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Abstract—Future wireless communications are largely inclined
to deploy massive numbers of antennas at the base stations (BSs)
by leveraging cost- and energy-efficient as well as environmentally
friendly antenna arrays. The emerging technology of dynamic
metasurface antennas (DMAs) is promising to realize such
massive antenna arrays with reduced physical size, hardware
cost, and power consumption. The goal of this paper is the
optimization of the energy efficiency (EE) performance of DMA-
assisted massive multiple-input multiple-output (MIMO) wire-
less communications. Focusing on the uplink, we propose an
algorithmic framework for designing the transmit precoding of
each multi-antenna user and the DMA tuning strategy at the
BS to maximize the EE performance, considering the availability
of either instantaneous or statistical channel state information
(CSI). Specifically, the proposed framework is shaped around
Dinkelbach’s transform, alternating optimization, and determin-
istic equivalent methods. In addition, we obtain a closed-form
solution to the optimal transmit signal directions for the statistical
CSI case, which simplifies the corresponding transmission design
for the multiple-antenna case. Our numerical results verify the
good convergence behavior of the proposed algorithms, and
showcase the considerable EE performance gains of the DMA-
assisted massive MIMO transmissions over the baseline schemes.

Index Terms—Dynamic metasurface antennas, energy effi-
ciency, massive MIMO, instantaneous and statistical channel state
information.

I. INTRODUCTION

Future wireless communications are expected to satisfy very

high requirements, such as ultra-low latencies, high spectral

efficiency (SE), and ultra-large connection, thus presenting

a series of new challenges in the 5th generation (5G) mo-

bile communication technology and beyond era [2]. Massive

multiple-input multiple-output (MIMO) is a promising method
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to support such requirements by setting a massive number of

antennas at the base station (BS), which has been proven to

significantly increase the throughput of wireless systems [3].

However, it brings a great demand on the radio frequency (RF)

chains to realize massive MIMO transmissions by conventional

antennas with fully digital architectures, which exposes some

problems that cannot be ignored in practice, such as increased

fabrication cost [4], high power consumption [5], limited

physical size and shape, and deployment restriction [6]. To

this end, some works have focused on the design of antennas

to implement effective massive MIMO systems. Recent years

have witnessed the increasing interest in an emerging antenna

technology named dynamic metasurface antennas (DMAs),

which is promising to realize practical massive antenna arrays

for future wireless communications [7].

DMA is a brand-new concept for aperture antenna designs

that leverage a kind of resonant, sub-wavelength, and tunable

metamaterial elements to generate the desired radiations [8],

[9]. Specifically, each metamaterial element acts as a magnetic

or electric polarizable dipole. When they are clustered in

a planar surface, their collection can often be characterized

by an effective permeability and permittivity. By introducing

simplified tailored inclusions, the physical properties of each

metamaterial, especially the permittivity and permeability, can

be reconfigured to show a series of desired characteristics.

Based on this feature, the planar structures can carry out

different abilities of controllable signal processing, including

radiation, amplified reflection, beamforming, and reception

[10]–[13]. Utilizing their reflection functionality, the planar

structures termed as reconfigurable intelligent surfaces can

overcome non-line-of-sight conditions of the propagation envi-

ronments and improve the communication coverage effectively

and energy-efficiently [14]–[25]. Moreover, when realizing

radiation, beamforming, and receiving of signals, the planar

structures are combined with waveguides generating a new

paradigm for antennas that we focus on in this paper.

To appreciate the practical values of DMAs, we delve into

their features and advantages over some existing technologies.

As is mentioned above, future BSs tend to accommodate a

massive number of antennas. However, conventional fully-

digital transceivers connect each of the antenna elements to an

individual RF chain. When such a transceiver with a massive

number of antennas is used in future BSs, the size, power

consumption, and hardware cost of the transceivers will be

largely increased [26]. By contrast, the number of RF chains

required in DMA-based transceivers is much smaller than that

http://arxiv.org/abs/2106.09442v2


2

in conventional transceivers, typically equal to the number of

waveguides. Therefore, the physical area and power consump-

tion of DMA-based transceivers can be significantly reduced,

which makes it appealing for future green communications.

Meanwhile, the independent data streams processed by a

DMA-based transceiver are much fewer than metamaterial

elements in the digital domain, which means that DMA-

based transceivers enable a form of hybrid analog/digital (A/D)

precoding. Compared with conventional hybrid A/D beam-

forming architectures that require numerous phase shifters to

connect the antenna elements and RF chains, DMA-based

hybrid A/D precoding does not require any additional analog

combining circuitries. Specifically, the tuning of metamaterial

elements is often accomplished with simple components, such

as varactors, thus resulting in increased flexibility and reduced

power consumption in the DMA-based hybrid A/D precoding

[7].

Since DMAs can realize low-cost, power-efficient, and com-

pact planar arrays, many studies have been conducted on their

applications to implement massive MIMO systems in recent

years. For example, authors in [27] studied DMA-assisted spa-

tial multiplexing wireless communications and demonstrated

that DMAs could significantly enhance the capacity in MIMO

channels with one or two clusters. Authors in [28] studied the

application of DMAs for MIMO orthogonal frequency divi-

sion modulation (OFDM) receivers with bit-limited analog-

to-digital converters (ADCs). The results showed that the

DMA-based receivers with bit-limited ADCs were capable of

recovering the transmit OFDM signals. Authors in [29] and

[30] respectively investigated the DMA tuning strategies for

the uplink and downlink massive MIMO systems. Although

DMAs are promising for MIMO communications, most of the

existing works focused on DMA-based SE optimization, while

DMA-based energy efficiency (EE) optimization has rarely

been explored.

It is worth noting that most of the aforementioned works

assumed that the instantaneous channel state information (CSI)

is perfectly known for transmission design. DMA weight

parameters are designed to adapt to the available channel

states to improve the communication quality. Thus, with the

perfectly known instantaneous CSI, the DMA-assisted systems

can achieve a high capacity gain. However, tuning DMAs via

exploiting instantaneous CSI is inappropriate and inadvisable

due to the following reasons. Firstly, instantaneous CSI can

be fast time-varying, which forces DMAs to frequently adjust

their properties to keep up with the channel states, thus result-

ing in significant signaling overhead [31]. Secondly, DMAs

are equipped with smart controllers for realizing amplitude

or phase tuning [32]. Although the smart controllers operate

under a tiny amount of energy, they are still power-consuming

when overloaded with continuous operations, i.e., frequent

tuning would not be energy efficient for DMAs. Therefore,

when channels are fast time-varying, it is more reasonable and

feasible to exploit the statistical CSI in DMA-assisted systems,

which varies over larger time scales and results in less power

consumption compared to exploiting instantaneous CSI.

Motivated by the above concerns, in this paper, we study the

energy-efficient transmit precoding and DMA tuning strategies

for a single-cell multi-user DMA-assisted massive MIMO

uplink system. It is noted that in our previous work [1] we

only studied the case with instantaneous CSI availability. In

this paper, we make more substantial contributions, which are

summarized as follows:

• We study the EE maximization of the single-cell multi-

user DMA-assisted massive MIMO uplink communica-

tions with instantaneous and statistical CSI, respectively.

For both cases, we develop a well-structured and low-

complexity algorithm framework for the transmit pre-

coding design and DMA tuning strategy, including the

deterministic equivalent (DE), Dinkelbach’s transform,

and the alternating optimization (AO) methods.

• For the case where instantaneous CSI is perfectly known,

we develop an AO-based optimization framework to

alternatingly update the transmit covariance matrices1 of

the multi-antenna users and the DMA weight matrix at

the BS. For the transmit covariance design, we apply

Dinkelbach’s transform to solve the concave-linear frac-

tional problem. For the DMA weights design, we firstly

obtain the weight matrix in a closed form by neglecting its

physical structure, and then adopt an AO-based algorithm

to reconfigure it.

