
ar
X

iv
:2

20
8.

05
87

8v
1 

 [
cs

.I
T

] 
 1

1 
A

ug
 2

02
2

1

Covert Beamforming Design for Integrated Radar

Sensing and Communication Systems
Shuai Ma, Haihong Sheng, Ruixin Yang, Hang Li, Youlong Wu, Chao Shen, Naofal Al-Dhahir, and Shiyin Li

Abstract—We propose covert beamforming design frameworks
for integrated radar sensing and communication (IRSC) systems,
where the radar can covertly communicate with legitimate
users under the cover of the probing waveforms without being
detected by the eavesdropper. Specifically, by jointly designing the
target detection beamformer and communication beamformer, we
aim to maximize the radar detection mutual information (MI)
(or the communication rate) subject to the covert constraint,
the communication rate constraint (or the radar detection MI
constraint), and the total power constraint. For the perfect
eavesdropper’s channel state information (CSI) scenario, we
transform the covert beamforming design problems into a series
of convex subproblems, by exploiting semidefinite relaxation,
which can be solved via the bisection search method. Considering
the high complexity of iterative optimization, we further propose
a single-iterative covert beamformer design scheme based on
the zero-forcing criterion. For the imperfect eavesdropper’s CSI
scenario, we develop a relaxation and restriction method to tackle
the robust covert beamforming design problems. Simulation
results demonstrate the effectiveness of the proposed covert
beamforming schemes for perfect and imperfect CSI scenarios.

Index Terms—Integrated Radar Sensing and Communication,
Covert Beamforming Design, Imperfect CSI.

I. INTRODUCTION

Compared with the separated radar and communication

systems, the integrated radar sensing and communication

(IRSC) systems enjoy a smaller platform payload and power

consumption [1], which holds great potential for both civil-

ian and military applications, such as 5G vehicular net-

work [2], [3], Wi-Fi based indoor positioning [4], and the

advanced multi-function radio frequency concept (AMRFC)

[5]. A critical challenge of developing IRSC systems is to

design integrated waveforms that can realize detection and

communication simultaneously to alleviate spectrum scarcity.

To this end, various studies in the literature focused on the

design of dual-functional waveforms [6]–[10]. Due to the

inherent IRSC nature of openness and broadcasting, the critical

information embedded in the waveform is susceptible to be

intercepted and eavesdropped by the malicious users [11], [12].

The security and the covertness of the radar waveforms is

crucial in radar system design. Although there is extensive

literature on optimizing wireless communications and radar

sensing simultaneously, the information security of IRSC lacks

in-depth research so far. Recently, some works [11]–[15] have

studied the secrecy of IRSC systems in terms of the physical

layer security, which focuses on preventing the communication
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signal from being decoded by the adversary users. Specifically,

in [11], the authors proposed three transmit beam pattern meth-

ods for maximizing the secrecy rate, the signal-to-interference

and noise ratio (SINR), and minimizing transmit power, re-

spectively. In [12], in order to reduce the risk of information

security, a unified passive radar and communication system

was proposed, which maximizes the signal interference-to-

noise ratio (SINR) of the radar receiver under the condition

that the information confidentiality rate is higher than a

certain threshold. In [13], a novel framework was proposed

for the transmit beamforming of the joint RadCom system,

where the beamforming schemes are designed to formulate an

appropriate radar beampattern, while guaranteeing the SINR

and power budget of the communication applications. In [14],

the artificial noise (AN) was utilized to minimize the signal-

to-noise ratio (SNR) of radar targets subject to the legiti-

mate users’ SINR constraint, where the target was regarded

as a potential eavesdropper. In [15], an AN-aided secure

beamforming design algorithm was developed to minimize

the maximum eavesdropping SINR of the target, subject to

the communication QoS requirements, the constant-modulus

power and the beampattern similarity constraints. Although

physical layer security technologies can protect information

content from wiretapping, the communication behavior itself

can expose sensitive information [16]–[18].

Different from physical layer security technologies, covert

communication can guarantee a low probability of intercept by

shielding the communication behaviors from potential wardens

[19]–[23]. To conceal the transmission from the detection by

the malicious eavesdropper, one of the feasible ways is to

cover up the communication signal with the radar signal. In

[24], [25], the authors first hide the communication symbol by

utilizing the multi-path effects of tag/transponder (simply de-

noted as the ”tag”). Specifically, by using tags to modulate the

reflection of the incident radar waveform into communication

waveforms, the modulated communication waveform is em-

bedded into the ambient radar pulse scattering, which acts as

masking interference to maintain a low intercept probability.

Note that, the covert communications in [24], [25] depend on

extra environmental conditions (the multi-path effects of tags),

which may not always be available in practice.

So far, covert communication for IRSC systems has not been

well investigated. Particularly, the covert design framework for

the IRSC systems has not been rigorously established. Against

this background, this paper establishes a covert communication

optimization framework for IRSC systems1. To be specific, un-

1We focus on beamforming optimization for single antenna receivers [12].

http://arxiv.org/abs/2208.05878v1


2

der the covert constraint, we propose two covert beamforming

optimization frameworks for mutual information and covert

rate maximization. The frameworks consider both the cases

of perfect and imperfect channel state information. The main

contributions of this work are summarized follows:

• Considering Willie’s (eavesdropper) channel state infor-

mation (WCSI) being available at the radar, both the

radar detection mutual information (MI) maximization

and covert rate maximization are studied under both the

covert and total transmit power constraint, which are

non-convex and hard to solve. Based on semidefinite

relaxation (SDR), we first relax the covert beamforming

design optimization problem into a series of convex

subproblems, and then efficiently solved them via the

bisection search method.

• In order to avoid the high complexity of iterative op-

timization, we further propose a single-iterative covert

beamformer design scheme based on the zero-forcing

criterion. Specifically, by designing the target detection

beamformer as a cover, we optimize the communication

beamformer to be orthogonal to the WCSI, and thus the

communication signals are projected onto the null space

of Willie’s channel, and achieve covert communications.

• Furthermore, with imperfect WCSI, we develop a relax-

ation and restriction method to tackle the robust covert

beamforming design optimization problems. Specifically,

by exploiting the piecewise monotonicity property of the

covert function, we first transform the covert constraint

into a simplified and equivalent form facilitating robust

beamforming design. Then, we relax the robust covert

beamforming design optimization problems based on

SDR, and restrict it into a convex semidefinite program

(SDP). Extensive numerical results quantify the effects of

the key design parameters on the system performance.

