorithm of Two-Layer FL and Hierarchical FL

In the two-layer FL system, there is one central parameter
server and 𝑛 clients. Each client performs 𝜏 steps of SGD
iterations locally and then uploads the model updates to
the central parameter server. The central server averages the
updates and redistributes the averaged outcomes back to each
client. The process repeats until the model reaches a desired
accuracy or the limited resources, (e.g., the energy or time
budget) run out.

The parameters of the local model on the 𝑖-th client after 𝑡
steps of SGD iterations are denoted as 𝑥𝑖𝑡 . In this case, 𝑥𝑖𝑡 in
the FedAvg algorithm evolves in the following way:

Algorithm 1: Hierarchical Local SGD with Quantiza-
tion (Hier-Local-QSGD)
Initialize the model on the cloud server 𝑥0;
for 𝑘 = 0, 1, . . . , 𝐾 − 1 do

for ℓ = 1, . . . , 𝑠 edge servers in parallel do
Set the edge model same as the cloud server
model;
𝑢ℓ
𝑘,0 = 𝑥𝑘 ;

for 𝑡2 = 0, 1, . . . , 𝜏2 − 1 do
for 𝑖 ∈ Cℓ clients in parallel do

Set the client model same as the
associated edge server model;
𝑥𝑖
𝑘,𝑡2 ,0 = 𝑢ℓ

𝑘,𝑡2
;

for 𝑡1 = 0, 1, . . . , 𝜏1 − 1 do
𝑥𝑖
𝑘,𝑡2 ,𝑡1+1 = 𝑥𝑖

𝑘,𝑡2 ,𝑡1
− [∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )

end
Send 𝑄1 (𝑥𝑖𝑘,𝑡2𝜏1

− 𝑥𝑖
𝑘,𝑡2 ,0) to its

associated edge server
end
Edge server aggregates the quantized
updates from the clients;
𝑢ℓ
𝑘,𝑡2+1 = 𝑢ℓ

𝑘,𝑡2
+ 1
𝑚ℓ

∑
𝑖∈Dℓ 𝑄1 (𝑥𝑖𝑘,𝑡2𝜏1

−𝑥𝑖
𝑘,𝑡2 ,0)

end
Send 𝑄2 (𝑢ℓ𝑘,𝜏2

− 𝑢ℓ
𝑘,0)

end
Cloud server aggregates the quantized updates
from the edge servers;
𝑥𝑘+1 = 𝑥𝑘 +

∑𝑠
ℓ=1

𝑚ℓ

𝑛
𝑄2 (𝑢ℓ𝑘,𝜏2

− 𝑢ℓ
𝑘,0)

end

𝑥𝑖𝑡 =

{
𝑥𝑖
𝑡−1 − [∇̃ 𝑓𝑖 (𝑥

𝑖
𝑡−1) 𝑡 | 𝜏 ≠ 0

1
𝑛

∑𝑛
𝑖=1 [𝑥𝑖𝑡−1 − [∇̃ 𝑓𝑖 (𝑥

𝑖
𝑡−1)] 𝑡 | 𝜏 = 0

(1)

In FedAvg, the model aggregation step can be interpreted
as a way to exchange information among the clients. Thus, the
aggregation at a cloud parameter server can incorporate data
from many clients, but the communication cost is high. On
the other hand, aggregation at an edge parameter server only
incorporates a small number of clients with a much cheaper
communication cost.

To combine these advantages, a hierarchical FL system is
considered, which has one cloud server, 𝑠 edge servers indexed
by ℓ, with disjoint client sets {Cℓ }𝑠

ℓ=1, and 𝑛 clients indexed by
𝑖 and ℓ, with distributed datasets {Dℓ

𝑖
}𝑁
𝑖=1. Other key notations

that are important for the algorithm and the theoretical analysis
are summarized in Table I. The hierarchical FL system ex-
ploits the natural client-edge-cloud communication hierarchy
in current communication networks.

With this hierarchical FL architecture, we propose a Hier-
Local-QSGD algorithm as described in Algorithm 1. The key
steps of the Hier-Local-QSGD algorithm include the following
two modules to improve communication efficiency.

1) Frequent Edge Aggregation and Infrequent Cloud
Aggregation: Periodic aggregation is the key step in reducing
the communication cost in FL. A larger aggregation interval, 𝜏,
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reduces the communication rounds. But a large 𝜏 will degrade
the performance of the obtained DL model. This is because too
many steps of local SGD updates will lead the local models
to approach the optima of the local loss function 𝑓𝑖 (𝑥) instead
of the global loss function 𝑓 (𝑥).

Edge aggregation enjoys a lower propagation latency com-
pared with cloud aggregation. Hence, in Hier-Local-QSGD,
each edge server efficiently aggregates the models within its
local area for several times before the cloud aggregation. To
be more specific, after every 𝜏1 local SGD updates on each
client, each edge server averages its clients’ models. After
every 𝜏2 edge aggregations, the cloud server averages all the
edge servers’ models. Thus, the communication with the cloud
happens after every 𝜏1𝜏2 local updates. In this way, the local
model is less likely to be biased towards its local minima
compared with the case in FedAvg with an aggregation interval
of 𝜏 = 𝜏1𝜏2.

2) Quantized Model Updates: The overall communication
cost in FL also depends on the DL model size, which
determines the amount of data to be transmitted in each
communication round. Quantization is often used to reduce the
size of the model updates. A low-precision quantizer reduces
the communication overhead but introduces additional noise
during the training process, which will ultimately degrade the
trained model performance. Thus, investigating the effect of
quantization is important.

Here, we give two examples of widely-used random quan-
tizers, i.e., random sparsification [12] and stochastic rounding
[14].
Example 1 (Random Sparsification) For any 𝒙 ∈ R𝑛, fix
𝑟 ∈ 1, . . . , 𝑑 and let Z ∈ R𝑑 be a (uniformly distributed)
random binary vector with 𝑟 non-zero entries. The random
sparsification operator is given by:

𝑄(𝑥) = 𝑑

𝑟
(Z � 𝒙)

where � denotes the Hadamard (entry-wise) product.
Example 2 (Stochastic Rounding) For any 𝒙 ∈ R𝑛 with 𝒙 ≠ 0,
stochastic rounding 𝑄𝑠 (𝒙) is defined as

𝑄𝑠 (𝑥𝑖) = ‖𝒙‖2 · 𝑠𝑔𝑛(𝑥𝑖) · b𝑖 (𝒙, 𝑠), (2)

where b𝑖 (𝒙, 𝑠)’s are independent random variables defined as
follows, and 𝑠 ≥ 1 is a tuning parameter, corresponding to
the quantization levels. Let 0 ≤ ℓ < 𝑠 be an integer such that
|𝑥𝑖 |/‖𝒙2‖ ∈ [ℓ/𝑠, (ℓ + 1)/𝑠]. Then,

b𝑖 (𝒙, 𝑠) =
{
ℓ/𝑠 with probability 1 − ( |𝑥𝑖 |

‖𝒙 ‖ , 𝑠);
(ℓ + 1)/𝑠 otherwise.

Here, 𝑝(𝑎, 𝑠) = 𝑎𝑠 − ℓ for any 𝑎 ∈ [0, 1]. If 𝒙 = 0, then we
define 𝑄(𝒙, 𝑠) = 0

We use 𝑄1 (·) and 𝑄2 (·) to represent the specific quantizers
applied on the model updates from the client to the edge server
and the model updates from the edge servers to the cloud
server, respectively.

