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Abstract—In this paper, physical layer security (PLS) in
a non-orthogonal multiple access (NOMA)-based mobile edge
computing (MEC) system is investigated, where hybrid successive
interference cancellation (SIC) decoding is considered. Specifi-
cally, users intend to complete confidential tasks with the help
of the MEC server, while an eavesdropper attempts to intercept
the offloaded tasks. By jointly designing computational resource
allocation, task assignment, and power allocation, a latency
minimization problem is formulated. Based on the interactions
between local computing time and MEC processing time, the
closed-from solutions of computational resource allocation and
task assignment are derived. After that, a strategy selection
mechanism is established to select offloading strategies based on
the corresponding conditions. Moreover, according to the analysis
of hybrid SIC decoding, the conditions of different decoding
orders in secure NOMA networks are derived. Furthermore,
a reinforcement learning based algorithm is proposed to solve
the power allocation problems for NOMA and OMA offloading
strategies. This work is extended to a multi-user scenario, in
which a matching-based algorithm is proposed to solve the
formulated sub-channel assignment problem. Simulation results
indicate that: i) the proposed solution can significantly reduce
the latency and provide dynamic strategy selection for various
scenarios; ii) the NOMA offloading strategy with hybrid SIC
decoding can outperform other strategies in the considered
system.

Index Terms—Mobile edge computing (MEC), Non-orthogonal
multiple access (NOMA), physical layer security (PLS), reinforce-
ment learning, sub-channel assignment.

I. INTRODUCTION

With the explosive development of mobile applications,

the demand for computational capacity of mobile equipments

has significantly increased in recent years [1]. In this con-

text, mobile edge computing (MEC) has been emerged as a

promising technology to provide the real-time computational

service [2]. Specifically, by equipping the high-performance

central processing units (CPUs) at the base station (BS), the

computation-intensive and latency-critical tasks of the mobile

users can be partially or fully offloaded to the MEC server for

processing [3]. As a result, the sophisticated applications are

executable at the smart device with the limited computational

capacity and power [4]. Moreover, in order to achieve the high-

speed and low-latency task offloading, the non-orthogonal
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multiple access (NOMA) transmission scheme is extensively

employed in MEC systems [5], [6]. With NOMA schemes,

multiple users are able to offload tasks to the MEC server at

the same time and frequency band [7]. By adopting successive

interference cancellation (SIC) techniques, part of co-channel

interference can be decoded and removed at the BS based

on the channel state information (CSI) or quality of service

(QoS) [8], [9]. In previous research, the advantages of adopting

NOMA schemes in MEC systems have been demonstrated,

and compared with conventional orthogonal multiple access

(OMA) schemes [10], [11].

A. Related Works

In existing works on NOMA-MEC systems, user cluster-

ing and resource allocation have been extensively studied in

order to minimize the latency, energy consumption, or their

combination [12]–[18]. However, due to the broadcast nature

of the multiple access networks, the offloaded tasks have

a high risk of being intercepted by external eavesdroppers

[19]. Therefore, the research on physical layer security (PLS)

in NOMA-based MEC systems has emerged recently [20]–

[26]. In [20], by introducing an energy weight for each user,

a weighted energy consumption minimization problem was

investigated in a two-user NOMA-MEC system. In order to

further improve the aforementioned system, a secrecy outage

probability minimization problem was considered. The energy

consumption minimization problem was also studied in [21],

where a group of wireless devices was considered as the

jammer to help the eavesdropped edge computing device. For

efficiently solving the formulated problem, a three-layered al-

gorithm was proposed with the help of vertical decomposition.

The authors in [22] focused on maximizing the minimum anti-

eavesdropping ability of the proposed NOMA-MEC system. It

was indicated that users tend to compute all tasks locally, and

the offloading strategy is selected only if the energy for com-

puting is insufficient. By jointly designing task assignment and

power allocation, a latency minimization problem was studied

in [23], where a bisection searching based algorithm was

developed to solve the simplified problem. A novel multi-user

MEC system with one unmanned aerial vehicle (UAV) server

and one UAV jammer was proposed in [24], where both time

division multiple access (TDMA) and NOMA transmission

schemes were utilized. By maximizing the minimum secure

computing capacity in those two schemes, the superiority of

NOMA schemes compared to TDMA schemes was proved. By

defining the energy efficiency as the ratio of the sum secure
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rate to the sum power consumption, an energy efficiency

maximization problem with imperfect and perfect CSI was

studied in [25] and [26], respectively. Specifically, in order to

mitigate the impact of the eavesdropper, in [25], a full-duplex

MEC server was introduced in a multi-subcarrier scenario to

generate artificial noise, and hence, sub-channel allocation and

power control for the MEC server were taken into consider-

ation. In [26], the formulated problem was divided into two

sub-problems, and the closed-form solutions of local CPU-

cycle frequency scheduling and the transmit power allocation

were provided.

B. Motivation and Contribution

Although the optimization for NOMA-based MEC systems

in PLS scenario has been extensively investigated, the in-

depth research and analysis in this field is still limited. First,

since the size of offloaded tasks is optimized, it may lead to

different strategies to complete the given tasks. For example,

some users may not be able, or need, to offload tasks to the

MEC server. In this case, it is necessary to establish a dynamic

strategy selection mechanism based on task assignment and

power allocation. Second, in secure NOMA-MEC systems,

the signals are decoded at both the BS and the eavesdropper,

and hence, the SIC decoding order plays an important role

in determining system performance. In existing research, the

SIC decoding order is considered to be fixed [21], [24]–

[26], or a strong assumption that eavesdroppers can cancel

all interference is adopted [20], [22], [23]. For the sake of

efficiency and practicality, at the BS and the eavesdropper,

a more flexible SIC decoding order and an uncontrollable

SIC decoding order should be employed, respectively. Third,

even though the computational capacity of the MEC server is

obviously larger than that of the user, it is still limited, and then

the MEC computing time should be taken into consideration.

For the multi-user scenario, computational resource allocation

for processing offloaded tasks is required.

Against this background, this paper aims to find the pos-

sible task offloading strategies and derive the corresponding

conditions. Moreover, it is considered that the SIC decoding

order can be dynamically switched at the BS, and randomly

selected at the eavesdropper. At the MEC server, computa-

tional resource allocation is included to further improve the

proposed system. The main contributions of this paper are

listed as follows:

• A novel secure NOMA-MEC system is proposed, where

an eavesdropper intends to overhear the offloaded tasks.

The users can partially offload tasks to the MEC server via

the NOMA or OMA schemes, or completely compute all

confidential tasks locally. At the BS and the eavesdropper,

the hybrid and random SIC decoding orders are utilized,

respectively. A latency minimization problem is formulated

by jointly designing power allocation, task assignment, and

computational resource allocation.

• The computational resource allocation and task assignment

problems are solved by investigating the interactions be-

tween local computing time and MEC processing time,

where the closed-form solutions are derived and expressed

in terms of the secrecy rate. The offloading strategies and

the corresponding conditions for switching among those

strategies are derived to improve the performance of task

processing. Furthermore, the conditions for achieving dif-

ferent SIC decoding orders are analyzed.

• The formulated power allocation problem is divided into

three sub-problems according to the possible strategies,

including NOMA offloading, OMA offloading, and local

computing. With the help of reinforcement learning, a deep

deterministic policy gradient (DDPG)-based algorithm is

developed, which can optimize power allocation coeffi-

cients for the NOMA and OMA offloading strategies. The

complexity of the proposed DDPG-based algorithm is also

presented.

• In order to extend the work to a multi-user scenario, sub-

channel assignment is studied, where users are paired and

assigned to different sub-channels. The formulated sub-

channel assignment problem is considered as a two-to-one

matching, and then a matching-based algorithm is proposed,

in which the DDPG-based power allocation algorithm can be

iteratively performed. The property of the matching-based

algorithm is also analyzed.

The effectiveness of the proposed solution is verified by

simulations, where the appropriate strategies are selected based

on various situations. Moreover, it is demonstrated that for

both two-user and multi-user scenarios, hybrid SIC decoding

can outperform fixed SIC decoding in the considered NOMA-

MEC system. Furthermore, the correctness of the provided

insights is verified.

