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Deep Learning for Estimation and Pilot Signal

Design in Few-Bit Massive MIMO Systems
Ly V. Nguyen, Duy H. N. Nguyen, and A. Lee Swindlehurst

Abstract—Estimation in few-bit MIMO systems is challenging,
since the received signals are nonlinearly distorted by the low-
resolution ADCs. In this paper, we propose a deep learning
framework for channel estimation, data detection, and pilot
signal design to address the nonlinearity in such systems. The
proposed channel estimation and data detection networks are
model-driven and have special structures that take advantage of
the domain knowledge in the few-bit quantization process. While
the first data detection network, namely B-DetNet, is based on
a linearized model obtained from the Bussgang decomposition,
the channel estimation network and the second data detection
network, namely FBM-CENet and FBM-DetNet respectively, rely

on the original quantized system model. To develop FBM-CENet
and FBM-DetNet, the maximum-likelihood channel estimation
and data detection problems are reformulated to overcome the
vanishing gradient issue. An important feature of the proposed
FBM-CENet structure is that the pilot matrix is integrated into
its weight matrices of the channel estimator. Thus, training
the proposed FBM-CENet enables a joint optimization of both
the channel estimator at the base station and the pilot signal
transmitted from the users. Simulation results show significant
performance gain in estimation accuracy by the proposed deep
learning framework.

Index Terms—Deep learning, deep neural network, massive
MIMO, low-resolution ADCs, channel estimation, data detection.

I. INTRODUCTION

One practical solution for reducing hardware cost and

power consumption in massive MIMO systems is to use

low-resolution (e.g., 1–3 bits) analog-to-digital convectors

(ADCs). This is due to the simple structure and very low

power consumption of low-resolution ADCs. In particular, the

number of comparators in a b-bit ADC grows exponentially

with b, which means both the hardware complexity and the

power consumption of an ADC scales exponentially with the

resolution [1]. Therefore, the cost and power consumption

of low-resolution ADCs are substantially lower than those of

high-resolution ADCs. Furthermore, the hardware structure of

other components in an RF chain can also be simplified or

removed when low-resolution ADCs are used. For example,

the simplest architecture involving one-bit ADCs does not

require an automatic gain control (AGC) since only the sign of
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the real and imaginary parts of the received signals is retained.

The low-noise amplifier (LNA) with a stringent requirement on

linear behavior can be replaced by an amplifier whose structure

is much more simpler. Unfortunately, the nonlinearity caused

by low-resolution ADCs make channel estimation and data

detection in few-bit MIMO systems much more challenging,

compared to those in unquantized systems.

Channel estimation for massive MIMO systems with low-

resolution ADCs has attracted significant research interest and

also been studied intensively. The majority of which focus on

one-bit systems with different scenarios, e.g., [2]–[17]. Specif-

ically, a one-bit maximum-likelihood (ML) channel estimator

was proposed in [2]. The work in [3] exploits the Bussgang

decomposition to form a one-bit Bussgang-based minimum

mean-squared error (BMMSE) channel estimator. Another

BMMSE channel estimator was also proposed in [4] but for

one-bit spatial sigma-delta ADCs in a spatially oversampled

array. Channel estimation with temporally oversampled one-bit

ADCs is studied in [5] and [6]. It has been shown that one-

bit ADCs with spatial and temporal oversampling can help

improve the channel estimation accuracy but more resources

and computations are required due to the oversampling pro-

cess. Angular-domain channel estimation for one-bit massive

MIMO systems was studied in [7]–[9]. Spatially/temporally

correlated channels and multi-cell processing with pilot con-

tamination were investigated in [10] and [11], respectively. For

sparse millimeter-wave MIMO channels, ML and maximum a

posteriori (MAP) channel estimations were examined in [12]

and [13], respectively. Taking into account the sparsity of

such channels, the one-bit ADC channel estimation prob-

lem has been formulated as a compressed sensing problem

in [14]–[16]. Performance bounds on the channel estimation

of mmWave one-bit massive MIMO channels were reported

in [17].

Recently, machine learning techniques have been studied

to addressing the one-bit massive MIMO channel estimation

problem [18]–[21]. The work in [18] shows that support-

vector machine (SVM) can be used to efficiently address

the one-bit massive MIMO channel estimation problem. Deep

neural networks (DNNs) have also been used to form one-

bit massive MIMO channel estimators [19]–[21]. A two-stage

channel estimator for OFDM systems was proposed in [19].

Since the majority of work in the literature focused on one-bit

systems, there were limited results on few-bit massive MIMO

channel estimation [22]–[25]. Specifically, the Bussgang de-

composition was exploited in [22] to derive two linear channel

estimators including BMMSE and Bussgang-based weighted

zero-forcing (BWZF). A DNN-based joint pilot signal and

http://arxiv.org/abs/2107.11958v1
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channel estimator design is proposed in [23]. The work in

[24], [25] studied mixed-resolution channel estimation where

low-resolution ADCs were used in only part of the receive

antennas and the rest are equipped with conventional ADCs.