The system architecture and algorithm flow are illustrated
in Fig. 1. A comparison between the FedAvg and Hier-Local-
QSGD algorithms is also included in Fig. 1. The details of

the Hier-Local-QSGD algorithm are presented in Algorithm
1. 𝑥𝑖

𝑘,𝑡2 ,𝑡1
denotes the local model parameters after 𝑘 rounds

of cloud aggregation, 𝑡2 rounds of edge-aggregation and 𝑡1
steps of local update on client 𝑖. Specifically, the total steps of
the local iterations 𝑡 can be expressed as 𝑡 = 𝑘𝜏1𝜏2 + 𝑡2𝜏1 + 𝑡1.
We will use the tuple (𝑘, 𝑡2, 𝑡1) for indexing throughout the
paper. Similarly, the model parameters on edge ℓ after 𝑘 rounds
of cloud aggregation and 𝑡2 rounds of edge aggregation are
denoted by 𝑢ℓ

𝑘,𝑡2
. Finally, the model parameters on the cloud

server after 𝑘 rounds of cloud aggregation are denoted by 𝑥𝑘 .
The evolution of the model parameters 𝑥𝑖

𝑘,𝑡2 ,𝑡1
, 𝑢ℓ
𝑘,𝑡2

and 𝑥𝑘
can be described follows:

Local Update: 𝑥𝑖
𝑘,𝑡2 ,𝑡1+1 = 𝑥𝑖

𝑘,𝑡2 ,𝑡1
− [∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝑡1 ),

0 ≤ 𝑡1 < 𝜏1, 0 ≤ 𝑡2 < 𝜏2
Edge Aggregation: 𝑥𝑖

𝑘,𝑡2+1,0 = 𝑢ℓ
𝑘,𝑡2+1

= 𝑢ℓ
𝑘,𝑡2

+ 1
𝑚ℓ

∑
𝑖∈Cℓ

𝑖
[𝑄1 (𝑥𝑖𝑘,𝑡2 ,𝜏1

− 𝑥𝑖
𝑘,𝑡2 ,0)],

𝑡1 = 𝜏1, 0 ≤ 𝑡2 < 𝜏2
Cloud Aggregation: 𝑥𝑖

𝑘+1,0,0 = 𝑢ℓ
𝑘+1,0 = 𝑥𝑘+1

= 𝑥𝑘 +
∑𝑠
ℓ=1

𝑚ℓ

𝑛
𝑄2 (𝑢ℓ𝑘,𝜏2

− 𝑥𝑘 ),
𝑡1 = 𝜏1, 𝑡2 = 𝜏2

(3)

III. CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of the
Hier-Local-QSGD algorithm for non-convex loss functions,
followed by discussions of the main findings from the obtained
convergence bound. We provide a sketch of the proof in this
section, while ea detailed proof of the key lemmas can be
found in the appendix.

We first present three customary assumptions that are re-
quired for the analysis.
Assumption 1 (L-smoothness) The loss function 𝑓 (𝑥) :
R𝑝 → R is 𝐿-smooth with the Lipschitz constant 𝐿 > 0,
i.e. :

‖∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,

for all 𝑥, 𝑦 ∈ R𝑝 .
Assumption 2 (Variance of SGD) For any fixed model pa-
rameter 𝑥, the locally estimated stochastic gradient ∇̃ 𝑓𝑖 (𝑥) is
unbiased and its variance bounded by a constant 𝜎2 for any
client. That is,

E[∇̃ 𝑓𝑖 (𝑥) |𝑥] = ∇ 𝑓 (𝑥),
E[

∇̃ 𝑓𝑖 (𝑥) − ∇ 𝑓 (𝑥)
2 |𝑥] ≤ 𝜎2.

Assumption 3 (Unbiased Random Quantizer) The random
quantizer 𝑄(·) is unbiased and its variance grows with the
squared ℓ2 norm of its argument. That is,

E[𝑄(𝑥) |𝑥] = 𝑥,
E[‖𝑄(𝑥) − 𝑥‖2 |𝑥] ≤ 𝑞 ‖𝑥‖2 .

for some positive real constant 𝑞 and any 𝑥 ∈ R𝑝 .
Assumption 1 requires that the local loss function to be

𝐿-smooth, which means that its gradient is 𝐿-continuous.
Assumption 2 on the bias and variance of stochastic gradients
is common in the literature [20], [10]. This is quite a weaker
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Fig. 1: Illustration of the hierarchical architecture and Hier-Local-QSGD algorithm.

assumption compared with the one that uniformly bounds the
expected norm of the gradients [11]. Assumption 3 makes sure
that the output of the random quantizer is unbiased and the
variance is proportional to the norm of the input. Intuitively,
a quantizer with a larger 𝑞 means a smaller communication
cost and low-precision output. This assumption is satisfied
for many commonly used quantization schemes such as the
random sparsification introduced in Example 1, stochastic
rounding in Example 2, and the high-dimensional vector quan-
tizer [28]. For different quantization techniques, the variance
parameter 𝑞 is known in literature and only depends on the
quantization technique itself. Thus, our analysis is applicable
to many different quantization techniques by substituting the
quantization variance parameter 𝑞 with the specific quantiza-
tion parameters.

A. Convergence Analysis Challenges

In the following, we highlight the main challenges in the
convergence analysis.

1) Two levels of aggregation: While the local aggregation
at the edge servers can incorporate partial information
on the global loss function in a communication-efficient
manner, it results in possible gradient divergence at
different edge servers. This poses a major challenge in the
analysis compared to the FedAvg algorithm [23], [24].

2) Model Uploading Compression: The quantization of the
local model weights for efficient model uploading will
introduce errors in the training process. When there
are several partial edge aggregations before a global
cloud aggregation, the quantization error caused by the
communication between the clients and edge server will
accumulate. This indicates that in the final expression of
the variance term, the influence of the quantization level
and the aggregation interval are intertwined.

3) Tightness of the upper-bound: There exists an analysis of
the hierarchical local SGD for non-convex loss functions,

e.g., [10], [11], but the available bound is rather loose.
A tighter analysis requires a novel approach since we
need to focus on the evolution process of the local model
parameter and carefully use inequalities to compute the
upper bound. Besides, we do not require the gradient
norm to be bounded, which is a relaxed assumption
in [11]. The lack of the uniformly bounded gradient
norm assumption makes it difficult to bound the model
parameter divergence in the evolution process.

Convergence Criterion: For the error-convergence analysis
for non-convex loss functions, the expected gradient norm
is often used as an indicator of the convergence [19], [29].
Specifically, an algorithm achieves 𝜖-suboptimal for a given
positive value 𝜖 if E

[
min𝑘=0,...,𝐾−1 ‖∇ 𝑓 (𝑥𝑘 )‖2] ≤ 𝜖 . When

𝜖 is arbitrarily small, the algorithm converges to a first-order
stationary point.

B. Main Result and Discussions

The following theorem presents the main convergence re-
sult.

Theorem 1 (Convergence of Hier-Local-QSGD for non-con-
vex loss functions) Consider the sequence of iterations {𝑥𝑘 } at
the cloud parameter server according to the Hier-Local-QSGD
in Algorithm 1. Suppose that Assumptions 1, 2, 3 are satisfied,
and the loss function 𝑓 is lower bounded by 𝑓 ∗. Further, define
𝐺 as:

𝐺 =1 − 𝐿2[2
[
𝜏1 (𝜏1 − 1)

2
+ 𝜏1𝜏2

(
𝜏2 (𝜏2 − 1)

2
+ 𝑞1𝜏2

)]
− 𝐿[(1 + 𝑞2)

(
𝜏1𝜏2 +

𝑞1𝜏1
𝑛

)
, (4)

where 𝑞1 is the quantization variance parameter for the quan-
tization operator at the client (𝑄1 in Algorithm 1), 𝑞2 is the
quantization variance parameter for the quantization operator
at the edge server (𝑄2 in Algorithm 1), and 𝐾 is the total
number of cloud communication rounds. When 𝐺 ≥ 0, the
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following first-order stationary condition holds for the training
algorithm Hier-Local-QSGD:

1
𝐾

𝐾−1∑︁
𝑘=0
E ‖∇ 𝑓 (𝑥𝑘 )‖2 ≤ 2( 𝑓 (𝑥0) − 𝑓 ∗)

[𝐾𝜏1𝜏2

+ 𝐿
2[2

2

[
(1 + 𝑞1)
𝑛/𝑠 𝜏1 (𝜏2 − 1) + (𝜏1 − 1)

]
𝜎2

+ 𝐿[ 1
𝑛
(1 + 𝑞1) (1 + 𝑞2)𝜎2. (5)

Remark 1 The bound in (5) can be simplified for specific
settings. Specifically, by letting the step size [ = 1

𝐿
√
𝐾 𝜏1𝜏2

, we
have the following convergence rate:

1
𝐾

𝐾−1∑︁
𝑘=0
E ‖∇ 𝑓 (𝑥𝑘 )‖2 ≤ 2𝐿 ( 𝑓 (𝑥0) − 𝑓 ∗)

√
𝐾𝜏1𝜏2

+ 1
𝐾𝜏1𝜏2

1
2

[
(1 + 𝑞1)
𝑛/𝑠 𝜏1 (𝜏2 − 1) + (𝜏1 − 1)

]
𝜎2

+ 1
√
𝐾𝜏1𝜏2

(1 + 𝑞1) (1 + 𝑞2)𝜎2

𝑛
(6)