II. SYSTEM MODEL

Consider a MEC system with one BS, one eavesdropper and

two users, where the MEC server is equipped at the BS, and all

nodes are equipped with single-antennas. In order to complete

the confidential tasks, users tend to partially offload tasks to the

trusted MEC server by utilizing NOMA transmission schemes,

and compute the rest of the tasks locally in the meantime.

At the MEC server, the available computational resource, i.e.,

CPUs cycles, is dynamically allocated to process the offloaded

tasks. The notations used in this paper are listed in Table I.

A. Signal Model

Based on the uplink NOMA scheme, users occupy the same

time and frequency to offload tasks to the MEC server. At

the BS and the eavesdropper, the received signals can be

respectively expressed as

y =
2

∑

i=1

ĥi
√
pisi + n0, (1)

and

ye =

2
∑

i=1

ĥi,e
√
pisi + n0. (2)

It is assumed that perfect channel state information (CSI) of all

nodes is available at the BS, and the channel gain is constant

during offloading.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3194685

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on October 21,2022 at 13:09:25 UTC from IEEE Xplore.  Restrictions apply. 



3

TABLE I: Summary of Notations

Notation Description

y Received signal at the BS

ye Received signal at the eavesdropper

ĥi Channel between user i and the BS

ĥi,e Channel between user i and the eavesdropper

pi Power allocation coefficient of user i

si Transmitted signal

n0 Additive noise

Ri,e Data rate of user i at the eavesdropper

B Bandwidth of each sub-channel

Pt Available transmit power

σ2 The variance of additive noise

Ri,s Secrecy rate of user i

βi Task assignment coefficient of user i

Di The size of user i’s tasks in bits

T off
i

Offloading time of user i

T com
0,i

MEC computing time for user i’s tasks

µ Required cycles to complete one bit of tasks

τi Computational resource allocation coefficient of user i

C0 Available CPU cycles at the MEC server

T com
i

Local computing time at user i

Ci Available CPU cycles at user i

In order to decode the received signals, the SIC technique

is utilized at the eavesdropper and the BS [27]. At the

eavesdropper, the eavesdropping process can be considered

as an uplink NOMA system, whose sum rate is not affected

by SIC decoding orders. Therefore, in this paper, an arbitrary

decoding order is adopted at the eavesdropper, since it does not

change the size of intercepted tasks. The denotation of users is

based on the SIC decoding order at the eavesdropper. Without

loss of generality, the user whose signal is decoded firstly

is denoted by user 1, and the user whose signal is decoded

afterwards is denoted by user 2. Therefore, at the eavesdropper,

the data rate of user 1 and user 2 can be respectively expressed

as follows:

R1,e = B log2

(

1 +
p1|h1,e|2

p2|h2,e|2 + 1

)

, (3)

and

R2,e = B log2
(

1 + p2|h2,e|2
)

, (4)

where |hi,e|2 = Pt|ĥi,e|2σ−2 is the normalized channel gain.

At the BS, the hybrid SIC decoding is employed, where the

decoding orders can be further optimized in order to improve

users’ individual performance [28], [29]. Due to the fact that

there are two users in the proposed system, two different

decoding orders should be considered, as shown in follows.

1) SIC Decoding Order 1: If user 1’s signal is decoded first

at the BS, the data rate of user 1 is given by

R1 = B log2

(

1 +
p1|h1|2

p2|h2|2 + 1

)

, (5)

where |hi|2 = Pt|ĥi|2σ−2 is the normalized channel gain.

After removing the interference caused by user 1, the data

rate of user 2 can be presented as follows:

R2 = B log2(1 + p2|h2|2). (6)

2) SIC Decoding Order 2: If user 2’s signal is decoded

before user 1’s, the following data rate can be respectively

obtained at the BS:

R1 = B log2(1 + p1|h1|2), (7)

and

R2 = B log2

(

1 +
p2|h2|2

p1|h1|2 + 1

)

. (8)

Note that the individual secrecy rate of any user should be

non-negative, otherwise this user would stop offloading tasks

to the MEC server. Therefore, the secrecy rate of any user i

can be expressed as

Ri,s = max{0, Ri −Ri,e}. (9)

If the secrecy rate of any user is zero, the local computing

strategy is employed to process all tasks. In this case, the

other user is allowed to offload tasks to the MEC server by

utilizing OMA transmission schemes, where the data rate of

the OMA user can be calculated by removing the interference

caused by the local computing user.

B. MEC Model

Suppose that βiDi bits of tasks are offloaded from user i

to the MEC server. The required offloading time is given by

T off
i =

βiDi

Ri,s

. (10)

In this paper, the pure NOMA transmission scheme is em-

ployed, which implies that the offloading time of all users

should be the same1. That is, if both users decide to offload

tasks to the MEC server, the following condition should be

satisfied:

T off = T off
1 = T off

2 . (11)

This condition can be achieved by adjusting task assignment

coefficients βi and power allocation coefficients pi. On the

other hand, if any user decides to compute all tasks locally, the

offloading time of this user is zero. Therefore, the offloading

time of any user i can be presented as follows:

T off
i ∈ {0, T off}. (12)

At the MEC server, the computational resource is allocated to

process the offloaded tasks. For user i’s offloaded tasks, the

computing time is given by

T com
0,i =

µβiDi

τiC0

. (13)

After offloading βiDi bits of tasks to the MEC server, the

remaining tasks, i.e., (1 − βi)Di, are processed by the user.

The local computing time of user i is given by

T com
i =

µ(1− βi)Di

Ci

. (14)

1It is revealed in [30] that with sufficient energy, the lower latency can be
achieved by the pure NOMA scheme, compared to the hybrid NOMA scheme.
In this paper, in order to minimize the latency, the pure NOMA scheme is
performed, which can be implemented based on power allocation and task
assignment.
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III. PROBLEM FORMULATION

In order to explore the security issue and improve the per-

formance, latency minimization is investigated in the proposed

NOMA-MEC system. Due to the fact that users can compute

and offload tasks simultaneously, while the MEC server can

only compute tasks after offloading, the latency of any user i

can be expressed as

Ti = max{T com
i , T off

i + T com
0,i }. (15)

By jointly designing power allocation, task assignment, and

computational resource allocation, the latency minimization

problem is formulated as follows:

min
p,β,τ

max
i∈{1,2}

{T com
i , T off

i + T com
0,i } (16)

s.t. 0 ≤ pi ≤ 1, ∀i ∈ {1, 2}, (16a)

0 ≤ βi ≤ 1, ∀i ∈ {1, 2}, (16b)

0 ≤ τi, ∀i ∈ {1, 2}, (16c)

τ1 + τ2 ≤ 1, (16d)

T off
i ∈ {0, T off}, ∀i ∈ {1, 2}, (16e)

where p, β and τ are the collections of all power allocation

coefficients, task assignment coefficients, and computational

resource allocation coefficients, respectively. In the formu-

lated problem, the objective function is the maximum time

consumption of both users, including the local computing

time T com
i and the MEC processing time T off

i + T com
0,i . In

constraints (16a) and (16b), the ranges of users’ power alloca-

tion coefficients and task assignment coefficients are defined.

Constraints (16c) and (16d) state the condition of the allocated

computational resource at the MEC server for computing

each user’s offloaded tasks. Constraint (16e) indicates that the

offloading time of any user is zero with the local computing

strategy, or equals to another user’s offloading time with the

NOMA offloading strategy.

The formulated problem is non-convex and difficult to be

transformed into a convex problem. However, this problem can

be solved by analyzing the interactions between all terms in

the objective function. Specifically, there is a trade-off between

users’ MEC computing time, i.e, T com
0,1 and T com

0,2 , which is

decided by the computational resource allocation coefficients.

Moreover, the balance between each user’s local computing

time T com
i and MEC processing time T off

i + T com
0,i is deter-

mined by the task assignment coefficient. Based on different

strategies, including NOMA offloading, OMA offloading and

local computing, the formulated problem can be divided into

three sub-problems and solved separately.

