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Knowledge-Guided Learning for Transceiver

Design in Over-the-Air Federated Learning
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Abstract

In this paper, we consider communication-efficient over-the-air federated learning (FL), where

multiple edge devices with non-independent and identically distributed datasets perform multiple local

iterations in each communication round and then concurrently transmit their updated gradients to an

edge server over the same radio channel for global model aggregation using over-the-air computation

(AirComp). We derive the upper bound of the time-average norm of the gradients to characterize the

convergence of AirComp-assisted FL, which reveals the impact of the model aggregation errors accumu-

lated over all communication rounds on convergence. Based on the convergence analysis, we formulate

an optimization problem to minimize the upper bound to enhance the learning performance, followed by

proposing an alternating optimization algorithm to facilitate the optimal transceiver design for AirComp-

assisted FL. As the alternating optimization algorithm suffers from high computation complexity, we

further develop a knowledge-guided learning algorithm that exploits the structure of the analytic expres-

sion of the optimal transmit power to achieve computation-efficient transceiver design. Simulation results

demonstrate that the proposed knowledge-guided learning algorithm achieves a comparable performance

as the alternating optimization algorithm, but with a much lower computation complexity. Moreover,

both proposed algorithms outperform the baseline methods in terms of convergence speed and test

accuracy.

Index Terms

Federated learning, over-the-air computation, knowledge-guided learning.

I. INTRODUCTION

With the ever increasing volume of distributed data, computing power of edge devices, and

concerns of data privacy, federated learning (FL) [1]–[3] has recently been recognized as a
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promising distributed machine learning (ML) paradigm for edge artificial intelligence (AI) [4]–

[6]. FL exploits the geographically dispersed data and computing power to distill intelligence

at the network edge by employing an edge server to coordinate multiple edge devices to

collaboratively train a shared ML model in an iterative manner. By executing the local training

based on the local dataset and the up-to-date global model, each edge device only shares its model

information instead of raw data with the edge server to alleviate the privacy leakage concerns. FL

is expected to support various intelligent applications [7], including smart healthcare, industrial

Internet of Things (IoT), and autonomous vehicles.

FL over wireless networks has recently attracted considerable attention, where the communication-

expensive model/gradient exchange between the edge server and edge devices is a critical issue

that needs to be addressed. Because of limited radio spectrum resource and finite computing

power of edge devices, it is crucial to study the communication and computation co-design. For

instance, the authors in [8] proposed to jointly optimize the device selection, power control, and

bandwidth allocation to minimize the FL training loss. By jointly optimizing the computation and

communication resources, the authors in [9] developed an efficient algorithm to enable energy-

efficient FL over wireless networks. Most existing studies adopt the orthogonal multiple access

(OMA) scheme, e.g., frequency division multiple access (FDMA) and time division multiple

access (TDMA), to ensure that the model update of each participating edge device is successfully

received by the edge server before performing global model aggregation. Such a “communicate-

then-compute” strategy may not be spectrum-efficient as the number of required frequency/time

resource blocks is proportional to the number of participating edge devices.

Over-the-air computation (AirComp) [10], as an emerging non-orthogonal multiple access

technique, has the potential to enable spectrum-efficient wireless model/gradient aggregation.

By exploiting the waveform superposition nature, AirComp enables the edge server to receive a

target nomographic function (e.g., arithmetic mean, weighted average) of the signals concurrently

transmitted by multiple edge devices over the same radio channel. During the model aggregation

process of FL, the edge server is only interested in receiving a weighted average of the local

model updates from the edge devices, rather than each individual local model update. Such

a model aggregation process matches well with the principle of AirComp, based on which

the edge server can directly obtain a noisy version of the aggregated model update by allowing

multiple edge devices to concurrently transmit their local model updates. Such a “compute-when-

communicate” strategy requires only one resource block regardless of the number of participating
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edge devices. The communication efficiency of AirComp-assisted FL has recently been demon-

strated by the existing studies [11]–[13] and further enhanced by leveraging intelligent reflecting

surface (IRS) [14].

A. Motivation and Contributions

Most existing studies on AirComp-assisted FL [11], [14]–[17] mainly treat each communica-

tion round equally important, and optimize the learning performance according to the instanta-

neous mean squared error (MSE) of the aggregated global model at a typical communication

round, which leads to a sub-optimal learning performance [18], [19]. This is because these studies

ignore an inherent property of FL, i.e., the training process of FL involves multiple communica-

tion rounds and the model aggregation errors across all communication rounds collectively affect

the final training performance. On the other hand, the existing studies [11], [14]–[17], [20], [21]

mainly adopt optimization-based methods for the transceiver design of AirComp. However, the

optimization-based methods typically suffer from high computation complexity and require the

global channel state information (CSI), which hinder their practical applications. These two issues

motivate us to develop a both communication and computation efficient framework to design,

analyze, and optimize AirComp-assisted FL, taking into account the impact of the aggregation

errors over all communication rounds on the FL performance.

In this paper, we consider over-the-air FL over a single-cell wireless network, where the

edge devices with non-independent and identically distributed (non-i.i.d.) datasets first perform

multiple local iterations and then concurrently transmit their gradients to the edge server over

the same radio channel using AirComp in each communication round. Under this setup, we aim

to characterize the convergence of the proposed communication-efficient AirComp-assisted FL

and further develop a learning-based resource allocation algorithm to enhance the transceiver

design, taking into account the model aggregation errors accumulated over all communication

rounds. AirComp-assisted FL and learning-based transceiver design, as two critical components

of our proposed unified framework, can be regarded as communication for AI and AI for

communication, respectively. The main contributions of this paper are summarized as follows.

• We theoretically analyze the convergence of the proposed communication-efficient AirComp-

assisted FL system, taking into account multiple local stochastic gradient descent (SGD)

iterations and the non-i.i.d. data at edge devices. The convergence analysis demonstrates

that the time-average MSE is a critical factor that captures the model aggregation errors
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accumulated over all communication rounds and determines the convergence performance of

AirComp-assisted FL. To enhance the learning performance, we formulate an optimization

problem to minimize the time-average MSE of the aggregated global model, while taking

into account the maximum and average transmit power budgets of each edge device.

• To minimize the time-average MSE of the aggregated global model, we propose an alter-

nating optimization algorithm to optimize the transmit power of each edge device and the

receive normalizing factor at the edge server. Due to the non-convexity arsing from the

coupling between the transmit power of edge devices and the receive normalizing factor,

we decouple the optimization variables and transform the non-convex optimization problem

into two convex subproblems. We further derive the optimal receive normalizing factor and

the optimal transmit power of edge devices by leveraging KKT conditions.

• As the proposed optimization-based algorithm demands relatively high computation com-

plexity and requires global CSI, we further develop a novel knowledge-guided learning

algorithm, which constructs a deep neural network (DNN) with domain knowledge to

map the instantaneous CSI to the transmit power of edge devices and the receive nor-

malizing factor. By exploiting the structure of the analytical expression of the optimal

transmit power, the proposed knowledge-guided learning algorithm reduces the searching

space of the transmit power and in turn achieves a lower computation complexity than the

conventional optimization-based algorithms. Moreover, as collecting the optimal solutions

to the optimization problem as labels is generally time-consuming, we adopt unsupervised

learning to train the DNN specifically developed for effective AirComp transceiver design.

• Simulation results demonstrate that the proposed alternating optimization algorithm and

knowledge-guided learning algorithm achieve faster convergence rates and better learning

performance than the baseline methods, including full power method, channel inversion

method, and knowledge-free learning method. Moreover, the proposed knowledge-guided

learning algorithm can achieve a comparable learning performance compared to the proposed

alternating optimization algorithm, but with a much lower computation complexity.