This means that the algorithm can achieve an overall conver-
gence rate of O( 1√

𝐾 𝜏1𝜏2
) when the learning rate is sufficiently

small. This guarantees that Hier-Local-QSGD can greatly
improve the communication efficiency while achieving com-
parable performance as the baseline algorithm without partial
edge aggregation and model quantization for non-convex loss
functions [17].
Remark 2 When the condition 𝐺 ≥ 0 is satisfied, the optimal
parameters to achieve the fastest convergence speed in terms
of local update iterations are: 𝜏1 = 𝜏2 = 1, and 𝑞1 = 𝑞2 =

0. In this special case, Hier-Local-QSGD degrades to the
conventional SGD. Note that this does not mean that the
convergence will be the fastest in terms of wall clock time, as
the communication latency is different for the edge side update
and the cloud side update. Furthermore, the local computation
also takes time. The optimal parameters selection depends on
the ratio of 𝜏1 and 𝜏2 and we shall derive an adaptive algorithm
to determine the parameters 𝜏1 and 𝜏2 in Section IV.
Remark 3 When 𝜏2 = 1, 𝑞1 = 𝑞2 = 0, which means that there
is no partial aggregation nor quantization, we recover the result
of [24]. It is noted that our result does not coincide exactly
with the result in [17] for the two-layer FedPAQ algorithm
when we set 𝜏2 = 1, i.e., FedAvg with quantization. This is
because the expected gradient norm on the left hand side of (5)
is different. An average of the expected gradient norm for the
model parameters after every 𝜏1𝜏2 updates, i.e. {𝑥𝑘 }𝑘=0,...,𝐾−1,
is considered in this paper, while an average of the expected
gradient norm for the auxiliary virtual model parameters at
every update step, i.e., {𝑥𝑘,𝑡 }𝑘=0,...,𝐾−1,𝑡=0,...,𝜏 , is considered
in [17].
Remark 4 One implication of the bound (5) is that the fewer
the number of edge servers, i.e., 𝑠, the faster the convergence.
When the number of participated clients in the FL system
is fixed, the partial edge aggregation will incorporate more
clients if there are fewer edge servers available in the system.
The variance caused by the partial aggregation decreases in

this case, and hence the convergence will be faster.
Remark 5 For the locally estimated gradient ∇̃ 𝑓 , a batch of
data of size 𝑏 can also be used. In this case, the only difference
in the analysis is that the variance of the SGD in Assumption
2 decreases from 𝜎2 to 𝜎2/𝑏.
Remark 6 (Extension to the non-IID data) As stated in
Assumption 2, the locally estimated stochastic gradient is
assumed to be an unbiased estimate of the true gradient of
the loss function 𝑓 (𝑥). In FL, this independent and identical
data (IID) assumption may not be satisfied. The extension
to the non-IID case is non-trivial since the locally estimated
gradient direction diversifies among different clients when they
are performing local updates, and thus the aggregated gradient
descent direction may not be the correct one. By replacing
the weak assumption that gradient variance is upper bounded
with a strict assumption that the gradient norm is bounded, a
convergence result could be derived but the variance term is
expected to be quadratic with respect to the local update steps.
In this paper, we aim to derive a tighter bound which can be
further utilized for system design, and thus, we have the IID
assumption in Assumption 2.

Relaxing the uniform variance bound
E[

∇̃ 𝑓𝑖 (𝑥) − ∇ 𝑓 (𝑥)
2 |𝑥] ≤ 𝜎2 to different variance bounds

𝜎2
𝑖

in Assumption 2 is straightforward. Our proof can be
easily extended to this case and get the following result

1
𝐾

𝐾−1∑︁
𝑘=0
E ‖∇ 𝑓 (𝑥𝑘 )‖2 ≤ 2( 𝑓 (𝑥0) − 𝑓 ∗)

[𝐾𝜏1𝜏2

+ 𝐿2[2

2

[
(𝜏1 − 1)𝜎2

𝑐 + (1 + 𝑞1)𝜏1 (𝜏2 − 1)𝜎2
𝑒

]
+ 𝐿[ 1

𝑛
(1 + 𝑞1) (1 + 𝑞2)𝜎2

𝑐 ,

where 𝜎2
𝑐 = 1

𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖

, 𝜎2
𝑒 = 1

𝑛

∑𝑠
ℓ=1 [ 1

𝑚ℓ

∑
𝑗∈Cℓ 𝜎2

𝑗
]. Unfor-

tunately such extension cannot handle the non-IID data. In
Section V, we will perform experiments on non-IID data and
will show that the adaptive interval selection scheme proposed
based on the analytical results works well under the non-IID
case.

C. Examples of System Design Guidelines

This part provides two examples to illustrate the system
design guidelines that can be obtained from our analysis.

1) Too much quantization suggests infrequent communica-
tion: By observing Eq. (5), we can rewrite the variance term
on the right hand side as follows:

𝐿2[2

2

[
(1 + 𝑞1)
𝑛/𝑠 𝜏1𝜏2 + (1 − 1 + 𝑞1

𝑛/𝑠 )𝜏1 − 1
]
𝜎2+𝐿[ (1 + 𝑞1) (1 + 𝑞2)𝜎2

𝑛
.

(7)
Suppose that 𝜏1𝜏2, 𝑞1 and 𝑞2 are fixed. Then, when 𝑞1 < 𝑛/𝑠−
1, i.e., the quantization output is not too far from the input,
then a smaller 𝜏1 leads to a lower upperbound. That is, frequent
local aggregation leads to a faster convergence. On the other
hand, when 𝑞1 > 𝑛/𝑠 − 1, i.e., the quantization output is very
inaccurate, then a larger 𝜏1 leads to a lower upperbound. That
is, infrequent local aggregation leads to a faster convergence
rate.
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This is a very interesting observation since in the existing
analyses for FedAvg [20], [17], the local aggregation interval
has always been positively correlated with the additional vari-
ance term. This means a smaller aggregation interval always
leads to a faster convergence rate. On the other hand, our
result suggests that when the communication frequency with
the cloud server is fixed, how the edge-client aggregation
interval influences the convergence rate depends on the edge-
client quantization level parameter 𝑞1. If there is too much
quantization, then less frequent communication between the
edge and the client is preferred. This is because when the
accumulated error caused by the quantization on the com-
munication between the clients and edge is higher than that
caused by the multi-step local update, less communication will
be better. In practice, when the communication bandwidth
is limited and the quantization must be high, our analytical
result suggests that infrequent communication between the
client and edge servers is preferred. We will verify this flipped
phenomenon of 𝜏1 in Section V.

2) Edge-client association strategy has no impact on the
convergence: The edge-client association is a unique resource
allocation problem in Hierarchical Federated Edge Learning.
This problem has been discussed in [26] with a rough conver-
gence analysis framework to capture the learning performance
and to formulate a joint learning and resource allocation
problem to accelerate training and save energy. Intuitively,
it will be beneficial to the overall learning performance to
have many devices connected to each edge server. However,
for a given edge server with limited spectrum resources,
when more clients are connected to the server, less bandwidth
will be assigned to each client, which results in a longer
communication delay. Thus, the learning performance and
spectrum resource allocation are intertwined with each other,
which makes the optimization problem different from the
general computation offloading problem in the conventional
MEC framework [30].

In this paper, by analyzing the convergence of the Hierar-
chical FL with the Hier-Local-QSGD algorithm, we find that,
when the number of edge servers is fixed and each edge server
is associated with at least one client, the convergence speed
with respect to (w.r.t.) the iterations is irrelevant to the client-
edge association strategy. Thus, to accelerate training of the
overall system, we only need to minimize the communica-
tion delay for each aggregation. Due to the synchronization
requirement in the Hier-Local-QSGD training algorithm at
each aggregation step, the delay for each aggregation step is
determined by the slowest client.

It must be noted that a recent work [22] also analyzed
the hierarchical local SGD algorithm for general non-convex
loss functions. In their convergence result, it was found that
the client-distribution will influence the final error bound in
contrast to what we observed. This can be explained by the fact
that different weight coefficients are used when averaging the
updates from the edge to the cloud. In our Hier-Local-QSGD
algorithm, the weighted coefficient 𝑚ℓ/𝑛 is used while in the
HF-SGD algorithm in [22], the uniform coefficient 1/𝑠 is used.
When performing partial edge aggregation, the additional vari-
ance introduced by partial aggregation is inversely proportional

to the number of clients to be aggregated, i.e., 𝑚ℓ . Thus,
adopting a weighted average policy at the cloud aggregation
step will balance the additional variance that is introduced by
the edge server with fewer clients while a uniform average
policy fails to do so. We also verify this observation through
simulations in Section V.