• To tackle the bottleneck of obtaining instantaneous CSI,

we exploit statistical CSI to design the transmission

strategy. Firstly, we derive an optimal closed-form so-

lution to the transmit signal directions of users. Then, we

apply the DE method to asymptotically approximate the

ergodic SE, aiming to reduce the computational overhead.

Next, we adopt Dinkelbach’s transform to obtain the

users’ power allocation matrices. Finally, we derive the

weight matrix of DMAs with a similar method to the

instantaneous CSI case.

• Our extensive numerical results showcase the computa-

tional efficiency of our proposed EE optimization frame-

work over benchmark schemes. It can be concluded

that DMA-assisted massive MIMO communications can

achieve higher EE performance than those based on con-

ventional antennas, especially in the high power budget

region.

The rest of the paper is organized as follows: Section II

illustrates the DMA input-output relationship and the channel

model. Section III and Section IV investigate the considered

EE maximization problem of the DMA-assisted MIMO up-

link communications with instantaneous and statistical CSI,

respectively. Section V provides our simulation results. Finally,

Section VI concludes this paper.

The notations used throughout the paper are defined as

follows: Boldface lower-case letters denote column vectors,

e.g., x, and boldface upper-case letters denote matrices, e.g.,

M. The notation 0 denotes a zero vector or matrix, and M � 0

denotes a positive semi-definite matrix. The notations X , C,

and R denote sets, sets of complex numbers, and sets of

real numbers, respectively. The superscripts (·)−1, (·)H , (·)T ,

1Note that optimizing the transmit covariance matrix is a canonical way in
the multi-user MIMO communications [33]. Actually, the transmit precoding
matrix is embedded in the transmit covariance matrix under the context of
eigenmode transmission.



3

User U

···

...

...

r UU

.

UU

U
N

K Microstrips

antennas

RF chains

Base station
User 2U 222

... antennas2N

1N

User 1

......
.

NN antennas

Fig. 1. The considered DMA-assisted massive MIMO uplink system.

and (·)∗ represent the matrix inverse, conjugate-transpose,

transpose, and conjugate, respectively. The operators tr {·},

E {·}, diag {·}, and |M| represent matrix trace, expectation,

diagonalization, and determinant of matrix M, respectively.

The operator Re (·) means the real part of the input, and the

operator || · ||F means the Frobenius norm of the input. The

operator ⊙ denotes Hadamard product. The notations  and

O denote the imaginary unit and computational complexity,

respectively.

II. SYSTEM MODEL

Our work considers a single-cell massive MIMO uplink

system where the BS simultaneously receives signals from

multiple users. In the following, we illustrate the input-output

relationship of DMAs and the channel model.

A. Dynamic Metasurface Antennas

As is shown in Fig. 1, the considered system is composed

of a DMA-based BS and U users. The BS is equipped

with a planar array consisting of M metamaterial elements,

and each user has an uniform linear array comprising Nu

conventional antennas interconnected via a fully digital beam-

forming architecture. We define U , {1, 2, . . . , U} as the

user set and Nu as the number of conventional antennas at

user u ∈ U . We assume that the DMA array consists of

K microstrips, e.g., the guiding structure whose top layer is

embedded with metamaterials, and each microstrip consists of

L metamaterial elements, i.e., M = KL. Each metamaterial

element observes the radiations from the channel, adjusts, and

transmits them along the microstrip to the corresponding RF

chain independently. The output signal of each microstrip is

the linear combination of all the radiation observed by the

corresponding L metamaterial elements [30].

We denote y ∈ CM×1 as the DMA input signals where

(y)(k−1)L+l, k ∈ {1, . . . ,K}, l ∈ {1, . . . , L} represents

the observed radiation of the lth metamaterial in the kth

microstrip. According to [7], the metamaterial element acts

as a resonant electrical circuit and can be modeled as a causal

filter. We use hk,l ∈ C to denote the filter coefficient of the lth

metamaterial in the kth microstrip, and denote by H ∈ CM×M

a diagonal matrix where (H)(k−1)L+l,(k−1)L+l = hk,l. Be-

sides, the configurable weight matrix of DMAs is denoted

as Q ∈ CK×M . Then, the output signals of DMAs can be

formulated as [30]

z = QHy ∈ C
K×1. (1)

In (1), the DMA weight matrix Q is formulated as

(Q)k1,(k2−1)L+l =

{
qk1,l, k1 = k2

0, k1 6= k2
, (2)

where k1, k2 ∈ {1, 2, . . . ,K}, l ∈ {1, 2, . . . , L}, and qk1,l is

the gain of the lth metamaterial in the k1th microstrip. Eq. (2)

considers the fact that DMA arrays can be formed by tiling

together a set of microstrips [30]. Hence, Eq. (2) is referred

to as the physical structure constraint of DMAs. Actually, by

slightly modifying (2), the input-output relationship of any

two-dimensional DMAs can be denoted by (1).

B. Channel Model

We define xu ∈ CNu×1 as the transmit signals from

user u with zero mean and the transmit covariance matrix

E
{
xux

H
u

}
= Pu ∈ CNu×Nu . Additionally, xu satisfies

E
{
xux

H
u′

}
= 0, ∀u 6= u′, which represents that the input

signals from different users are independent of each other.

Then, the channel output signal y is given by

y =
U∑

u=1

Guxu + n ∈ C
M×1. (3)

In (3), Gu ∈ CM×Nu denotes the channel between user

u and the BS, and n ∈ CM×1 denotes the independently

and identically distributed (i.i.d.) noise with covariance σ2IM ,

where σ2 denotes the noise power and IM is an M × M

identity matrix.

Note that mutual coupling between the metamaterial ele-

ments is ignored in (3) for simplicity. For the general case

incorporating the mutual coupling effect, the model in (3) can

be slightly modified as y = C
∑U

u=1 Guxu + n where C is

the coupling matrix [34]. Then, the proposed approaches in

subsequent sections can still be applied via treating CGu as

the equivalent channel matrix of user u.

We adopt the jointly-correlated Rayleigh fading channel

model, in which the correlation properties at the users and

the BS are modeled jointly [35]. Then, the channel matrices

Gu, ∀u ∈ U , can be formulated as

Gu = UuG̃uV
H
u , ∀u ∈ U . (4)

In (4), Vu ∈ CNu×Nu and Uu ∈ CM×M are both deter-

ministic unitary matrices, representing the eigenvectors of the

transmit and receive correlation matrices, respectively [35]. In

addition, G̃u ∈ CM×Nu represents the beam domain channel

matrix, whose entries are zero-mean and independently Gaus-

sian distributed. The channel statistics of G̃u can be modeled

as

Ωu = E
{
G̃u ⊙ G̃∗

u

}
∈ R

M×Nu . (5)
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In (5), the entry, [Ωu]m,n, denotes the average energy coupled

by the mth column entries of Uu and the nth column entries

of Vu. Hence, Ωu is also named as the eigenmode channel

coupling matrix [35].

Since DMAs act as receive antennas at the BS in our

considered uplink, they observe and process signals from

channels, i.e., channel output signals are fed directly to DMAs.

With the input-output relationship of DMAs and the channel

model given by (1) and (3), respectively, the relationship

between the channel input and the DMA output can be given

by

z =

U∑

u=1

H̃uxu + ñ ∈ C
K×1, (6)

where H̃u , QHGu and ñ , QHn.

III. EE OPTIMIZATION WITH INSTANTANEOUS CSI

In this section, we study the EE optimization of our DMA-

assisted MIMO uplink system via exploiting the instantaneous

CSI.2 We firstly introduce the EE definition of our considered

system. Then, we focus on designing the transmit covariance

matrices Pu, ∀u ∈ U , and the DMA weight matrix Q to

maximize the system EE performance.