B. Related Works

1) OMA-based FL: Various studies have recently been proposed to optimize resource alloca-

tion for FL over wireless networks [22]–[27]. In particular, the authors in [22] proposed an FL

algorithm for the scenario with non-i.i.d. data and developed an efficient resource allocation
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algorithm to improve the training performance. The authors in [23] proposed to adapt the

frequency of global model aggregation to minimize the training loss. With a fixed training

time budget, a joint bandwidth allocation and scheduling policy was proposed in [24]. By

considering imperfect CSI, the authors in [25] proposed a joint device scheduling and resource

allocation algorithm to improve the training performance. Taking into account the CPU-GPU

heterogeneous computing, the authors in [26] designed a joint computation and communication

resource allocation scheme to enhance the energy-efficiency of FL. In addition to wirelss resource

allocation, learning parameters (e.g., batch-size) can be further adjusted to enhance FL. To

accelerate the training process, the authors in [27] proposed a co-design of batch-size selection

and communication resource allocation that can adapt to time-varying wireless channels. Note

that all the aforementioned studies adopted the OMA scheme, which may not be spectrum-

efficient for uplink model aggregation, especially when the number of edge devices is large.

2) AirComp-assisted FL: Leveraging AirComp to support wireless FL has recently been

studied from different perspectives. In particular, the authors in [11] proposed a joint design

of device selection and receive beamforming to improve the learning performance of AirComp-

assisted FL. To mitigate the aggregation error induced by AirComp, the authors in [15] developed

an efficient transmit power control strategy. To alleviate the communication bottleneck of Air-

Comp, the authors in [14], [16] leveraged IRS to mitigate the magnitude misalignment during

model/gradient aggregation. The authors in [20] proposed to exploit receiver noise as a source

of randomness to ensure differential privacy. Moreover, the local learning rates can be further

optimized to enhance the learning performance based on the channel conditions in [17]. To

reduce the implementation complexity, the authors in [28] utilized momentum-based gradient to

update the global model. However, most existing studies on AirComp-assisted FL did not take

into account the model aggregation error accumulated over all communication rounds, which

determines the final learning performance.

3) Deep learning for resource allocation: Due to the recent advancement of deep learning

(DL), DNN can be applied to reduce the computation complexity of optimization-based resource

allocation algorithms in wireless networks. The authors in [29]–[31] proposed to train DNNs

for interference management and sum rate maximization. The authors in [32] utilized the graph

neural network (GNN) for IRS configuration, beamformer design, and power control. However,

these data-driven methods generally require a large amount of training samples and lack inter-

pretability and predictability [33]. These issues can be tackled by model-driven methods that
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construct neural networks based on domain knowledge. The authors in [34] proposed a model-

driven DNN to replace the conventional orthogonal frequency-division multiplexing (OFDM)

receiver. For joint activity detection and channel estimation, the authors in [35], [36] proposed

to unfold the numerical iterative methods as the recurrent neural network (RNN). Furthermore,

the authors in [37] exploited the structure of the optimal solutions to design DNN for fast

beamforming design. Leveraging model-driven DL to achieve computation-efficient transceiver

design for AirComp-assisted FL is a critical issue, which, however, has not been explored.

C. Organization and Notations

The rest of this paper is organized as follows. In Section II, we describe the system model of

AirComp-assisted FL. We present the convergence analysis and problem formulation in Section

III. In Section IV, we propose an alternating optimization algorithm. In Section V, we develop a

novel knowledge-guided learning algorithm. In Section VI, the simulation results are provided.

Finally, the paper is concluded in Section VII.

We use Rn to denote the real domain of dimension n. Italic, boldface lower-case, and boldface

upper-case letters are used to denote scalar, vector, and matrix, respectively. We denote (·)T as

the transpose and (·)H as Hermitian transpose. E[·] denotes the statistical expectation operator

and ‖ · ‖ denotes the Euclidean norm.

II. SYSTEM MODEL

A. Federated Learning Model

Consider FL over a single-cell wireless network, where an edge server co-located with a single-

antenna base station coordinates K single-antenna edge devices to collaboratively train a shared

ML model, as shown in Fig. 1. We denote the index set of edge devices as K = {1, . . . , K}.

Each edge device k ∈ K owns a local dataset Dk = {(xk,i, yk,i), 1 ≤ i ≤ |Dk|}, where xk,i and

yk,i denote the i-th data sample and its associated label at edge device k, respectively, and |Dk|

denotes the cardinality of set Dk. The local data at the k-th edge device are generated according

to the data distribution Tk,∀ k. In practice, the local data at different edge devices are usually

non-i.i.d., i.e., Tk 6= Tj,∀ k 6= j ∈ K. The local loss function at edge device k with respect to

local model vector wk ∈ RN of dimension N is defined by the empirical risk over its local data



7

Edge Devices

Edge Server

Model broadcast

Global Model

Distributed 

data sets

Local models

  
Edge Devices

Edge Server

Global Model

  

Accumulated gradients

uploading    

Over-the-air 

aggregation

Distributed 

data sets

Local models

Edge Server Global Model

   

Local accumulated gradients

over-the-air aggregation

BS

 

Device 1 Local ModelLocal dataset

Device k Local ModelLocal dataset

 

Device KLocal dataset Local Model

Model broadcast

...
...

Edge Devices

Edge Server

Global Model

  

Accumulated gradients

uploading    

Over-the-air 

aggregation

Edge Devices

Distributed 

data sets

Local models

Edge Devices

Edge Server

Global Model

   
Accumulated local gradients

Over-the-air aggregation

Model broadcast

Local dataset Local model Edge device 2

Edge Server

Global Model

Accumulated local gradients

Over-the-air aggregation

Model broadcast

𝒟1 

𝒟2 

𝒟𝐾−1  

𝒟𝐾  

Local dataset Local model Edge device 1

Local model Edge device KLocal dataset

.
..

Global model

Edge Server

Gradients over-the-air aggregation𝑤𝐾(𝑡)  

𝑤1(𝑡)  

𝑤2(𝑡)  
𝑠2(𝑡)  

𝑠1(𝑡)  

𝑠𝐾(𝑡)  

𝑤(𝑡)  

Model broadcast

Local dataset Local modelEdge device 2

𝒟1 

Local dataset Local modelEdge device 1

Local modelEdge device K Local dataset

...

Global model

Edge Server

Gradients over-the-air aggregation

𝑠2(𝑡)  

𝑠1(𝑡)  

𝑠𝐾(𝑡)  

𝒟2 

𝒟𝐾  

Model broadcast

Local dataset Local modelEdge device 2

𝒟1 

Local dataset Local modelEdge device 1

Local modelEdge device K Local dataset

..
.

Global model

Edge Server

Over-the-air gradient aggregation

𝑠2(𝑡)  

𝑠1(𝑡)  

𝑠𝐾(𝑡)  

𝒟2 

𝒟𝐾  

Fig. 1. Illustration of AirComp-assisted FL.

Fk(wk;Dk) =
1

|Dk|

|Dk|∑
i=1

f(wk; (xk,i, yk,i)), ∀ k ∈ K, (1)

where f(wk; (xk,i, yk,i)) denotes the sample-wise loss function with respect to (xk,i, yk,i). For

simplicity, we follow [14] and assume that each edge device has the same amount of data

samples, i.e., |D1| = · · · = |DK | = 1
K
|Dtot|, where Dtot = ∪Kk=1Dk denotes the global dataset.

The empirical global loss function with respect to global model vector w ∈ RN over the global

dataset, denoted as F (w;Dtot), is

F (w;Dtot) =
1

|Dtot|

K∑
k=1

|Dk|Fk(wk;Dk) =
1

K

K∑
k=1

Fk(wk;Dk). (2)

The objective of the training procedure is to find the optimal weight vector w∗ that minimizes

the global loss function F (w;Dtot), i.e.,

w∗ = arg min
w∈RN

F (w;Dtot). (3)

B. Over-the-Air Federated Learning

To achieve communication-efficient FL, we adopt the over-the-air FedAvg algorithm, where

all edge devices first execute multiple local iterations for local gradient computation and then

concurrently transmit their accumulated local gradients to the edge server using AirComp for

global gradient aggregation. The computation and communication processes are elaborated as

follows. At the beginning of communication round t, the edge server broadcasts global model

w(t) to all edge devices in the downlink. As the edge server generally has a much higher transmit

power than the edge devices, we assume that each edge device can receive global model w(t)

with negligible distortion [20]. After receiving global model vector w(t), each edge device k

initializes its local model by setting wk(t, 0) = w(t), and then updates its local model for φ > 1

iterations using the local stochastic gradient as follows

wk(t, ζ + 1) = wk(t, ζ)− λg̃k(t, ζ), ζ = 0, . . . , φ− 1, (4)
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where λ is the learning rate, wk(t, ζ) is the local model at device k in round t after ζ local

iterations, and
g̃k(t, ζ) = ∇Fk(wk(t, ζ);Bk(t, ζ)) =

1

B

∑
(xk,yk)∈Bk(t,ζ)

∇f(wk(t, ζ); (xk, yk)) (5)

is the stochastic gradient evaluated using the mini-batch Bk(t, ζ) that contains B randomly

sampled data samples from the local dataset Dk.