D. Proof Outline
We now give an outline of the proof for Theorem 1. Detailed

proofs of the lemmas are deferred to Appendix A.
To assist the analysis, a virtual auxiliary variable 𝑥𝑘 is

introduced, which is the average of the unquantized updates
from the edge servers and defined as follows:

𝑥𝑘+1 = 𝑥𝑘 +
𝑠∑︁
ℓ=1

𝑚ℓ

𝑛
(𝑢ℓ𝑘,𝜏2

− 𝑢ℓ𝑘,0). (8)

The evolution of the true and auxiliary model parameters
𝑥𝑖
𝑘,𝑡2 ,𝑡1

, 𝑥𝑘+1, and 𝑥𝑘+1 is specified as follows:

𝑥𝑖
𝑘,𝑡2 ,𝑡1

= 𝑥𝑘 − [
𝑡1−1∑︁
𝛽=0

∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) − [
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)


(9)

𝑥𝑘+1 = 𝑥𝑘 −[
∑︁
ℓ∈[𝑠]

𝑚ℓ

𝑛

1
𝑚ℓ

𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 (10)

𝑥𝑘+1 = 𝑥𝑘−[
∑︁
ℓ∈[𝑠]

𝑚ℓ

𝑛
𝑄2


1
𝑚ℓ

𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)

 .

(11)
The proof proceeds as follows: Using the property

of 𝐿-smooth functions, we first prove a bound in
Lemma 1 of the evolution process of the cloud model
parameter {𝑥𝑘 }, which depends on three terms, i.e.
E 〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 ,E ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 , and E ‖𝑥𝑘+1 − 𝑥𝑘+1‖2.
In Lemmas 2, 3, and 4, we derive upper bounds of the three
terms, respectively, and characterize their relationships to the
aggregation parameters 𝜏1, and 𝜏2 along with the quantization
variance parameters 𝑞1, and 𝑞2.
Lemma 1 (One round of global aggregation) With Assump-
tions 1 and 2, we have the following relationship between 𝑥𝑘+1
and 𝑥𝑘 :

E 𝑓 (𝑥𝑘+1) − E 𝑓 (𝑥𝑘 ) ≤ E 〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉

+ 𝐿
2
E ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 + 𝐿

2
E ‖𝑥𝑘+1 − 𝑥𝑘+1‖2

(12)

Lemma 1 follows from the property of the 𝐿−smoothness
in Assumption 1. We next bound the three terms on the right
hand side of Eqn. (12).
Lemma 2 With Assumptions 1, 2 and 3, E〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1−𝑥𝑘〉
is bounded as follows:

E〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉

≤ − [𝐷

2
× 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2
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+ 𝜏1𝜏2
2

[
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

]
𝜎2

, where 𝐷 =

{
1 − 𝐿2[2

[
𝜏1 (𝜏1−1)

2 + 𝜏1𝜏2
(
𝜏2 (𝜏2−1)

2 + 𝑞1𝜏2

)]}
.

Lemma 3 With Assumptions 1, 2 and 3, E ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 is
bounded as follows:

E ‖𝑥𝑘+1 − 𝑥𝑘 ‖2

≤ [2
(
𝜏1𝜏2 +

𝑞1𝜏1
𝑛

) 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ [2 1
𝑛
(1 + 𝑞1)𝜏1𝜏2𝜎2 (13)

Lemma 4 With Assumptions 1, 2 and 3, 𝐸 ‖𝑥𝑘+1 − 𝑥𝑘+1‖2 is
bounded as follows:

𝐸 ‖𝑥𝑘+1 − 𝑥𝑘+1‖2

≤ [2𝑞2

(
𝜏1𝜏2 +

𝑞1𝜏1
𝑛

) 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ [2 1
𝑛
(1 + 𝑞1)𝑞2𝜏1𝜏2𝜎

2 (14)

By combining Lemmas 1 to 4, we now have the following:

E 𝑓 (𝑥𝑘+1) − E 𝑓 (𝑥𝑘 ) ≤ −[
2
𝜏1𝜏2E ‖∇ 𝑓 (𝑥𝑘 )‖2

− [𝐷

2
× 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ 𝐿2[3

4
𝜏1𝜏2

[
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

]
𝜎2

+ 𝐿[2

2
1
𝑛
(1 + 𝑞1) (1 + 𝑞2)𝜏1𝜏2𝜎2. (15)

For a sufficiently small [, and when the following condition
is satisfied:

𝐷 − 𝐿[(1 + 𝑞2)
(
𝜏1𝜏2 + 𝑞1𝜏1

𝑛

)
≥ 0, (16)

we have

E 𝑓 (𝑥𝑘+1) − E 𝑓 (𝑥𝑘 ) ≤ −[
2
𝜏1𝜏2E ‖∇ 𝑓 (𝑥𝑘 )‖2

+ 𝐿
2[3

4
𝜏1𝜏2

[
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

]
𝜎2

+ 𝐿[
2

2
1
𝑛
(1 + 𝑞1) (1 + 𝑞2)𝜏1𝜏2𝜎2. (17)

By summing (17) and re-arranging the terms, we obtain the
main result in Theorem 1.

Now, we have derived the convergence result for the pro-
posed Hier-Local-QSGD algorithm w.r.t. the update iterations,
i.e., 𝑘 . Next, by applying the theoretical analysis to a system
design problem, i.e., the aggregation interval selection prob-
lem, we will illustrate how the analytical result can be used
to reduce the overall training latency in hierarchical federated
learning.

IV. ADAPTIVE AGGREGATION INTERVAL CONTROL

In this section, we illustrate the application of the con-
vergence analysis to investigate the aggregation interval se-
lection problem, i.e., how to optimize the system parameters

𝜏1 and 𝜏2. To focus on the aggregation interval control, we as-
sume that the two quantization variance parameters 𝑞1 and 𝑞2
are fixed throughout the training process.

To characterize the trade-off between the learning perfor-
mance and the communication efficiency, we assume that the
clients are with the same computation and communication
resources. Further assume that the local computation time
for one SGD iteration is 𝐷𝑐𝑜𝑚𝑝 , the communication delay
of transmitting a quantized model updates between the client
(device) and edge is 𝐷𝑑𝑒, and the communication delay of
transmitting a quantized model between the edge and cloud
is 𝐷𝑒𝑐 . Then, the wall clock time 𝑇 of 𝐾 rounds of cloud-
aggregation is given by 𝑇 = 𝐾

(
𝜏1𝜏2𝐷𝑐𝑜𝑚𝑝 + 𝜏2𝐷𝑑𝑒 + 𝐷𝑒𝑐

)
.

By substituting 𝑇 into (5), the minimal expected squared
gradient norm is bounded by:

2( 𝑓 (𝑥0) − 𝑓 ∗)
𝑇

(
𝐷𝑐𝑜𝑚𝑝 +

𝐷𝑑𝑒

𝜏1
+ 𝐷𝑒𝑐

𝜏1𝜏2

)
+ 𝐿

2[2

2

[
1 + 𝑞1
𝑛/𝑠 𝜏1 (𝜏2 − 1) + (𝜏1 − 1)

]
𝜎2 + 𝐿[ 1

𝑛
(1 + 𝑞1) (1 + 𝑞2)𝜎2

(18)

From the bound in (18), we can clearly see the accuracy-
latency trade-off when choosing different values of 𝜏1, and 𝜏2.
For a given setting and a specific performance requirement,
e.g., a deadline of training, we can determine the values of
these key parameters accordingly through minimizing (18) by
setting the derivatives w.r.t. the corresponding parameters to
zero.

Theorem 2 For Hier-Local-QSGD, with the same assumptions
as Theorem 1, the error bound in (18) is minimized when we
select the two aggregation intervals as:

𝜏∗1 =

√√
4( 𝑓 (𝑥0) − 𝑓 ∗)𝐷𝑑𝑒
[3𝐿2𝜎2𝑇 (1 − 1+𝑞1

𝑛/𝑠 )
, 𝜏∗2 =

√√√√
𝐷𝑒𝑐

𝐷𝑑𝑒

(1 − 1+𝑞1
𝑛/𝑠 )

1+𝑞1
𝑛/𝑠

(19)

when 1 + 𝑞1 < 𝑛/𝑠.

Proof. Denoting 𝜏1𝜏2 = 𝜏, then it can be easily proved that
(18) is convex w.r.t 𝜏1 and 𝜏 when 1 + 𝑞1 < 𝑛/𝑠. Then, by
setting the partial derivatives w.r.t 𝜏1 and 𝜏 to 0, we can get
the solution in Eq. (19).