The remaining part of this paper is organized as follows. In

Section II, we describe the IRSC system model and problem

formulation. Then, we present our covert beamforming design

with perfect WCSI in Section III. In Section IV, the robust

covert beamforming design is developed for imperfect WCSI.

Section V presents numerical results of the proposed covert

beamforming design frameworks, and conclusions are drawn

in Section VI. Table I presents the means of the key notations

in this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Considering an integrated radar-communication system, as

shown in Fig. 1, which includes a radar, a target, and a

legitimate receiver (Bob). The radar with N antennas is

capable of detecting target and transmitting signals to the

Bob simultaneously. While Bob is installed with a single

antenna, and thus the reflected signals from the target can

be ignored at Bob. In addition, an eavesdropper (Willie) with

a single antenna keeps detecting the communication signals

between the radar and Bob, and tries to identify whether the

radar is transmitting information to Bob. Moreover, hT ∈
CN×1, hB ∈ CN×1 and hW ∈ CN×1 denote channel state

information (CSI) of the Radar-Target path, the Radar-Bob

TABLE I
SUMMARY OF KEY NOTATIONS

Notation Description

sR Detection signal

sC Communication signal

hT Channel gain vector of radar-target path

hB Channel gain vector of radar-Bob path

hW Channel gain vector of radar-Willie path

wR,0 Beamformer for sR
wR,1 Beamformer for sR

H0
The null hypothesis that the radar only

sends sR

H1
The hypothesis that the radar sends both sR
and sC

yW Received signal of Willie

p0 (yW) Likelihood function of yW under H0

p1 (yW) Likelihood function of yW under H1

D (p1 ‖p0 ) Kullback-Leibler (KL) divergence from

p1(yW) to p0(yW)
ξ Total detection error probability

P (D1 |H0 ) False alarm (FA) probability

P (D0 |H1 ) Missed detection (MD) probability

Target

Radar

Bob

Willie

Th

Wh

Bh

Fig. 1. The schematic diagram of a integrated radar-communication system.

path and the Radar-Willie path, respectively. All channels

are assumed followed the Rayleigh flat fading model [26],

i.e., hB ∼ CN
(
0, σ2

1I
)
,hW ∼ CN

(
0, σ2

2I
)
, where σ2

1

and σ2
2 denote the variances of channels hT, hB, and hW,

respectively. Let sR and sC respectively denote the detection

signal and and the communication signal of the radar 2.

Without loss of generality, we assume that E

{
|sR|2

}
= 1,

E

{
|sC|2

}
= 1.

A. Signal Model

1) Detection Only: The Radar-Target path hT can be

expressed as

hT , aT (θ), (1)

where θ represents the azimuth angle of the target, and aT (θ)
represents the transmit steering vector. Meanwhile, assume

2In typical scenarios, the power of the detection signal is higher than that
of the communication signal.
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that aT (θ) , aR(θ), where aR(θ) represents the receive

steering vector [27]. Therefore, when the radar sends only

detection signals and not the communication signals, the

reflected signals from the target can be written as

yR = αhTh
H
TwR,0sR + zR, (2)

where α denotes the path-loss coefficient, wR,0 denotes the

radar transmission beamformer vector for sR when the radar

only sends detection signals, and zR ∼ CN
(
0, σ2

RI
)

is the

received noise at the radar.

Here, we rely on the following standard assumptions: pa-

rameters α and θ can be estimated from the received signal

[28]. Since the transmitted signals can be omni-directional,

the legitimate user Bob could receive the detection signals as

well. For Bob, we have

yB = hH
BwR,0sR + zB, (3)

where zB ∼ CN
(
0, σ2

B

)
is the receiver noise of Bob.

2) Detection and Communication: The communication sig-

nals from the radar are also omni-directional. Moreover, since

the radar has multiple antennas, the reflected communication

signals from the target can also be captured. Thus, when

the detection and the communication functions are performed

simultaneously, the received signal at the radar is

yR = αhTh
H
TwR,0sR + αhTh

H
TwR,1sC + zR, (4)

where wR,1 denotes the beamformer vectors for sC when the

radar sends detection signals and communication signals. For

the legitimate user Bob, the received signal can be written as

yB = hH
BwR,0sR + hH

BwR,1sC + zB. (5)

B. Performance Metrics

The considered system requires several metrics to measure

the performance, according to the operating mode.

1) Detection Only: For radar, by receiving the echo from

the target, the radar estimates the channel hT and identifies

some unknown characteristics about the target. Such character-

istics can be quantified by using a tool from information theory

which uses the observation at the channel output and reduces

the uncertainty of prior information via certain code design.

This tool successfully defines the information transmission

capability of the communication channel [29]. This idea can

also be used for the radar transmission design [29]–[31].

Specifically, after receiving yR, the priori uncertainty of

the target decreases since there is some information about

the target contained in hT [29]. Thus, we adopt the mutual

information (MI) between hT and yR given the transmission

signal sR, i.e., I (yR;hT |sR ) , to characterize how much

information the radar can learn from yR, which is given as

I (yR;hT |sR ) =
1

2
log

(
1 +

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2
σ2
R

)
. (6)

2) Detection and Communication: For the MI at the radar,

according to (4), we have3

I (yR;hT |sR ) = h (yR |sR )− h (yR |hT, sR )

=
1

2
log

(
1 +

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
zR

)
.

Thus, based on (5), the achievable rate of Bob can be

expressed as [32]

RB (wR,0,wR,1) = log2

(
1 +

∣∣hH
BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

)
. (8)

C. Covert Constraints

In the considered system, the eavesdropper Willie aims

to determine whether Bob is communicating with the radar.

Mathematically, Willie needs to perform a hypothesis test

between the two hypotheses from its received signal yW. Here,

H0 represents the null hypothesis, i.e., the radar only sends

detection signals; H1 represents the other hypothesis, where

the radar sends detection signals and communication signals.

Thus, yW can be written as

yW =

{
hH
WwR,0sR + zW, H0,

hH
WwR,0sR + hH

WwR,1sC + zW, H1,
(9)

where zW ∼ CN
(
0, σ2

W

)
is the receiving noise at Willie. Note

that, when the radar performs tracking and communication,

the radar needs to assume the existence of Willie and tries to

conceal the communication with Bob.