IV. COMPUTATIONAL RESOURCE ALLOCATION AND TASK

ASSIGNMENT

In this section, by analyzing the aforementioned interac-

tions, the closed-form expressions of computational resource

allocation coefficients and task assignment coefficients are

derived, and the formulated problem is transformed according

to different strategies.

A. Optimal Computational Resource Allocation Coefficients

In the formulated latency minimization problem, the com-

putational resource allocation coefficients only involve the

MEC computing time. That is, if power allocation coefficients

and task assignment coefficients are fixed, the computational

resource allocation strategy can be obtained by balancing the

MEC computing time of both users.

If both users offload tasks to the MEC server by utilizing

NOMA schemes, i.e., βi > 0 and Ri,s > 0, ∀i ∈ {1, 2}, the

users’ offloading time is the same and equals to T off, as shown

in (11). In this case, the original objective function (16) can

be transformed as

max
i∈{1,2}

{T com
i , T off + T com

0,i }. (17)

With the given secrecy rate and task assignment coefficients,

the local computing time T com
i and offloading time T off can

be regarded as constants and removed2. Based on (13), the

following problem can be obtained:

min
τ

max
i∈{1,2}

{

µβiDi

τiC0

}

(18)

s.t. (16c), (16d).

That is, by minimizing the MEC computing time, the optimal

computational resource allocation coefficients can be obtained.

It is indicated by (18) that any user’s MEC computing time

is monotonically decreasing with the increasing computational

resource allocation coefficient. Therefore, in problem (18), all

available computational resources at the MEC server should

be utilized, i.e., τ1 + τ2 = 1. On the other hand, there is a

trade-off between users’ computing time at the MEC server.

Specifically, the increase in any user’s computational resource

allocation coefficient will lead to the increase in another user’s

MEC computing time. According to [12], T com
0,1 = T com

0,2 is

satisfied by the optimal computational resource allocation co-

efficients. As a result, the following condition can be obtained:






τ∗1 + τ∗2 = 1,

µβ1D1

τ∗1C0

=
µβ2D2

τ∗2C0

.
(19)

Hence, the optimal computational resource allocation coeffi-

cients can be expressed as

τ∗i =
βiDi

β1D1 + β2D2

. (20)

Note that the derived optimal computational resource coeffi-

cients always satisfy constraints (16c) and (16d) with any task

assignment coefficients. Moreover, with the OMA offloading

strategy in which any user does not offload tasks to the MEC

server, i.e., βi = 0, ∃i ∈ {1, 2}, the derived optimal solution

in (20) still holds. In this case, all available computational

resources at the MEC server is allocated to compute the

offloaded tasks of the OMA user. Furthermore, with the local

computing strategy in which both users complete all tasks

2Note that if the local computing time of any user, i.e., T com
i

, is significantly
greater than other terms, the computational resource allocation strategy will
not affect the latency of the proposed system. However, in this case, a
computational resource allocation strategy is still required.
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locally, there is no offloaded tasks at the MEC server, and

hence, the computational resource allocation coefficients of

both users are zero. Therefore, the optimal computational

resource allocation coefficients with all strategies can be

presented as follows:

τ∗i =







βiDi

β1D1 + β2D2

, if βi > 0, ∃i ∈ {1, 2},

0, if βi = 0, ∀i ∈ {1, 2}.
(21)

B. Optimal Task Assignment Coefficients

In this subsection, with the derived optimal computational

resource allocation coefficients, the optimal task assignment

coefficients can be obtained according to the fixed secrecy

rate. At this stage, the terms in the objective function (16) can

be expressed as functions of task assignment coefficients, as

shown below:

max
i∈{1,2}

{f(βi), g(βi)} , (22)

where

f(βi) =
µ(1− βi)Di

Ci

, (23)

and

g(βi) =

(

1

Ri,s

+
µ

τiC0

)

βiDi, (24)

are local computing time and MEC processing time (including

the offloading time and MEC computing time), respectively.

For any user i, there is a trade-off between f(βi) and g(βi),
which is determined by task assignment coefficient βi. For

example, if βi grows, local computing time f(βi) is decreased,

while MEC processing time g(βi) is increased. Therefore, in

order to minimize the latency, the following condition should

be satisfied:

f(β∗
i ) = g(β∗

i ), (25)

if user i can offload tasks to the MEC server, i.e., Ri,s > 0.

Moreover, if the NOMA offloading strategy is adopted, i.e.,

Ri,s > 0, ∀i ∈ {1, 2}, the following condition can be obtained

from (11):

β∗
1D1R2,s = β∗

2D2R1,s. (26)

As a result, with the fixed secrecy rate and the optimal task as-

signment coefficients, the optimal task assignment coefficients

can be obtained3.

Proposition 1. In the proposed NOMA-MEC system, if Ri,s >

0, ∃i ∈ {1, 2}, the optimal task assignment coefficients of

problem (16) can be expressed as














β∗
1 =

µR1,sC0

C0C1 + µR1,sC1 + µR1,sC0 + µR2,sC1

,

β∗
2 =

µR2,sC0

C0C2 + µR2,sC2 + µR2,sC0 + µR1,sC2

.

(27)

Proof: Refer to Appendix A.

Due to the fact that the above proposition is derived based

on (26), constrain (16e) always holds by the optimal task

3In the OMA offloading strategy, although the task assignment of the OMA
offloading user may not affect the latency, the derived optimal task assignment
coefficient can still be utilized.

assignment coefficients. That is, with any given secrecy rate,

the task assignment coefficients can be dynamically adjusted

to satisfy constrain (16e). Moreover, it is worth to mention

that in the local computing strategy, all tasks are computed by

users, and hence, the optimal task assignment coefficients can

be expressed as

β∗
1 = β∗

2 = 0, if Ri,s = 0, ∀i ∈ {1, 2}. (28)

C. Strategy Selection

At this stage, the closed-form solutions of task assignment

and computational resource allocation coefficients are derived,

and expressed by the secrecy rate. Based on whether the

secrecy rate is zero, three power allocation problems can be

obtained with different offloading strategies.

1) NOMA Offloading Strategy: In this case, both users

offload tasks to the MEC server, i.e., Ri,s > 0, ∀i ∈ {1, 2}.
By substituting the derived task assignment coefficients (27)

into (22), the power allocation problem can be presented as

min
p

max{f1, f2, g1, g2} (29)

s.t. (16a),

where

f1 =
µD1(C0 + µR1,s + µR2,s)

C0C1 + µR1,sC1 + µR1,sC0 + µR2,sC1

, (30)

f2 =
µD2(C0 + µR2,s + µR1,s)

C0C2 + µR2,sC2 + µR2,sC0 + µR1,sC2

, (31)

g1 =
µD1(C0 + µR1,s)

C0C1 + µR1,sC1 + µR1,sC0 + µR2,sC1

(32)

+
µ2D2R2,s

C0C2 + µR2,sC2 + µR2,sC0 + µR1,sC2

,

and

g2 =
µD2(C0 + µR2,s)

C0C2 + µR2,sC2 + µR2,sC0 + µR1,sC2

(33)

+
µ2D1R1,s

C0C1 + µR1,sC1 + µR1,sC0 + µR2,sC1

.

In the NOMA offloading strategy, the offloading time of both

users is the same. By including the derived task assignment

coefficients (27) into (11), the condition of the optimal secrecy

rate can be obtained.

Remark 1. In the proposed NOMA-MEC system, if Ri,s >

0, ∀i ∈ {1, 2}, the optimal secrecy rate satisfies the following

condition:

A1R
∗
2,s +D1C0C2 = A2R

∗
1,s +D2C0C1, (34)

where
{

A1 , µD1C2 + µD1C0 − µD2C1,

A2 , µD2C1 + µD2C0 − µD1C2.
(35)

Note that (34) is the condition of the theoretical optimal se-

crecy rate. If this equation is satisfied, the following condition

can be achieved:

f1 = f2 = g1 = g2, (36)
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and the global optimal solution is obtained, which can achieve

the minimum latency of the proposed NOMA-MEC system.