By adopting a similar idea from [19], in the adaptive interval
selection scheme, the whole training procedure is split into
uniform wall clock time intervals with the same wall clock
time length 𝑇0. At the beginning of each time interval, we will
use (18) to estimate the best aggregation interval for the next 𝑇0
time period. The optimal local update step value, i.e., (𝜏 𝑗1 )

∗ in
the 𝑗-th adapt wall clock time interval, i.e., 𝑡 ∈ (( 𝑗 − 1)𝑇0, 𝑗𝑇0)
is then

√︂
4( 𝑓 (𝑥𝑡=( 𝑗−1)𝑇0 )− 𝑓

∗)𝐷𝑑𝑒

[3𝐿2𝜎2𝑇 (1− 1+𝑞1
𝑛/𝑠 )

. The values of the Lipschitz

constant 𝐿, stochastic gradient variance 𝜎2 and the lower
bound of the non-negative loss 𝑓 ∗ are unknown. However,
by approximating 𝑓 ∗ by 0, the rest unknown parameters can
be canceled with division. Such approximation is also adopted
in [15], [19] . By dividing (𝜏 𝑗1 )

∗ by (𝜏0
1 )

∗, we can have the
following update rule for 𝑡 ∈ (( 𝑗 − 1)𝑇0, 𝑗𝑇0):

𝜏
𝑗

1 =


√︄
𝑓 (𝑥𝑡=( 𝑗−1)𝑇0 )
𝑓 (𝑥𝑡=0)

𝜏0
1

 , 𝜏
𝑗

2 =


√√√√
𝐷𝑒𝑐

𝐷𝑑𝑒

(1 − 1+𝑞1
𝑛/𝑠 )

1+𝑞1
𝑛/𝑠

 (20)
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Sparsification 𝑞1 = 0 𝑞1 = 19 𝑞1 = 65.57
𝜏1 × 𝜏2 125*2 50*5 10*25 125*2 50*5 10*25 125*2 50*5 10*25
𝛼 = 100 0.8795 0.8870 0.8930 0.8643 0.8722 0.8930 0.8010 0.7772 0.6810
𝛼 = 1 0.8721 0.8772 0.8882 0.8583 0.8593 0.8613 0.8025 0.7703 0.6648
𝛼 = 0.1 0.8173 0.8256 0.8453 0.7979 0.8000 0.8099 0.7042 NaN NaN

TABLE II: Accuracy w.r.t. communication round for different values of 𝜏1 with 𝑞1 = 0, 𝑞1 = 19 and 𝑞1 = 65.67. 𝑛 = 20, 𝑠 =
4, 𝜏1𝜏2 = 250, and 𝑞2 = 0, on a standard CIFAR-10 dataset.

Rounding 8bits 4 bits 2 bits
𝜏1 × 𝜏2 125*2 50*5 10*25 125*2 50*5 10*25 125*2 50*5 10*25
𝛼 = 100 0.8792 0.8866 0.8927 0.8339 0.8248 0.7827 0.7333 0.6973 0.6092

TABLE III: Accuracy w.r.t. communication round for different values of 𝜏1 with quantization levels as 𝑏1 = 8bits, 𝑏1 = 4bits
and 𝑏1 = 2 bits. 𝑛 = 20, 𝑠 = 4, 𝜏1𝜏2 = 250, and 𝑞2 = 0, IID split (𝛼 = 100) on a standard CIFAR-10 dataset.
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(a) weighted average, 𝛼 = 100.
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(b) uniform average [26], 𝛼 =

100.
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(c) weighted average, 𝛼 = 0.1.
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(d) uniform average [26], 𝛼 =

0.1.

Fig. 2: Accuracy with different edge-client association strategies using weighted average and uniform average. 𝜏1 = 50, 𝜏2 =

5, 𝑞2 = 𝑞1 = 0, 𝑛 = 20, and 𝑠 = 2, on a standard CIFAR-10 dataset.

where 𝜏0
1 is the predefined value of 𝜏1 for the first time interval

𝑡 ∈ (0, 𝑇0). The computation of 𝜏1 only requires the value
of the training loss. The adaptive procedure is monitored by
the server, which collects the local training loss from each
client and computes the update of 𝜏1 and then sends it back
to clients. The additional communication, i.e., uploading and
downloading one scalar value between the clients and server,
is negligible compared to the cost of the model parameters.

V. NUMERICAL RESULTS

In this section, we present sample simulation results for
Hier-Local-QSGD to verify the observations from the conver-
gence analysis and illustrate the effectiveness of the proposed
adaptive aggregation interval selection algorithm.

A. Settings

We consider a hierarchical FL system with 𝑛 clients, 𝑠
edge servers and a cloud server, assuming that edge server
ℓ connects with 𝑚ℓ clients, each with the same amount of
training data. While the design guidelines and the proposed
algorithm is developed for the IID data case, we will also
test its effectiveness under the non-IID setting. To simulate
different degrees of non-IID data splits, we utilize the Dirichlet
distribution 𝐷𝑖𝑟 (𝛼) as in [31] with a larger 𝛼 indicating a more
homogeneous data distribution. Particularly in our experiment,

𝛼 = 100 represents the IID case, 𝛼 = 1 represents the non-IID
case, and 𝛼 = 0.1 represents the extreme non-IID case.

For the CIFAR-10 dataset, we use a CNN with 3 convolu-
tional blocks, which has 5,852,170 parameters and achieves
a 90% testing accuracy in centralized training. For the local
computation of the training with CIFAR-10, mini-batch SGD
is employed with a batch size of 10, an initial learning rate
of 0.1, and an exponential learning rate decay of 0.992 for
every epoch. For the CIFAR-100, we use ResNet18, which
has 11,220,132 parameters. The local training employs SGD
with a batch size of 20. The learning rate is initialized as 0.1
and then set as 0.02, 0.004, and 0.008 at the 60-th, 120-th,
and 160-th epoch.

For the quantizer, we use the random sparsification operator
in Example 1 and the stochastic rounding in Example 2. The
modelling of the computing and communication latency during
the training process largely follows [4]. We assume homo-
geneous communication conditions and computing resources
for different clients. The clients upload the model through a
wireless channel of bandwidth 𝐵 that is equal to 1Mhz and
with a channel gain ℎ that equal to 10−8. The transmitter power
𝑝 is fixed at 0.5W, and the noise power 𝑁0 is 10−10 W. For
the local computation model, the number of CPU cycles to
execute one sample of data is denoted as 𝑐, which can be
measured in advance and is assumed to be 20 cycles/bit in
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(a) CIFAR-10, 𝛼 = 100
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(b) CIFAR-10, 𝛼 = 1
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(c) CIFAR-10, 𝛼 = 0.1
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(d) CIFAR-100, 𝛼 = 100.
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(e) CIFAR-100, 𝛼 = 1

0 1000 2000 3000 4000 5000

wall clock time(min)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
e

s
tA

c
c

20

40

60

80

100

120

140

160

180

1

adaptive

fixed

1

(f) CIFAR-100, 𝛼 = 0.1

Fig. 3: Test accuracy and local aggregation interval 𝜏1 values against the wall-clock time for adaptive aggregation interval
control for different data distributions 𝛼. 𝑛 = 20 and 𝑠 = 4.

the simulations. The CPU cycle frequency 𝑓 of the client’s
device is assumed to be 1 GHz. Thus, the local computation
time for one bit of data is 𝑐

𝑓
. We assume the communication

latency of the edge-cloud link is 10 times larger than that of
the client-edge link. Assume the uploaded model size is 𝑊
bits, and one local iteration involves 𝐷 bits of data. In this
case, the latency for one full-precision model upload and one
local iteration can be calculated with the following equations:
𝑇𝑐𝑜𝑚𝑝 = 𝑐𝐷

𝑓
, 𝑇𝑐𝑜𝑚𝑚 = 𝑊

𝐵 log2 (1+
ℎ𝑝

𝑁0
)
.

Specifically, the values of the communication and compu-
tation latency of the full-precision model mentioned above
for CIFAR-10 with a training batch size of 10 is 𝑇𝑐𝑜𝑚𝑝 =

2𝑠, and 𝑇𝑐𝑜𝑚𝑚 = 33𝑠. The latency for CIFAR-100 with batch
size of 20 is 𝑇𝑐𝑜𝑚𝑝 = 7.2𝑠, and 𝑇𝑐𝑜𝑚𝑚 = 63.3𝑠.