To update the global model, the edge server needs to obtain the aggregation of the accumulated

local gradients. Although the OMA scheme can be adopted for gradient uploading in the uplink,

e.g., TDMA, the number of required resource blocks scales linearly with the number of edge

devices. When there are a large number of edge devices participating in FL training, the incurred

communication latency may be very large and becomes the main performance-limiting factor.

To this end, we resort to using the AirComp technique to reduce the communication latency

and thus enable fast gradient aggregation for FL. Specifically, during the uplink transmission

process, all edge devices concurrently transmit their accumulated local gradients to the edge

server with appropriate pre-processing over the same radio channel. By exploiting the waveform

superposition property of multiple-access channels, the server is capable of directly receiving

an aggregation of all accumulated local gradients. By enabling all edge devices to transmit

concurrently, the communication latency introduced by AirComp is independent of the number

of edge devices, thereby achieving communication-efficient global gradient aggregation.

To facilitate transmit power control for edge devices, we normalize the N -dimensional ac-

cumulated local gradients θk(t) ∈ RN , (wk(t, 0) − wk(t, φ))/λ =
∑φ−1

ζ=0 g̃k(t, ζ) before the

uplink transmission. In particular, after computing the local model, device k computes the mean

θ̄k(t) and variance π2
k(t) of θk(t) as follows

θ̄k(t) =
1

N

N∑
j=1

θk,j(t), ∀ k ∈ K, (6)

π2
k(t) =

1

N

N∑
j=1

(
θk,j(t)− θ̄k(t)

)2

, ∀ k ∈ K, (7)

where θk,j(t) denotes the j-th element of θk(t). By denoting θ̄(t) = 1
K

∑
k∈K θ̄k(t) and π2(t) =

1
K

∑
k∈K π

2
k(t), device k normalizes θk(t) as

sk(t) =
θk(t)− θ̄(t)

π(t)
, ∀ k ∈ K, (8)

and transmits sk(t) to the edge server over wireless fading channels. Note that sk(t) has zero

mean and unit variance, i.e., E[sk(t)sk(t)
T] = IN .

We consider block-fading channels, i.e., the channel coefficients remain invariant within
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each communication round but vary independently from one round to another. In the t-th

communication round, we denote the complex-valued channel coefficient between edge device k

and the edge server as hk(t), which is assumed to be known by edge device k, as in [12]–[14].

Before transmission, signal sk(t) is multiplied by a pre-processing factor ψk(t) to compensate

for the phase distortion due to channel fading. In particular, we set ψk(t) =

√
pk(t)hH

k(t)

|hk(t)| , where

pk(t) ≥ 0 denotes the transmit power of device k in the t-th communication round. We assume

that all edge devices are synchronized, which can be achieved by either utilizing a reference-

clock [38] or adopting the timing advance technique [39]. The received signal of dimension N

at the edge server can be expressed as

y(t) =
K∑
k=1

hk(t)ψk(t)sk(t) + n(t), (9)

where n(t) ∼ N (σ2IN) denotes the additive white Gaussian noise (AWGN) vector. Upon

receiving the signal, we apply the receive normalizing factor η(t) at the edge server for signal

amplitude alignment and noise suppression. Hence, we have

ŝ(t) =
y(t)√
η(t)

=
K∑
k=1

√
pk(t)|hk(t)|√

η(t)
sk(t) +

n(t)√
η(t)

. (10)

Note that ŝ(t) is an estimation of the target variable s(t) =
∑K

k=1 sk(t). After de-normalization,

we obtain

θ̂(t) =
1

K

(
π(t)ŝ(t) +Kθ̄(t)

)
. (11)

Recall that θk(t) = π(t)sk(t) + θ̄(t) and s(t) =
∑K

k=1 sk(t), (11) can be rewritten as

θ̂(t) =
1

K
π(t)

(
ŝ(t)− s(t)

)
+ θ(t), (12)

where θ(t) = 1
K

∑
k∈K θk(t). The edge server can only obtain an estimation of θ(t), i.e., θ̂(t),

to update the global model parameter w(t+ 1) as follows

w(t+ 1) = w(t)− λθ̂(t) = w(t)− λ(θ(t) + e(t)), (13)

where e(t) = 1
K
π(t)(ŝ(t)− s(t)) represents the random aggregation error in each communica-

tion round. This error is introduced by channel fading and receiver noise, and determines the

convergence performance of FL.

The learning process proceeds by performing (4), (10), and (13) iteratively, until the global

model is converged or the maximum number of communication rounds is reached. In addition,

we consider that each edge device has the following maximum transmit power constraint and

average transmit power constraint

pk(t) ≤ Pmax
k , ∀ k ∈ K, ∀ t ∈ {0, . . . , T − 1}, (14)
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1

T

T−1∑
t=0

pk(t) ≤ P̄k, ∀ k ∈ K, (15)

where Pmax
k > 0 and P̄k > 0 denote the maximum and average transmit power budgets of edge

device k, respectively, and T is the maximum number of communication rounds [18], [21], [40].

To make the average transmit power constraint non-trival, we assume P̄k < Pmax
k .

III. CONVERGENCE ANALYSIS AND PROBLEM FORMULATION

In this section, we present the convergence analysis for AirComp-assisted FL, taking into

account multiple local SGD iterations and the non-i.i.d. data, followed by formulating an opti-

mization problem to minimize the upper bound of the time-average norm of the gradients.

A. Preliminary

1) Non-i.i.d. data: With non-i.i.d. datasets among edge devices, the local optimum of the

local loss function may not be consistent with the global optimum of the global loss function.

As the heterogeneity level of the local gradients reflects that of the local data, we define the

following metric.

Definition 1. For K edge devices with local gradients {∇Fk(wk)}, we define metric χ to

characterize the heterogeneity level of the local gradients as follows
1
K

∑K
k=1 ‖∇Fk(wk)‖2

2

‖ 1
K

∑K
k=1∇Fk(wk)‖2

2

=
1
K

∑K
k=1 ‖∇Fk(wk)‖2

2

1
K2

∑K
k=1‖∇Fk(wk)‖2

2 + 1
K2

∑
i 6=j〈∇Fi(wi),∇Fj(wj)〉

≤ χ. (16)

Remark 1. The inner product between two local gradients indicates the divergence of the

directions of these two local gradients. Note that χ ≥ 1 due to Jensen’s inequality. When the

data across edge devices are i.i.d., the local gradients tend to be the same with tremendous data

samples, and thus χ = 1. However, with statistically heterogeneous data, the data distributions

among edge devices are different, which implies that the local gradients pointing to different

directions. Hence, the inner product between the local gradients is small, leading to a large value

of χ. In particular, a higher level of non-i.i.d. data incurs a larger value of χ.

2) Basic assumptions: To facilitate the convergence analysis, we make the following assump-

tions on the loss function and gradients.
Assumption 1 (Bounded loss function). For any parameter w, the global loss function is lower

bounded, i.e., F (w) ≥ F (w∗) > −∞.
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Assumption 2 (Lipshchitz continuity and smoothness). The local loss function Fk(w) is

smooth with a non-negative constant L and continuously differentiable, i.e.,

‖∇Fk(w)−∇Fk(w′)‖2 ≤ L‖w −w′‖2, ∀w,w′. (17)

Inequality (17) directly leads to the following inequality

Fk(w
′) ≤ Fk(w) + 〈∇Fk(w),w′ −w〉+

L

2
‖w −w′‖2

2, ∀w,w′. (18)

Assumption 3 (Bounded stochastic gradient variance). The local mini-batch stochastic gradi-

ents {g̃k} are assumed to be independent and unbiased estimates of the batch gradient {∇Fk(wk)}

with bounded variance, i.e.,

E[g̃k] = ∇Fk(wk), ∀ k ∈ K, (19)

Var(g̃k) = E[‖g̃k −∇Fk(wk)‖2
2] ≤ ξ2, ∀ k ∈ K, (20)

where ξ ≥ 0 is a constant introduced to quantify the sampling noise of stochastic gradients.