However, due to the existence of interference and different

SIC decoding orders, (34) is difficult to be satisfied.

2) OMA Offloading Strategy: In this case, one of the users

tends to compute all tasks locally since the positive secrecy

rate cannot be achieved. However, this condition is considered

at the offloading phase. As shown in footnotes 2 and 3, there

exists another condition for adopting the OMA offloading

strategy, which is considered at the computing phase.

Proposition 2. In the proposed NOMA-MEC system, the OMA

offloading strategy will be selected if the following condition

is satisfied:
Di′

Ci′
≤ Di

C0 + Ci

, (37)

where users i and i′ are the OMA offloading user and local

computing user, respectively.

Proof: Refer to Appendix B.

The above proposition is due to the fact that the computing

time to process all tasks at user i′ is less than the computing

time to simultaneously process user i’s tasks at user i and the

MEC server, even though all available computational resources

at the MEC server are allocated for user i’s tasks. This

situation will occur if the size of user i’s tasks is significantly

larger than that of user i′’s, and/or the CPUs equipped at user

i′ are more powerful compared to user i and the MEC server.

In this case, the OMA offloading strategy is selected and the

latency is determined by the OMA offloading user i. Based

on these conditions, the OMA offloading strategy is adopted,

and the following problem is formulated:

min
p

max{fi, fi′ , gi} (38)

s.t. (16a),

where

fi =
µDi(C0 + µRi,s)

C0Ci + µRi,sCi + µRi,sC0

, (39)

fi′ =
µDi′

Ci′
, (40)

and

gi =
µDi(C0 + µRi,s)

C0Ci + µRi,sCi + µRi,sC0

. (41)

In the OMA offloading strategy, the MEC processing time of

the local computing user i′ is zero, i.e., gi′ = 0, and hence, it

is removed from the objective function. Moreover, constraint

(16e) is removed since it is always satisfied in this case.

3) Local Computing Strategy: In this case, the positive

secrecy rate cannot be achieved by both users, i.e., Ri,s =
0, ∀i ∈ {1, 2}, and hence, the power allocation coefficients

can be presented as follows:

p∗1 = p∗2 = 0. (42)

Therefore, the latency of the proposed NOMA-MEC system is

decided by the local computing time of both users, as shown

below:

T = max

{

µD1

C1

,
µD2

C2

}

. (43)

D. Analysis of SIC Decoding Order

In this subsection, the NOMA offloading strategy is ana-

lyzed, where the different SIC decoding orders are investi-

gated. From (10), it is indicated that the increasing secrecy

rate can reduce the offloading time, or allows the users offload

more tasks to the more efficient MEC server with the same

offloading time. Therefore, in NOMA offloading strategy,

under the condition in Remark 1, both users tend to maximize

the secrecy rate. However, due to the interaction of users’

power allocation coefficients, the optimal power allocation

coefficients cannot be explicitly derived. In this in context,

this subsection only compares SIC decoding orders.

1) SIC Decoding Order 1: If user 1’s signal is decoded

before user 2’s, the secrecy rate can be presented as

R1,s = B log2

[

(p1|h1|2+p2|h2|2+1)(p2|h2,e|2+1)

(p2|h2|2+1)(p1|h1,e|2+p2|h2,e|2+1)

]

, (44)

and

R2,s = B log2

(

p2|h2|2 + 1

p2|h2,e|2 + 1

)

. (45)

With this decoding order, the condition for performing NOMA

transmission schemes can be obtained as follows.

Proposition 3. In the proposed NOMA-MEC system, the

NOMA transmission scheme can be utilized with SIC Decoding

Order 1 if the following condition is satisfied:
{

|h1|2 > |h1,e|2,
|h2|2 > |h2,e|2.

(46)

Proof: Refer to Appendix C.

It is described by (96) that the feasible region of user 2’s

power allocation coefficient is replaced by

p2 ∈
(

0,min

{ |h1,e|2 − |h1|2
|h1|2|h2,e|2 − |h2|2|h1,e|2

, 1

})

, (47)

if |h1|2 > |h1,e|2 and |h1|2|h2,e|2 < |h2|2|h1,e|2 hold. By

eliminating normalization, the terms in (47) can be expressed

as
|ĥ1,e|2 − |ĥ1|2

Ptσ−2(|ĥ1|2|ĥ2,e|2 − |ĥ2|2|ĥ1,e|2)
. (48)

It can be found that the above term is monotonically decreas-

ing with the increasing transmit power, and hence, the feasible

region of user 2’s power allocation coefficient p2, i.e., (47), is

shrinking. The following insight can be obtained:

Remark 2. In the proposed NOMA-MEC system, by adopting

SIC Decoding Order 1, the upper bound of user 2’s power

allocation coefficient decreases with the transmit power if

|h1|2|h2,e|2 < |h2|2|h1,e|2 holds.

2) SIC Decoding Order 2: If the SIC decoding order at the

BS is swapped, the signal of user 2 is decoded firstly, and the

expressions of secrecy rate can be shown as

R1,s = B log2

[

(p1|h1|2+1)(p2|h2,e|2+1)

p1|h1,e|2+p2|h2,e|2+1

]

, (49)

and

R2,s = B log2

[

(p2|h2|2+p1|h1|2+1)

(p1|h1|2+1)(p2|h2,e|2+1)

]

. (50)
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In this case, the condition for adopting SIC Decoding Order

2 can be presented as follows.

Proposition 4. In the proposed NOMA-MEC system, NOMA

transmission schemes with SIC Decoding Order 2 can be

employed if the following condition is satisfied:







|h1|2
|h1,e|2

>
1

|h2,e|2 + 1
,

|h2|2 > |h2,e|2.
(51)

Proof: Refer to Appendix D.

From (104), the feasible region of user 1’s power allocation

coefficient is shown as follows:

p1 ∈
(

0,min

{ |h2|2 − |h2,e|2
|h1|2|h2,e|2

, 1

})

. (52)

For the unnormalized channel condition, the term in the above

function is given by

|ĥ2|2 − |ĥ2,e|2
Ptσ−2|ĥ1|2|ĥ2,e|2

. (53)

It is indicated that with the increasing transmit power, the

feasible region of p1 tends be small. The following conclusion

can be drawn.

Remark 3. In the proposed NOMA-MEC system, by adopting

SIC Decoding Order 2, the upper bound of user 1’s power

allocation coefficient decreases with the transmit power.

V. DDPG-BASED POWER ALLOCATION

In this section, power allocation with both NOMA and

OMA offloading strategies is investigated. As aforementioned,

the formulated power allocation problems (29) and (38) are

non-convex and difficult to be solved. To tackle this issue,

the DDPG scheme is adopted to minimize the latency, where

the power allocation solution is obtained based on the DDPG

decision-making strategy. The DDPG framework and the train-

ing algorithm are discussed in the sequel.

A reinforcement learning problem can be described by a 4-

tuple (st, at, rt, st+1) at any time step t, where st denotes the

state, at denotes the action, rt denotes the immediate reward of

action at in state st, and st+1 denotes the state at the next step

[31]. Specifically, in the proposed DDPG-based algorithm, the

following elements are defined:

• State Space S: The state space S is the collection of all

states, i.e., st ∈ S, ∀t, where any state at step t can be

expressed as

st = {h1(t), h2(t), h1,e(t), h2,e(t)}. (54)

Note that all channel conditions are available at the BS, and

the channel gains are different among time steps.

• Action Space A: The action space A is the collection

of all actions, where any action at step t contains the

corresponding power allocation coefficients, i.e.,

at = {p1(t), p2(t)}. (55)

It is worth mentioning that the designed DDPG-based algo-

rithm is capable of outputting continuous actions, and hence,

the action space A is also continuous.

• Reward Function: After choosing action at for any given

state st, the immediate reward at step t is defined as follows:

rt(st, at) = −1×max{f1(t), f2(t), g1(t), g2(t)}. (56)

The term −1 is included in the reward function to minimize

the objective function of (29). That is, if the DDPG network

takes an action that increases the reward, the latency will

be decreased. Moreover, the reward of the previous round

is obtained at the beginning of any step.