A. Problem Formulation

To define the system EE, we start with the SE definition of

the DMA-assisted uplink system. Assume that all metamaterial

elements have the same frequency selectivity, then H can be

expressed as I multiplied by a constant [30]. Therefore, the

achievable system SE is given by [16], [30]

R = log2

∣∣∣∣∣IK +
1

σ2

U∑

u=1

QGuPuG
H
u QH(QQH)−1

∣∣∣∣∣ . (7)

The whole power consumption of the DMA-assisted system

consists of three major parts, including the transmit power,

static hardware power, and dynamic power. Referring to [16],

[27], the whole power consumption of the DMA-assisted

system is given by

W =

U∑

u=1

(ξutr {Pu}+Wc,u) +WBS +KWS. (8)

In (8), ξu = ρ−1
u where ρu denotes the transmit power ampli-

fier efficiency of user u. tr {Pu} and Wc,u denote the transmit

power consumption and static circuit power dissipation of user

u, respectively. WS represents the dynamic power dissipation

of each RF chain (e.g., power consumption in the ADCs,

amplifier, and mixer).WBS incorporates the static circuit power

dissipation at the BS. Note that the number of RF chains in

the conventional antenna array with a fully digital transceiver

architecture is equal to that of antenna elements. However, the

number of RF chains in the DMA-assisted architecture is only

equal to that of microstrips, resulting in the reduced dynamic

2Note that the instantaneous CSI in DMA-based wireless communications
can be obtained with the aid of some existing channel estimation methods for
hybrid A/D wireless communications [36], [37].

power consumption by a factor of L [27]. In addition, the

conventional antenna array with a hybrid A/D architecture also

allows a reduced demand on RF chains. However, additional

power consumption is required to support the phase shifters

or switches.

With the system SE in (7) and power consumption in (8), the

EE of our considered DMA-assisted uplink system is defined

as

EE = B
R

W
, (9)

where B is a constant denoting the channel bandwidth. So

far, the EE maximization problem of the DMA-assisted uplink

system by designing the transmit covariance matrices Pu, ∀u,

and DMA weight matrix Q is formulated as follows:

P1 :

max
Q,P

log2

∣∣∣∣IK + 1
σ2

U∑
u=1

QGuPuG
H
u QH(QQH)−1

∣∣∣∣
U∑

u=1
(ξutr {Pu}+Wc,u) +WBS +KWS

,

(10a)

s.t. (Q)k1,(k2−1)L+l =

{
qk1,l, k1 = k2

0, k1 6= k2
, (10b)

tr {Pu} ≤ Pmax, Pu � 0, ∀u ∈ U , (10c)

where Pmax denotes the maximum available transmit power.

In addition, P , {P1,P2, . . . ,PU}, k1, k2 ∈ {1, 2, . . . ,K},

l ∈ {1, 2, . . . , L}. In (10a), we ignore the constant B without

loss of generality. Problem P1 is challenging to tackle with due

to the following reasons. Firstly, since the objective function

in (10a) exhibits a fractional form, P1 is an NP-hard problem

[38]. Secondly, the structure constraint of Q in (10b) is non-

convex, which further complicates P1. Thirdly, since variables

P and Q are nonlinearly coupled, it is complicated to design

P and Q simultaneously. To simplify the optimization process,

we adopt an AO method to design P and Q in an alternating

manner. For the optimization of P, we adopt Dinkelbach’s

transform to convert the concave-linear fraction in (10a) into

a concave one. For the optimization of Q, we first neglect

constraint (10b) to obtain the corresponding unconstrained

Q, and then adopt an alternating minimization algorithm to

reconfigure Q to be constrained by (10b). Note that when

ξu, ∀u ∈ U , in (10a) is equal to zero, the denominator of

the objective function is converted to a constant, and P1 is

reduced into a SE optimization problem. Thus, problem P1

can describe both the EE and SE maximization problems of

the considered DMA-assisted uplink communications.

B. Optimization of the Unconstrained Weight Matrix

When optimizing Q with an arbitrarily given P, the de-

nominator of (10a) can be treated as a constant. Thus, we

only focus on the numerator maximization of (10a), i.e., the

SE maximization. By defining Ḡ = 1
σ2

∑U

u=1 GuPuG
H
u ,

and applying Sylvester’s determinant identity log2 |I+AB| =
log2 |I+BA|, the numerator of (10a) can be written as

R = log2

∣∣∣IM + ḠQH
(
QQH

)−1
Q

∣∣∣ . (11)
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Let V̄1 denote the right singular vectors matrix of Q, and V̄2

denote the first K columns of V̄1. According to the projection

matrix property that QH
(
QQH

)−1
Q = V̄2V̄

H
2 [39], Eq.

(11) can be written as

R = log2
∣∣IK + V̄H

2 ḠV̄2

∣∣ . (12)

With the non-convex constraint in (10b), Eq. (12) is difficult

to tackle directly. Hence, we drop constraint (10b) and con-

sider a relaxed version of problem P1. Then, when designing

Q with a given P, problem P1 is recast as follows

P2 : max
V̄2

log2
∣∣IK + V̄H

2 ḠV̄2

∣∣ . (13)

The solution to P2 can be obtained in a close form according

to Proposition 1, as follows.

Proposition 1: Let V̄3 denote the eigenvectors correspond-

ing to the largest K eigenvalues of Ḡ. Then, the maximal

achievable SE in (13) can be achieved by setting V̄2 as V̄3,

i.e.,

V̄2 = V̄3. (14)

The proof of Proposition 1 is similar to [30, Corollary 2], thus

is omitted here.

By the singular value decomposition (SVD), the DMA

weight matrix Q can be written as

Q = Ū2D̄2V̄
H
2 , (15)

where Ū2 ∈ CK×K and D̄2 ∈ CK×K denote the left singular

vector matrix and the diagonal singular value matrix of Q,

respectively. From Proposition 1, we can find that the maximal

SE in (11) only depends on the right singular vector matrix

V̄2 and is independent of Ū2 and D̄2. Thus, we can design

Ū2 and D̄2 to obtain Q constrained by (10b).

C. Optimization of the Transmit Covariance Matrices

When designing the transmit covariance matrices Pu, ∀u ∈
U , with a given V̄2, problem P1 is recast as

P3 : max
P

log2

∣∣∣∣IK + 1
σ2

U∑
u=1

V̄H
2 GuPuG

H
u V̄2

∣∣∣∣
U∑

u=1
(ξutr {Pu}+Wc,u) +WBS +MWS

,

(16a)

s.t. tr {Pu} ≤ Pmax, Pu � 0, ∀u ∈ U . (16b)

Eq. (16a) is a concave-linear fraction whose numerator is

concave and denominator is linear with respect to Pu, ∀u.

Dinkelbach’s transform is a classical method to address this

kind of problems, and is guaranteed to converge to the optimal

solution to P3 with a super-linear rate [38]. By invoking

Dinkelbach’s transform, problem P3 is transformed to

P4 : max
P,η1

R(P)− η1W (P), (17a)

s.t. tr {Pu} ≤ Pmax, Pu � 0, ∀u ∈ U . (17b)

In P4, R(P) and W (P) respectively denote the numerator and

denominator of (16a), and η1 is an auxiliary variable. Problem

P4 can be addressed by alternatingly optimizing P and η1.

Algorithm 1 Dinkelbach’s Transform

Input: The right singular vector matrix V̄2, threshold ǫ.

1: Initialize η
(ℓ)
1 and set iteration index ℓ = 0.

2: repeat

3: Set ℓ = ℓ+ 1.

4: Calculate P(ℓ) in (17) with η
(ℓ−1)
1 .

5: Calculate η
(ℓ)
1 in (18) with P(ℓ).

6: until

∣∣∣η(ℓ)1 − η
(ℓ−1)
1

∣∣∣ ≤ ǫ

Output: The optimal transmit covariance matrices P = P(ℓ).

Algorithm 2 Alternating Minimization for the DMA Weights

Input: The right singular vector matrix V̄3, threshold ǫ.