In the following, we will introduce the covert constraint to

describe the level of covertness. Specifically, for Willie, let

p0 (yW) and p1 (yW) to represent the likelihood function of

yW under H0 and H1, respectively. According to (9), p0 (yW)
and p1 (yW) can be expressed as

p0 (yW) =
1

πλ0
exp

(
−|yW|2

λ0

)
, (10a)

p1 (yW) =
1

πλ1
exp

(
−|yW|2

λ1

)
, (10b)

where λ0
∆
=
∣∣hH

WwR,0

∣∣2 + σ2
W and λ1

∆
=
∣∣hH

WwR,0

∣∣2 +∣∣hH
WwR,1

∣∣2 + σ2
W. Moreover, let D (p0 ‖p1 ) denote the KL

divergence from p0(yW) to p1(yW), and D (p1 ‖p0 ) denote

the KL divergence from p1(yW) to p0(yW). According to (10),

D (p0 ‖p1 ) and D (p1 ‖p0 ) are respectively given as

D (p0 ‖p1 ) =
∫ +∞

−∞

p0 (yW) ln
p0 (yW)

p1 (yW)
dy = ln

λ1

λ0
+

λ0

λ1
− 1,

(11a)

D (p1 ‖p0 ) =
∫ +∞

−∞

p1 (yW) ln
p1 (yW)

p0 (yW)
dy = ln

λ0

λ1
+

λ1

λ0
− 1.

(11b)

1) Detection by Willie: Let D1 and D0 denote the bi-

nary decisions that correspond to hypotheses H0 and H1,

3For the radar and communication receiver, the detection signal sR is
deterministic to facilitate receiver signal extraction.
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respectively. The detecting performance at Willie is described

by the FA probability P (D1 |H0 ) and the MD probability

P (D0 |H1 ). The total detection error probability ξ can be used

to measure the covertness of the system [33], i.e.,

ξ = P (D1 |H0 ) + P (D0 |H1 ) . (12)

To further evaluate (12), we assume that the probabilities H0

and H1 are equal. By applying the Neyman-Pearson criterion

[33], the optimal rule for Willie to minimize ξ as the likelihood

ratio test, i.e.,

p1 (yW)

p0 (yW)

D1

>

<
D0

1. (13)

After some algebraic operations, (13) can be equivalently

reformulated as

|yW|2
D1

>

<
D0

φ∗, (14)

where |yW|2 is the average power at Willie, and φ∗ denotes

the optimal detection threshold of Willie, which is given by

φ∗ ∆
=

λ0λ1

λ1 − λ0
ln
λ1

λ0
. (15)

According to (10), the cumulative density functions (CDFs)

of |yW|2 under H0 and H1 are given by

Pr
(
|yW|2

∣∣∣H0

)
= 1− exp

(
−|yW|2

λ0

)
, (16a)

Pr
(
|yW|2

∣∣∣H1

)
= 1− exp

(
−|yW|2

λ1

)
. (16b)

Based on the optimal detection threshold φ∗, we obtain

P (D1 |H0 ) = Pr
(
|yW|2 ≥ φ∗|H0

)
=

(
λ1

λ0

)−
λ1

λ1−λ0

,

P (D0 |H1 ) = Pr
(
|yW|2 ≤ φ∗|H1

)
= 1−

(
λ1

λ0

)−
λ0

λ1−λ0

.

2) Definition of Covert Constraint: The eavesdropper

Willie tries to find the best detector with the least total

detection error probability ξ∗ [34]. From the legitimate user

perspective, an effective covert communication should guar-

antee that no matter what strategy Willie adopts, for any

given small constant ε ∈ [0, 1], the following criterion can

be satisfied ξ∗ ≥ 1 − ε [33]. Thus, when Willie adopts the

optimal detector, we have [33]–[36]

ξ∗ = 1− VT (p0, p1) . (18)

where VT (p0, p1) is expressed as the total variation distance

between p0 and p1.

Furthermore, based on Pinsker’s inequality [37], we obtain

VT (p0, p1) ≤
√

1

2
D (p0 ‖p1 ), (19a)

VT (p0, p1) ≤
√

1

2
D (p1 ‖p0 ). (19b)

Therefore, by combining the formulas (18) and (19), we

obtain the tractable covert constraints as follows

D (p0 ‖p1 ) ≤ 2ε2, (20a)

D (p1 ‖p0 ) ≤ 2ε2, (20b)

which are determined by the transmission variables and the

receiver noise (see (11)).

D. Problem Formulation

Given the two performance metrics when the radar performs

the detection and communication at the same time, an intuitive

optimization goal is to make these two metrics as large as

possible. Thus, we obtain the following two terms optimization

problems, i.e., the radar MI maximization problem and the

communication rate maximization problem.
1) MI Maximization: As described above, a larger MI

indicates more possibilities to identify the information about

the target from the received signals. Thus, we aim to design

beamforming vectors with the maximum MI (7) while satisfy-

ing the covert constraint, the covert rate requirement and the

total transmit power constraints, which can be mathematically

formulated as

max
wR,0,wR,1

I (yR;hT |sR ) (21a)

s.t. RB (wR,0,wR,1) ≥ β, (21b)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal, (21c)

(20a) or (20b),

where Ptotal denotes the maximum radar transmit power.
2) Rate Maximization: The objective of this problem is

to design a beamformer that maximizes the rate achieved

by Bob while satisfying the required covertness constraints,

the MI requirement, and the total transmit power constraints.

Mathematically, the problem of maximizing the achievable

rates can be expressed as

max
wR,0,wR,1

RB (wR,0,wR,1) (22a)

s.t. I (yR;hT |sR ) ≥ γ, (22b)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal, (22c)

(20a) or (20b).

Remarks: Note that, when the radar performs detection only,

the corresponding optimization problem becomes a simplified

version of problem (21). Thus, we omit this case, and only

investigate the integrated radar sensing and communication

case. From the above formulations, the two optimization

problems (21) and (22) have similar structure. Basically, for

the MI and the covert rate, the beamformer splits the available

power to maximize one term while satisfying the requirement

of the other term. Hence, there should exist a tradeoff between

the MI and the covert rate. In the following, we will focus

on the investigation of the MI maximization problem, and

numerically discuss the tradeoff.