The DDPG network is designed to find an optimal strategy

which can maximize the discounted long term reward Rt,

defined as

Rt =

T−1
∑

t=0

γtrt, (57)

where γ ∈ [0, 1] is the discount factor which determines

the balance of current and future rewards. If γ is small, the

network will focus on maximizing the current reward. When

γ increases, the network tends to choose the action which can

maximize the future reward. In this paper, the actions between

steps are independent because the power allocation constraint

is only set for each step. Therefore, a relatively small γ is

chosen in order to focus on the current reward.

As shown in Fig. 1, an experience memory is included

in the designed DDPG network in order to avoid inefficient

learning caused by the highly correlated input data. Moreover,

the DDPG network adopts the actor-critic architecture, which

contains an actor network and a critic network. Meanwhile,

the DDPG network includes an additional neural network for

both the actor network and the critic network, namely target

networks.

For actor-critic schemes, the actor network takes the state

st as the input, and then outputs the instant action at to the

MEC-NOMA network based on the weight ω and a stochastic

noise, i.e.,

at = π(st;ω) +N0, (58)

where N0 is the exploration noise, which can balance the

exploration of new actions and the exploitation of previous

actions. As a result, the case that the neural network stuck on

local optimal decisions can be prevented. It is worth pointing

out that each term in at is limited to [0, 1], and hence, the

value of the noise-added action will be clipped if the result is

beyond the desired range. Moreover, the decision of the actor

network, i.e., π(st;ω), is also outputted to the critic network

for evaluation. The critic network receives the decision, and

then outputs the estimated Q-value Q(st, π(st;ω); θ) with the

weight θ, where the Q-value describes the expected long term

reward. Based on the principle of policy gradient theorem [32],

the objective of the actor network is to maximize the long term

discounted reward J(µ) = Q(s, π(s;ω); θ), and hence, the

actor network updates the weight ω according to the gradient:

∇ωJ(ω) = ∇ωπ(s;ω)∇aQ(s, a; θ). (59)

In terms of the target network, it is essentially a duplication

of the original network with a slower update frequency. As a
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Fig. 1: An illustration of the DDPG framework.

result, more stable labels can be provided for the actor and

critic networks. In the target networks, the soft update policy

is adopted with the following weights:

ω− ← ρω + (1 − ρ)ω−, (60)

θ− ← ρθ + (1− ρ)θ−, (61)

where 0 < ρ≪ 1 is the updating parameter. Moreover, in the

target critic network, the target Q-value is estimated based on

the experience tuple (si, ai, ri, si+1), as shown below:

yi = ri + γQ(si+1, π(si+1;ω
−); θ−), (62)

where i is the random sample index. Hence, the loss function

of the critic network can be written as follows:

L(θ) = (yi −Q(si, ai; θ))
2
. (63)

Here, the critic network is trained by minimizing the loss

function. According to the above settings, a DDPG-based

power allocation algorithm is presented in Algorithm 1.

In terms of the DDPG framework, each neural network

contains one hidden layer with 100 neurons. Moreover, both

the critic network and the target critic network adopt the

Rectified Linear Unit (ReLU) as the activation function, while

the activation function for the actor network is Sigmoid, which

output the action value at ∈ [0, 1] [33]. Based on the proposed

DDPG-based power allocation algorithm, the formulated prob-

lems in (29) and (38) can be solved, where the strategies can

be dynamically switched according to different conditions.

In order to implement the hybrid SIC decoding order, the

performance of different decoding orders is compared in the

NOMA offloading strategy, and the best decoding order which

can achieve the minimum latency is selected.

According to [34], [35], the computational complexity of

the proposed DDPG-based power allocation algorithm can be

expressed asO(4NepNtsNmb

∑L

i=1
NiNi+1), whereNmb is the

size of the mini-batch, L is the number of layers, and Ni

is the number of neurons in the i-th layer. Specifically, for

all 4 neural networks, the computational complexity of each

step is 4Nmb

∑L

i=1
NiNi+1. Due to the fact that there are Nep

episodes and each episode includes Nts steps, the total com-

putational complexity is given by 4NepNtsNmb

∑L

i=1
NiNi+1.

Algorithm 1 DDPG-based Power Allocation Algorithm

1: Parameter initialization:

2: Initialize actor network π(si;ω), critic network Q(s, a; θ),
target actor network π(s;ω−), and target critic network

Q(s, a; θ−).
3: Initialize reply memory R with size |R|, and memory

counter.

4: Initialize discount factor γ, batch size, soft update coeffi-

cient ρ.

5: Training Phase:

6: for episode = 1, 2, ..., Nep do

7: for step = 1, 2, ..., Nts do

8: Input state st into actor network and obtain action

at = π(st;ω) +N .

9: Observe rt ← −1 ×max{f1(t), f2(t), g1(t), g2(t)},
and the next state st+1.

10: Store experience tuple (st, at, rt, st+1) into the mem-

ory R.

11: if memory counter > |R| then

12: Remove previous experiences from the beginning.

13: end if

14: Randomly sample a mini-batch of experience tuple

(st, at, rt, st+1) with batch size and input DNNs.

15: Update the weights of actor and critic networks based

on (59) and (63).

16: Update target network weights ω− and θ− according

to (60) and (61).

17: end for

18: end for

VI. MATCHING-BASED SUB-CHANNEL ASSIGNMENT

In order to extend the work to a multi-user scenario, a

sub-channel assignment problem is considered in this section.

Specifically, N users are paired and assigned to K sub-

channels, where N = 2K . The collections of users and

sub-channels are denoted by N = {1, 2, . . . , N} and K =
{1, 2, . . . ,K}, respectively. For the multi-user situation, the

subscripts of variables are changed accordingly.
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A. Sub-Channel Assignment Problem Formulation

By considering the maximum value of all users’ time

consumptions as the latency of the system, the formulated sub-

channel assignment problem is given by

min
X

max
n∈N

{

K
∑

k=1

xk,nT
com
k,n ,

K
∑

k+1

xk,n(T
off
k,n+T

com
0,k,n)

}

(64)

s.t. xk,n = {0, 1}, ∀k ∈ K, ∀n ∈ N , (64a)
∑N

n=1
xk,n = 2, ∀k ∈ K, (64b)

∑K

k=1
xk,n = 1, ∀n ∈ N , (64c)

where X is a matrix of all sub-channel assignment indicators

xk,n. Constraint (64a) indicates two possible situation of each

user, where xk,n = 1 means user n is assigned to sub-channel

k; otherwise xk,n = 0. Constraints (64b) and (64c) show that

each sub-channel is occupied by two users, and each user is

assigned to one sub-channel, respectively.

B. Matching-based Sub-Channel Assignment Algorithm

Due to the fact that there exists a binary constraint, matching

is utilized to solve the formulated sub-channel assignment

problem. By treating users and sub-channels as two disjoint

sets of players, a two-to-one matching can be defined as

follows:

Definition 1. Given two disjoint sets N and K, a two-to-one

matching ψ denotes the mapping from N to K, which satisfies

• ψ(n) ∈ K, ∀n ∈ N , ψ(k) ∈ N , ∀k ∈ K;

• |ψ(n)| = 1, ∀n ∈ N , |ψ(k)| = 2, ∀k ∈ K;

• n ∈ ψ(k)⇔ ψ(n) = k.

It is assumed that all players are selfish. Therefore, the case

that any user n is willing to be assigned to sub-channel k′

rather than k only depends on its utility, as follows:

(k, ψ) ≻n (k′, ψ′)⇔ Un(ψ) < Un(ψ
′), (65)

where user n’s utility with sub-channel k is given by

Un(ψ) = max{T com
k,i , T

off
k,i + T com

0,k,i|∀i ∈ ψ(k)}. (66)

Moreover, the utility of any sub-channel k, i.e., Uk(ψ), is also

decided by the above function.