1: Initialize the iteration index ℓ = 0, Ū
(ℓ)
2 = IK and D̄

(ℓ)
2 =

IK .

2: repeat

3: Set ℓ = ℓ+ 1.

4: Set Q(ℓ) = QAM with M = Ū
(ℓ−1)
2 D̄

(ℓ−1)
2 V̄H

3 using

(20b).

5: Set Ū
(ℓ)
2 = ŪAM

2 with M1 = Q(ℓ) and M2 =

D̄
(ℓ−1)
2 V̄H

3 using (20c).

6: Set D̄
(ℓ)
2 = D̄AM

2 with M1 = (Ū
(ℓ)
2 )HQ(ℓ) and M2 =

V̄H
3 using (20e).

7: until
∥∥Q(ℓ) −Q(ℓ−1)

∥∥
F
≤ ǫ

Output: The weight matrix Q = Q(ℓ).

With an arbitrarily given η1, the optimal P can be obtained

by classical convex optimization techniques [40]. Meanwhile,

the optimal η1 with an arbitrarily given P is obtained by

η∗1 =
R(P)

W (P)
. (18)

More details about this procedure based on Dinkelbach’s

transform are summarized in Algorithm 1.

D. Optimization of the Constrained Weight Matrix

As is illustrated in Subsection III-B, the maximal SE of P2

is independent of the unitary matrix Ū2 and diagonal matrix

D̄2. Referring to [30], we adopt an alternating minimization

algorithm to adjust Ū2, D̄2, and Q. Let QK×M
2 denote the

set of K ×M matrices conforming to (10b), UK denote the

set of K × K unitary matrices, and DK denote the set of

K ×K diagonal matrices with positive diagonal entries. The

corresponding alternating approximation problem is given by

P5 : min
Q∈Q

K×M
2

,Ū2∈UK ,D̄2∈DK

∥∥Q− Ū2D̄2V̄
H
3

∥∥2
F
. (19)

The detailed calculation of Q, Ū2, and D̄2 are described as

follows.

Firstly, we define M , Ū2D̄2V̄
H
3 . With arbitrarily given

Ū2 and D̄2, we can obtain Q by solving

QAM (M) , argmin
Q∈Q

K×M
2

‖Q−M‖2F. (20a)
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By defining Q as the set of possible values for the entries of

Q, we have
(
QAM(M)

)
k1,(k2−1)L+l

=




argmin

q∈Q

∣∣∣q − (M)k1,(k2−1)L+l

∣∣∣
2

, k1 = k2

0, k1 6= k2

. (20b)

Secondly, we define M1 = Q and M2 = D̄2V̄
H
3 . By letting

Ũ and Ṽ be the left and right singular vector matrices of

M1M
H
2 , respectively, we can obtain Ū2 with arbitrarily given

D̄2 and Q via

ŪAM
2 (M1,M2) , argmin

Ū2∈UK

∥∥M1 − Ū2M2

∥∥2
F
= ŨṼH .

(20c)

Finally, we define M1 = ŪH
2 Q and M2 = V̄H

3 . By letting

m1,i and m2,i denote the ith columns of MH
1 and MH

2 ,

respectively, we can obtain D̄2 with arbitrarily given Ū2 and

Q via

D̄AM
2 (M1,M2) , argmin

D2∈DK

∥∥M1 − D̄2M2

∥∥2
F
. (20d)

In (20d), the diagonal entries of D̄AM
2 are given by

(
D̄AM

2 (M1,M2)
)
i,i

= max

(
Re
(
mH

1,im2,i

)

‖m2,i‖
2
F

, δ

)
, (20e)

where δ is a small positive number [30].

Problem P5 can be addressed by alternatingly calculating

(20b), (20c), and (20e). The alternating minimization algo-

rithm for DMA weight design is summarized in Algorithm

2.

E. Convergence and Complexity Analysis

So far, we have studied the EE maximization problem

P1 of the DMA-assisted MIMO uplink communications with

instantaneous CSI. The approaches for designing users’ trans-

mit covariance matrices and the DMA weight matrix are

described in Subsection III-B, Subsection III-C and Subsection

III-D, respectively. Now, we present the complete AO-based

algorithm to find the transmit covariance matrices and the

DMA weight matrix in Algorithm 3.

In Algorithm 3, Q and Pu, ∀u, are alternatingly optimized.

In particular, Pu, ∀u, is obtained by Dinkelbach’s method,

which is guaranteed to converge to the global optimum of the

fractional program in P3 [38]. In addition, Q, Ū2, and D̄2

can be iteratively obtained in close forms, as shown in (20b),

(20c), and (20e), As the Frobenius norm objective in (19) is

differentiable, the convergence of the alternating optimization

for Q is guaranteed [30]. Hence, the proposed AO-based

Algorithm for EE Maximization with instantaneous CSI in

Algorithm 3 is guaranteed to converge.

The main structure of Algorithm 3 includes an AO method

for alternatingly designing P in P4 and V̄2 in P2 and

Algorithm 2 for alternatingly designing Q, Ū2 and D̄2 in P5.

Firstly, we discuss the complexity of the AO-based algorithm

for optimizing P and unconstrained V̄2. For the transmit

Algorithm 3 AO-based Algorithm for EE Maximization With

Instantaneous CSI

Input: The channel matrices Gu, ∀u, the noise power σ2,

power consumptions Wc,u, WBS, and WS, threshold ǫ.

1: Initialize the iteration index ℓ = 0, the unconstrained right

singular matrix V̄
(ℓ)
2 , and the EE performance EE(ℓ).

2: repeat

3: ℓ = ℓ+ 1.

4: Obtain P
(ℓ)
u , ∀u, with V̄

(ℓ−1)
2 and Algorithm 1.

5: Obtain V̄
(ℓ)
2 with P

(ℓ)
u , ∀u, and Proposition 1.

6: Update EE(ℓ) using P
(ℓ)
u , ∀u, and V̄

(ℓ)
2 .

7: until
∣∣EE(ℓ) − EE(ℓ−1)

∣∣ ≤ ǫ

8: Obtain the weight matrix Q with V̄
(ℓ)
2 and Algorithm 2.

Output: The weight matrix Q and the transmit covariance

matrices Pu = P
(ℓ)
u , ∀u.

covariance matrices P optimized by Dinkelbach’s method, we

assume that the optimization process requires IDK1 iterations.

Since each iteration needs to optimize
∑U

u=1N
2
u variables and

the complexity per iteration is polynomial over the number

of variables [41], the complexity of optimizing the transmit

covariance matrices P is estimated as O(IDK1(
∑U

u=1N
2
u)

p),
where 1 ≤ p ≤ 4 [18]. For optimizing V̄2 in problem

P2, it requires only one iteration. The computational com-

plexity mainly depends on the eigenvalue decomposition of
1
σ2GuPuG

H
u ∈ CM×M . Thus, the complexity of optimizing

V̄2 is estimated as O(M3), which is small and negligible

compared with that of optimizing P. Therefore, the complexity

of the AO-based algorithm for optimizing P and unconstrained

V̄2 is estimated as O(IAOIDK1(
∑U

u=1N
2
u)

p), where IAO is

number of required iterations in the AO method. Then, for

Algorithm 2, the computational complexity per iteration

depends on the complexity of calculating Q, Ū2, and D̄2

in (20b), (20c), and (20e), respectively, which is estimated

as O(M3). Hence, with the assumption that Algorithm 2

requires IC iterations, the complexity of Algorithm 2 can

be estimated as O(ICM
3). Therefore, the computational com-

plexity of the proposed EE maximization algorithm for the

considered DMA-assisted MIMO uplink with instantaneous

CSI is estimated as O(IAOIDK1(
∑U

u=1N
2
u)

p + ICM
3).

IV. EE OPTIMIZATION WITH STATISTICAL CSI

Channels might be fast time-varying in practical wireless

communications, thus frequently tuning DMAs and reallocat-

ing transmit power with instantaneous CSI might be difficult.