B. Verification of the two obtained design guidelines

1) Too much quantization suggests infrequent communica-
tion: In this part, we demonstrate that when the quantization
level 𝑞1 is above a certain threshold, a larger local update step
𝜏1 is surprisingly a better choice. We simulate a hierarchical
system with 𝑛 = 20 clients and 𝑠 = 4 edge servers. Each
edge server serves 5 clients. The aggregation interval product
𝜏1𝜏2 is fixed to 250. It can be observed from Eq. (7) that
when the quantization variance parameter 𝑞1 > 𝑛/𝑠 − 1 = 4,
then a smaller 𝜏1 will lead to a faster convergence speed.
We adopt the random sparsification operator in Example 1 as
the quantization technique and run experiments with different
values of 𝑞1. The results are presented in Table. II.

It can be clearly seen that as the value of 𝑞1 increases,
the influence of the local update step 𝜏1 flips. When 𝑞1 = 0,
which means no quantization, 𝜏1 = 5 leads to the fastest

convergence speed. When 𝑞1 = 19, different values of 𝜏1
have little impact on the convergence. When 𝑞1 = 65.67,
𝜏1 = 125 achieves the best performance, which agrees with
the theoretical results. This result is very interesting and
promising since infrequent communication and quantization
are two important techniques to improve the communication
efficiency in FL, but the communication reduction always
comes at the price of slower convergence. Our results show
both theoretically and experimentally that we can improve
the communication efficiency without hurting the convergence
speed under certain circumstances. However, it is also noted
that the flipping threshold does not match the theoretical result
when 𝑞1 = 𝑛

𝑠
−1 = 4. Simulation results with non-IID data are

also presented in Table II. It is observed that the conclusion
still holds for the minor non-IID case, i.e., 𝛼 = 1. For the
extreme non-IID case, when 𝑞1 = 65.57, a small 𝜏1 may fail
the training. The same conclusion is verified when stochastic
rounding is adopted as the quantization scheme with IID data
and the results are shown in Table III.

2) Edge-client Association: In this part, we show that when
using the proposed training algorithm Hier-Local-QSGD, the
learning performance is irrelevant to the edge-client associ-
ation strategy. As revealed in our analysis, this is because
the weighted average scheme can balance the variance. In
the experiments, we consider a hierarchical system with 20
clients and 2 edge servers. The test accuracy of three different
client-edge association cases, i.e., (10, 10), (15, 5) and (18, 2),
are compared, where (10, 10) indicates that 10 clients are
associated with the first edge server and the other 10 with
the second. It is shown from Fig. 2a that the test accuracy
learning curves of the three association cases coincide with
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each other using the proposed Hier-Local-QSGD algorithm.,
which verifies our observation in Section III. Note that the
performance curves for the three association strategies diverge
when using the uniform average in [22] at the aggregation step,
as shown in Fig. 2b. It can be seen that (10, 10), in which case
the uniform average is equivalent to the weighted average,
outperforms the others. Simulation results with extreme non-
IID (𝛼 = 0.1) data split are also presented in Fig. 2c and
Fig. 2d. Surprisingly, for this particular non-iid case, the edge-
client association does not affect the performance. Our analysis
cannot provide an explanation for this observation, and we
empirically find that this conclusion does not generally hold
for non-iid clients. Thus, it is interesting to characterize the
conditions under which edge-client association does not have
any impact on the training performance.

C. Adaptive Aggregation Interval Control

We now evaluate the adaptive aggregation interval control
scheme. We simulate a hierarchical FL system with 𝑛 =

20 and 𝑠 = 4. As mentioned in the communication model part,
we assume 𝐷𝑒𝑐 = 10𝐷𝑑𝑒, and thus we can get the optimal
value of 𝜏2 = 7 using Eq. (20). We pick the initial value of 𝜏1
as 100 for CIFAR-10 and initial value of 𝜏1 as 40 for CIFAR-
100. The settings for the fixed aggregation interval strategy is
𝜏1 = 50 and 𝜏2 = 5 for CIFAR-10 and 𝜏1 = 5 and 𝜏2 = 50
for CIFAR-100. Since we adopt a learning rate decay scheme
for the optimization, the update rule for 𝜏1 in Eq. (20) will be

modified as 𝜏 𝑗1 =

⌈√︂
[𝑡=0
[𝑡= 𝑗𝑇0

𝐹 (𝑤𝑡= 𝑗𝑇0 )
𝐹 (𝑤𝑡=0) 𝜏

0
1

⌉
.

As shown in Fig. 3, for different data distribution cases, the
adaptive aggregation interval selection scheme outperforms the
fixed case. The local aggregation interval 𝜏1 for 𝛼 = 100 and
𝛼 = 1 decreases during the training process. For 𝛼 = 0.1,
the training loss will plateau in the latter part of the training
but the learning rate is still decaying and the value of 𝜏1 will
increase. For CIFAR-100, 𝜏1 increased when the learnig rate
decays at 60-th, 120-th and 160-th epoch.

VI. CONCLUSIONS

This paper developed a provably communication-efficient
hierarchical FL algorithm and provided a tighter convergence
analysis to support system design. The analysis in this paper
improves the error term of local update from quadratic to lin-
ear, based on which two important design guidelines regarding
the local update interval and the edge-client association were
provided. Besides, an adaptive algorithm was developed to
determine the two values of aggregation intervals. Simulations
verified the design guidelines and demonstrated the effective-
ness of the adaptive interval selection scheme. One limitation
of the current analysis is that it focused on the IID-data, which
leads to the conclusion that the edge-client association has no
influence on the convergence speed. It would be interesting
to extend the analysis of Hier-Local-QSGD to the non-IID
case and further investigate the edge-client problem. In the
future work, we also intend to consider the resource allocation
problem based on the convergence analysis in realistic wireless
FL systems, and considering practical heterogeneous clients.

APPENDIX

Proofs of Key Lemmas
Lemma 1: The proof directly follows from the property of the
𝐿-smoothness:

𝑓 (𝑥) ≤ 𝑓 (𝑦) + 〈∇ 𝑓 (𝑦), 𝑥 − 𝑦〉 + 𝐿
2
‖𝑥 − 𝑦‖2 . (21)

For any 𝐿-smooth function 𝑓 and variables 𝑥, 𝑦, then under
the 𝐿-smooth assumption:

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘+1)+〈∇ 𝑓 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥𝑘+1〉+
𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘+1‖2 .

(22)

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 )+〈∇ 𝑓 (𝑥𝑘 , 𝑥𝑘+1 − 𝑥𝑘〉+
𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 . (23)

By taking the expectations of both sides of (22) and from
Eqns. (10), (11) and the unbiased assumption of the random
quantizer 𝑄2, we have E𝑄2 [𝑥𝑘+1] = 𝑥𝑘+1, so that (22) becomes:

E 𝑓 (𝑥𝑘+1) ≤ E 𝑓 (𝑥𝑘+1) +
𝐿

2
E ‖𝑥𝑘+1 − 𝑥𝑘+1‖2 (24)

Similarly, by taking the expectation over (23) and combining
it with (24), Lemma 1 is proved.

Lemma 2: From Eqn. (10), we have

𝑥𝑘+1 − 𝑥𝑘 = −[
∑︁
ℓ∈[𝑠]

𝑚ℓ

𝑛

1
𝑚ℓ

𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)


(25)
Then by taking the expectation and changing the subscript
from (𝛼, 𝛽) to (𝑡2, 𝑡1), we obtain:

E〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘 〉

= −E〈∇ 𝑓 (𝑥𝑘 ), [
∑︁
ℓ∈[𝑠]

𝑚ℓ

𝑛

1
𝑚ℓ

𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
〉

(26)

= −[
𝑛

∑︁
𝑗∈[𝑛]

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E {

𝑄
(𝛼)
1 ,{b𝑘,𝛼,𝛽 }𝜏1−1

𝛽=0

}𝑡2−1

𝛼=0
,

{b𝑘,𝑡2 ,𝛽 }𝑡1−1
𝛽=0

〈∇ 𝑓 (𝑥𝑘 ),∇ 𝑓 (𝑥
𝑗

𝑘,𝑡2 ,𝑡1
)〉

(27)

Here for each tuple of (𝑘, 𝑡2, 𝑡1), E means taking the expec-
tation of the randomness generated from the SGD and the
quantization occurred before step (𝑘, 𝑡2, 𝑡1). For the simplicity
of notation, we omit the subscript of the expectation operation
and use E. Using the identity 2〈𝒂, 𝒃〉 = ‖𝒂‖2+‖𝒃‖2−‖𝒂−𝒃‖2,
we have