Assumption 4 (Bounded variance). The variance of N elements of θk is upper bounded by a

constant Γ ≥ 0, i.e., π2
k ≤ Γ.

Remark 2. While Assumption 1 is necessary for converging to a stationary point [41], As-

sumption 2 is standard for convergence analysis [20]. Assumption 3 indicates that the stochastic

gradient is an unbiased estimate of the batch gradient. Due to non-i.i.d. data across edge devices,

the local stochastic gradient is no longer an unbiased estimate of the batch gradient of the global

loss function [42]. For Assumption 4, since the elements of θk have finite values, it is reasonable

to assume that π2
k, as the variance of N elements of θk, is upper bounded as in [14].

B. Convergence Analysis

Based on the above assumptions, we present the following theorem for the convergence of

AirComp-assisted FL with multiple local iterations and non-i.i.d. data.

Theorem 1. With Assumptions 1-4, if the learning rate λ and the number of local iterations φ

satisfy φ2L2λ2χ+2φλL ≤ 1, then the time-average norm of the gradients after T communication

rounds is upper bounded by

1

T

T−1∑
t=0

‖∇F (w(t))‖2
2 ≤

2(F (w(0)− F (w∗)))

λ(φ− 1)T︸ ︷︷ ︸
Initial optimality gap

+
2

φ− 1

(
φ2λ2L2

2
+
φλL

K

)
ξ2︸ ︷︷ ︸

Variance of stochatic gradient

+
1 + 2λL

φ− 1

NΓ(K+1)

K2

1

T

T−1∑
t=0

MSE(t)︸ ︷︷ ︸
instantaneous MSE︸ ︷︷ ︸

Time-average MSE

, (21)
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where
MSE(t) =

K∑
k=1

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
σ2

η(t)
. (22)

Proof. Please refer to Appendix A.
Remark 3. For non-i.i.d. data, when the level of the local gradient heterogeneity χ has a larger

value, we set a smaller learning rate and perform a smaller number of local iterations to ensure

that condition φ2L2λ2χ+ 2φλL ≤ 1 is satisfied.

Remark 4. In Theorem 1, we adopt the average norm of the gradients as the convergence

indicator, which is widely used in the convergence analysis for non-convex loss [43]. Note that

the FL algorithm achieves an ε-approximation solution if

1

T

T−1∑
t=0

‖∇F (w(t))‖2
2 ≤ ε. (23)

We observe that the upper bound (21) is composed of three terms. The first two terms are

the initial optimality gap and the variance of stochastic gradient. The last term is the time-

average MSE resulting from analog gradient transmission. As T → ∞, the initial optimality

gap decreases to zero, and the upper bound approaches to the summation of the variance of the

stochastic gradient and the time-average MSE. Besides, when the number of edge devices, the

number of local iterations, and the learning rate are given, the variance of the stochastic gradient

is a constant. Consequently, in order to improve the convergence performance, it is necessary to

minimize the time-average MSE given in (21), which incorporates the model aggregation errors

accumulated over T communication rounds.

C. Problem Formulation

By omitting the constant terms, we rewrite the time-average MSE as

MSE =
T−1∑
t=0

[ K∑
k=1

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
σ2

η(t)

]
. (24)

We aim to minimize the time-average MSE by jointly optimizing the transmit power {pk(t)}

of edge devices and the receive normalizing factors {η(t)} of the edge server. Hence, the

optimization problem can be formulated as

P : min
{pk(t)},
{η(t)}

MSE (25a)

s.t. 0 ≤ pk(t) ≤ Pmax
k , ∀ k,∀ t, (25b)

0 ≤ 1

T

T−1∑
t=0

pk(t) ≤ P̄k, ∀ k, (25c)
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η(t) ≥ 0, ∀ t. (25d)

The objective function of problem P contains the noise-induced error (i.e.,
∑T−1

t=0 [σ2/η(t)])

and the signal misalignment error (i.e.,
∑T−1

t=0 [
∑K

k=1(
√
pk(t)|hk(t)|/

√
η(t) − 1)2]). To mini-

mize the time-average MSE, an intuitive idea is to enlarge the receive normalizing factors to

diminish the noise-induced error and adjust the transmit power of edge devices to align the

signal amplitudes. However, the finite average and maximum transmit power budgets make the

signal amplitude alignment not always possible. Hence, it is tricky to simultaneously reduce the

signal misalignment error and the noise-induced error. Moreover, problem (25) is a non-convex

optimization problem as the transmit power of edge devices and the receive normalizing factor

are highly coupled over different communication rounds. All these issues make problem P

challenging to be solved.

IV. ALTERNATING OPTIMIZATION ALGORITHM

In this section, we propose an alternating optimization algorithm to decouple the optimization

variables and tackle the non-convex optimization problem P .

A. Receive Normalizing Factor Optimization

We first optimize the receive normalizing factors {η(t)} with given transmit power of edge

devices {pk(t)} by solving the following problem

P1 : min
{η(t)≥0}

T−1∑
t=0

[ K∑
k=1

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
σ2

η(t)

]
. (26)

We decompose problem P1 into T subproblems for T communication rounds. Each subproblem

can be expressed as

min
η(t)≥0

E(η(t)) ,
K∑
k=1

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
σ2

η(t)
, (27)

where E(η(t)) denotes the objective function of problem (27). By denoting Ω(t) = 1/
√
η(t),

we rewrite the objective function of problem (27) as

E(Ω(t)) =
K∑
k=1

(√
pk(t)|hk(t)|Ω(t)− 1

)2

+ (σΩ(t))2, (28)

which is convex with respect to Ω(t). By setting the first-order derivative of the objective function

E(Ω(t)) to zero, we obtain the closed-form expression of the optimal Ω∗(t). As a result, the

optimal receive normalizing factor η∗(t) to problem (27) can be expressed as

η∗(t) =
1

(Ω∗(t))2
=

(
σ2 +

∑K
k=1(

√
pk(t)|hk(t)|)2∑K

k=1

√
pk(t)|hk(t)|

)2

. (29)
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B. Transmit Power Optimization

We fix the obtained optimal receive normalizing factor and optimize {pk(t)} by solving the

following problem

P2 : min
{pk(t)}

T−1∑
t=0

[ K∑
k=1

(√
pk(t)|hk(t)|√

η(t)
− 1

)2]
(30a)

s.t. constraints (25b)(25c). (30b)

We decompose problem P2 into K subproblems and optimize the transmit power of the k-th

edge device by solving the following problem

min
{pk(t)}

T−1∑
t=0

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

(31a)

s.t. 0 ≤ pk(t) ≤ Pmax
k , ∀ t, (31b)

0 ≤ 1

T

T−1∑
t=0

pk(t) ≤ P̄k. (31c)

Note that problem (31) is a convex problem and satisfies the Slater’s condition. Thus, we can

leverage the KKT conditions to obtain the optimal solution given in the following theorem.

Theorem 2. The optimal solution to problem (31) is given as follows:

• If condition
T−1∑
t=0

min

{
η(t)

|hk(t)|2
, Pmax

k

}
≤ T P̄k (32)

holds, then the optimal transmit power p∗k(t) is given by

p∗k(t) = min

{
η(t)

|hk(t)|2
, Pmax

k

}
. (33)

In this case, the transmit power either uses up the maximum power budget or has a form

of channel inversion.

• Otherwise, the optimal transmit power p∗k(t) is given by

p∗k(t) = min

{( √
η(t)|hk(t)|

|hk(t)|2 + µ∗kη(t)

)2

, Pmax
k

}
, (34)

where µ∗k can be found via the one-dimensional bisection search method to ensure that the

average transmit power constraint
∑T−1

t=0 p
∗
k(t) = T P̄k holds.

Proof. Please refer to Appendix B.

By now, problem P can be tackled by solving problems P1 and P2 alternately. The proposed

algorithm is summarized in Algorithm 1.
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Algorithm 1: Proposed alternating optimization algorithm for problem P

1: Input: {hk(t)}T−1
t=0 , stopping condition ε0.