In such cases, utilizing statistical CSI to optimize the system

EE performance is more efficient [35]. In this section, we

explore approaches to optimize the system EE by designing

the transmit covariance matrices and DMA weight matrix via

exploiting statistical CSI.

A. Problem Formulation

To formulate the corresponding EE maximization problem,

we firstly describe the system SE and power consumption
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metrics. For the statistical CSI case, we adopt the ergodic

achievable SE metric defined as

R̄ = E

{
log2

∣∣∣∣∣IK +
1

σ2

U∑

u=1

QGuPuG
H
u QH(QQH)−1

∣∣∣∣∣

}
,

(21)

where the expectation is taken over the channel realizations.

In addition, we use (8) to model the overall power con-

sumption. Then, the corresponding EE maximization problem

can be formulated as

P̄1 :

max
Q,P

E

{
log2

∣∣∣∣IK + 1
σ2

U∑
u=1

QGuPuG
H
u QH(QQH)−1

∣∣∣∣
}

U∑
u=1

(ξutr {Pu}+Wc,u) +WBS +KWS

,

(22a)

s.t. (Q)k1,(k2−1)L+l =

{
qk1,l, k1 = k2

0, k1 6= k2
, (22b)

tr {Pu} ≤ Pmax, Pu � 0, ∀u ∈ U , (22c)

where k1, k2 ∈ {1, 2, . . . ,K} and l ∈ {1, 2, . . . , L}. Note

that in problem P̄1, we utilize the same power consumption

notations Wc,u, WBS, and WS as those in the instantaneous

CSI case. Since they are all constants, they will not affect

the following optimization development. P̄1 is challenging

to tackle because (22a) exhibits a concave-linear fractional

structure and (22b) is a non-convex constraint. In addition,

the expectation operation in (22a) further increases the com-

putational overhead. In the following, we aim to cope with

the foregoing difficulties to obtain the EE maximization in

P̄1. Note that when ξu, ∀u ∈ U , is set as zero, problem P̄1

reduces to a SE optimization problem with statistical CSI.

B. Optimization of Users’ Transmit Covariance Matrices

In order to find P which maximizes (22a), we apply the

projection matrix property [39]. Then, the ergodic achievable

SE in (21) can be reformulated as

R̄ = E

{
log2

∣∣∣∣∣IK +
1

σ2

U∑

u=1

V̄H
2 GuPuG

H
u V̄2

∣∣∣∣∣

}
, (23)

where V̄2 denotes the first K columns of the right singular

vector matrix of Q. Similar to Section III, we adopt an AO

method to optimize P and V̄2 iteratively. We firstly consider

the design of Pu, ∀u ∈ U , with an arbitrarily given V̄2. Then,

problem P̄1 is recast as

P̄2 : max
P

E

{
log2

∣∣∣∣IK + 1
σ2

U∑
u=1

V̄H
2 GuPuG

H
u V̄2

∣∣∣∣
}

U∑
u=1

(ξutr {Pu}+Wc,u) +WBS +KWS

,

(24a)

s.t. tr {Pu} ≤ Pmax, Pu � 0, ∀u ∈ U .
(24b)

Considering the high computational complexity of a large

number of variables in P̄2, we decompose the transmit co-

variance matrices Pu, ∀u ∈ U via eigenvalue decomposition,

which is written as

Pu = ΦuΛuΦ
H
u , ∀u ∈ U . (25)

In (25), Φu and Λu denote the transmit signal directions and

the transmit power allocation of user u, respectively. We will

respectively introduce the approaches for Φu and Λu, ∀u ∈ U ,
in the following.

1) Optimal Transmit Directions at Users: The optimal

transmit signal directions can be obtained by the following

proposition.

Proposition 2: The optimal transmit direction of user u is

identical to the eigenvector matrix of the transmit correlation

matrix corresponding to the channel between user u and the

BS, i.e.,

Φu = Vu. (26)

The proof of Proposition 2 is similar to [42, Proposition 1],

thus is omitted here.

Proposition 2 indicates that the transmit precoding is aligned

to the eigenvectors of the transmit correlation matrices to max-

imize the system EE. By applying Proposition 2, the transmit

covariance matrix of user u is formulated as Pu = VuΛuV
H
u ,

∀u ∈ U . Then, problem P̄2 is formulated as

P̄3 :

max
Λ

E

{
log2

∣∣∣∣IK + 1
σ2

U∑
u=1

V̄H
2 UuG̃uΛuG̃

H
u UH

u V̄2

∣∣∣∣
}

U∑
u=1

(ξutr {Λu}+Wc,u) +WBS +KWS

,

(27a)

s.t. tr {Λu} ≤ Pmax, Λu � 0, Λu diagonal, ∀u ∈ U ,
(27b)

where Λ , {Λ1,Λ2, . . . ,ΛU}. Since the transmit direction,

Φu, ∀u, can be determined with a closed-form solution by

Proposition 2, the number of optimization variables has been

significantly reduced.

2) Deterministic Equivalent Method: Problem P̄3 can be

approximated by the Monte-Carlo method via averaging over

a large number of samples, but this method is computationally

expensive. Hence, we adopt the DE method, an asymptotic

expression based on the large-dimensional random matrix

theory, to approximate the expectation in (27a). Notice that

the adopted asymptotic approximation is sufficiently accurate

for small-scale MIMO systems [43].

Define Ĝu , ÛuG̃uV̂
H
u ∈ CK×Nu , where Ûu ,

V̄H
2 Uu ∈ CK×M , V̂u , INu

, and G̃u denotes the

beam domain channel between user u and the BS. De-

fine Ĝ , [Ĝ1, Ĝ2, . . . , ĜU ] ∈ CK×N and D ,

diag {Λ1,Λ2, . . .ΛU} ∈ CN×N . Then, the numerator of (27a)

is written as

R̄ = E

{
log2

∣∣∣∣IK +
1

σ2
ĜDĜH

∣∣∣∣
}
. (28)

By adopting the DE method [43], Eq. (28) can be approxi-
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Algorithm 4 Deterministic Equivalent Method

Input: The power allocation matrices Λu, ∀u ∈ U , the right

singular vector matrix V̄2 and threshold ǫ.

1: for u = 1 to U do

2: Initialize the iteration index ℓ = 0 and ψ
(ℓ)
u .

3: repeat

4: Set ℓ = ℓ+ 1.

5: for m = 1 to M do

6: Calculate γ
(ℓ)
u,m by (31) with ψ

(ℓ−1)
u .

7: end for

8: Obtain: γ
(ℓ)
u = [γ

(ℓ)
u,1, γ

(ℓ)
u,2, . . . , γ

(ℓ)
u,M ]T .

9: for n = 1 to Nu do

10: Calculate ψ
(ℓ)
u,Nu

by (31) with γ
(ℓ)
u .

11: end for

12: Obtain: ψ
(ℓ)
u = [ψ

(ℓ)
u,1, ψ

(ℓ)
u,2, . . . , ψ

(ℓ)
u,Nu

]T .

13: until

∥∥∥ψ(ℓ)
u −ψ

(ℓ−1)
u

∥∥∥
F
≤ ǫ

14: Use ψ
(ℓ)
u and γ

(ℓ)
u to calculate Ξu and Ψu with (30).

15: end for

16: Set γu = γ
(ℓ)
u and ψu = ψ

(ℓ)
u , ∀u ∈ U , and use them to

calculate RDE in (29).

