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Joint Channel Estimation and Mixed-ADCs

Allocation for Massive MIMO via Deep Learning
Liangyuan Xu, Feifei Gao, Ting Zhou, Shaodan Ma, and Wei Zhang

Abstract—Millimeter wave (mmWave) multi-user massive
multi-input multi-output (MIMO) is a promising technique
for the next generation communication systems. However, the
hardware cost and power consumption grow significantly as the
number of radio frequency (RF) components increases, which
hampers the deployment of practical massive MIMO systems.
To address this issue and further facilitate the commercialization
of massive MIMO, mixed analog-to-digital converters (ADCs)
architecture has been considered, where parts of conventionally
assumed full-resolution ADCs are replaced by one-bit ADCs. In
this paper, we first propose a deep learning-based (DL) joint pilot
design and channel estimation method for mixed-ADCs mmWave
massive MIMO. Specifically, we devise a pilot design neural
network whose weights directly represent the optimized pilots,
and develop a Runge-Kutta model-driven densely connected
network as the channel estimator. Instead of randomly assigning
the mixed-ADCs, we then design a novel antenna selection
network for mixed-ADCs allocation to further improve the
channel estimation accuracy. Moreover, we adopt an autoencoder-
inspired end-to-end architecture to jointly optimize the pilot
design, channel estimation and mixed-ADCs allocation networks.
Simulation results show that the proposed DL-based methods
have advantages over the traditional channel estimators as well
as the state-of-the-art networks.

Index Terms—MmWave massive MIMO, deep learning, chan-
nel estimation, pilot design, antenna selection, one-bit quantiza-
tion, mixed-ADC.

I. INTRODUCTION

M
ILLIMETER wave (mmWave) massive multi-input

multi-output (MIMO), one of the promising technology

for both 5G and the next generation mobile communication

systems, has attracted tremendous attention for its several

appealing advantages [1]. By deploying a massive array

with hundreds or thousands of antennas at the base station

(BS), massive MIMO can improve spectral efficiency and en-

hance cellular coverage [2]. Meanwhile, with the 30-300GHz

mmWave frequency band, the array inter-element spacing can

be reduced significantly, which allows to pack a large scale of

antenna array into a small area at the BS. Furthermore, with
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highly directional beamforming, the massive antenna array can

concentrate energy on the sparse mmWave channel paths to

facilitate spatial multiplex and increase energy efficiency [3].

Although mmWave massive MIMO has many irresistible

advantages, one major obstacle in its commercialization is the

financial cost and power consumption that grow exponentially

as the bit resolution of analog-to-digital converters (ADCs)

increases [4]. An alternative solution for this problem is

to replace the high-resolution ADCs with economical low-

resolution ones, e.g., single quantization bit ADCs [5]. How-

ever, the traditional optimal pilot sequence design, channel

estimation and data detection techniques are devised for finely

quantized data. Hence, the nonlinear quantization errors in-

troduced by low-resolution ADCs will make the traditional

methods no longer eligible, which motivates the studies of new

algorithms for mmWave massive MIMO with low-resolution

ADCs [6].

There are numerous design for massive MIMO systems with

low-resolution ADCs, e.g., channel estimation [7]–[10], data

detection [11]–[13], beamforming [14]–[16] and performance

analysis [17]–[19]. To leverage the potential gains offered by

the large scale antenna array, accurate channel state infor-

mation (CSI) should be obtained at the BS. However, it is

challenging to acquire CSI especially when one-bit ADCs are

utilized, since the the amplitude information of the received

signal is lost during quantization. In [7], the authors have

addressed channel estimation of massive MIMO with one-

bit ADCs by formulating the problem as the atomic norm

optimization. In [8], the authors have proposed an amplitude

retrieval (AR) algorithm for channel estimation with one-bit

ADCs. This algorithm performs channel estimation by com-

pleting the lost amplitudes and recovery the direction of arrival

(DOA). The authors of [9] have considered a compressed

sensing based channel estimation method and a gridless angu-

lar domain sparse parameters estimation algorithm to further

improve the one-bit channel estimation accuracy. Nevertheless,

the methods therein have ignored the pilot design problem

and adopted general pilot sequences, which would cause high

training overhead. The work [10] has shown that massive

MIMO with one-bit ADCs can achieve the same channel

estimation performance with fewer pilots under the assumption

of single-path channel model. However, it is hard to solve

the joint pilot design and channel estimation problem due to

the non-convex constraints introduced by the low-resolution

ADCs.