−E〈∇ 𝑓 (𝑥𝑘 ),∇ 𝑓 (𝑥
𝑗

𝑘,𝑡2 ,𝑡1
)〉 = −1

2
E ‖∇ 𝑓 (𝑥𝑘 )‖2 − 1

2
E
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑡1
)
2

+ 1
2
E
∇ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑡1
)
2

(28)

Now, we will bound the third term on the RHS of (28)

E
∇ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑡1
)
2

=𝐿2[2E


𝑡1−1∑︁
𝛽=0

∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) +
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)


2

(29)
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Then by using E‖𝑥‖2 = ‖E𝑥‖2 +𝑉𝑎𝑟 (𝑥)2, we get

E


𝑡1−1∑︁
𝛽=0

∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) +
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

𝑄
(𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)


2

(30)

=E


𝑡1−1∑︁
𝛽=0

∇ 𝑓 (𝑥𝑖
𝑘,𝑡2 ,𝛽

) +
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖


𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)


2

︸                                                                        ︷︷                                                                        ︸
𝐴

+ E


∑𝑡1−1
𝛽=0

[
∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) − ∇ 𝑓 (𝑥𝑖

𝑘,𝑡2 ,𝛽
)
]

+∑𝑡2−1
𝛼=0

∑
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

{
𝑄

(𝛼)
1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓𝑗 (𝑥 𝑗

𝑘,𝛼,𝛽
)
]

−∑𝜏1−1
𝛽=0 ∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)

}

2

︸                                                                  ︷︷                                                                  ︸
𝐵

(31)

=E


𝑡1−1∑︁
𝛽=0

∇ 𝑓 (𝑥𝑖
𝑘,𝑡2 ,𝛽

) +
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖


𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)


2

︸                                                                        ︷︷                                                                        ︸
𝐴

+
𝑡1−1∑︁
𝛽=0
E
[∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) − ∇ 𝑓 (𝑥𝑖

𝑘,𝑡2 ,𝛽
)
]2

︸                                              ︷︷                                              ︸
𝐵1

+
𝑡2−1∑︁
𝛼=0
E

 ∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

𝑄 (𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 −

𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)


2

︸                                                                                       ︷︷                                                                                       ︸
𝐵2

(32)

The expectation did not disappear on term A since the se-
quence {𝑥 𝑗

𝑘,𝛼,𝛽
} itself is also random. The inner product van-

ished when 𝐵 is expanded, and the conditional independence
is used, the detailed proof process are shown on the top of
next page.

Now we continue to bound the three terms 𝐴, 𝐵1, and 𝐵2
in (32) as

𝐴 ≤ 𝑡1
𝑡1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑘,𝑡2 ,𝛽)2

+ 1
𝑚ℓ𝑖

𝑡2𝜏1
∑︁
𝑖∈Cℓ

𝑖

𝑡2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)
2

(33)

𝐵1 =

𝑡1−1∑︁
𝛽=0
E
[∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝛽) − ∇ 𝑓 (𝑥𝑖

𝑘,𝑡2 ,𝛽
)
]2

≤ 𝑡1𝜎2 (34)

Note that (34) directly follows from Assumption 2. Next

𝐵2

=

𝑡2−1∑︁
𝛼=0
E

 ∑︁
𝑗∈Cℓ𝑖

1
𝑚ℓ𝑖

𝑄 (𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 −

𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)


2

(35)

=

𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

E
{𝑄 (𝛼)

1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)

]
−∑𝜏1−1

𝛽=0 ∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)
}2(

𝑚ℓ𝑖
)2

(36)

=

𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1(
𝑚ℓ𝑖

)2 E



{
𝑄

(𝛼)
1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓𝑗 (𝑥 𝑗

𝑘,𝛼,𝛽
)
]

−∑𝜏1−1
𝛽=0 ∇̃ 𝑓𝑗 (𝑥 𝑗

𝑘,𝛼,𝛽
)

}2

+

{ ∑𝜏1−1

𝛽=0 ∇̃ 𝑓𝑗 (𝑥 𝑗

𝑘,𝛼,𝛽
)

−∑𝜏1−1
𝛽=0 ∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)

}2


(37)

≤
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1(
𝑚ℓ𝑖

)2
𝑞1E


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)


2

+ 𝜏1𝜎2

 (38)

≤
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1(
𝑚ℓ𝑖

)2
𝑞1E


𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)


2

+ 𝑞1𝜏1𝜎
2


+ 1
𝑚ℓ𝑖

𝑡2𝜏1𝜎
2 (39)

≤
𝑡2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ𝑖

1(
𝑚ℓ𝑖

)2 𝑞1𝜏1

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)
2
 + 1 + 𝑞1

𝑚ℓ𝑖
𝑡2𝜏1𝜎

2

(40)

The inner-product vanished when expanding 𝐵2 using the
same conditional independence mentioned above when ex-
panding term 𝐵.

Now we can write the bound on (29) as

E
∇ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑡1
)
2

≤ 𝐿2[2 (𝐴 + 𝐵1 + 𝐵2) (41)

≤

𝐿2[2


𝑡1
∑𝑡1−1
𝛽=0 E

∇ 𝑓 (𝑥𝑘,𝑡2 ,𝛽)2

+ 1
𝑚ℓ𝑖

(
𝑡2𝜏1 + 𝑞1𝜏1

𝑚ℓ𝑖

) ∑
𝑖∈Cℓ

𝑖

∑𝑡2−1
𝛼=0

∑𝜏1−1
𝛽=0 E

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)
2︸                                                                         ︷︷                                                                         ︸

𝐶1


+𝐿2[2

©«
𝑡1𝜎

2 + 1 + 𝑞1
𝑚ℓ𝑖

𝑡2𝜏1𝜎
2︸                     ︷︷                     ︸

𝐶2

ª®®®®®¬
(42)

By summing 𝐶1 over 𝑖, 𝑡2, and 𝑡1, we then get

1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

𝐶1 (43)

=
1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

©«
𝑡1
∑𝑡1−1
𝛽=0 E

∇ 𝑓 (𝑥𝑘,𝑡2 ,𝛽)2 +
𝑡2𝜏1+

𝑞1𝜏1
𝑚ℓ𝑖

𝑚ℓ𝑖

∑
𝑗∈Cℓ

𝑖

∑𝑡2−1
𝛼=0

∑𝜏1−1
𝛽=0 E

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)
2

ª®®¬
(44)

≤ (𝜏1 − 1)𝜏1
2

1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑘,𝛼,𝛽)2

+ 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

(𝑡2𝜏1 + 𝑞1𝜏1)
1
𝑚ℓ𝑖

∑︁
𝑗∈Cℓ

𝑖

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)
2

(45)
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Showing 𝐵 = 0:
1) E

〈
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠),∇ 𝑓 (𝑥

𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠)

〉
,∀𝑠 < 𝑡

E
𝑥
𝑗

𝑘,𝑡2 ,𝑠
, b

𝑗

𝑘,𝑡2 ,𝑠
,𝑥

𝑗

𝑘,𝑡2 ,𝑡
, b

𝑗

𝑘,𝑡2 ,𝑡

〈
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠),∇ 𝑓 (𝑥

𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠)

〉
=E

𝑥
𝑗

𝑘,𝑡2 ,𝑠
, b

𝑗

𝑘,𝑡2 ,𝑠
,𝑥

𝑗

𝑘,𝑡2 ,𝑡

〈
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠),Eb 𝑗

𝑘,𝑡2 ,𝑡

[
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠)

]〉
= 0

2) E
〈
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠),

∑
𝑗∈Cℓ𝑖

{
𝑄

(𝛼)
1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)

]
−∑𝜏1−1

𝛽=0 ∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)
}〉

:

E
𝑥
𝑗

𝑘,𝑡2 ,𝑠
, b

𝑗

𝑘,𝑡2 ,𝑠
, {𝑥 𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0 , {b

𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0

〈
∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠),

∑︁
𝑗∈Cℓ𝑖

𝑄 (𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 −

𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)

〉

=E
𝑥
𝑗

𝑘,𝑡2 ,𝑠
, {𝑥 𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0 , {b

𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0

〈
E
b

𝑗

𝑘,𝑡2 ,𝑠
[∇ 𝑓 (𝑥 𝑗

𝑘,𝑡2 ,𝑠
) − ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡2 ,𝑠)],

∑︁
𝑗∈Cℓ𝑖

𝑄 (𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 −

𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)

〉

=E
𝑥
𝑗

𝑘,𝑡2 ,𝑠
, {𝑥 𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0 , {b

𝑗

𝑘,𝛼,𝛽
}𝜏1
𝛽=0

〈
0,

∑︁
𝑗∈Cℓ𝑖

𝑄 (𝛼)
1


𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
 −

𝜏1−1∑︁
𝛽=0

∇ 𝑓 (𝑥 𝑗
𝑘,𝛼,𝛽

)

〉
= 0

3) ∀𝑠 < 𝑡,E
〈∑

𝑗∈Cℓ𝑖

{
𝑄

(𝑠)
1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑠,𝛽)

]
−∑𝜏1−1

𝛽=0 ∇ 𝑓 (𝑥 𝑗
𝑘,𝑠,𝛽

)
}
,
∑
𝑗∈Cℓ𝑖

{
𝑄

(𝑡)
1

[∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝑡 ,𝛽)

]
−∑𝜏1−1

𝛽=0 ∇ 𝑓 (𝑥 𝑗
𝑘,𝑡 ,𝛽

)
}〉

. The

expansion of this form of the inner product is very complex, but it can still be proved to be 0 in the expectation
following the same idea of using the conditional independence as in the above mentioned two cases.