2: Initialize: Transmit power {pk(t)}0 and i = 0.

3: repeat

4: i = i+ 1.

5: Given {pk(t)}i−1, update {η(t)}i via {η(t)}i =

(
σ2+

∑K
k=1(
√
{pk(t)}i−1|hk(t)|)2∑K

k=1

√
{pk(t)}i−1|hk(t)|

)2

.

6: Given {η(t)}i, update {pk(t)}i via {pk(t)}i = min

{
{η(t)}i
|hk(t)|2 , P

max
k

}
, if (32) holds or

{pk(t)}i = min

{( √
{η(t)}i|hk(t)|

|hk(t)|2+µ∗k{η(t)}i

)2

, Pmax
k

}
, otherwise, where µ∗k can be obtained via

bisection search.

7: until MSE
i−1−MSE

i

MSE
i < ε0.

8: Output: {η(t)} and {pk(t)}.

Remark 5. Although Algorithm 1 can optimally solve problem P , it has the following two

limitations. First, the computation complexity of Algorithm 1 is relatively high, as the iterative

algorithm requires a large number of iterations to compute the transmit power of edge devices

and the receive normalizing factor. Besides, one-dimensional bisection search is required in

each iteration and hence introduces additional computation complexity. Second, the alternating

optimization algorithm requires the CSI of all communication rounds to solve problem P .

However, it may not be practical to know the CSI of all communication rounds in advance,

especially in time-varying wireless networks. To address these limitations, we shall propose an

efficient knowledge-guided learning algorithm to solve problem P in the following section.

V. KNOWLEDGE-GUIDED LEARNING ALGORITHM

In this section, we propose an unsupervised learning algorithm and construct a DNN with

domain knowledge to map the instantaneous CSI to the transmit power of edge devices and

the receive normalizing factor. Instead of directly learning the mapping function, the proposed

learning algorithm leverages the structure of the optimal transmit power derived in Theorem 2

to enable low-complexity transceiver design for AirComp-assisted FL.
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Fig. 2. Architecture of the proposed knowledge-guided learning algorithm for the transceiver design of AirComp-assisted FL.

A. Knowledge-Guided Learning for AirComp Transceiver Design

We develop a knowledge-guided learning algorithm, which imitates the proposed alternating

optimization algorithm in Section IV. In particular, the proposed learning algorithm learns a

mapping between the instantaneous CSI of the current communication round and the transmit

power of edge devices and the receive normalizing factor by exploiting the structure information

based on (34). The proposed neural network consists of multiple fully-connected layers and a

structure mapping layer, as shown in Fig. 2. The fully-connected layers are designed to predict

the dual variables (i.e., {µk}) and the receive normalizing factor (i.e., η), while the structure

mapping layer after the fully-connected layers transforms the dual variables to the transmit

powers of edge devices by exploiting the structure of the optimal transmit power derived in

Section IV. Specifically, in the structure mapping layer, the transmit powers {pk} of edge devices

are generated according to the following structure

pk = min

{( √
η|hk|

|hk|2 + µkη

)2

, Pmax
k

}
, ∀ k ∈ K. (35)

The structure mapping layer, which converts the dual variables and the receive normalizing

factor to transmit powers of edge devices, is an important component of our proposed learning

algorithm. In particular, the proposed learning algorithm, rather than directing estimating the

transmit powers of edge devices, first predicts the dual variables that are key features extracted

from the transmit power, and then utilizes the structure mapping layer to recover transmit power
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of edge devices from the predicted dual variables.

The usage of the structure of the optimal transmit power enables the proposed neural network

to efficiently find the optimal transmit power of edge devices and the optimal receive normalizing

factor to minimize the signal misalignment error and the noise-induced error. Compared to the

traditional fully-connected neural network that directly estimates the transmit power of edge

devices, a salient feature of the proposed neural network is that the structure information is

explicitly embedded into network architecture. It is generally difficult for the conventional fully-

connected neural network to learn this structure because of the huge searching space of the

transmit power. By adopting the structure of the optimal transmit power, the searching space

of the optimal transmit power can be reduced to a finite-dimensional subspace. In addition,

the optimal transmit power is represented by dual variables µk and receive normalizing factor

η. Note that µk and η are constrained, i.e., µk ≥ 0 and η ≥ 0. Hence, the finite-dimensional

subspace can be further reduced, which in turn reduces the computation complexity of searching

for the optimal transmit power. Although the CSI of multiple communication rounds is required

to generate the training samples and to train the neural network, once the training process is

completed, the proposed neural network only needs the CSI of the current communication round

to compute the transmit powers of edge devices and the receive normalizing factor.

B. Deep Neural Network Design

As shown in Fig. 2, the proposed neural network consists of an input layer, D hidden layers,

an output layer, and a structure mapping layer, which are indexed from 0 to D + 2.

1) Input Layer: The input layer has K nodes corresponding to the channel coefficients

between K edge devices and the edge server. The input layer, denoted as z0, can be expressed

as z0 = [h1, . . . , hK ]T.

2) Hidden Layer: The hidden layers between the input layer and the output layer are fully

connected. We denote the output of the d-th neural layer as zd and the number of nodes in the

d-th layer as cd. We leverage the activation functions to generate the estimated dual variables

that are non-negative and continuous. The output of the d-th layer is given by

zd = ReLU(BN(Qdzd−1 + bd)), d = 1, . . . , D, (36)

where Qd is a weight matrix of dimension cd × cd−1, bd is a vector of dimension cd, ReLU(x)

denotes the ReLU function (i.e., max(x, 0)) that introduces nonlinearity, and BN(·) denotes the
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batch normalization layer. The batch normalization layer is adopted to mitigate the sensitivity

to the weight initialization and to reduce the probability of overfitting.

3) Output Layer: The dimension of the output layer cD+1 is set to K + 1 and the output of

the (D + 1)-th layer is

zD+1 = Sigmoid(QD+1zD + bD+1), (37)

where Sigmoid(x) = exp(x)/(1 + exp(x)) denotes the sigmoid function.

An intuitive approach is to directly train a fully-connected neural network that predicts the

transmit power of edge devices and the receive normalizing factor without a structure mapping

layer. However, such an intuitive method cannot exploit the specific structure of the optimal

solution. It is difficult for a fully-connected network to find the optimal transmit power without

using the structure information. In contrast, we design the output of the output layer as the dual

variables and the receive normalizing factor, i.e.,

zD+1 = [µ1, . . . , µK , η]T, (38)

where the first K entries correspond to K dual variables, and the last entry is the receive

normalizing factor. Vector zD+1 contains the key features of the transmit power of edge devices,

and is passed through the structure mapping layer.

4) Structure Mapping Layer: In the structure mapping layer, the transmit powers {pk} of edge

devices are calculated according to (35). Adopting the structure information not only reduces

the computation complexity to find the optimal transmit power, but also provides performance

guarantee for the proposed learning algorithm.

C. Deep Neural Network Training

The conventional DL models are usually trained using supervised learning, where the solution

to the optimization problem is utilized as the ground truth and the squared error between the

output of the neural network and the ground truth is the objective to be minimized. An obvious

drawback of the supervised learning based algorithm is that a large number of labeled samples

are required. However, collecting the optimal solutions to the optimization problem as labels is

time-consuming. We in this paper adopt unsupervised learning, where only the CSI rather than

the solutions of the optimization problem P is required as training samples. The parameters of

the neural network are optimized by using SGD. Besides the neural network design, the loss

function design is also important in our proposed algorithm. We design our loss function as
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time-average MSE plus regularizer as follows

loss =
1

B

B∑
t=1

MSE(t) + γ · Regularizer, (39)

where B is the size of training batch and γ is the penalty parameter. To meet the average transmit

power constraint, the regularizer that penalizes the constraint violation is defined as

Regularizer =
K∑
k=1

ReLU
(

1

B

B∑
t=1

pk(t)− P̄k
)
. (40)

We adopt the ReLU function to ensure that the average transmit power is smaller than P̄k

rigorously. Note that the regularizer is not designed as
∑K

k=1 ‖
1
B

∑B
t=1 pk(t) − P̄k‖2

2 because

`2-norm can only ensure that the average transmit power to be close to P̄k.