Data detection for low-resolution massive MIMO systems

has also been studied intensively in the literature. Most of

the results were reported for the case of one-bit ADCs,

e.g., [2], [26]–[35]. In particular, a one-bit ML detector and

a one-bit sphere decoding (OSD) technique were proposed

in [2] and [26], respectively. The very high computational

complexity of the ML and OSD methods nevertheless make

them impractical for large-scale systems. A near-ML (nML)

data detection method for large-scale MIMO systems was

proposed in [2]. However, the nML method is non-robust

at high signal-to-noise ratios (SNRs) when the channel state

information (CSI) is not perfectly known. The learning-based

method in [27] is a blind detection method for which CSI is

not required, but it is only applicable to MIMO systems with a

small number of transmit antennas and only low-dimensional

constellations. Various one-bit linear detectors were introduced

in [28], [29]. These linear detectors are applicable for large-

scale systems but often suffer from high detection error floors.

The authors in [30] proposed a one-bit detection method based

on the alternating direction method of multipliers (ADMM)

algorithm that takes hardware impairments into account. SVM-

based and DNN-based one-bit detectors were proposed in [18]

and [29], respectively. The SVM-based and DNN-based de-

tectors in [18] and [29] were shown to be robust, applicable

to highly-scaled systems, and also to outperform other ex-

isting one-bit detectors. Several other one-bit data detection

approaches can be found in [32]–[35], but they are only

applicable in systems where either a cyclic redundancy check

(CRC) [32]–[34] or an error correcting code such as a low-

density parity-check (LDPC) code [35] is available.

Data detection in few-bit massive MIMO systems has been

studied in recent papers [22], [36]–[39]. While generalized

approximate message passing (GAMP) and Bayes inference

are exploited in [36], the work in [37] employed variational

Bayesian (VB) inference and belief propagation (BP) for soft

symbol decoding. However, the resulting methods can be

sophisticated and expensive to implement. Unlike the blind

detection method in [27] which was developed for one-bit sys-

tems, the learning-based blind detection methods in [38], [39]

are applicable for few-bit systems, but they are also restricted

to MIMO systems with a small number of transmit antennas

and only low-dimensional constellations. The BMMSE and

BWZF detection methods in [22] are linear detectors and thus

simple and applicable for large-scale MIMO systems.

In this paper, we develop a deep learning framework for

channel estimation and data detection for massive MIMO

systems with low-resolution ADCs. Based on deep unfolding

of first-order optimization iterations, we propose a channel

estimator and two data detectors that are applicable for both

one-bit and few-bit ADCs as well as large-scale systems

without the need for CRC or error correcting codes. We

note that the proposed channel estimation and data detection

networks are model-driven and have special structures that can

take advantages of the domain knowledge in few-bit MIMO

systems.

For channel estimation, we reformulate the ML channel

estimation problem by exploiting the approximation of the

cumulative distribution function (cdf) of the normal random

variable as a Sigmoid activation function. The reformulated

channel estimation problem does not suffer from the vanishing

gradient issue as the original problem. Based on the reformu-

lated problem and a deep unfolding technique, we propose a

Few-Bit massive MIMO Channel Estimation Network, which

is referred to as FBM-CENet. An interesting feature of the

proposed FBM-CENet is that the pilot signal matrix is directly

integrated in the weight matrices at the estimation network.

When the pilot matrix is not given, it can be treated as

trainable parameters and therefore training the proposed FBM-

CENet is equivalent to jointly optimizing both the channel

estimator at the base station and the pilot signal transmitted

from the users. This is a significant advantage of the proposed

FBM-CENet structure since existing channel estimators are

often designed for a known pilot matrix. Simulation results

show that the proposed FBM-CENet significantly outperforms

existing channel estimation methods.

For data detection, we first propose a Bussgang-based few-

bit massive MIMO Data Detection Network, referred to as

B-DetNet. The proposed B-DetNet is based on a linearized

system model obtained through the Bussgang decomposition.

Then we propose a Few-Bit massive MIMO Data Detection

Network, referred to as FBM-DetNet. Unlike B-DetNet which

relies on an approximated linearized system model, FBM-

DetNet is developed based on the original quantized system

model. The special structure of FBM-DetNet is also obtained

through a reformulated ML data detection problem whose

formulation is similar to that of the reformulated channel

estimation problem. We stress that the proposed B-DetNet

and FBM-DetNet are highly adaptive to the channel since

the weight matrices and the bias vectors of the proposed

detection networks are defined by the channel matrix and

the received signal vector, respectively. This makes the pro-

posed detection networks easy to train with a few trainable

parameters. Simulation results also show that the proposed

data detection networks significantly outperform existing data

detection methods.

The rest of this paper is organized as follows: Section II

introduces the assumed system model. Channel estimation is

considered in Section III, where the FBM-CENet estimator is

proposed. The two proposed data detection networks B-DetNet

and FBM-DetNet are presented in Section IV. Numerical

results are given in Section V. Finally, Section VI concludes

the paper.

Notation: Upper-case and lower-case boldface letters denote

matrices and column vectors, respectively. E[·] represents

expectation. The operator | · | denotes the absolute value of

a number and the operator ‖ · ‖ denotes the ℓ2-norm of a

vector. The transpose is denoted by [·]T . The notation ℜ{·}
and ℑ{·} respectively denotes the real and imaginary parts

of the complex argument. If ℜ{·} and ℑ{·} are applied to a

matrix or vector, they are applied separately to every element

of that matrix or vector. The operator vec(A) vectorizes A by

stacking the columns of A on top of one another. ⊗ denotes
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the Kronecker product. R and C denote the set of real and

complex numbers, respectively, and j is the unit imaginary

number satisfying j2 = −1. N (·, ·) and CN (·, ·) represent

the real and the complex normal distributions respectively,

where the first argument is the mean and the second argu-

ment is the variance or the covariance matrix. The functions

Φ(t) =
∫ t

−∞
1√
2π
e−

τ2

2 dτ and φ(t) = 1√
2π
e−

1
2
t2 are the cdf

and pdf of the standard normal random variable, respectively.