Output: The DE sum-rate RDE and auxiliary variables ψu,

γu, Ξu, Ψ, ∀u ∈ U .

mated by

RDE =

U∑

u=1

log2 |INu +ΞuΛu|+ log2 |IK +Ψ|

−
1

ln 2

U∑

u=1

γT
u Ωuψu, (29)

where γu , [γu,1, γu,2, . . . , γu,M ]T , ψu , [ψu,1, ψu,2, . . . ,

ψu,Nu
]T and Ψ ,

U∑
u=1

Ψu ∈ CK×K . The calculation of Ξu

and Ψu, ∀u ∈ U , are given by



Ξu = V̂udiag

{
ΩT

uγu
}
V̂H

u ∈ C
Nu×Nu,

Ψu =
1

σ2
Ûudiag {Ωuψu} Û

H
u ∈ C

K×K .
(30)

The quantities γ , {γu,m}∀u,m and ψ , {ψu,n}∀u,n form

the unique solution to the equations



γu,m =

1

σ2
ûH
u,m(IK +Ψ)−1ûu,m,

ψu,n = v̂H
u,nΛu(INu +ΞuΛu)

−1v̂u,n,
(31)

where v̂u,m is the mth column of V̂u and ûu,n is the nth

column of Ûu. The detailed procedure of the DE method is

presented in Algorithm 4.

By adopting the DE method, problem P̄3 is recast as

P̄4 : max
Λ

RDE(Λ)

W (Λ)
, (32a)

s.t. tr {Λu} ≤ Pmax, Λu � 0,

Λu diagonal, ∀u ∈ U . (32b)

In P̄4, RDE(Λ) and W (Λ) are functions of Λ, denoting the

asymptotic SE in (29) and the power consumption in the

denominator of (27a), respectively. Since variables Λ and

ψ are mutually related, ψ needs to be updated when Λ is

updated.

3) Transmit Power Allocation at Users: Problem P̄4 is a

classical concave-convex fractional program, so we invoke

Dinkelbach’s transform to convert it to a convex problem.

Specifically, problem P̄4 is reformulated as

P̄5 : argmax
Λ,η2

RDE(Λ)− η2W (Λ), (33a)

s.t. tr {Λu} ≤ Pmax, Λu � 0,

Λu diagonal, ∀u ∈ U , (33b)

where η2 is an auxiliary variable. Problem P̄5 can be efficiently

tackled by optimizing Λ and η2 in an alternating manner.

When η2 is given, the optimal Λ can be obtained by convex

optimization techniques [40]. Meanwhile, with given Λ, the

optimal solution to η2 is obtained by

η∗2 =
RDE(Λ)

W (Λ)
. (34)

The optimization process of P̄5 is similar to Algorithm 1.

The main difference from Algorithm 1 is that the optimization

process of P̄5 adopts an asymptotic SE expression due to

lacking the instantaneous CSI. In addition, in P̄5 we need to

consider the interaction between Λ and ψ, i.e., each time Λ

is updated, ψ must be updated to ensure that the asymptotic

SE in (29) is valid.

C. Optimization of the DMA Weight Matrix

1) Optimization of the Unconstrained Weight Matrix: If the

transmit covariance matrices are fixed, the denominator of the

objective function in P̄1 is a constant. Hence, when optimizing

Q with a given P, we only analyze the numerator of (22a) and

ignore the denominator for clarity. By applying the projection

matrix property, DE method, and Proposition 2, the numerator

of (22a) is approximated by (29). To maximize (29) with

a given Λ, we optimize the variable V̄2 and the auxiliary

variable ψ in an iterative manner. When optimizing V̄2 with

given ψ, only the second term of RDE(Λ), log2 |IK +Ψ|, is

affected by V̄2, and the effect on the first and third terms

of RDE(Λ) can be removed [43]. Therefore, when ψ is

given, we only consider the optimization of the second term,

log2 |IK +Ψ|, with respect to V̄2, and the corresponding

problem without constraint (22b) is formulated as

P̄6 : max
V̄2

log2

∣∣∣∣∣IK +
1

σ2

U∑

u=1

Ûudiag {Ωuψu} Û
H
u

∣∣∣∣∣,

(35)

where Ûu = V̄H
2 Uu.

Define A , 1
σ2

∑U
u=1 Uudiag {Ωuψu}UH

u , then the ob-

jective function in P̄6 is written as

RDE,2 = log2
∣∣IK + V̄H

2 AV̄2

∣∣ . (36)

Since (36) is identical with (12), a similar conclusion can

be obtained from Proposition 1, i.e., the maximal RDE,2 can

be obtained by setting V̄2 as the eigenvectors corresponding
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Algorithm 5 AO-based Algorithm for EE Maximization With

Statistical CSI

Input: Eigenmode channel coupling matrices Ωu, ∀u, the

noise power σ2, power consumptions Wc,u, WBS, and WS,

threshold ǫ.

1: Initialize the iteration index ℓ1 = ℓ2 = ℓ3 = 0, the

system EE EE(ℓ3), the transmit power allocation matrices

Λ
(ℓ1)
u , ∀u, the unconstrained right singular matrix V̄

(ℓ2)
2 .

2: do

3: ℓ3 = ℓ3 + 1.

4: Obtain ψ(ℓ1+ℓ2) via V
(ℓ2)
2 , Λ

(ℓ1)
u , ∀u, and Algorithm

4.

5: Obtain η
(ℓ1)
2 via ψ(ℓ1), Λ

(ℓ1)
u , ∀u, and (34).

6: repeat

7: ℓ1 = ℓ1 + 1.

8: Obtain Λ
(ℓ1)
u in P̄5 with ψ(ℓ1+ℓ2−1) and η

(ℓ1−1)
2 .

9: Update ψ(ℓ1+ℓ2) via Λ
(ℓ1)
u , ∀u, and Algorithm 4.

10: Update η
(ℓ1)
2 via ψ(ℓ1+ℓ2), Λ

(ℓ1)
u , ∀u, and (34).

11: until

∣∣∣η(ℓ1)2 − ηℓ1−1
2

∣∣∣ ≤ ǫ

12: repeat

13: ℓ2 = ℓ2 + 1
14: Update V̄

(ℓ2)
2 via ψ(ℓ1+ℓ2−1) and Proposition 1.

15: Update ψ(ℓ1+ℓ2) via V̄
(ℓ2)
2 and Algorithm 4.

16: until

∥∥∥V̄(ℓ2)
2 − V̄

(ℓ2−1)
2

∥∥∥
F
≤ ǫ

17: Update EE(ℓ3) via V̄
(ℓ2)
2 and Λ

(ℓ1)
u , ∀u.

18: while
∣∣EE(ℓ3) − EE(ℓ3−1)

∣∣ ≥ ǫ

19: Set Λu = Λ
(ℓ1)
u , ∀u. Obtain the DMA weights Q with

V̄
(ℓ2)
2 and Algorithm 2.

Output: The DMA weights Q, the transmit power allocation

matrices Λu, ∀u.

to the largest K eigenvalues of A. By updating V̄2 and ψ

alternatingly, we can obtain the optimal solution of P̄6.

2) Optimization of the Constrained Weight Matrix: By

the SVD, the DMA weight matrix can be written as Q =
U2D2V

H
2 . Similarly to the instantaneous CSI case, we apply

the alternating minimization algorithm to optimize U2, D2,

and Q. The problem formulation and solution are the same as

those in Subsection III-D, so we omit the detailed description.

The alternating minimization algorithm for optimizing Q with

constraint (22b) can be found in Algorithm 2.

D. Convergence and Complexity Analysis

In the above two subsections, we have provided approaches

for designing the transmit covariance matrices of the multi-

antenna users and the DMA weight matrix at the BS with

statistical CSI. Unlike Section III, we obtain the transmit

directions of each user by a closed-form solution, which

significantly reduces the number of variables. In addition,

we apply the DE method to approximate the ergodic SE,

thus further simplifying the optimization process. The overall

algorithm to obtain the power allocation matrices of users and

the DMA weight matrix is presented in Algorithm 5.