III. BEAMFORMING DESIGN BASED ON PERFECT WCSI

We first consider a typical scenario, where Willie is a

legitimate user. In this case, the radar may obtain the full CSI



5

of hW, and uses it to help Bob to hide from Willie under H1

[32], [35]. Then, the covert constraint becomes

D (p0 ‖p1 ) = 0, (23a)

D (p1 ‖p0 ) = 0. (23b)

Note that, (23) also implies the perfect covert transmission.

A. MI Maximization

After applying formula (21), the MI maximization problem

can be reformulated as

max
wR,0,wR,1

1

2
log

(
1 +

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
R

)
(24a)

s.t.
∣∣hH

WwR,1

∣∣2 = 0, (24b)
∣∣hH

BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

≥ β, (24c)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal. (24d)

Next, we propose two different methods, namely covert

beamformer and zero-forcing beamformer, to solve problem

(24).
1) Covert Beamformer: By introducing an auxiliary vari-

able IR, the above problem can be reformulated in the follow-

ing equivalent form:

max
wR,0,wR,1,IR

IR (25a)

s.t.
|α|2

∣∣hH
TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
R

≥ IR, (25b)

∣∣hH
WwR,1

∣∣2 = 0, (25c)
∣∣hH

BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

≥ β, (25d)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal. (25e)

Then, we use the semidefinite relaxation (SDR) approach

[38] to relax problem (25) to

WR,0 = wR,0w
H
R,0 ⇔ WR,0≻0, rank (WR,0) = 1, (26a)

WR,1 = wR,1w
H
R,1 ⇔ WR,1≻0, rank (WR,1) = 1. (26b)

By ignoring the rank 1 constraints, we get a relaxed version

of problem (25) as follows

max
wR,0,wR,1,IR

IR (27)

s.t. |α|2Tr
(
hH
TWR,0hT

)
‖hT‖2 ≥ IR

(
|α|2

×Tr
(
hH
TWR,1hT

)
‖hT‖2 + σ2

R

)
,

Tr
(
hH
BWR,1hB

)
≥ β

(
Tr
(
hH
BWR,0hB

)
+ σ2

B

)
,

Tr
(
hH
WWR,1hW

)
= 0,

Tr (WR,0) + Tr (WR,1) ≤ Ptotal,

WR,0≻0,WR,1≻0.

Note that, for any IR ≥ 0, it is a convex semidefinite

program (SDP). Therefore, it is quasi-convex, and at any given

IR, by testing its feasibility, the optimal solution can be found.

Therefore, we first covert problem (27) into a series of

convex subproblems of IR ≥ 0, which can be solved by a

standard convex optimization solver (such as CVX). Then, we

use the bisection search method to find the proposed covert

beamformers WR,0 and WR,1, which output the optimal

solutions W∗
R,0 and W∗

R,1.

Algorithm 1 Bisection method for problem (27)

1: Determine the interval [IR,l, IR,end], given the accuracy

ζ1 > 0;

2: Initialize IR,l = 0, IR,end = ÎR;

3: while IR,end − IR,l ≥ ζ1 do

4: set IR = (IR,l + IR,end) /2;

5: if problem (27) is solvable, get WR,0 and WR,1, then

set IR,l = IR;

6: else, set IR,end = IR,mid;

7: end while

8: Output W∗
R,1,W∗

R,0;

Finally, we can solve this problem based on the solutions

given by Algorithm 1. The computational complexity of

Algorithm 1 is O
(
max {4, 2N}4

√
2N log (1/ζ1) log (1/ζ1)

)
,

where ζ1 > 0 is the pre-defined accuracy of problem (27)

[38]–[40]. However, because of the rank relaxation of SDR,

the ranks of the optimal solutions W∗
R,0 and W∗

R,1 may larger

than 1. When rank
(
W∗

R,0

)
= 1 and rank

(
W∗

R,1

)
= 1,

we employ the singular value decomposition to decompose

W∗
R,0 and W∗

R,1, i.e., WR,0 = wR,0w
H
R,0 and WR,1 =

wR,1w
H
R,1. On the other hand, when rank

(
W∗

R,0

)
> 1 or

rank
(
W∗

R,1

)
> 1, we apply the Gaussian randomization

procedure [38] to problem (25) and get high-quality rank 1
beamformers.

2) Zero-Forcing Beamformer: To eliminate interference

signals of Willie and the radar, we design zero-forcing beam-

former wR,1 satisfying hH
WwR,1 = 0 and hTh

H
TwR,1 = 0. In

addition, we design wR,0 to eliminate Bob’s interference, i.e.,

hH
BwR,0 = 0. Then, problem (24) can be expressed as

max
wR,0,wR,1

∣∣hH
TwR,0

∣∣2 (28a)

s.t. hH
TwR,1 = 0, (28b)

hH
WwR,1 = 0, (28c)

hH
BwR,0 = 0, (28d)
∣∣hH

BwR,1

∣∣2 ≥ βσ2
B, (28e)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal. (28f)

To solve problem (28), we first optimize the beamformer

wR,1 by minimizing the transmission power ‖wR,1‖2 under

the constraints (28b), (28c) and (28e). This is because the

value of the objective function (28a) increases as the power of

wR,0 increases, but does not depend on wR,1. Therefore, in

order to maximize the objective function (28a), it is necessary

to design the beamformer wR,1 with the least transmission

power. Therefore, the design problem of the ZF beamformer

wR,1 can be expressed as

min
wR,1

‖wR,1‖2 (29)
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(28b), (28c), (28e),

which is a non-convex problem.