II. SYSTEM MODEL

We consider an uplink massive MIMO system with K
single-antenna users and an N -antenna base station, where

it is assumed that N ≥ K . Let x̄ = [x̄1, x̄2, . . . , x̄K ]T ∈ CK

denote the transmitted signal vector, where x̄k is the signal

transmitted from the kth user under the power constraint

E[|x̄k|2] = 1. The signal x̄k is drawn from a constellation

M̄. Let H̄ ∈ CN×K denote the channel, which is assumed to

be block flat fading. Let r̄ = [r̄1, r̄2, . . . , r̄N ]T ∈ CN be the

unquantized received signal vector at the base station, which

is given as

r̄ = H̄x̄+ z̄ (1)

where z̄ = [z̄1, z̄2, . . . , z̄N ]T ∈ CN is a noise vector whose

elements are assumed to be independent and identically dis-

tributed (i.i.d.) as CN (0, N0) with N0 being the noise power.

Each analog received signal is then quantized by a pair of b-bit

ADCs. Hence, the quantized received signal is given by

ȳ = Qb (ℜ{r̄}) + jQb (ℑ{r̄}) . (2)

The operator Qb(·) of a matrix or vector is applied separately

to every element of that matrix or vector. The SNR is defined

as ρ = 1/N0.

It is assumed that that ADCs perform b-bit uniform scalar

quantization. The b-bit ADC model is characterized by a set of

2b − 1 thresholds denoted as {τ1, . . . , τ2b−1}. Without loss of

generality, we can assume −∞ = τ0 < τ1 < . . . < τ2b−1 <
τ2b = ∞. Let ∆ be the step size, so the threshold of a uniform

quantizer is given as

τl = (−2b−1 + l)∆, for l ∈ L = {1, . . . , 2b − 1}. (3)

The quantization output is defined as

Qb(r) =

{

τl − ∆
2 if r ∈ (τl−1, τl] with l ∈ L

(2b − 1)∆2 if r ∈ (τ2b−1, τ2b ].
(4)

III. CHANNEL ESTIMATION IN FEW-BIT MIMO SYSTEMS

In order to estimate the channel, a pilot sequence X̄t ∈
CK×Tt of length Tt is used to generate the training data

Ȳt = Qb

(

H̄X̄t + Z̄t

)

. (5)

The subscript ‘t’ in this paper indicates the training phase

where the channel estimation task is performed. We vectorize

the received signal in (5) to obtain the following form:

ȳt = Qb(P̄h̄+ z̄t) (6)

where ȳt = vec(Ȳt), P̄ = X̄T
t ⊗ IN , h̄ = vec(H̄), and

z̄t = vec(Z̄t). For convenience in later derivations, we convert

the notation in (6) into the real domain as

yt = Qb(Ph+ zt) (7)

where

yt =

[

ℜ{ȳt}
ℑ{ȳt}

]

, h =

[

ℜ{h̄}
ℑ{h̄}

]

, zt =

[

ℜ{z̄t}
ℑ{z̄t}

]

, and

P =

[

ℜ{P̄} −ℑ{P̄}
ℑ{P̄} ℜ{P̄}

]

.

A. Bussang-based linear channel estimators

We first revisit the Bussgang-based linear channel estimators

including BMMSE and BWZF for low-resolution massive

MIMO systems [3], [22]. The system model in (7) can be

linearized by the Bussang decomposition as follows:

yt = VtPh+Vtzt + dt

= Ath+ nt (8)

where the matrix Vt is given as [22]

Vt =
∆√
π
diag(Σrt)

− 1
2×

2b−1
∑

i=1

exp

{

−∆2(i− 2b−1)2 diag(Σrt)
−1

}

with Σrt = PΣhP
T + N0

2 I being the auto-correlation matrix

of rt. For the case of one-bit ADCs with ∆ =
√
2, the matrix

Vt reduces to a form as reported in [3, Eq. (10)].

The BMMSE channel estimator is given as [3], [22]

ĥBMMSE = Σhyt
Σ−1

yt
yt = AT

t Σ
−1
yt

yt (9)

where Σhyt
is the cross-correlation matrix between h and yt,

and Σyt
is the auto-correlation matrix of yt. For the case of

one-bit ADCs, Σyt
is given as [3]

Σyt
=

∆2

π
arcsin

(

diag(Σrt)
− 1

2Σrt diag(Σrt)
− 1

2

)

. (10)

For the case of few-bit ADCs, Σyt
is given as [22]

Σyt
= VtΣrtV

T
t +Σdt

. (11)

where Σdt
is the auto-correlation matrix of dt and can be

approximated as Σdt
≈ ηb diag(Σrt). The distortion factor

ηb depending on the number of quantization bits b is given in

Table I.

A BWZF channel estimator was also proposed in [22] as

follows:

ĥBWZF =
(

AT
t diag(w)At

)−1
AT

t diag(w)yt (12)

where w = [w1, w2, . . . , w2NTt
]T with

wi =
1

E[z2t,i] + E[d2t,i|yt,i]
, i = 1, . . . , 2NTt.