=
(𝜏1 − 1)𝜏1

2
1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑘,𝛼,𝛽)2

+1
𝑛

𝑛∑︁
𝑖=1

1
𝑚ℓ𝑖

∑︁
𝑗∈Cℓ

𝑖

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥 𝑗

𝑘,𝛼,𝛽
)
2 𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

(𝑡2𝜏1 + 𝑞1𝜏1)

(46)

=
(𝜏1 − 1)𝜏1

2
1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑘,𝛼,𝛽)2

+1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

𝜏1𝜏2

(
𝜏1 (𝜏2 − 1)

2
+ 𝑞1𝜏2

)
(47)

=


(𝜏1−1)𝜏1

2 +

𝜏1𝜏2
(
𝜏1 (𝜏2−1)

2 + 𝑞1𝜏2
) 

1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑘,𝛼,𝛽)2 (48)

By summing 𝐶2 over 𝑖, 𝑡2, and 𝑡1, we get

1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

𝐶2 (49)

=
1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

(
𝑡1𝜎

2 + 1 + 𝑞1
𝑚ℓ𝑖

𝑡2𝜏1𝜎
2
)

(50)

=
𝜏1𝜏2

2

(
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

)
𝜎2 (51)

Finally, we derive the upper bound in the Lemma 2:

E〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘 〉 (52)

≤ − [

2

∑︁
𝑗∈[𝑛]

1
𝑛

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E ‖∇ 𝑓 (𝑥𝑘 )‖2

− [

2

∑︁
𝑗∈[𝑛]

1
𝑛

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )2

+ 𝐿2[3

2

∑︁
𝑗∈[𝑛]

1
𝑛

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

(𝐶1 + 𝐶2) (53)

≤ − [

2

∑︁
𝑗∈[𝑛]

1
𝑛

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E ‖∇ 𝑓 (𝑥𝑘 )‖2

− [

2

∑︁
𝑗∈[𝑛]

1
𝑛

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )2

+ 𝐿2[3

2𝑛




(𝜏1−1)𝜏1
2 +

𝜏1𝜏2
(
𝜏1 (𝜏2−1)

2 + 𝑞1𝜏2
) 

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2


+ 𝐿2[3

2
𝜏1𝜏2

2

[
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

]
𝜎2 (54)

≤ − [

2
𝜏1𝜏2E ‖∇ 𝑓 (𝑥𝑘 )‖2

− [

2𝑛

1 − 𝐿2[2


𝜏1 (𝜏1−1)

2 +

𝜏1𝜏2

(
𝜏2 (𝜏2−1)

2 +
𝑞1𝜏2

) 

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ 𝐿2[3

4
𝜏1𝜏2

[
(𝜏1 − 1) + 𝑠

𝑛
(1 + 𝑞1)𝜏1 (𝜏2 − 1)

]
𝜎2. (55)

Lemma 3: From Eqn. (10), using the property: E‖𝑥‖2 =

‖E𝑥‖2 +𝑉𝑎𝑟 (𝑥)2, we obtain

E ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 (56)

=[2E

1
𝑛

∑︁
𝑖∈[𝑛]

𝜏2−1∑︁
𝑡2=0

𝑄
(𝑡2)
1


𝜏1−1∑︁
𝑡1=0

∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )


2

(57)

=[2E

1
𝑛

∑︁
𝑖∈[𝑛]

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

∇ 𝑓 (𝑥𝑖
𝑘,𝑡2 ,𝑡1

)


2
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+ [
2

𝑛2

∑︁
𝑖∈[𝑛]

𝜏2−1∑︁
𝑡2=0
E

𝑄 (𝑡2)
1


𝜏1−1∑︁
𝑡1=0

∇̃ 𝑓𝑖 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )
 −

𝜏1−1∑︁
𝑡1=0

∇ 𝑓 (𝑥𝑖
𝑘,𝑡2 ,𝑡1

)


2

(58)

≤[2𝜏1𝜏2
1
𝑛

∑︁
𝑖∈[𝑛]

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝑡2 ,𝑡1 )2

+ [2 1
𝑛2

∑︁
𝑖∈[𝑛]

𝜏2−1∑︁
𝑡2=0

𝑞1E


𝜏1∑︁
𝑡1=0

∇ 𝑓 (𝑥𝑖
𝑘,𝑡2 ,𝑡1

)


2

+ (1 + 𝑞1)𝜏1𝜎2


(59)

=[2
(
𝜏1𝜏2 + 𝑞1𝜏1

𝑛

) 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ [2 1
𝑛
(1 + 𝑞1)𝜏1𝜏2𝜎2. (60)

Lemma 4: From Eqn. (10), (11), we know that
1
[2 𝐸 ‖𝑥𝑘+1 − 𝑥𝑘+1‖2 =

E


∑︁
ℓ∈[𝑠]

𝑚ℓ

𝑛


𝑄2

[
1
𝑚ℓ

∑𝜏2−1
𝛼=0

∑
𝑗∈Cℓ 𝑄

(𝛼)
1

(∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)

)]
−
[

1
𝑚ℓ

∑𝜏2−1
𝛼=0

∑
𝑗∈Cℓ 𝑄

(𝛼)
1

(∑𝜏1−1
𝛽=0 ∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)

)] 

2

(61)

=
∑︁
ℓ∈[𝑠]

(
𝑚ℓ

𝑛

)2
𝑞2E




1
𝑚ℓ

𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1

©«
𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
ª®¬


2

(62)

=
∑︁
ℓ∈[𝑠]

(
1
𝑛

)2
𝑞2E



𝜏2−1∑︁
𝛼=0

∑︁
𝑗∈Cℓ

𝑄
(𝛼)
1

©«
𝜏1−1∑︁
𝛽=0

∇̃ 𝑓 𝑗 (𝑥 𝑗𝑘,𝛼,𝛽)
ª®¬


2

(63)

By using E‖𝑥‖2 = ‖E𝑥‖2 + 𝑉𝑎𝑟 (𝑥)2, and following a similar
approach as the one in the proof of Lemma 3, we conclude
that

1
[2 𝐸 ‖𝑥𝑘+1 − 𝑥𝑘+1‖2

≤
∑︁
ℓ∈[𝑠]

(
1
𝑛

)2
𝑞2


(
𝜏1𝜏2𝑚

ℓ+
𝜏1𝑞1

) ∑
𝑗∈Cℓ

∑𝜏2−1
𝑡2=0

∑𝜏1−1
𝑡1=0 E

∇ 𝑓 (𝑥𝑖
𝑘,𝛼,𝛽

)
2

+𝑚ℓ𝜏1𝜏2 (1 + 𝑞1)𝜎2


(64)

≤
∑︁
ℓ∈[𝑠]

(
1
𝑛

)2
𝑞2


(
𝜏1𝜏2𝑛+
𝜏1𝑞

) ∑
𝑗∈Cℓ

∑𝜏2−1
𝑡2=0

∑𝜏1−1
𝑡1=0 E

∇ 𝑓 (𝑥𝑖
𝑘,𝛼,𝛽

)
2

+𝑚ℓ𝜏1𝜏2 (1 + 𝑞1)𝜎2


(65)

≤2𝑞2
(
𝜏1𝜏2 + 𝑞1𝜏1

𝑛

) 1
𝑛

𝑛∑︁
𝑖=1

𝜏2−1∑︁
𝛼=0

𝜏1−1∑︁
𝛽=0
E
∇ 𝑓 (𝑥𝑖𝑘,𝛼,𝛽)2

+ 1
𝑛
(1 + 𝑞1)𝑞2𝜏1𝜏2𝜎

2 (66)
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