In Algorithm 5, Pu is obtained by iteratively optimizing

Φu and Λu, ∀u. Specifically, Φu, ∀u, is obtained in a close

form by using Proposition 2, and Λu, ∀u, is optimized by

Dinkelbach’s transform. The result is guaranteed to converge

to the optimum in P̄2 [38]. In addition, Q is obtained by solv-

ing the Frobenius norm objective in (19), whose convergence

is guaranteed since the objective function is differentiable [30].

Therefore, the convergence of Algorithm 5 is guaranteed.

The complexity of Algorithm 5 depends on that of the

AO-based method for alternatingly optimizing Λ and V̄2

and Algorithm 2 for alternatingly optimizing Q, Ū2, and

D̄2. For the AO-based algorithm, the per-iteration complexity

mainly depends on optimizing Λ by Dinkelbach’s transform.

Meanwhile, the complexity of the DE method in Algorithm

4 and the closed-form calculation of V̄2 is very small, thus

is ignored. Assume that there are IDK2 iterations for opti-

mizing Λ by Dinkelbach’s transform. Since the number of

variables is
∑U

u=1Nu in each iteration, the complexity of

optimizing Λ is estimated as O(IDK2(
∑U

u=1Nu)
p), where

1 ≤ p ≤ 4 [18]. In addition, assume that the AO-based

algorithm includes IAO iterations, then its complexity can be

approximated by O(IAOIDK2(
∑U

u=1Nu)
p). For alternatingly

optimizing Q, Ū2, and D̄2 by Algorithm 2, the complexity

is estimated as O(IQ2M
3), where IQ2 denotes the number

of iterations number and O(M3) denotes the complexity per

iteration. Hence, by exploiting the statistical CSI, the total

complexity of the proposed EE maximization algorithm is

O(IAOIDK2(
∑U

u=1Nu)
p + IQ2M

3).

V. NUMERICAL RESULTS

This section provides numerical results to assess the pro-

posed approach for the DMA-assisted multiuser MIMO uplink

transmission. Our simulation adopts the QuaDRiGa normal-

ization channel model, the 3GPP-UMa-NLoS propagation

environment for small scale fading [44], and assumes all the

channels exhibit the same large scale fading factor as −120
dB [42]. The channel statistics, Ωu, ∀u, can be obtained by

the existing methods, e.g., [35]. We set the number of users

as U = 6 and each user is equipped with 4 antennas, i.e.,

Nu = 4, ∀u ∈ U . The antennas of users are placed in

uniform linear arrays spaced with half wavelength. We set

the number of microstrips as K = 8 and each microstrip

is embedded with L = 8 metamaterial elements. The space

between metamaterial elements on the DMA array is set as

0.2 wavelength. We set the bandwidth as B = 10 MHz, the

amplifier inefficiency factor as ρ = 0.3, ∀u, and the noise

variance as σ2 = −96 dBm. For the power consumption,

we set the static circuit power as Wc,u = 20 dBm, ∀u, the

hardware dissipated power at the BS as WBS = 40 dBm, and

the power consumption per RF chain as WS = 30 dBm [16],

[45]. Additionally, the entries of the DMA weight matrix Q

can be selected from the following four sets [30]:

• UC: the complex plane, i.e., Q = C;

• AO: amplitude only, i.e., Q = [0.001, 5];
• BA: binary amplitude, i.e., Q = {0, 0.1};

• LP: Lorentzian-constrained phase, i.e., Q = { +eφ

2 },

φ ∈ [0, 2π].
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Fig. 2. Convergence performance of the AO-based EE maximization algo-
rithms with different power budgets: (a) instantaneous CSI; (b) statistical CSI.

A. Convergence Performance

The convergence performance of the proposed AO-based

algorithms in the instantaneous and statistical CSI cases under

different transmit power budgets are respectively presented

in Fig. 2(a) and Fig. 2(b). For both cases, the proposed EE

maximization algorithms converge at a rapid rate for different

power budgets. Besides, Fig. 2(b) verifies the accuracy of the

asymptotic SE expression. The gap between the DE-based

and Monte-Carlo-based results is negligible. Thus, we confirm

that adopting the DE method is valid and computationally

efficient for resource allocation in the DMA-assisted MIMO

communications with statistical CSI.

B. EE Performance Comparison Between Instantaneous and

Statistical CSI Cases

In this subsection, we compare the EE performance of the

DMA-assisted communications between the instantaneous and

statistical CSI cases in the EE- and SE-oriented approaches,

respectively. Note that “SE-oriented” lines denote the EE

performance of the SE maximization designs, which can be

implemented via setting ξu, ∀u, to be zero in problem P1 or

P̄1, as is mentioned in Sections III and IV.
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Fig. 3. EE performance comparison between the instantaneous and statistical
CSI cases versus the transmit power budget in both the SE- and EE-oriented
approaches.

In Fig. 3, the DMA weights are chosen from the complex-

plane set. We compare the EE performance of the DMA-

assisted uplink system versus the power budget Pmax between

the instantaneous and statistical CSI cases. As expected, the

EE performance is better when the instantaneous CSI can be

perfectly known in both the EE- and SE-oriented approaches.

We also observe that the EE performance based on the

statistical CSI is quite close to that based on the instantaneous

CSI. Note that, the optimization process in the statistical CSI

case is more computationally efficient than the instantaneous

CSI one. Thus, in our DMA-assisted communication scenario,

the statistical CSI is a good substitute for the instantaneous

CSI to maximize the system EE. In addition, Fig. 3 shows that

the EE performance of both EE- and SE-oriented approaches

are almost identical in low and medium power regions. This

is because in such regions, the circuit and the dynamic

power consumption dominates. It can also be observed that

the EE performance of the EE-oriented approach remains

a constant while that of the SE-oriented one continues to

deteriorate in the high power budget region. This phenomenon

can be explained as follows. In the EE-oriented approach,

there exists a saturation point of the optimal transmit power

for maximizing EE. Any power that exceeds the threshold

is redundant. On the contrary, the SE maximization in the

SE-oriented approach always uses the full-power budget, thus

resulting in the degradation of the EE performance in the high

power budget region.

C. EE Performance Comparison with Other Baselines

This subsection aims to compare the EE performance be-

tween the DMA- and convectional antenna-assisted systems

with fully digital and hybrid A/D architectures. We firstly

illustrate the EE models of the conventional antennas-assisted

systems for both architectures. For clarity, we list the power

consumption models for the considered architectures as well

as the considered typical parameter setup in Tables I and II,

respectively.
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TABLE I
POWER CONSUMPTION FOR DIFFERENT ARCHITECTURES

DMAs Fully Digital Hybrid A/D

Static circuit power per users Wc,u Wc,u Wc,u

Static circuit power at the BS WBS WBS WBS

Dynamic power of RF chains KWS MWS KWS

Power of phase shifters ✕ ✕ KMWp

TABLE II
SETUP OF POWER PARAMETERS

Parameters Values

Static circuit power per users Wc,u 20 dBm [16]

Static circuit power at the BS WBS 40 dBm [45]

Dynamic power consumption per RF chain WS 30 dBm [45]

Power consumption per phase shifter Wp 30 mW [4]

1) EE Model of the Fully Digital Architecture: In the fully

digital architecture-based system, each antenna element is

connected with an independent RF chain [46]–[48]. For the

case with instantaneous CSI, the achievable EE is given by

EEC = B
log2

∣∣∣IM + 1
σ2

∑U

u=1 GuPuG
H
u

∣∣∣
∑U

u=1 (ξutr {Pu}+Wc,u) +WBS +MWS

. (37)

In (37), we use similar notations ξ−1
u , tr {Pu} Wc,u, WS, and

WBS as the EE model in (8). The main components of the total

power consumption are listed in Table I. The major difference

from (8) is that WS is multiplied by M in (37), as the number

of required RF chains is equal to that of antenna elements

in the fully digital architecture. In addition, for the case with

statistical CSI, a similar EE model can be obtained.