Here, yt,i, zt,i, and dt,i are the i-th element of yt, zt, and dt,

respectively. The key idea of BZWF is that given an observed

quantized signal vector yt, the elements of rt have different

variances. Exploiting this fact, the BWZF estimator sets the

signals with lower variances to have higher weights.
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TABLE I: Optimum uniform quantizer for a Gaussian input as C(0, 1) [40].

Resolution b 1-bit 2-bit 3-bit 4-bit

Step size ∆b

√

8/π 0.996 0.586 0.335
Distortion ηb 1− 2/π 0.1188 0.0374 0.0115

B. Proposed FBM-CENet

1) Maximum-likelihood channel estimation problem: Let

P = [p1,p2, . . . ,p2NTt
]T , yt = [yt,1, . . . , yt,2NTt

]T , and

zt = [zt,1, . . . , zt,2NTt
]T , then we have

yt,i = Qb

(

pT
i h+ zt,i

)

, i = 1, 2, . . . , 2NTt. (13)

Let supt,i =
√
2ρ(qupt,i − pT

i h) and slowt,i =
√
2ρ(qlowt,i − pT

i h),
where

qupt,i =

{

yt,i +
∆
2 if yt,i < τ2b−1

∞ otherwise,

qlowt,i =

{

yt,i − ∆
2 if yt,i > τ1

−∞ otherwise.

Hence, qupt,i and qlowt,i are the upper and lower quantization

thresholds of the bin to which yt,i belongs.

The ML channel estimator is given as follows:

ĥML = argmax
h

f(yt |h)

= argmax
h

2NTt
∑

i=1

log
[

Φ
(

supt,i
)

− Φ
(

slowt,i

)]

. (14)

Let Pt(h) be the objective function of (14). Since Pt(h)
is a concave function [41], the unconstrained optimization

problem (14) is convex, and therefore an iterative gradient

ascent method can be used to solve (14). However, the gradient

of Pt(h), given by

∇Pt(h) =

2NTt
∑

i=1

−√
2ρpi

(

φ
(

supt,i
)

− φ
(

slowt,i

) )

Φ
(

supt,i
)

− Φ
(

slowt,i

) , (15)

suffers from a vanishing issue, since the function Φ(·) ap-

proaches zero or one very fast. Specifically, the iterative gradi-

ent descent method sequentially updates the estimated channel

ĥ. During the process of updating ĥ, there exists an instance of

ĥ that makes both Φ
(

supt,i
)

and Φ
(

slowt,i

)

equal to zero or one.

Thus, the denominator in (15) can be zero for some ĥ causing

the gradient vanishing issue. In addition, a lack of a closed-

form expression for Φ(·) complicates the evaluation in (14).

This observation motivates us to reformulate the ML channel

estimation problem (14) to address the vanishing issue as well

as the complicated evaluation of the objective function in (14).

We exploit a result in [42], which shows that the function

Φ(t) can be accurately approximated by the Sigmoid function

σ(t) = 1/(1 + e−t) as follows:

Φ(t) ≈ σ(ct) =
1

1 + e−ct
(16)

v
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v
(0)
2

v
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M

Layer

1

v
(1)
1

v
(1)
2

v
(1)
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(2)
2
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(2)
M

. . .
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1
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2

v
(L−1)
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L

v
(L)
1

v
(L)
2

v
(L)
M

...
...

...
...

...

Fig. 1: Overall structure of the proposed FBM-CENet, FBM-DetNet, and
B-DetNet. For FBM-CENet, v plays the role of h and M = 2NK . For
FBM-DetNet and B-DetNet, v plays the role of x and M = 2K .

where c = 1.702 is a constant. It was shown in [42] that

|Φ(t)−σ(ct)| ≤ 0.0095, ∀t ∈ R. The objective function Pt(h)
can be re-written as follows:

Pt(h) ≈ P̃t(h) =

2NTt
∑

i=1

log

[

1

1 + e−cs
up

t,i

− 1

1 + e−cslow
t,i

]

=

2NTt
∑

i=1

[

log
(

e−cslowt,i − e−cs
up

t,i

)

− log
(

1 + e−cs
up

t,i

)

− log
(

1 + e−cslowt,i

) ]

. (17)

Thus, a reformulated ML channel estimation problem is ob-

tained as follows:

ĥ = argmax
h

P̃t(h). (18)

The gradient of P̃t(h) is

∇P̃t(h) =

2NTt
∑

i=1

c
√

2ρpi

(

1− 1

1 + ecs
up

t,i

− 1

1 + ecs
low
t,i

)

= c
√

2ρPT
[

1− σ
(

c
√

2ρ (Ph− q
up
t )

)

−

σ
(

c
√

2ρ
(

Ph− qlow
t

)

) ]

(19)

where q
up
t = [qupt,1, . . . , q

up
t,2NTt

]T and qlow
t =

[qlowt,1 , . . . , q
low
t,2NTt

]T . It can be seen that the gradient of

P̃t(h) in (19) does not suffer from the divided-by-zero issue

as in the gradient of Pt(h). Thus, an iterative gradient decent

method for solving (18) can be written as

h(ℓ) = h(ℓ−1) + α
(ℓ)
t ∇P̃t

(

h(ℓ−1)
)

(20)

where ℓ is the iteration index and α
(ℓ)
t is the step size.