VI. SIMULATION RESULTS

In this section, we present the simulation results of the proposed alternating optimization

algorithm and knowledge-guided learning algorithm for AirComp-assisted FL.

A. Simulation Setup

In the simulations, the wireless channels between the edge devices and the edge server over

different communication rounds follow i.i.d. Rayleigh fading. The number of edge devices is

set to K = 20 if not specified otherwise. For each edge device, we define the receive signal-to-

noise ratio (SNR) of device k as SNRk = P̄k/σ
2, which is set to 10 dB. Besides, the maximum

transmit power is set to Pmax
k = 3P̄k. We describe the setting of other parameters as follows.

1) Datasets: We adopt non-i.i.d. MNIST and CIFAR-10 datasets for FL training. In particular,

we sort the data according to the labels, and divide the dataset into 200 shards with equal

size. Each edge device is randomly assigned 2 data shards.

2) FL neural network: For the MNIST dataset, we train a convolutional neural network (CNN)

with two convolution layers and two fully-connected layers. For the CIFAR-10 dataset, we

train a CNN with three convolution layers and two fully-connected layers.

3) Knowledge-based neural network for AirComp transceiver design: The number of the hidden

layers (i.e., D) is 2, while the numbers of nodes in two hidden layers are 256 and 64.

We compare the proposed alternating optimization algorithm and knowledge-guided learning

algorithm with the following four baseline methods:

• Error-free transmission: The accumulated local gradients are assumed to be transmitted

in an error-free manner, i.e., without suffering from channel fading and receiver noise. The
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server receives each of the accumulated local gradients from all edge devices without any

distortion. This benchmark characterizes the best FL performance.

• Full power: Each edge device transmits with a fixed power that is equal to the av-

erage transmit power budget P̄k. Besides, the receive normalizing factor is set to η =(
σ2+

∑K
k=1 P̄k|hk|2∑K

k=1

√
P̄k|hk|

)2

.

• Channel inversion: Each edge device transmits with power defined as follows

pk =


min

(
P̄k,

η

|hk|2

)
, P̄k|hk|2 ≥ εc,

0, P̄k|hk|2 < εc,

(41)

where η = mink

{
σ2+P̄k|hk|2√

P̄k|hk|

}
and εc = 0.1.

• Knowledge-free learning: A fully-connected neural network without structure information

is trained to directly predict the transmit power of edge devices and the receive normalizing

factor. Except for the structure mapping layer, the neural network structure is same as that

of our proposed neural network. The output layer generates the transmit power of edge

devices and the receive normalizing factor, i.e., zD+1 = [p1, . . . , pK , η]T. Finally, transmit

power pk is multiplied by P̄k.

B. Performance Comparison

Fig. 3 compares the test accuracy and the training loss of all schemes under consideration

when the number of local iterations (i.e., φ) is set to 3 and 50 for MNIST and CIFAR-10

datasets, respectively. We observe that the error-free transmission achieves the best performance

because of the ideal model aggregation. The proposed alternating optimization algorithm obtains

the optimal solutions of two subproblems and thus achieves the second-best convergence per-

formance. Besides, the performance gap between the alternating optimization algorithm and the

knowledge-guided learning algorithm is quite small. By exploiting the structure information in

terms of the analytical expression of the optimal transmit power, the proposed knowledge-guided

learning algorithm can effectively optimize the transceiver design, while significantly reduces

the computation complexity. Compared to the full power method, the channel inversion method,

and the knowledge-free learning method, the proposed knowledge-guided learning algorithm

and the alternating optimization algorithm achieve faster convergence rates and better learning

performance. This demonstrates the importance of the optimization of the transmit power and

the receive normalizing factor as well as the exploitation of the structure information. Similar
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(d) CIFAR-10 dataset
Fig. 3. Performance comparison of the proposed optimization and knowledge-guided algorithms with the baseline methods.

performance trends in terms of training loss and test accuracy can be observed for all schemes

under the MNIST and CIFAR-10 datasets.

Fig. 4 shows the learning performance of different algorithms with varying number of local

iterations. The number of communication rounds (i.e., T ) is set to 125 and 150 for MNIST and

CIFAR-10 datasets, respectively. As shown in Fig. 4, the test accuracy increases with the number

of local iterations. When the number of local iterations is large enough, the speed of performance

increase becomes smaller. This is because excessive number of local iterations makes the local

optimum deviate from the global mimimum when the datasets are non-i.i.d. Besides, we observe

that the knowledge-guided learning algorithm always achieves a performance close to that of

the alternating optimization algorithm on both MNIST and CIFAR-10 datasets. By exploiting

the structure of the optimal transmit power, the proposed knowledge-guided learning algorithm

outperforms the full power, channel inversion, and knowledge-free learning methods.

Fig. 5 shows the learning performance of different algorithms versus the number of edge

devices when the number of communication rounds (i.e., T ) and the number of local iterations
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Fig. 4. Learning performance versus number of local iterations in terms of test accuracy and training loss.

(i.e., φ) are set to 125 and 2, respectively. We observe that the test accuracy of all schemes

increases with the number of edge devices. Specifically, the test accuracy increases rapidly when

K ≤ 20, and increases slowly when K ≥ 25. This is because data redundancy occurs when too

many edge devices are involved in FL training. Fig. 5 also shows that the knowledge-guided

learning algorithm is able to achieve comparable performance with the alternating optimzation

algorithm under different number of edge devices. In addition, the knowledge-guided learning

algorithm and the alternating optimization algorithm significantly outperform the full power

method, the channel-inversion method, and the knowledge-free learning method, which clearly

demonstrates the superiority of our proposed algorithms.
TABLE I

COMPUTATION TIME COMPARISON AND FEASIBLE

PROBABILITY OF PROPOSED KNOWLEDGE-GUIDED

LEARNING ALGORITHM WHEN T = 200

Number of edge devices 15 20 25 30 35

Alternating optimization 44.63 s 53.53 s 55.75 s 58.71 s 59.40 s

Knowledge-guided learning 13.56 ms 14.84 ms 17.15 ms 20.95 ms 21.99 ms

Feasible probability of solutions 100.00% 99.98% 100.00% 99.99% 100.00%

TABLE II

COMPUTATION TIME COMPARISON AND FEASIBLE

PROBABILITY OF PROPOSED KNOWLEDGE-GUIDED

LEARNING ALGORITHM WHEN K = 20

Number of communication rounds 125 150 175 200 225 250

Alternating optimization 31.22 s 39.98 s 46.32 s 53.53 s 58.58 s 67.61 s

Knowledge-guided learning 14.42 ms 15.37 ms 14.83 ms 14.84 ms 15.67 ms 17.01 ms

Feasible probability of solutions 99.71% 99.66% 99.96% 99.98% 99.99% 99.99%
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Fig. 5. Test accuracy versus number of edge devices for MNIST dataset.

We compare the computation time of the knowledge-guided learning algorithm and the alter-

nating optimization algorithm, and evaluate the feasible probability of the solutions returned by

the knowledge-guided learning algorithm. Table I shows the computation time versus the number

of edge devices when the number of communication rounds (i.e., T ) is set to 200. We observe

that the computation time grows as the number of edge devices increases. The computation

time of the knowledge-guided learning algorithm is three orders of magnitude smaller than the

alternating optimization algorithm. This is because the alternating optimization algorithm relies

on an iterative process and each iteration involves a bisection search, which are time-consuming.

Results demonstrate that the knowledge-guided learning algorithm is more practical for the

transceiver design of AirComp-assisted FL with only marginal decrease in learning performance.

Table II shows that the computation time when the number of edge devices (i.e., K) is set

to 20. Compared with the alternating optimization algorithm, the knowledge-guided learning

algorithm can speed up the computation by 2000− 4000 times. Both Tables I and II show that

the probability of feasible solution of the knowledge-guided learning algorithm is more than

99.6% for different number of communication rounds and different number of edge devices,

which demonstrates the robustness of our proposed learning algorithm.