To solve this problem, we adopt the SDR approach to relax

problem (29). Therefore, using (26) and ignoring the rank 1

constraint, problem (29) can be reformulated as

min
wR,1

Tr (WR,1) (30a)

s.t.Tr
(
hH
TWR,1hT

)
= 0, (30b)

Tr
(
hH
WWR,1hW

)
= 0, (30c)

Tr
(
hH
BWR,1hB

)
≥ βσ2

B, (30d)

WR,0 � 1. (30e)

However, due to relaxed conditions, the rank of W
opt
R,1

may not be equal to 1, where W
opt
R,1 denotes the optimal

solution of problem (30). If rank
(
W

opt
R,1

)
= 1, W

opt
R,1 is the

optimal solution, and the optimal beamformer wR,1 can be

obtained using SVD, i.e., W
opt
R,1 = wR,1w

H
R,1. Otherwise, if

rank
(
W

opt
R,1

)
> 1, the Gaussian randomization process can

be used to obtain the high-quality rank 1 solution of problem

(30). Therefore, problem (28) can be expressed as

max
wR,0

∣∣hH
TwR,0

∣∣2 (31a)

s.t.‖wR,0‖2 + PR ≤ Ptotal, (31b)

hH
BwR,0 = 0, (31c)

where PR =
∥∥∥Wopt

R,1

∥∥∥
2

denotes the transmission power of

W
opt
R,1. After simplifications, we obtain

max
wR,0

Re
{
hH
TwR,0

}
(32a)

s.t.Im
{
hH
TwR,0

}
= 0, (32b)

‖wR,0‖2 + PR ≤ Ptotal, (32c)

hH
BwR,0 = 0. (32d)

Then, problem (32) is a SOCP, which can be optimized with

standard convex optimization solvers (such as CVX).

B. Rate Maximization

In the perfect WCSI scenario, problem (20) can be mathe-

matically formulated as

max
wR,0,wR,1

RB (wR,0,wR,1) (33a)

s.t. D (p0 ‖p1 ) = 0, (33b)

I (yR;hT |sR ) ≥ γ, (33c)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal. (33d)

Combining with (10), we obtain the following equivalent

from

max
wR,0,wR,1

∣∣hH
BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

(34)

s.t.
∣∣hH

WwR,1

∣∣2 = 0,

1

2
log

(
1 +

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
R

)
≥ γ,

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal.

Similar to the previous subsection, we apply the binary

search method and ZF beamforming design to solve problem

(34). For the sake of brevity, we omit the derivation details.

IV. BEAMFORMING DESIGN BASED ON IMPERFECT WCSI

Generally speaking, the WCSI may not be always accessible

for the radar because of the potential limited cooperation

between the radar and Willie. Therefore, we consider a more

practical application scenario, in which Willie is an ordinary

user and the radar does not know the full WCSI hW [26],

[41]–[43]. In this case, the imperfect hW is modeled as

hW = ĥW +∆hW, (35a)

where ĥW denotes the estimated CSI, and ∆hW denotes

corresponding CSI error vector. Moreover, the CSI error ∆hW

is characterized by an ellipsoidal region, i.e.,

EW ∆
=
{
∆hW

∣∣∆hH
WCW∆hW ≤ υW

}
, (36a)

where CW = CH
W � 0 controls the axes of the ellipsoid,

and υW > 0 which determines the volume of the ellipsoid

[44], [45]. Unfortunately, since the radar does not know the full

WCSI, perfect covert transmission (23) is difficult to achieve.

Therefore, we adopt (20) as covertness constraints [32], [34].

A. MI Maximization

1) Case of D (p0 ‖p1 ) ≤ 2ε2: The optimization problem

(21) can be written as

max
wR,0,wR,1

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
R

(37a)

s.t. D (p0 ‖p1 ) ≤ 2ε2, (37b)
∣∣hH

BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

≥ β, (37c)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal, (37d)

hW = ĥW +∆hW. (37e)

It is clear that the problem (37) is non-convex, and therefore

it is difficult to obtain the optimal solution directly. To deal

with this issue, we first reformulate the covertness constraint

(37b) by exploiting the property of function f (x) = lnx+ 1
x
−

1 for x > 0. Specifically, the covertness constant D (p0 ‖p1 ) =
ln λ1

λ0

+ λ0

λ1

− 1 ≤ 2ε2 can be equivalently transformed as

ā ≤ λ1

λ0
≤ b̄ , (38)

where ā and b̄ are the two roots of the equation ln λ1

λ0
+λ0

λ1
−1 =

2ε2. Therefore, we may reformulate (37b) as

ā ≤
∣∣hH

WwR,0

∣∣2 +
∣∣hH

WwR,1

∣∣2 + σ2
W∣∣hH

WwR,0

∣∣2 + σ2
W

≤ b̄. (39)
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For constraint (37e), since ∆hW ∈ EW, there are in-

finite choices for ∆hW, which makes the problem (37)

non-convex and intractable. To overcome this challenge, we

define WR,0 = wR,0w
H
R,0, WR,1 = wR,1w

H
R,1, Ŵ1

∆
=

(1− ā)WR,0 + WR,1 and Ŵ2
∆
=
(
1− b̄

)
WR,0 + WR,1.

Then, constraint (46) can be equivalently reexpressed as

∆hH
WŴ1∆hW + 2∆hH

WŴ1ĥW + ĥH
WŴ1ĥW ≥ σ2

W (ā− 1) ,
(40a)

∆hH
WŴ2∆hW + 2∆hH

WŴ2ĥW + ĥH
WŴ2ĥW ≤ σ2

w

(
b̄− 1

)
,

(40b)

Furthermore, by ignoring the rank-one constraints of WR,0

and WR,1, the SDR of problem(37) can be reformulated as

max
wR,0,wR,1 ,̃IR

ĨR (41a)

s.t. |α|2Tr
(
hH
TWR,0hT

)
‖hT‖2 ≥ ĨR

(
|α|2

×Tr
(
hH
TWR,1hT

)
‖hT‖2 + σ2

R

)
, (41b)

Tr
(
hH
BWR,1hB

)
≥ β

(
Tr
(
hH
BWR,0hB

)
+ σ2

B

)
,

(41c)

∆hH
WCW∆hW ≤ υW, (41d)

Tr (WR,0) + Tr (WR,1) ≤ Ptotal, (41e)

WR,0 � 0,WR,1 � 0, (41f)

(40a), (40b).

Here, ∆hW ∈ EW involves an infinite number of con-

straints, which makes problem (41) still computationally pro-

hibitive. We apply the S-lemma to transform the constraints

into a certain set of linear matrix inequalities (LMIs), which

is a tractable safe approximation.