In the proposed matching-based algorithm, if any user

intends to use any sub-channel, it needs to exchange with one

of the users assigned to that sub-channel. The swap matching

ψm
n = {ψ\{(k,m), (k′, n)} ∪ {(k, n), (k′,m)}}, m ∈ ψ(k),
n ∈ ψ(k′), m ∈ ψm

n (k′), and n ∈ ψm
n (k) denotes the sub-

channels of users m and n are exchanged, and the matching is

transformed from ψ to ψm
n . This exchange operation indicates

that (m,n) is a swap-blocking pair, which is defined as

follows:

Definition 2. A swap-blocking pair (m,n) can be confirmed

if and only if the following conditions are satisfied

1) ∀i ∈ {m,n, ψ(m), ψ(n)}, Ui(ψ
m
n ) ≤ Ui(ψ);

2) ∃i ∈ {m,n, ψ(m), ψ(n)}, Ui(ψ
m
n ) < Ui(ψ).

Algorithm 2 Sub-Channel Assignment Algorithm

Step 1: Initialization phase

1) Randomly match all users and sub-channels.

2) Record current matching as ψinit.

Step 2: Swap matching phase

Any user n searches another user m.

if ψ(m) 6= ψ(n) holds, and (m,n) is a swap-blocking pair

1) User n and user m exchange sub-channels.

2) Set ψ = ψm
n .

end if

Step 2 is repeated until no swap-blocking pair can be obtained

in a complete cycle.

Based on the definition of swap-blocking pairs, a matching-

based sub-channel assignment algorithm is proposed in Algo-

rithm 2. In the algorithm, the DDPG-based power allocation

algorithm is implemented at each iteration in order to calculate

the utility and find the swap-blocking pair. That is, in the

multi-user case, Algorithm 1 and Algorithm 2 are iteratively

performed to minimize the latency.

C. Property Analysis

1) Complexity: The computational complexity of the pro-

posed matching-based algorithm is O(CN2). Specifically, in

the worse case, each user needs to exchange with all other

users, except the one with the same sub-channel. Hence, for

N users, N(N − 2) calculations are performed. Given a cycle

number C, the complexity of the worse case can be expressed

by CN(N − 2).
2) Convergence: It is indicated by the definition of swap-

blocking pairs that at least one pair can achieve less utility

(latency) during the algorithm, and none of the pairs can

increase the utility. With a finite number of users and sub-

channels, the number of swap-blocking pairs is limited. As

a result, the proposed sub-channel assignment algorithm is

guaranteed to converge to a stable matching.

3) Stability: The stability of the proposed algorithm follows

the definition of two-side exchange-stable (2ES) matching, as

shown below:

Definition 3. A matching is 2ES if and only if there are no

swap-blocking pairs.

In Algorithm 2, the condition for finalization is that no

swap-blocking pair can be obtained in a complete cycle.

Therefore, the final matching obtained from the proposed sub-

channel assignment algorithm is always 2ES.

VII. SIMULATION RESULTS

In this section, the simulation results are presented to

demonstrate the effectiveness of the proposed NOMA-MEC

system. It is considered that the BS is located at the centre of

a disc with radius r, and the users are randomly distributed

within the disc. The distance between the eavesdropper and

users is fixed as D1,e and D2,e. In the DDPG-based algorithm,

each point at the x-axis includes 300 episode, each episode
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TABLE II: Table of Parameters

Radius of the disc 1000 m

Carrier frequency f = 1 GHz

AWGN spectral density N0 = −174 dBm/Hz

Path loss exponent α = 3.76

Bandwidth for each sub-channel B = 1 MHz

CPU cycles for each bit of tasks µ = 103

Data of tasks for each user D = 0.2 Mbits

Computation capacity of the MEC server C0 = 10 GHz

Learning rate of DDPG 0.001

Experience memory size |R| = 10000

Batch size S = 32, ρ = 0.01, γ = 0.6

Exploration noise variance 2

Discount factor 0.995
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Fig. 2: The convergence of the proposed DDPG-based al-

gorithm in the two-user scenario. C1 = C2 = 1 GHz,

Pt = 30 dBm, and D1,e = D2,e = 1500 m.

includes 400 steps, and the neural networks are randomly

initialized at each point of the x-axis. In order to compare the

performance of the proposed DDPG-based algorithm, the full

local computing scheme is included as the benchmark, where

all tasks are computed at users. The simulation parameters are

shown in Table II.

The convergence of the proposed power allocation algorithm

is examined in Fig. 2, which shows that the DDPG-based algo-

rithm is able to converge to a stable structure within around 30
episodes. Particularly, during power allocation, the secrecy rate

of both users is increased, and then MEC processing time g1
and g2 is increased. On the other hand, local computing time

is decreased since more tasks are offloaded to the MEC server.

As a result, the latency of the investigated system is reduced.

It can thus be concluded that there is a trade-off between local

computing time and MEC processing time. Moreover, it can

be inferred that the optimal solution can be obtained when the

values of all four terms are the same, which is around 0.11 s.

Therefore, the proposed DDPG-based algorithm can achieve

about 90% of the global optimal solution.

In Fig. 3, the impact of transmit power on various aspects

is demonstrated. With the increasing of transmit power, the

secrecy rate of users is increased, and then the task assignment

coefficients βi is increased accordingly. In this case, the time

consumption for both local computing and MEC processing

is reduced, and hence, the latency of the considered system

is significantly reduced compared to the full local computing

scheme. Moreover, it can be observed that hybrid SIC decod-

ing can outperform fixed SIC decoding in terms of latency. By
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Fig. 3: The impact of transmit power in the two-user scenario.

C1 = C2 = 1 GHz, and D1,e = D2,e = 1500 m.
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Fig. 4: The impact of transmit power in the multi-user sce-

nario. N = 10, K = 5, Ci = 1 GHz, and Di,e = 1500 m,

∀i ∈ N .

comparing fixed SIC decoding, one can see that the latency

with SIC Decoding Order 2 is slightly lower than that with SIC

Decoding Order 1. This is due to the fact that the condition of

SIC Decoding Order 2 is more readily achieved, as presented

in Proposition 3 and Proposition 4. Furthermore, it is worth

pointing out that the power allocation coefficients of user 2
and user 1 are respectively reduced in SIC Decoding Order

1 and SIC Decoding Order 2, which confirms the insights in

Remark 2 and Remark 3.

The performance of the considered system in the multi-user

scenario is shown in Fig. 4, where a scheme with random

assignment is selected as the benchmark. It can be found

that the matching-based sub-channel assignment algorithm can

significantly reduce the latency. This is due to the fact that

based on sub-channel assignment, each user can select not only

a better channel to the BS, but also a worse channel to the

eavesdropper. The matching-based sub-channel assignment is

dynamically combined with the DDPG-based power allocation

scheme, and a better performance can thus be achieved.

Furthermore, it is worth pointing out that the hybrid SIC

decoding can achieve the best performance compared to fixed

SIC decoding in the multi-user scenario.
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Fig. 5: The impact of the distance between user 1 and the

eavesdropper in the two-user scenario. C1 = C2 = 1 GHz,

Pt = 40 dBm, and D2,e = 1500 m. (a) Probability of

strategies. (b) Probability of SIC decoding orders.

The probability of the offloading strategies in Section IV-C

is shown in Fig. 5(a), where both hybrid and fixed SIC

decoding schemes are included. With the increasing distance

between user 1 and the eavesdropper, the probability for

performing NOMA offloading strategy is increased, while

the probability for adopting OMA offloading strategy and

local computing strategy is decreased. Due to the fact that

the channel condition |h1,e|2 is significant when the distance

between user 1 and the eavesdropper is less than 1000 m,

the probability for adopting NOMA offloading strategy in SIC

Decoding Order 2 is greater than that in SIC Decoding Order

1. Moreover, as shown in Fig. 5(b), SIC Decoding Order 2

plays a dominant role when the distance is less than 1000 m.

These results confirms the conditions for adopting different

SIC decoding orders, i.e., Proposition 3 and Proposition 4.