2) Network structure of the proposed FBM-CENet: We

employ the deep unfolding technique [43] to unfold each

iteration in (20) as a layer of a deep neural network. The

overall structure of the proposed FBM-CENet estimator is

illustrated in Fig. 1, where there are L layers and each layer

takes a vector of 2NK elements as the input and generates

an output vector of the same size.

The specific structure for each layer ℓ of the proposed FBM-

CENet is illustrated in Fig. 2b. The proposed layer structure

is special and unique due to the use of the approximation

in (16) and the structure of the reformulated gradient in (19).
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yt ×

W1

θ1 f1
(

θ1 − b1

)

×

W2

θ2 f2
(

θ2 − b2

)

. . .×

WL

θLfL
(

θL − bL

)

ĥ

(a) Conventional channel estimation DNN structure. Each layer ℓ contains a trainable

weight matrix Wℓ, a trainable bias vector bℓ, and an activation function fℓ(·).

h(ℓ−1)
×

P

u
(ℓ)
t

σ
(

βt(u
(ℓ)
t − q

up
t )

)

σ
(

βt(u
(ℓ)
t − qlow

t )
)

1
+ −

−
×

PT

α
(ℓ)
t

h(ℓ−1)

+
h(ℓ)

(b) Specific structure of layer ℓ of the proposed FBM-CENet.

Fig. 2: Conventional versus proposed DNN structure for channel estimation.

Specifically, each layer of the proposed FBM-CENet consists

of two weight matrices and two bias vectors where the

pilot matrix P plays the role of the weight matrices and

the received signals q
up
t and qlow

t play the role of the bias

vectors. By contrast, each layer ℓ of a conventional DNN-

based channel estimator as illustrated in Fig. 2a contains one

weight matrix Wℓ and one bias vector bℓ. Such a conventional

DNN structure has been employed in several existing works,

e.g., [23]–[25]. An interesting feature of the proposed network

structure is the Sigmoid activation function σ(·), which is

not arbitrary but results from the use of the approximation

in (16). This is unlike the conventional DNN structure where

the activation functions {fℓ(·)} are often chosen heuristically

by experiments.

3) Trainable parameters: For a given pilot matrix P, the

trainable parameters in the proposed FBM-CENet are the step

sizes {α(ℓ)
t } and a scaling parameter βt inside the Sigmoid

function. Note that the coefficient c
√
2ρ is omitted in the

proposed network structure since it is a constant through all

the layers of the network. The trainable parameters {α(ℓ)
t } and

βt take over the role of this coefficient.

It is important to note that the pilot matrix P directly plays

the role of the weight matrices. Therefore, when the pilot

matrix P is not given, it can be treated as a trainable parameter.

In this case, training the proposed FBM-CENet is equivalent

to jointly optimizing both the channel estimator at the base

station and the pilot signal transmitted from the users. This

is a significant advantage of the proposed network structure

since the conventional DNN-based channel estimator is often

trained or optimized for a given pilot matrix. In other words,

conventional DNN structures do not convey information about

the optimal pilot signal. We note that a recent work in [23] also

jointly optimized the pilot signal and the channel estimator for

massive MIMO systems with low-resolution ADCs. However,

the channel estimator in [23] simply employs the conventional

DNN structure as illustrated in Fig. 2a. We will later show that

the proposed FBM-CENet estimator significantly outperforms

the method in [23].

4) Training strategy: Here we present the strategy for

straining the proposed FBM-CENet estimator. Let ĥ denote

the channel estimate, which is set to be the output of the last

layer of the proposed FBM-CENet, i.e., ĥ = h(L). The cost

function to be minimized is ‖ĥ− h‖2.

In case the pilot matrix P is given, a training sample for

the proposed FBM-CENet contains the given matrix P, a

channel vector realization h and a noise vector z, which can

be obtained by random generating. When the pilot matrix P

is not given and it is trainable, a training sample only contains

a channel vector realization h and a noise vector z.

It is important to note that the received signals q
up
t and qlow

t

depend on the pilot matrix P. Therefore, in case the pilot

matrix P is trainable, gradient back-propagation during the

training process should also go through q
up
t and qlow

t . How-

ever, the low-resolution ADCs are discontinuous functions,

which make gradient back-propagation through q
up
t and qlow

t

infeasible. To overcome this issue, we employ a soft quantizer

model based on the Rectified Linear Unit (ReLU) activation

function frelu(r) = max(0, r) for the training process as

follows:

qup(r) = q(r) +
∆

2
+ c2

[

frelu(r −B∆+ c1)−
frelu(r −B∆− c1)

]

(21)

qlow(r) = q(r) − ∆

2
− c2

[

frelu(−r −B∆+ c1)−
frelu(−r −B∆− c1)

]

(22)

where B = 2b−1 − 1, c1 and c2 are positive constants, and

q(r) = −(2b − 1)
∆

2
+

∆

2c1

B
∑

i=−B

[

frelu(r + i∆+ c1)−

frelu(r + i∆− c1)
]

. (23)

This soft quantization model is based on the ReLU function,

which is continuous and therefore back-propagation is feasible.

The effect of c1 is illustrated in Fig. 3. It can be seen that

the smaller c1 is, the sharper the soft quantizer is, or in

other words, the closer the soft quantizer is to the hard (real)

quantizer. The constant c2 accounts for the two thresholds

τ0 = −∞ and τ2b = ∞, and hence it should be a large

number.