VII. CONCLUSION

In this paper, we studied over-the-air FL, taking in account multiple local SGD iterations

and non-i.i.d. data. We derived the convergence of AirComp-assisted FL in terms of the time-

average norm of gradients, followed by formulating an optimization problem to minimize the

convergence bound. We first proposed an alternating optimization algorithm to obtain the optimal

transmit power of edge devices and the receive normalizing factor, which, however, requires the
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global CSI and suffers from high computation complexity. We further developed a knowledge-

guided learning algorithm that exploits the domain knowledge to map the instantaneous CSI

to the transmit power of edge devices and the receive normalizing factor. Simulation results

demonstrated that the knowledge-guided learning algorithm achieves a comparable performance

as the alternating optimization algorithm, but with a much lower computation complexity.

APPENDIX

A. Proof of Theorem 1

Before proving Theorem 1, we first present the following four useful lemmas, which are

proved in Appendix C.
Lemma 1. With Assumption 3, the difference between the global model vector and the individual

local model vector is bounded, i.e.,

E
[

1

K

K∑
k=1

‖w(t)−wk(t, ζ)‖2
2

]
≤ φλ2ξ2 + φλ2

φ−1∑
q=0

χ

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, q))

∥∥∥∥2

2

. (42)

Lemma 2. With Assumptions 2 and 3, the following equality holds

E [〈∇F (w(t)),θ(t)〉] ≥ 1

2
φ‖∇F (w(t))‖2

2 +
1

2

φ−1∑
ζ=0

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

− L2 1

2

φ−1∑
ζ=0

1

K

K∑
k=1

‖(w(t)−wk(t, ζ))‖2
2. (43)

Lemma 3. With Assumption 3, the average accumulated gradient norm is upper bounded as

follows

E
[
‖θ(t)‖2

2

]
≤ φ

K
ξ2 + φ

φ−1∑
ζ=0

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

, (44)

which relates the average accumulated gradient to the local full gradient.

Lemma 4. With Assumptions 3 and 4, the aggregation error and the instantaneous MSE has the

following relationship

E[‖e(t)‖2
2] ≤ N

Γ(K + 1)

K2
MSE(t). (45)

Proof of Theorem 1. According to Assumption 2, F (w) is L-smooth and we have the following

inequality
F (w(t+ 1))− F (w(t)) ≤ −λ 〈∇F (w(t)),θ(t) + e(t)〉+

λ2L

2
‖θ(t) + e(t)‖2

2

= −λ 〈∇F (w(t)),θ(t)〉 − λ 〈∇F (w(t)), e(t)〉+
λ2L

2
‖θ(t)‖2

2 +
λ2L

2
‖e(t)‖2

2 + λ2L 〈θ(t), e(t)〉

(a)

≤−λ 〈∇F (w(t)),θ(t)〉+λ

2
‖∇F (w(t))‖2

2+
λ

2
‖e(t)‖2

2+
λ2L

2
‖θ(t)‖2

2+
λ2L

2
‖e(t)‖2

2+λ2L〈θ(t), e(t)〉
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(b)

≤−λ 〈∇F (w(t)),θ(t)〉+
λ

2
‖∇F (w(t))‖2

2 + (
λ

2
+ λ2L)‖e(t)‖2

2 + λ2L‖θ(t)‖2
2, (46)

where (a) follows from −aTb ≤ ‖a‖22
2

+
‖b‖22

2
and (b) follows by utilizing aTb ≤ ‖a‖22

2
+
‖b‖22

2
. By

taking expectations over stochastic sampling and receiver noise at both sides of (46), we obtain

E[F (w(t+ 1))− F (w(t))] ≤ −λE [[〈∇F (w(t)),θ(t)〉]]

+
λ

2
‖∇F (w(t))‖2

2+(
λ

2
+ λ2L)E[‖e(t)‖2

2] + λ2LE[‖θ(t)‖2
2]. (47)

Using Lemmas 1, 2, 3 and 4, we have

E[F (w(t+ 1))− F (w(t))] =
λ(1− φ)

2
‖∇F (w(t))‖2

2 +

(
φ2λ3L2

2
+
φλ2L

K

)
ξ2

+ (−1 + φ2L2λ2χ+ 2φλL)
λ

2

φ−1∑
ζ=0

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

+ (
λ

2
+ λ2L)E[‖e(t)‖2

2]

(a)

≤ λ(1− φ)

2
‖∇F (w(t))‖2

2 +

(
φ2λ3L2

2
+
φλ2L

K

)
ξ2 + (

λ

2
+ λ2L)N

Γ(K + 1)

K2
MSE(t), (48)

where (a) holds because φ2L2λ2χ + 2φλL ≤ 1. By summing up (48) for all T communication

rounds and rearranging the terms, we have

E[F (w(T ))− F (w(0))] ≤ λ

2
(1− φ)

T−1∑
t=0

‖∇F (w(t))‖2
2

+

(
φ2λ3L2

2
+
φλ2L

K

)
ξ2+(

λ

2
+λ2L)

T−1∑
t=0

N
Γ(K + 1)

K2
MSE(t). (49)

With Assumption 1, we have F (w(T ))− F (w(0)) ≥ F (w∗)− F (w(0)), which yields (21).

B. Proof of Theorem 2

The Lagrangian function of problem (31) is given by

L({pk(t)},{α(t)},µk)=
T−1∑
t=0

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
T−1∑
t=0

α(t)

(
pk(t)−Pmax

k

)
+µk

(T−1∑
t=0

pk(t)−T P̄k
)
,

where {α(t) ≥ 0} denote the dual variables associated with the constraints in (31b) and µk ≥ 0

denotes the dual variable associated with constraint (31c). By setting the first derivative of

L({pk(t)}, {α(t)}, µk) with respect to pk(t) to zero as follows
∂L

∂pk(t)
=
|hk(t)|2

η(t)
− |hk(t)|√

η(t)pk(t)
+ α(t) + µk = 0, (50)

we obtain

pk(t) =

( √
η(t)|hk(t)|

|hk(t)|2 + (α(t) + µk)η(t)

)2

. (51)

We denote {p∗k(t)} as the optimal transmit power, and {α∗(t)} and µ∗k as the optimal dual
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variables. The optimal {p∗k(t)}, {α∗(t)}, and µ∗k should satisfy the following KKT conditions

p∗k(t) =

( √
η(t)|hk(t)|

|hk(t)|2 + (α∗(t) + µ∗k)η(t)

)2

,∀ t, (52)

0 ≤ p∗k(t) ≤ Pmax
k ,∀ t, (53)

0 ≤
T−1∑
t=0

p∗k(t) ≤ T P̄k, (54)

α∗(t) ≥ 0,∀ t, (55)

µ∗k ≥ 0, (56)

α∗(t)

(
p∗k(t)− Pmax

k

)
= 0,∀ t, (57)

µ∗k

( T−1∑
t=0

p∗k(t)− T P̄k
)

= 0. (58)

If α∗(t) > 0, because of the comlementary slackness condition (57), then we obtain p∗k(t) =

Pmax
k . If α∗(t) = 0, then we obtain p∗k(t) =

( √
η(t)|hk(t)|

|hk(t)|2+µ∗kη(t)

)2

. Hence, the analytical expression

of p∗k(t) is given by

p∗k(t) =


( √

η(t)|hk(t)|
|hk(t)|2 + µ∗kη(t)

)2

, if α∗(t) = 0,

Pmax
k , if α∗(t) > 0.

(59)

As the value of p∗k(t) depends on α∗(t), we discuss two following cases. If
( √

η(t)|hk(t)|
|hk(t)|2+µ∗kη(t)

)2

>

Pmax
k and α∗(t) = 0, then

p∗k(t)
(a)
=

( √
η(t)|hk(t)|

|hk(t)|2 + µ∗kη(t)

)2

> Pmax
k , (60)

where (a) is due to (59). Note that the maximum power constraint (53) is not satisfied. Hence,

α∗(t) > 0 must hold, resulting in p∗k(t) = Pmax
k . If

( √
η(t)|hk(t)|

|hk(t)|2+µ∗kη(t)

)2

≤ Pmax
k and α∗(t) > 0, then

p∗k(t)
(a)
= Pmax

k ≥
( √

η(t)|hk(t)|
|hk(t)|2 + µ∗kη(t)

)2
(b)
>

( √
η(t)|hk(t)|

|hk(t)|2 + (α∗(t) + µ∗k)η(t)

)2

, (61)

where (a) is due to (59) and (b) is due to α∗(t) > 0. Note that (52) is not satisfied. Hence,

α∗(t) = 0 must holds, which leads to p∗k(t) =

( √
η(t)|hk(t)|

|hk(t)|2+µ∗kη(t)

)2

. To sum up, the value of p∗k(t)

is independent of α∗(t) and is given by p∗k(t) = min

{( √
η(t)|hk(t)|

|hk(t)|2+µ∗kη(t)

)2

, Pmax
k

}
.