Therefore, it can be claimed that SIC Decoding Order 2 has

advantages in practical systems. When the distance between

user 1 and the eavesdropper is greater than 1250, there is no

significant difference in strategy selection, and the probability

of these two SIC decoding orders is comparable.

In Fig. 6, the scenario when distances between the eaves-

dropper and both users are simultaneously increased is studied.

Due to the deterioration of the channel conditions between
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Fig. 6: The impact of the distance between the eavesdropper

and users in the two-user scenario. C1 = C2 = 1 GHz, and

Pt = 40 dBm.
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Fig. 7: The impact of the computational capacity of users in the

two-user scenario. Pt = 40 dBm, and D1,e = D2,e = 1500 m.

users and the eavesdropper, the secrecy rate is improved, and

the size of offloaded tasks is increased accordingly. Hence,

although the MEC processing time is slightly increased, the

local computing time is significantly reduced. As a result, the

latency of the considered system with both hybrid and fixed

SIC decoding can be reduced. It is worth to highlight that the

gap between SIC Decoding Order 1 and SIC Decoding Order 2

in terms of latency is decreasing with the increasing distance

between users and the eavesdropper. This is due to the fact

that compared to SIC Decoding Order 1, it is easier for SIC

Decoding Order 2 to achieve the NOMA offloading strategy

when the channel conditions are relatively poor. Moreover, it

shows that the improvement caused by hybrid SIC decoding

is more prominent when the channel conditions are good.

In Fig. 7, the computational capacity of both users si-

multaneously increases from 500 MHz to 2500 MHz. It is

indicated that the latency of all schemes is reduced. In terms

of the local computing scheme, the increase of computational

capacity can directly reduce the computing time at users.

In the considered NOMA-MEC system, with the increasing

computational capacity, more tasks can be allocated for lo-

cal computing, as shown by the decreasing task assignment

coefficients. For this reason, the MEC processing time is

reduced, although the secrecy rate still remains at the same

level (between 2.4 Mbit/s and 2.7 Mbit/s). Since most of the
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tasks are completed locally with the increasing computational

capacity, the gap between the proposed solution and the full

local computing scheme becomes small. However, the hybrid

SIC decoding still achieves the best performance, and SIC

Decoding Order 2 can outperform SIC Decoding Order 1.

VIII. CONCLUSIONS

This paper investigated a secure NOMA-based MEC system

with hybrid SIC decoding, where users tend to simultaneously

offload confidential tasks to the MEC server in the presence

of an eavesdropper. In order to minimize the latency of the

considered system, power allocation, task assignment, and

computational resource allocation were jointly studied. It was

revealed that there is a trade-off between local computing

time and MEC processing time, and hence, the closed-form

solutions of computational resource allocation and task assign-

ment were derived. By obtaining the conditions of different

strategies, a strategy selection mechanism was established, and

the corresponding power allocation problems were formulated.

Based on the reinforcement learning, a DDPG-based power

allocation algorithm was proposed, which can dynamically

select the appropriate strategy and provide the near-optimal

power allocation solution. Moreover, by comparing the con-

ditions of different decoding orders, it was indicated that the

NOMA offloading strategy is easier to be implemented if the

decoding order at the BS is in the opposite order of that at

the eavesdropper. The considered system was also investigated

in a multi-user scenario, where a matching-based sub-channel

assignment problem was developed in conjunction with the

DDPG-based algorithm. The performance of the proposed

scheme was demonstrated and validity of the provided insights

verified by the simulation results. It is worth mentioning that

designing the system for specific applications and simulating

it with real-world datasets is a promising research direction.

APPENDIX A: PROOF OF PROPOSITION 1

With the NOMA offloading strategy, both users offload tasks

to the MEC server, i.e., βi > 0, ∀i ∈ {1, 2}. By substituting

(21) into (13), the MEC computing time of any user i can be

presented as

T com
0,i =

µ(β1D1 + β2D2)

C0

. (67)

The MEC processing time can be expressed as

g(βi) =
βiDi

Ri,s

+
µ(β1D1 + β2D2)

C0

. (68)

From (25), the following condition can be obtained:














µ(1− β∗
1)D1

C1

=
β∗
1D1

R1,s

+
µ(β∗

1D1 + β∗
2D2)

C0

,

µ(1− β∗
2)D2

C2

=
β∗
2D2

R2,s

+
µ(β∗

1D1 + β∗
2D2)

C0

.

(69)

Hence, the optimal task assignment coefficients can be pre-

sented as














β∗
1 =

µD1R1,sC0 − µβ∗
2D2R1,sC1

D1C0C1 + µD1R1,sC1 + µD1R1,sC0

,

β∗
2 =

µD2R2,sC0 − µβ∗
1D1R2,sC2

D2C0C2 + µD2R2,sC2 + µD2R2,sC0

.

(70)

By substituting (26), the optimal task assignment coefficient

of user 1 can be presented as follows:

β∗
1 =

µD1R1,sC0 − µβ∗
1D1R2,sC1

D1C0C1 + µD1R1,sC1 + µD1R1,sC0

⇒β∗
1 =

µR1,sC0

C0C1 + µR1,sC1 + µR1,sC0 + µR2,sC1

. (71)

Similarly, the expression of user 2’s optimal task assignment

coefficient is given by

β∗
2 =

µR2,sC0

C0C2 + µR2,sC2 + µR2,sC0 + µR1,sC2

. (72)

Note that constraint (16b) should be satisfied by the derived

optimal task assignment coefficients. Take user 1’s task as-

signment coefficient as an example, by including (16b), the

following inequalities can be obtained:

{

µR1,sC0 ≥ 0,

C0C1 + µR1,sC1 + µR2,sC1 ≥ 0.
(73)

Due to the fact that the above condition always holds with any

non-negative secrecy rate, constraint (16b) is satisfied by the

derived task assignment coefficients.

In the OMA offloading strategy, one of the users computes

all tasks locally, and hence, the task assignment coefficient and

secrecy rate of this user are zero. For the OMA offloading

user, denoted by user i, the optimal computational resource

allocation coefficient can be obtained from (21) as τ∗i = 1.

From (25), the following equation can be obtained:

µ(1− β∗
i )Di

Ci

=
β∗
iDi

Ri,s

+
µβ∗

iDi

C0

. (74)

The optimal task assignment coefficient of the OMA offload-

ing user can be presented as

β∗
i =

µRi,sC0

C0Ci + µRi,sCi + µRi,sC0

. (75)

It can be shown that the same solution can be obtained from

(71) and (72) by setting the secrecy rate of the local computing

user as zero. Hence, the obtained solutions in (71) and (72) can

also be utilized for the OMA offloading strategy. Moreover, the

obtained solution in (75) always satisfies constraint (16b) with

any non-negative secrecy rate of the OMA user. The proof of

this proposition is completed.

APPENDIX B: PROOF OF PROPOSITION 2

This proposition can be proved by assuming the NOMA

offloading strategy can be selected, that is, condition Ri,s >

0, ∀i ∈ {1, 2} can be achieved. In this case, the secrecy data

of both users should satisfy the condition in Remark 1. From

(34), the following expression can be obtained:

R2,s =
A2R1,s +D2C0C1 −D1C0C2

A1

. (76)
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By substituting the above equation into (30), the local com-

puting time of user 1 can be transformed as follows:

F1=
µD1[µ(A1+A2)R1,s+C0(A1+µD2C1−µD1C2)]

µ(A1C1+A2C1+A1C0)R1,s+C0C1(A1+µD2C1−µD1C2)

=
µD1[(A1 +A2)R1,s + µD1C

2
0 ]

µ(A1C1 +A2C1 +A1C0)R1,s + µD1C
2
0C1

=
µ2(D1 +D2)R1,s + µD1C0

µ(C1 + C2 + C0)R1,s + C0C1

. (77)

The derivative of F1 can be presented as follows:

∂F1

∂R1,s

=
µ2C0(D2C1 −D1C2 −D1C0)

[µ(C1 + C2 + C0)R1,s + C0C1]2

=
−µA1C0

[µ(C1 + C2 + C0)R1,s + C0C1]2
. (78)