Lemma 1 (S-Procedure [46]): Let a function fm (x) ,m ∈
{1, 2} , x ∈ CN×1, be defined as

fm (x) = xHAmx+ 2Re
{
bH
mx
}
+ cm, (42)

where Am ∈ CN is a complex Hermitian matrix, bm ∈ CN×1

and cm ∈ R1×1. Then, the implication relation f1 (x) ≤ 0 ⇒
f2 (x) ≤ 0 holds if and only if there exists a variable η ≥ 0
such that

η

[
A1 b1

bH
1 c1

]
−
[

A2 b2

bH
2 c2

]
≻0. (43)

Consequently, by applying Lemma 1, constraints (40a) and

(40b) can be, respectively, reformulated as the following finite

number of LMIs:[
Ŵ1 + η1CW Ŵ1ĥW

ĥH
WŴ1 ĥH

WŴ1ĥW − σ2
W (ā− 1)− η1vW

]
≻0,

(44a)[
−Ŵ2 + η2CW −Ŵ2ĥW

−ĥH
WŴ2 −ĥH

WŴ2ĥW + σ2
W

(
b̄− 1

)
− η2vW

]
≻0.

(44b)

Thus, we obtain a conservative approximation of problem

(41) as follows:

max
wR,0,wR,1 ,̃IR

ĨR (45)

s.t. (41b), (41c), (44a), (44b), (41e), (41f).

When ĨR is fixed, problem (45) is a convex SDP, which

can be efficiently solved by off-the-shelf convex solvers.

Therefore, problem (45) can be efficiently solved by the

proposed bisection method, which is summarized in Al-

gorithm 2. The computational complexity of Algorithm

2 is O
(
max {5, 2N − 1}4

√
2N − 1 log (1/ζ2) log (1/ζ2)

)
,

where ζ2 > 0 is the pre-defined accuracy of problem (45).

Algorithm 2 Bisection method for problem (45)

1: Determine the interval
[
ĨR,l, ĨR,end

]
, given the accuracy

ζ2 > 0;

2: Initialize ĨR,l = 0, ĨR,end = ÎR;

3: while ĨR,end − ĨR,l ≥ ζ2 do

4: Let ĨR,mid =
(
ĨR,l + ĨR,end

)
/2;

5: if problem (45) is solvable, we obtain WR,0 and

WR,1, and set ĨR,l = ĨR,mid;

6: else, let ĨR,end = ĨR,mid;

7: end while

8: Output the optimal solutions W∗
R,0,W∗

R,1.

2) Case of D (p1 ‖p0 ) ≤ 2ε2: In this subsection, we

consider the constraint D (p1 ‖p0 ) ≤ 2ε2, where the cor-

responding robust covert rate maximization problem can be

formulated as

max
wR,0,wR,1

|α|2
∣∣hH

TwR,0

∣∣2‖hT‖2

|α|2
∣∣hH

TwR,1

∣∣2‖hT‖2 + σ2
R

(46a)

s.t. D (p1 ‖p0 ) ≤ 2ε2, (46b)
∣∣hH

BwR,1

∣∣2
∣∣hH

BwR,0

∣∣2 + σ2
B

≥ β, (46c)

‖wR,0‖2 + ‖wR,1‖2 ≤ Ptotal, (46d)

hW = ĥW +∆hW, (46e)

where D (p1 ‖p0 ) = ln λ0

λ1
+ λ1

λ0
− 1.

Note that, problem (46) is similar to problem (37) ex-

cept for the covertness constraint. The covertness constraint

D (p1 ‖p0 ) = ln λ0

λ1

+ λ1

λ0

− 1 ≤ 2ε2 can be equivalently

transformed as

c̄ ≤ λ0

λ1
≤ d̄, (47)

where c̄ = ā and d̄ = b̄, are the two roots of the equation

ln λ0

λ1

+ λ1

λ0

− 1 = 2ε2. Similar to the previous subsection, we

apply the relaxation and restriction approach to solve problem

(46). For the sake of brevity, we omit the detailed derivations.

Although the methods used in the two scenarios are the same,

the achievable covert rates are quite different under the two

different signal constraints. We will illustrate and discuss this

issue in the next section.
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B. Rate Maximization

In practical applications, the obtained WCSI is often de-

graded by estimation errors. Therefore, we further investigate

robust beamforming design for problem (33). In this case,

it is difficult to achieve perfect covert transmission, namely

D (p0 ‖p1 ) = 0. Hence, we use D (p0 ‖p1 ) ≤ 2ε2 and

D (p1 ‖p0 ) ≤ 2ε2 given by (20) as hidden constraints. Similar

to the previous subsection, we can apply the relaxation and

restriction approach, and the detailed derivations are omitted

for brevity. The design results will be numerically discussed

in the next section.

V. NUMERICAL RESULTS

In this section, we present the numerical results to demon-

strate the effectiveness of the proposed beamforming design

schemes. Without loss of generality, we assume that σ2
B =

σ2
W = σ2

T = 0dBm [47], the path-loss coefficient α = 1 [48].

A. Perfect WCSI

Fig. 2 shows the mutual information I (yR;hT |sR ) and RB

with the proposed covert beamformer design and the proposed

ZF beamformer design versus the total transmit power Ptotal,

where the number of antennas is set as N = 5. It can be

observed that the mutual information of Radar I (yR;hT |sR )
and RB almost linearly increase as the total available power

Ptotal increases.

In Fig. 3, we plot the mutual information I (yR;hT |sR )
and RB under the proposed covert beamformer design and

the proposed ZF beamformer design versus the number of

radar antennas N , where Ptotal = 10dBm. It is observed

that as the number of antennas N increases, the mutual

information I (yR;hT |sR ) and RB increase in a logarithmic

fashion, and the gap between the covert beamformer design

and ZF beamformer design also increases. Because with more

antennas, more spatial multiplexing gains can be realized.

Moreover, Fig. 2 and 3 show that the covert beamforming

design can achieve a larger MI and RB than those of the ZF

beamformer design.