If µ∗k > 0, because of the complementary slackness condition (58), then we obtain
∑T−1

t=0 p
∗
k(t) =

T P̄k. Hence, we obtain (34), where µ∗k can be found to ensure
∑T−1

t=0 p
∗
k(t) = T P̄k by using the

one-dimensional bisection search method. Furthermore, if µ∗k = 0 and
∑T−1

t=0 p
∗
k,m(t) ≤ T P̄k,
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then we obtain (33). If µ∗ = 0 and
∑T−1

t=0 p
∗
k(t) > TP̄k, then (54) does not hold. Hence, µ∗k > 0

must holds, which leads to (34).

To sum up, the optimal transmit power is given by

p∗k(t) =


min

{
η(t)

|hk(t)|2
, Pmax

k

}
, if

T−1∑
t=0

min

{
η(t)

|hk(t)|2
, Pmax

k

}
≤ T P̄k,

min

{( √
η(t)|hk(t)|

|hk(t)|2 + µ∗kη(t)

)2

, Pmax
k

}
, if

T−1∑
t=0

min

{
η(t)

|hk(t)|2
, Pmax

k

}
> TP̄k.

(62)

where µ∗ can be found to ensure the average power constraint
∑T−1

t=0 p
∗
k(t) = T P̄k via the

one-dimensional bisection search method.

C. Proof of Lemmas

Proof of Lemma 1. According to (4), the local model vector is given by wk(t, ζ) = w(t) −

λ
∑ζ−1

q=0 g̃k(t, q). We bound E
[

1
K

∑K
k=1 ‖w(t)−wk(t, ζ)‖2

2

]
as follows

E
[

1

K

K∑
k=1

‖w(t)−wk(t, ζ)‖2
2

]
=E
[

1

K

K∑
k=1

∥∥∥∥λ ζ−1∑
q=0

g̃k(t, q)

∥∥∥∥2

2

]
=

1

K

K∑
k=1

λ2E
[∥∥∥∥ ζ−1∑

q=0

g̃k(t, q)

∥∥∥∥2

2

]
(a)
=

1

K

K∑
k=1

λ2Var
(ζ−1∑
q=0

g̃k(t, q)

)
+

1

K

K∑
k=1

λ2

∥∥∥∥ζ−1∑
q=0

∇Fk(wk(t, q))

∥∥∥∥2

2

(b)
=

1

K

K∑
k=1

λ2

ζ−1∑
q=0

Var
(
g̃k(t, q)

)

+
1

K

K∑
k=1

λ2

∥∥∥∥ζ−1∑
q=0

∇Fk(wk(t, q))

∥∥∥∥2

2

≤ 1

K

K∑
k=1

λ2

ζ−1∑
q=0

Var
(
g̃k(t, q)

)
+

1

K

K∑
k=1

λ2ζ

ζ−1∑
q=0

‖∇Fk(wk(t, q))‖2
2

≤ 1

K

K∑
k=1

λ2

φ−1∑
q=0

Var
(
g̃k(t, q)

)
+

1

K

K∑
k=1

φλ2

φ−1∑
q=0

‖∇Fk(wk(t, q))‖2
2

≤ λ2φξ2 + φλ2

φ−1∑
q=0

1

K

K∑
k=1

‖∇Fk(wk(t, q))‖2
2

(c)

≤ φλ2ξ2 + φλ2

φ−1∑
q=0

χ

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, q))

∥∥∥∥2

2

,

(63)
where (a) follows from E[x2] = Var[x]+[E[x]]2 and Assumption 3, (b) holds because Var(

∑n
j=1 xj) =∑n

j=1 Var(xj) with independent {xj}, and (c) follows from Definition 1.

Proof of Lemma 2. Recall the definitions of θ(t) and θk(t), we have θ(t) = 1
K

∑K
k=1 θk(t) =

1
K

∑K
k=1

∑φ−1
ζ=0 g̃k(t, ζ). Thus, we have

E
[〈
∇F (w(t)),θ(t)

〉]
(a)
=

〈
∇F (w(t)),

1

K

K∑
k=1

φ−1∑
ζ=0

∇Fk(wk(t, ζ))

〉

=

φ−1∑
ζ=0

〈
∇F (w(t)),

1

K

K∑
k=1

∇Fk(wk(t, ζ))

〉
(b)
=

1

2

φ−1∑
ζ=0

[
‖∇F (w(t))‖2

2 +

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2
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−
∥∥∥∥ 1

K

K∑
k=1

(∇Fk(w(t))−∇Fk(wk(t, ζ)))

∥∥∥∥2

2

]
≥ 1

2

φ−1∑
ζ=0

[
‖∇F (w(t))‖2

2 +

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

− 1

K

K∑
k=1

‖(∇Fk(w(t))−∇Fk(wk(t, ζ)))‖2
2

]
(c)

≥ 1

2

φ−1∑
ζ=0

[
‖∇F (w(t))‖2

2 +

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

− L2 1

K

K∑
k=1

‖(w(t)−wk(t, ζ))‖2
2

]
=

1

2
φ‖∇F (w(t))‖2

2 +
1

2

φ−1∑
ζ=0

∥∥∥∥ 1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

− L2 1

2

φ−1∑
ζ=0

1

K

K∑
k=1

‖(w(t)−wk(t, ζ))‖2
2, (64)

where (a) is due to Assumption 3, (b) is due to aTb = 1
2
‖a‖2

2 + 1
2
‖b‖2

2 − 1
2
‖a− b‖2

2, and (c) is

due to Assumption 2.

Proof of Lemma 3. According to the definition of θ(t), we have

E
[
‖θ(t)‖2

2

]
= E

[∥∥∥∥ 1

K

K∑
k=1

φ−1∑
ζ=0

g̃k(t, ζ)

∥∥∥∥2

2

]
(a)
= Var

(
1

K

K∑
k=1

φ−1∑
ζ=0

g̃k(t, ζ)

)
+

∥∥∥∥E[ 1

K

K∑
k=1

φ−1∑
ζ=0

g̃k(t, ζ)

]∥∥∥∥2

2

(b)

≤ 1

K2

K∑
k=1

Var
(φ−1∑
ζ=0

g̃k(t, ζ)

)
+φ

φ−1∑
ζ=0

∥∥∥∥1

K

K∑
k=1

∇Fk(wk(t, ζ))

∥∥∥∥2

2

, (65)

where (a) is due to E[‖x‖2] = Var[x]+‖E[x]‖2 and (b) is due to Var(
∑n

j=1 xj) =
∑n

j=1 Var(xj)

with independent {xj}. With Assumption 3, we have Var
(∑φ−1

ζ=0 g̃k(t, ζ)

)
=(a)

∑φ−1
ζ=0 Var(g̃k(t, ζ)) ≤

φξ2, which yields (44).

Proof of Lemma 4. From the definition of e(t), we have

E[‖e(t)‖2
2] = E

[∥∥∥∥ 1

K
π(t)

(
ŝ(t)− s(t)

)∥∥∥∥2

2

]
≤ Γ

K2
E
[∥∥∥∥(ŝ(t)− s(t)

)∥∥∥∥2

2

]
≤ Γ(K + 1)

K2

{ K∑
k=1

E
[∥∥∥∥
(√

pk(t)|hk(t)|√
η(t)

I − I

)
sk(t)

∥∥∥∥2

2

]
+ E

[∥∥∥∥ n(t)√
η(t)

∥∥∥∥2

2

]}

=
Γ(K + 1)

K2

{ K∑
k=1

N

(√
pk(t)|hk(t)|√

η(t)
− 1

)2

+
Nσ2

η(t)

}
= N

Γ(K + 1)

K2
MSE(t). (66)
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