It is indicated that the monotonicity of user 1’s local computing

time F1 is decided by term A1. Specifically, if A1 > 0 holds,

F1 is monotonically decreasing with the increasing secrecy

rate; otherwise, F1 is monotonically increasing. Therefore, in

the case that A1 ≤ 0, in order to minimize the latency, the

secrecy rate of user 1 tends to be zero. This condition can be

transformed as follows:

A1 ≤ 0⇒ µD1

C1

≤ µD2

C0 + C2

. (79)

Similarly, based on (34) and (31), the local computing time

of user 2 can be expressed as

F2 =
µ2(D1 +D2)R2,s + µD2C0

µ(C1 + C2 + C0)R2,s + C0C2

. (80)

The derivative of the above function is

∂F2

∂R2,s

=
−µA2C0

[µ(C1 + C2 + C0)R2,s + C0C2]2
. (81)

The monotonicity of user 2’s local computing time can be

revealed. Particularly, if A2 ≤ 0, user 2’s secrecy rate tends

to be the minimum, and hence, user 2 will compute all tasks

locally. The following condition can be obtained:

A2 ≤ 0⇒ µD2

C2

≤ µD1

C0 + C1

. (82)

It shows that the OMA offloading strategy will be adopted if

(79) or (82) is satisfied. Moreover, it is worth to mention that

conditions (79) and (82) cannot be satisfied simultaneously,

and therefore, this case will not lead to the local computing

strategy. This proposition is proved.

APPENDIX C: PROOF OF PROPOSITION 3

With respect of p1, the partial derivative of user 1’s secrecy

rate in (44) can be presented as

∂R1,s

∂p1
=

B[|h1|2(p2|h2,e|2+1)−|h1,e|2(p2|h2|2+1)]

ln(2)(p1|h1,e|2+p2|h2,e|2+1)(p1|h1|2+p2|h2|2+1)
.

(83)

It is indicated that the monotonicity of R1,s is decided by the

term |h1|2(p2|h2,e|2 + 1) − |h1,e|2(p2|h2|2 + 1). That is, if

|h1|2(p2|h2,e|2 + 1) > |h1,e|2(p2|h2|2 + 1), (83) is always

greater than zero, and R1,s is monotonically increasing with

p1. If |h1|2(p2|h2,e|2+1) < |h1,e|2(p2|h2|2+1) holds, R1,s is

monotonically decreasing with p1. Moreover, due to the fact

that the secrecy data rate of user 1 is zero when p1 = 0, the

secrecy rate R1,s can be positive only if |h1|2(p2|h2,e|2+1) >
|h1,e|2(p2|h2|2 + 1). In terms of user 2, the partial derivative

of the secrecy rate is given by

∂R2,s

∂p2
=

B(|h2|2 − |h2,e|2)
ln(2)(p2|h2,e|2 + 1)(p2|h2|2 + 1)

. (84)

It can be shown that the secrecy rate of user 2 can be positive

only if |h2|2 > |h2,e|2. As a result, the condition for adopting

SIC Decoding Order 1 can be presented as
{

|h1|2(p2|h2,e|2 + 1) > |h1,e|2(p2|h2|2 + 1),

|h2|2 > |h2,e|2.
(85)

The first inequality in (85) can be expressed as

p2(|h1|2|h2,e|2 − |h2|2|h1,e|2) > |h1,e|2 − |h1|2. (86)

The above inequality can be respectively presented as






p2 >
|h1,e|2 − |h1|2

|h1|2|h2,e|2 − |h2|2|h1,e|2
,

|h1|2|h2,e|2 − |h2|2|h1,e|2 > 0,

(87)

and






p2 <
|h1,e|2 − |h1|2

|h1|2|h2,e|2 − |h2|2|h1,e|2
,

|h1|2|h2,e|2 − |h2|2|h1,e|2 < 0.

(88)

In the first inequality of (87), the condition of user 2’s power

allocation coefficient is derived. Since p2 ≤ 1, the following

condition should be satisfied:






1 >
|h1,e|2 − |h1|2

|h1|2|h2,e|2 − |h2|2|h1,e|2
,

|h1|2|h2,e|2 − |h2|2|h1,e|2 > 0.

(89)

The above inequalities can be expressed as














|h1|2
|h1,e|2

>
|h2|2 + 1

|h2,e|2 + 1
,

|h1|2
|h1,e|2

>
|h2|2
|h2,e|2

.

(90)

By including the second inequality of (85), the following

condition can be obtained:

|h1|2
|h1,e|2

>
|h2|2
|h2,e|2

> 1, (91)

where the first inequality in (90) is removed since it is always

satisfied with the above condition. In this case, the following

inequality can be obtained:

|h1,e|2 − |h1|2
|h1|2|h2,e|2 − |h2|2|h1,e|2

< 0. (92)

Hence, the feasible region of p2 is p2 ∈ (0, 1].
Similarly, according to p2 ≥ 0, the following inequalities

can be obtained from (88):






0 <
|h1,e|2 − |h1|2

|h1|2|h2,e|2 − |h2|2|h1,e|2
,

|h1|2|h2,e|2 − |h2|2|h1,e|2 < 0.

(93)
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The above condition can be transformed as






|h1|2 > |h1,e|2,
|h1|2
|h1,e|2

<
|h2|2
|h2,e|2

,
(94)

and the following condition can be obtained:

|h2|2
|h2,e|2

>
|h1|2
|h1,e|2

> 1, (95)

where the second inequality of (85) is already contained. In

this case, the feasible region of p2 can be expressed as

p2 ∈
(

0,min

{ |h1,e|2 − |h1|2
|h1|2|h2,e|2 − |h2|2|h1,e|2

, 1

})

. (96)

By including the conditions in (91) and (95), the conditions

for adopting SIC Decoding Order 1 can be presented as
{

|h1|2 > |h1,e|2,
|h2|2 > |h2,e|2.

(97)

This proposition is proved.

APPENDIX D: PROOF OF PROPOSITION 4

The partial derivative of (49) with respect of p1 is given by

∂R1,s

∂p1
=

B[|h1|2(p2|h2,e|2+1)−|h1,e|2]
ln(2)(p1|h1,e|2+p2|h2,e|2+1)(p1|h1|2+1)

. (98)

It is indicated that the secrecy rate of user 1 can be positive

only if inequality |h1|2(p2|h2,e|2+1) > |h1,e|2 holds. For user

2, the partial derivative can be presented as

∂R2,s

∂p2
=

B[|h2|2−|h2,e|2(p1|h1|2+1)]

ln(2)(p2|h2,e|2+1)(p2|h2|2+p1|h1|2+1)
. (99)

Similarly, user 2 can offload tasks to the MEC server by

utilizing NOMA schemes only if |h2|2 > |h2,e|2(p1|h1|2+1)
is satisfied. Therefore, with this SIC decoding order, the

following condition should be satisfied:
{

|h1|2(p2|h2,e|2 + 1) > |h1,e|2,
|h2|2 > |h2,e|2(p1|h1|2 + 1).

(100)

From (100), the condition of the power allocation coefficients

can be obtained:














p2 >
|h1,e|2 − |h1|2
|h1|2|h2,e|2

,

p1 <
|h2|2 − |h2,e|2
|h1|2|h2,e|2

.

(101)

Due to the fact that pi ∈ [0, 1], the inequalities in (101) can

be transformed as














1 >
|h1,e|2 − |h1|2
|h1|2|h2,e|2

,

0 <
|h2|2 − |h2,e|2
|h1|2|h2,e|2

.

(102)

As a result, the following conditions can be derived:






|h1|2
|h1,e|2

>
1

|h2,e|2 + 1
,

|h2|2 > |h2,e|2.
(103)

Moreover, in this case, the feasible region of users’ power

allocation coefficients can be respectively expressed as

p1 ∈
(

0,min

{ |h2|2 − |h2,e|2
|h1|2|h2,e|2

, 1

})

, (104)

and

p2 ∈
(

max

{

0,
|h1,e|2 − |h1|2
|h1|2|h2,e|2

}

, 1

]

. (105)

This proposition is proved.
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