B. Imperfect WCSI

1) MI Maximization: Fig. 4 (a) and (b) show the empirical

CDF of the achieved D (p0 ‖p1 ) and D (p1 ‖p0 ) under the

covertness threshold 2ε2 = 0.005 and CSI errors vw = 0.005,

respectively, where N = 5, and Ptotal = 10dBm. Here,

the non-robust design refers to the covert design by using

the information of ĥW only, instead of hW. The covertness

thresholds of the robust and non-robust designs are both 2ε2 =
0.005, i.e., D (p0 ‖p1 ) ≤ 0.005 and D (p1 ‖p0 ) ≤ 0.005. It

can be seen that the CDF of the KL divergence of the non-

robust design does not satisfy the constraints, where about 50%

of the resulting D (p0 ‖p1 ) exceed the covertness threshold

0.005; and about 57% of the resulting D (p1 ‖p0 ) exceed

the covertness threshold 0.005. On the other hand, the robust

beamforming design guarantees the KL divergence require-

ment, that is, it satisfies Willie’s error detection probability
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5

Fig. 2. The proposed covert beamformer design and proposed ZF
beamformer design by Mutual information I (bit) and RB (bits/sec/HZ)
versus Ptotal (dBm), with the number of antennas N = 5
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Fig. 3. The proposed covert beamformer design and proposed ZF
beamformer design by Mutual information I (bit) and RB versus the
number of antennas N , with the total transmit power Ptotal = 10dBm
.

requirement. In general, Fig. 4 (a) and (b) demonstrate the

effectiveness of the proposed robust design.

Fig. 5 (a) and (b) show the value of ε versus the mutual

information I (yR;hT |sR ) and the detection error proba-

bilities under the two KL divergence cases, where CSI er-

rors vw = 0.001. Fig. 5 (a) plots the mutual information

I (yR;hT |sR ) versus the value of ε under two covertness

constraints D (p0 ‖p1 ) ≤ 2ε2 and D (p1 ‖p0 ) ≤ 2ε2, where

CSI errors vw = 0.001. This simulation result is consistent

with the theoretical analysis, that is, when ε becomes larger,

the covertness constraint becomes loose, which leads to a

larger I (yR;hT |sR ) . On the other hand, I (yR;hT |sR )
under the covertness constraints D (p0 ‖p1 ) ≤ 2ε2 is higher

than that under the constraint D (p1 ‖p0 ) ≤ 2ε2. Fig. 5

(b) plots the detection error probabilities for the two KL

divergence cases versus ε , where CSI errors vw = 0.001. Here

P(p0‖p1 ) (D1 |H0 ) represents the FA probability P (D1 |H0 )
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Fig. 4. The empirical CDF of (a) D (p0 ‖p1 ) and (b) D (p0 ‖p1 ), with the
covertness threshold 2ε2 = 0.005 and CSI errors vw = 0.005.

in the case of D (p0 ‖p1 ) ≤ 2ε2, and the other notation is

defined similarly. It is found that under the two cases of the

covertness constraint, the FA probability P (D1 |H0 ) and the

MD probability P (D0 |H1 ) decrease as ε increases, where

P (D1 |H0 ) is always lower than P (D0 |H1 ). This shows

that the looser the covertness constraint is, the better Willie’s

detection performance will be. In addition, Fig. 5 (b) also

verifies the effectiveness of the proposed robust beamformer

design in covert communication.

Fig. 6 (a) and (b) show CSI errors vw versus the mutual

information I (yR;hT |sR ) and the detection error probabili-

ties under the two covertness constraints D (p0 ‖p1 ) ≤ 2ε2

and D (p1 ‖p0 ) ≤ 2ε2, where the value of ε = 0.01,

ε = 0.05, respectively. Fig. 6 (a) plots the mutual information

I (yR;hT |sR ) versus CSI errors vw for the two KL diver-

gence cases. It can be seen that the higher the CSI error is, the

higher the mutual information I (yR;hT |sR ) and the worse

radar performance will be. Fig. 6 (b) plots the FA probability

0.01 0.03 0.05 0.07 0.09
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3.67

3.68

3.69

3.7

(a)

0.01 0.03 0.05 0.07 0.09
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0.6125

0.62

0.6275
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(b)

Fig. 5. The value of ε versus (a) the mutual information I and (b) the detection
error probabilities with CSI errors vw = 0.001.

P (D1 |H0 ) and the MD probability P (D0 |H1 ) versus CSI

errors vw under two covertness constraints D (p0 ‖p1 ) ≤ 2ε2

and D (p1 ‖p0 ) ≤ 2ε2, where the value of ε = 0.05. We

observe that under the two covertness constraints, the FA

probability P (D1 |H0 ) and the MD probability P (D0 |H1 )
both increase with the increase of vw, where P (D1 |H0 ) is

always less than P (D0 |H1 ). Moreover, Fig. 6 implies that

a large error vw may lead to a good beamformer design in

terms of radar performance and this beamformer may interfere

with Willie’s detection, which is also beneficial to Bob. The

intuition is that when the CSI error is large, the detection

performance at Willie clearly would degrade.

Fig. 7 shows the mutual information I (yR;hT |sR ) versus

the number of antennas N under two covertness constraints

D (p0 ‖p1 ) ≤ 2ε2 and D (p1 ‖p0 ) ≤ 2ε2, where vw = 0.005,

ε = 0.05. From Fig. 7, we can see that the higher the

number of antennas N is, the higher the mutual information

I (yR;hT |sR ) will be, which is similar to the case in Fig. 3.
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Fig. 6. (a) The mutual information I versus CSI errors vw with the value of
ε = 0.01 and (b) the detection error probabilities versus CSI errors vw with
the value of ε = 0.05.

Finally, Fig. 8 shows the MI I (yR;hT |sR ) versus

covert rates threshold β under two covertness constraints

D (p0 ‖p1 ) ≤ 2ε2 and D (p1 ‖p0 ) ≤ 2ε2, where vw = 0.001,

ε = 0.05. We can see that as the covert rate threshold β
increases, the mutual information I (yR;hT |sR ) gradually

decreases. Moreover, from Fig. 5-8, we observe that the mutual

information I with the covertness constraint D (p0 ‖p1 ) ≤ 2ε2

is higher than that with the covertness constraint D (p1 ‖p0 ) ≤
2ε2. This is because D (p1 ‖p0 ) ≤ 2ε2 is stricter than

D (p0 ‖p1 ) ≤ 2ε2, and this conclusion is in line with [34].

2) Rate Maximization: In this subsection, we set N = 5
and Ptotal = 10dBm.