2) EE Model of the Hybrid A/D Architecture: To further

verify the EE advantages brought by the deployment of DMAs,

we compare the DMA-assisted transmission with the fully-

connected hybrid A/D architecture [49]. For the case with

instantaneous CSI, the corresponding EE is given by

EEAD =

B
log2

∣∣∣IU + 1
σ2

∑U

u=1 R
−1
n WHGuPuG

H
u W

∣∣∣
∑U

u=1 (ξutr {Pu}+Wc,u) +WBS +KWS +KMWp

.

(38)

In (38), Rn = WHW where W ∈ CM×K denotes a hybrid

combiner composed of an RF combiner WRF ∈ CM×K and

a baseband combiner WBB ∈ C
K×U at the BS, i.e., W =

WRFWBB. The RF combiner WRF satisfies |WRF(i, j)| =
1, i, j ∈ {1, 2, . . . ,K}. In addition, KMWp denotes the

power consumed by the phase shifters, which is the major

difference of the power consumption from the DMA-assisted

transmissions, as is shown in Table I. With the hybrid A/D

combining circuitry, the great demand for the RF chains can

be greatly reduced compared with the fully digital architecture.

In addition, the statistical CSI case can be similarly modeled.
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Fig. 4. EE performance comparison between the DMA- and conventional
antennas-assisted systems: (a) instantaneous CSI; (b) statistical CSI.

3) EE Performance Comparison: In Fig. 4, we compare the

EE performance between the DMA- and conventional antenna-

assisted systems for both the instantaneous and statistical CSI

cases. We choose the fully digital and fully-connected hybrid

A/D architectures at the BS for the conventional antennas-

assisted systems as the comparison baseline, whose EE models

are shown above. Referring to [4], we assume that the power

consumed by a phase shifter is 30 mW in the hybrid A/D

architecture, i.e., Wp = 30 mW. Since the EE maximization

problem of the fully digital architecture is similar to P1 or P̄1,

it can be addressed by Dinkelbach’s transform. Similarly, we

adopt the AO method to address the EE maximization problem

with the hybrid A/D architecture. In particular, we adopt

Dinkelbach’s transform to optimize the transmit covariance

matrices of users and the approach proposed in [4] to optimize

the RF and baseband combiners at the BS.

From Fig. 4, we can observe that the EE performance

of the DMA-assisted architecture is superior to that of the

conventional fully digital one, especially in the high power

budget region, due to the reduced number of RF chains. In

addition, the EE performance of the DMA-assisted architecture

is notably better than that of the fully-connected hybrid A/D
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Fig. 5. EE performance comparison versus the number of microstrips K with
a fixed total number of metamaterial elements.

one. This is due to the fact that the hybrid A/D architecture

requires additional power to support the numerous phase

shifters, while DMAs do not need any additional circuitry

to implement the signal processing in the analog domain.

Besides, as expected, the EE performance of the hybrid A/D

architecture is better than that of the fully digital architecture,

which also follows from the reduced number of RF chains in

the hybrid A/D architecture. In addition, we can find that the

EE saturation point of the DMA-assisted architecture is shifted

to the left compared with the fully digital one. This is because

the DMA-assisted architecture consumes much less dynamic

power with the reduction of RF chains, and then the required

transmit power tends to dominate.

Comparing the four classical sets of DMA weights men-

tioned above, we can find that their corresponding curves scale

similarly versus the transmit power budget. Among the four

cases, the system EE of the complex plane case performs the

best, which is attributed to the fact that the corresponding set

contains the other three as subsets. We also observe that the

EE performance of the continuous-valued amplitude, binary

amplitude, and Lorentzian-constrained phase cases are close

to the complex plane one. This phenomenon indicates that

compared to the system EE in the complex plane case, the

degradation of the EE performance resulting from narrowing

the sets is almost negligible. It shows the possibility of a

simpler implementation to achieve the comparable channel

capacity and EE performance with the continuous-valued am-

plitude, binary amplitude, and Lorentzian-constrained phase

sets. In fact, implementing the binary amplitude weight-based

DMAs is much simpler, making it a more appealing solution

among the four kinds for future studies.

D. Effect of the Number of Microstrips

In Fig. 5, we evaluate the effect of the number of microstrips

on the EE performance of the DMA-assisted communications.

We fix the number of metamaterial elements as M = 64, set

the transmit power consumption budget Pmax as 15 dBm, and

evaluate the EE performance of the DMA-assisted system for

K ∈ [1, 64]. As is shown in Fig. 3, the EE performance based

on the statistical CSI is close to that based on the instantaneous

CSI. Thus we focus on the EE performance based on the

statistical CSI here.

From Fig. 5, we note again that the achievable EE per-

formance based on the continuous-valued amplitude, binary

amplitude, and Lorentzian-constrained phase cases are close to

each other and closely follow the complex plane one. We can

also observe that, as the number of microstrips increases, the

EE performance firstly rises to a peak and then decreases. This

phenomenon is related to two main factors. Firstly, since the

system SE performance mainly depends on the number of RF

chains, the system SE will be improved as the number of RF

chains increases. Secondly, the dynamic power consumption

of RF chains will increase as the number of RF chains

increases. Note that the number of RF chains is equal to

that of microstrips in the DMA-assisted architecture. Then,

for small K , the first factor dominates the EE performance,

i.e., the system SE increases as the number of microstrips

increases, thus resulting in the improvement of the system

EE. On the contrary, for large K , the second factor dominates

the EE performance. Specifically, the dynamic power con-

sumption of RF chains, which is proportional to the number

of microstrips, dominates for large K . Therefore, the EE

performance decreases as the number of microstrips increases.

This observation implies that in practical implementation, we

need to select the number of microstrips to strike a balance

between the power consumption and SE gain to improve the

EE performance in the DMA-assisted communications.

E. Impact of Imperfect CSI

In this subsection, we evaluate the impact of imperfect CSI

on the performance of the proposed algorithms. We firstly

consider the instantaneous CSI case. In particular, we adopt

the imperfect instantaneous CSI model given by [50]

Ḡu = Gu +Eu, (39)

where Ḡu ∈ CM×Nu denotes the imperfectly obtained CSI of

user u, and Eu is the CSI error matrix with complex-valued

Gaussian entries i.i.d. as CN (0, δ2u), where δ2u describes the

inaccuracy of obtained CSI. Assuming that δ2u = δ2 for clarity,

we compare the EE performance of the proposed algorithm

with different CSI uncertainty δ2 in Fig. 6(a). We can observe

that for the instantaneous CSI case, the performance decreases

as δ2 increases, and thus the robust transmission design for

DMA-assisted systems with the CSI uncertainty taken into

account will be of practical interest.

For the statistical CSI case, we assume that the statistical

CSI is estimated via averaging over 50 instantaneous channel

realizations via e.g., channel sounding. The EE performance

of the proposed approaches with the exact and the estimated

statistical CSI are presented in Fig. 6(b). It can be observed

that the performance loss using the estimated statistical CSI is

almost negligible. This phenomenon indicates the robustness

of the statistical CSI-based approach [35].

VI. CONCLUSION

In this paper, we studied the EE performance optimization

of the DMA-assisted massive MIMO uplink communications,
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Fig. 6. EE performance of the proposed approach with perfect and imperfect
CSI: (a) instantaneous CSI; (b) statistical CSI.

considering both the cases of exploiting the instantaneous and

statistical CSI. Specifically, we developed a well-structured

and low-complexity framework for the transmit covariance

design of each user and the DMA configuration strategy

at the BS, including the AO and DE methods, as well as

Dinkelbach’s transform. Based on our algorithm, the DMA-

assisted communications achieved much higher EE perfor-

mance gains compared to the conventional large-scale antenna

array-assisted ones, especially in the high power budget region.

The results also showed that the EE performance based on

DMAs could be further improved by adjusting the number of

microstrips. In the future work, robust DMA-assisted trans-

mission design incorporating the imperfect CSI effect will be

of practical interest.
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