It should be noted that the constants {c1, c2} should not

be treated as trainable parameters because we need the soft

quantizer to be close to the hard quantizer. If these constants

are treated as trainable parameters, the training process may

produce a soft quantizer that significantly deviates from the

hard quanizer, which is in fact the model in the real systems.

IV. DATA DETECTION IN FEW-BIT MIMO SYSTEMS

In this section, we propose two DNN-based detectors,

namely B-DetNet and FBM-DetNet, for massive MIMO sys-

tems with low-resolution ADCs. For convenience in later

derivations, we convert (1) and (2) into the real domain as

follows:

y = Qb (Hx+ z) , (24)



6

-2 -1 0 1 2
-2

-1

0

1

2

(a) c1 = 0.01.

-2 -1 0 1 2
-2

-1

0

1

2

(b) c1 = 0.05

Fig. 3: Two-bit soft quantizer with ∆ = 1.

(a) QPSK signaling. (b) 16QAM signaling.

Fig. 4: Projector function ψt(·) with different values of t.

where

y =

[

ℜ{ȳ}
ℑ{ȳ}

]

, x =

[

ℜ{x̄}
ℑ{x̄}

]

, z =

[

ℜ{z̄}
ℑ{z̄}

]

, and

H =

[

ℜ{H̄} −ℑ{H̄}
ℑ{H̄} ℜ{H̄}

]

.

Note that y ∈ R2N , x ∈ R2K , z ∈ R2N , and H ∈ R2N×2K .

We also denote y = [y1, . . . , y2N ]T and H = [h1, . . . ,h2N ]T .

A. Proposed B-DetNet

Applying the Bussang decomposition to (24), we obtain

y = VHx+Vz+ d,

= Ax+ n (25)

where

V =
∆√
π
diag(Σr)

− 1
2×

2b−1
∑

i=1

exp

{

−∆2(i− 2b−1)2 diag(Σr)
−1

}

and Σr =
1
2

(

HHT +N0I
)

.

For the case of 1-bit ADCs, the covariance of n is given in

a closed form as [44]

Σn =
∆2

π

[

arcsin
(

diag(Σr)
− 1

2Σr diag(Σr)
− 1

2

)

−

diag(Σr)
− 1

2Σr diag(Σr)
− 1

2 +
N0

2
diag(Σr)

−1
]

.

(26)

For few-bit ADCs, the covariance of n can be approximated

as Σn ≈ N0

2 VVT + ηb diag(Σr). Here, the effective noise

n is often modeled as Gaussian noise as N (0,Σn). Based

on this linearized model, different linear detectors for one-bit

and few-bit ADCs such as BZF, BMMSE, and BWZF were

introduced in [22], [28], [29].

Here, we propose a data detection network, namely B-

DetNet, based on the linearized system model in (25). Since

the effective noise n is assumed to be Gaussian, the Bussgang-

based maximum likelihood detection problem is given as

x̂BML = arg min
x̄∈M̄K

(y −Ax)TΣ−1
n (y −Ax). (27)

Let PB(x) be the objective function of (27). Note that PB(x)
is a quadratic function of x and thus convex. However, the

optimization problem is not convex due to the constraint on the

discrete feasibility set M̄K . An optimal solution to (27) there-

fore requires an exhaustive search, which is very expensive

for large scale systems. Instead, an iterative projected gradient

descent method

x(ℓ) = ψtℓ

(

x(ℓ−1) − α(ℓ)∇PB(x
(ℓ−1))

)

(28)

can be applied to to search for its optimal solution. Herein,

the gradient of PB(x) evaluated at x(ℓ−1) is given by

∇PB(x
(ℓ−1)) = −2ATΣ−1

n

(

y −Ax(ℓ−1)
)

(29)

and ψtℓ(·) characterized by a positive parameter tℓ is a non-

linear projector to force the signal to the regime of constella-

tion points. Based on the ReLU activation function, like q(r)
in (23), ψtℓ(·) can be written as

ψtℓ(x) = −(2b
′ − 1)

∆′

2
+

∆′

2tℓ

B′

∑

i=−B′

[

frelu(r + i∆+ tℓ)−

frelu(r + i∆− tℓ)
]

(30)

where B′ = 2b
′−1 − 1 and tℓ is a positive number. For QPSK

signalling, {b′,∆′} = {1, 2√
2
} and for 16-QAM signalling,

{b′,∆′} = {2, 2√
10
}. Illustration for the effect of t on ψt(·)

is given in Fig. 4. It can also seen that smaller t makes the

projector sharper. Such a projection function was used in [45],

which studied deep learning-based detection for unquantized

MIMO systems.

We propose B-DetNet by unfolding the projected gradient

descent method in (28). The overall structure of B-DetNet is

illustrated in Fig. 1. There are L layers where each layer takes

an input vector of size 2K and generates an output vector

of the same size. The specific layer structure of B-DetNet is

given in Fig. 5 where A and ATΣ−1
n play the role of weight

matrices. The received signal vector y can be seen as the bias

vector. Hence, B-DetNet is highly adaptive to the channel. The

only trainable parameters in a layer ℓ of B-DetNet are a step

size α(ℓ) and a scaling parameter tℓ in the projector function

ψtℓ(·).
We note that similar structures for data detection in full-

resolution systems have been developed in [45], [46]. How-

ever, the received signal in full-resolution systems is given

as y = Hx+ z, and therefore the gradient of interest is in

the form of −2HT (y −Hx). For low-resolution systems, we
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+
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Fig. 5: Specific structure of layer ℓ of the proposed B-DetNet.

have a new effective channel A and a new noise covariance

matrix Σn, resulting in a new form of gradient as in (29).