Fig. 9 (a) and (b) show the empirical CDF of the achieved

D (p0 ‖p1 ) and D (p1 ‖p0 ) under the covertness threshold

2ε2 = 0.02 and CWSI errors vw = 0.001, respectively. The

covertness threshold of the robust and non-robust designs are

both 2ε2 = 0.02, i.e., D (p0 ‖p1 ) ≤ 0.02 and D (p1 ‖p0 ) ≤

4 5 6 7 8
3

3.4

3.8

4.2

4.6

6

Fig. 7. The mutual information I versus number of antennas N with
CSI errors vw = 0.005, ε = 0.05.

0.5 1 1.5 2 2.5 3
3.55
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3.65
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3.75

Fig. 8. The mutual information I versus covert rates threshold β with
CSI errors vw = 0.005, ε = 0.05.

0.02. It can be seen that the CDF of the KL divergence of

the non-robust design cannot satisfy the constraints. On the

other hand, the robust beamforming design guarantees the

KL divergence requirement, that is, it satisfies Willie’s error

detection probability requirement. Here, the non-robust design

refers to the proposed covert design with ĥW under the same

conditions. In general, Fig. 9 (a) and (b) demonstrate the

effectiveness of the proposed robust design.

Fig. 10 (a) and (b) show the value of ε versus the covert

rate RB and the detection error probabilities under the two

KL divergence cases, where CSI errors vw = 0.001. Fig.

10 (a) plots covert rates RB versus ε under two covertness

constraints D (p0 ‖p1 ) ≤ 2ε2 and D (p1 ‖p0 ) ≤ 2ε2, where

CSI errors vw = 0.001. This simulation result verifies the

theoretical analysis that when ε becomes larger, the covertness

constraint becomes loose and RB becomes larger. On the other

hand, RB under the covertness constraints D (p0 ‖p1 ) ≤ 2ε2

is higher than that under D (p1 ‖p0 ) ≤ 2ε2, which shows
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Fig. 9. The empirical CDF of (a) D (p0 ‖p1 ) and (b) D (p0 ‖p1 ), with the
covertness threshold 2ε2 = 0.02 and CSI errors vw = 0.001.

that D (p1 ‖p0 ) ≤ 2ε2 is a stricter covertness constraint

than D (p0 ‖p1 ) ≤ 2ε2. Fig. 10 (b) plots the detection error

probabilities for the two KL divergence cases versus ε, where

CSI errors vw = 0.001. Here P(p0‖p1 ) (D1 |H0 ) represents the

FA probability P (D1 |H0 ) in the case of D (p0 ‖p1 ) ≤ 2ε2,

and the other notation is defined similarly. It is found that

under the two cases of the covertness constraint, the FA

probability P (D1 |H0 ) and the MD probability P (D0 |H1 )
decrease as ε increases, where P (D1 |H0 ) is always lower

than P (D0 |H1 ). This shows that the looser the covertness

constraint is, the better Willie’s detection performance will be.

In addition, Fig. 10 (b) also verifies the effectiveness of the

proposed robust beamformer design in covert communication.

Fig. 11 (a) and (b) show CSI errors vw versus the covert rate

RB and the detection error probabilities under the two covert-

ness constraints D (p0 ‖p1 ) ≤ 2ε2 and D (p1 ‖p0 ) ≤ 2ε2,

where the value of ε = 0.20. Fig. 11 (a) plots covert rates RB

versus CSI errors vw for the two KL divergence cases. It can be
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Fig. 10. The value of ε versus (a) the covert rate and (b) the detection error
probabilities with CSI errors vw = 0.001.

seen that the higher the CSI error is, the lower the covert rate

RB will be. Fig. 11 (b) plots the FA probability P (D1 |H0 )
and the MD probability P (D0 |H1 ) versus CSI errors vw
under the two covertness constraints D (p0 ‖p1 ) ≤ 2ε2 and

D (p1 ‖p0 ) ≤ 2ε2, where the value of ε = 0.05. We observe

that under the two covertness constraints, the FA probability

P (D1 |H0 ) and the MD probability P (D0 |H1 ) both increase

with the increase of vw, where P (D1 |H0 ) is always less than

P (D0 |H1 ). Similar to the case of MI maximization, a large

error vw may lead to a worse detection performance for Willie.

Fig. 12 shows the covert rate RB versus the number of

antennas N under the two covertness constraints D (p0 ‖p1 ) ≤
2ε2 and D (p1 ‖p0 ) ≤ 2ε2, where vw = 0.001 and ε = 0.20.

From Fig. 12, we can see that the higher the number of

antennas N is, the higher the achieved covert rates RB will be,

which is similar to the case in Fig. 3. Finally, Fig. 13 shows

the covert rates RB versus the mutual information threshold
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Fig. 11. (a) The covert rate and (b) the detection error probabilities versus
CSI errors vw with the value of ε = 0.20.

γ under the two covertness constraints D (p0 ‖p1 ) ≤ 2ε2

and D (p1 ‖p0 ) ≤ 2ε2, where vw = 0.001, ε = 0.2. We

can see that as the mutual information threshold γ increases,

the covert rates RB gradually decreases. Moreover, From

Fig. 10-13, we observe that the rates with the covertness

constraint D (p0 ‖p1 ) ≤ 2ε2 are higher than those with the

covertness constraint D (p1 ‖p0 ) ≤ 2ε2. This is because

D (p1 ‖p0 ) ≤ 2ε2 is stricter than D (p0 ‖p1 ) ≤ 2ε2, and this

conclusion is also verified in [34].

VI. CONCLUSIONS

In this paper, we developed a covert beamforming design

framework for IRSC systems. Specifically, we proposed two

effective solutions to maximize the MI of the radar while

meeting the covertness requirements and the total power

constraints to ensure covert transmission. When the WCSI is

accurately known, we proposed a single-iterative beamforming

design method based on the zero forcing criterion. When

4 5 6 7 8 9
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6

Fig. 12. Covert rates RB versus number of antennas N with CSI
errors vw = 0.001, ε = 0.20.
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Fig. 13. Covert rates RB versus mutual information threshold γ with
CSI errors vw = 0.001, ε = 0.20.

the WCSI can only be estimated with error, we proposed a

robust optimization method to ensure the worst-case covert

IRSC performance. Finally, simulation results showed that the

proposed covert beamforming design framework can simulta-

neously realize radar detection and covert communication for

perfect and imperfect WCSI scenarios.
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