B. Proposed FBM-DetNet

1) Maximum-likelihood data detection problem: Let supi =√
2ρ(qupi − hT

i x) and slowi =
√
2ρ(qlowi − hT

i x), where

qupi =

{

yi +
∆
2 if yi < τ2b−1

∞ otherwise,

qlowi =

{

yi − ∆
2 if yi > τ1

−∞ otherwise.

Hence, qupi and qlowi are the upper and lower quantization

thresholds of the bin to which yi belongs. The ML detection

problem based on the log-likelihood function for the model

in (24) is defined as follows [47]:

x̂ML = arg max
x̄∈M̄K

2N
∑

i=1

log
[

Φ (supi )− Φ
(

slowi

)]

. (31)

Let P(x) denote the objective function of (31), which is a

concave function of x. However, the optimization problem (31)

is not convex since the feasible set is a discrete set. Therefore,

an optimal solution for ML detection in (31) also requires an

exhaustive search over M̄K , which is probihitively complex

for large-scale systems. One can relax the constraint on the

feasible set from x̄ ∈ M̄K to x̄ ∈ CK in order to obtain

a convex optimization problem and thus an iterative gradient

descent method can be used. Unfortunately, such a method

also suffers from the vanishing gradient issue as presented in

the channel estimation problem. In addition, there is no closed-

form expression for Φ(·), which complicates the evaluation in

(31). Thus, we also exploit the approximation in (16) to obtain

an approximate version of the function P(x) as follows:

P(x) ≈ P̃(x) =

2N
∑

i=1

log

[

1

1 + e−cs
up

i

− 1

1 + e−cslow
i

]

(32)

=
2N
∑

i=1

[

log
(

e−cslowi − e−cs
up

i

)

−

log
(

1 + e−cs
up

i

)

− log
(

1 + e−cslowi

) ]

. (33)

The reformulated ML detection problem is thus

x̂ML = arg max
x̄∈M̄K

P̃(x). (34)

The gradient of P̃(x) is

∇P̃(x) =

2N
∑

i=1

c
√

2ρhi

(

1− 1

1 + ecs
up

i

− 1

1 + ecs
low
i

)

(35)

= c
√

2ρHT
[

1− σ
(

c
√

2ρ (Hx− qup)
)

−

σ
(

c
√

2ρ
(

Hx− qlow
)

) ]

(36)

where qup = [qup1 , . . . , qup2N ]T and qlow = [qlow1 , . . . , qlow2N ]T .

Thus, an iterative projected gradient decent method for solv-

ing (34) can be written as

x(ℓ) = ψtℓ

(

x(ℓ−1) + α(ℓ)∇P̃(x(ℓ−1))
)

(37)

where ℓ is the iteration index, α(ℓ) is a step size, and ψtℓ(·)
is also a projector as defined in (30).

2) Network structure of the proposed FBM-DetNet: In

order to optimize the step sizes {α(ℓ)} and scaling parameters

{tℓ} of the projection function, we also use the deep unfolding

technique [43] to unfold each iteration in (37) as a layer of a

DNN. The overall structure of the proposed DNN-based data

detector is also illustrated in Fig. 1. The overall structure of

FBM-DetNet is similar to that of B-DetNet as each layer of

both the networks takes a vector of 2K elements as the input

and generates an output vector of the same size.

The specific structure for each layer ℓ of the proposed FBM-

DetNet is illustrated in Fig. 6. Each layer of FBM-DetNet

has two weight matrices H and HT , and two bias vectors

qup and qlow. These weight matrices and bias vectors are

defined by the channel and the received signal, respectively.

The activation function is the Sigmoid function σ(·) due to
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(ℓ)
1 − qlow1 )

)

1
+

−

−

∑ ×

α(ℓ)
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Fig. 6: Specific structure of layer ℓ of FBM-DetNet. The weight matrices and the bias vectors are defined by the channel and the received signal, respectively.

the use of the approximation in (16). Since H ∈ R
2N×2K , the

learning process for each layer of the proposed FBM-DetNet

can be interpreted as first up-converting the signal x(ℓ−1) from

dimension 2K to dimension 2N using the weight matrix H,

then applying nonlinear activation functions σ(·) before down-

converting the signal back to dimension 2K using the weight

matrix HT . Finally, the function ψtℓ(·) is implemented to

project x(ℓ−1) into the discrete set M̄K .

It is observed that the layer structure of FBM-DetNet is

similar to that of FBM-CENet in Fig. 2b. However, while the

weight matrices of FBM-CENet are defined by the pilot matrix

P which is trainable, the weight matrices of FBM-DetNet are

defined by the channel matrix H and thus not trainable. In

other words, FBM-DetNet is highly adaptive to the channel.

The trainable parameters of FBM-DetNet are the step sizes

{α(ℓ)}, scaling parameters {tℓ} for the projector, and a scaling

parameter β for the Sigmoid function. Note that the coefficient

c
√
2ρ is also omitted in FBM-DetNet for the same reason as

in FBM-CENet.

C. Training strategy

A training sample for the two proposed data detection

networks, B-DetNet and FBM-DetNet, can be obtained by

randomly generating a channel matrix H, a transmitted signal

x, and a noise vector z. The cost function to be minimized is

‖x(L) −x‖2, where x is the target signal, i.e., the transmitted

signal. For training the proposed data detection networks, we

do not need to use the soft quantization model because the

trainable parameters do not appear in the received signals y

or qup and qlow. These received signals are defined given a

training sample {H,x, z}, and therefore the hard quantizer

can be used.

V. NUMERICAL RESULTS

This section presents numerical results to show the supe-

riority of the proposed channel estimation and data detection

networks. The channel elements are assumed to be i.i.d. and
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Fig. 7: Channel estimation performance comparison for a given pilot matrix
with K = 4 and L = 8.

each channel element is generated from the normal distribution

CN (0, 1).
For training the networks, we use TensorFlow [48] and the

Adam optimizer [49] with a learning rate starts at 0.002 and

decays at a rate of 0.97 after every 100 training epochs. The

size of each training batch is set to 1000. The input of the

first layer is set to a zero vector. In case the pilot matrix P is

trainable, we use the soft quantization model in (21) and (22)

for the training phase and set c1 = 0.01 and c2 = 1000. For

the channel estimation phase, we set the training length to be

five times the number of users, i.e., Tt = 5K .

Fig. 7 presents a performance comparison of different

channel estimation methods for a given pilot matrix in terms

of NMSE, defined here as NMSE = E[‖Ĥ − H̄‖2F]/(KN),
where Ĥ is a estimate of the channel H̄. The given pilot matrix

contains K columns of a discrete Fourier transform (DFT)
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matrix where the kth row of the pilot matrix X̄t is the (k+1)th

column of the DFT matrix of size Tt × Tt. In case of one-bit

ADCs, it is observed that the proposed FBM-CENet slightly

outperforms the SVM-based method in [18] at medium-to-

high SNRs. However, at low SNRs, the performance gap

between the proposed FBM-CENet and the SVM method is

larger since the SVM method does not perform well at low

SNRs. For few-bit ADCs, it is clear to see that the proposed

FBM-CENet significantly outperforms other existing channel

estimation methods. Note that the SVM-based method in [18]

was specifically developed for one-bit ADCs. Therefore, we

do not have results of the SVM-based method for few-bit

ADCs. Note that the BWZF method does not perform well

in case of one-bit ADCs because the BWZF method exploits

the fact that the variance of the received signals at different

quantization bins are different and sets the signals with lower

variance to have higher weight. However, in case of one-bit

ADCs, there is only one bin in each quantization side (positive

or negative side). Therefore, there is no weight effects for one-

bit ADCs. On the other hand, more quantization bits result

in more quantization bins and thus different weights come

into play. In other words, BWZF performs better with few-bit

quantization.

In Fig. 8, we consider the case where the pilot matrix is

trained concurrently with the channel estimator. The proposed

FBM-CENet is compared with an existing conventional DNN-

based method in [23] which also jointly optimizes the pilot

matrix and the channel estimator like the proposed FBM-

CENet. It can be seen the proposed FBM-CENet signifi-

cantly outperforms the channel estimator in [23]. The reason

is that the estimation network in [23] uses the data-driven

conventional DNN structure as illustrated in Fig. 2a. On the

other hand, the structure of the proposed FBM-CENet takes

advantages of the domain knowledge in the ML estimation

framework. In Fig. 8, we also include the channel estimation

performance of FBM-CENet for a given pilot matrix in order

to show that jointly optimizing the pilot matrix and the

estimator can improve the estimation accuracy.

Performance comparison for data detection is given in Fig. 9

and Fig. 10 for QPSK signalling and 16QAM signalling, re-

spectively. In these figures, we use the estimated CSI obtained

by the proposed FBM-CENet with trainable pilot matrix. It can

be easily seen that the proposed FBM-DetNet significantly

outperforms other data detection methods. We note that B-

DetNet performs worse than FBM-DetNet because FBM-

DetNet is developed based on the original quantized system

model whereas B-DetNet relies on a linearized system model

in (25) whose the effective noise n is assumed to be Gaussian

for simplicity but in fact n is not Gaussian. Furthermore,

the distortion covariance matrix Σn for the case of few-bit

ADCs is approximate since a closed-form expression of Σn

is intractable.

VI. CONCLUSION

In this paper, we have developed a channel estimation

network (FBM-CENet) and two data detection networks (B-

DetNet and FBM-DetNet) for massive MIMO systems with
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Fig. 8: Channel estimation performance comparison with trainable pilot
matrix, K = 4 and L = 8.

low-resolution ADCs. The proposed networks are model-

driven and have special structures that can take advantages

of domain-knowledge to efficiently address the severe non-

linearity caused by the low-resolution ADCs. An interesting

feature of the proposed FBM-CENet is that the pilot matrix

directly plays the role of the weight matrices in the network

structure. Such a feature makes it possible to jointly optimize

the estimation network and the pilot signal by simply treating

the pilot matrix as trainable parameters. The proposed detec-

tion networks are highly adaptive to the channel and easy to

train since they have a small number of trainable parameters in

the network structures. Simulation results have shown that the

proposed networks significantly outperform existing methods.
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