Recently, numerous works have shown the successful ap-

plications of deep learning (DL) in communication systems,

which includes channel estimation [20]–[23], pilot design
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[24]–[27], CSI feedback [28]–[31], data detection [32]–[35],

et al. DL algorithms exhibits superior performance in tackling

the one-bit channel estimation problem that the traditional

methods are unable to handle well. Specifically, the authors

in [22] have devised a novel DL-based architectures for the

one-bit quantized orthogonal frequency division multiplexing

(OFDM) receiver to deal with the channel estimation and data

detection problem. The work in [26] has developed a deep

neural network-based (DNN) channel estimator and training

signal design for low-resolution quantized MIMO systems.

However the neural network is a simple fully connected one

and hence exhibit poor performance. In [23], a conditional

generative adversarial network (cGAN) has been developed

to estimate the channel matrix from the one-bit quantized

received signals, which outperforms traditional channel esti-

mators and simple neural networks, e.g., naive convolutional

neural network (CNN). Though DL-based approaches have

shown great potential in coarsely quantized massive MIMO

systems, DL-based joint pilot design and channel estimation

still faces challenges, e.g., simple network architecture and

poor performance.

To further improve the performance of one-bit quantized

massive MIMO systems, a mixed-ADCs architecture has been

proposed in [36], where parts of one-bit ADCs are replaced

by full-resolution ADCs. The authors in [37] have derived

an approximate tractable expression for the uplink achievable

rate of massive MIMO with mixed-ADCs, and the results

show the good trade-offs between performance and hardware

cost offered by the mixed-ADCs architecture. A data detec-

tor for mixed-ADCs massive MIMO has been devised in

[38] through probabilistic Bayesian inference. In [39], fully

connected neural networks have been applied to estimate

the uplink channel matrix of mixed-ADCs massive MIMO.

Furthermore, the authors of [40] have modified the DL-based

approach in [39] and developed a two-stage channel estimation

method to further reduce channel estimation error. However,

an interesting question has not been answered yet: how to

optimize the allocation of the mixed-ADCs to improve the

performance?

In this paper, we design a DL-based approach for joint

channel estimation and pilot design as well as the allocation

of the mixed-ADCs in mmWave massive MIMO system. The

contributions of this work are summarized as follows:

• Channel Estimation: For the channel estimation neural

network, we develop densely connected blocks to deal

with the mixed-precision quantized signals. Unlike the

naive CNN, each block in the dense connection is a deep-

unfolding of the 3rd order Runge-Kutta method, which

can alleviate the vanishing-gradient problem and exhibit

superior performances over the state-of-the-art channel

estimation algorithms.

• Joint Pilot Design and Channel Estimation: We devise

a pilot design subnet to cooperate with the aforemen-

tioned channel estimation subnetwork. By developing an

autoencoder-inspired end-to-end architecture and jointly

training the subnets, we can obtain the optimized pilot

and channel estimator. The non-differentiable problem

introduced by one-bit quantization is addressed by using
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Fig. 1. Multi-user mmWave massive MIMO system with mixed-precision
ADCs deployed at the BS.

a differentiable function as an approximation.

• Optimization of The Mixed-ADCs Allocation: By ap-

plying softmax and top-K functions in the output layer

of the neural network, we generate two selection vectors

to choose the antennas for the mixed-ADCs allocation.

Then, we develop a novel training method to solve the

non-differentiable problem caused by the top-K function.

By taking the K-hot encoding constraints into the loss

function and training the network with the proposed

method, we then optimize the allocation of the mixed-

ADCs.

The remainder of this paper is organized as follows. In

Section II, we investigate the channel estimation problem

with mixed-ADCs and propose the Runge-Kutta model-driven

densely connected network. Section III presents the antenna

selection network and the proposed training method. In Section

IV, the pilot design network, the autoencoder-inspired end-

to-end architecture and the solution for the non-differentiable

problem are illustrated. Numerical results are provided in

Section V, and the performances of the proposed methods are

compared with benchmark algorithms. Conclusions are made

in Section VI.

Notation: Uppercase boldface X, lowercase boldface x and

lowercase non-bold x denote matrices, vectors and scalars,

respectively. Superscripts (·)T , (·)H , (·)−1 and (·)† represent

transpose, Hermitian transpose, matrix inverse and pseudo

inverse, respectively. We use ‖ · ‖F and ‖ · ‖p for Frobenius

norm and ℓp-norm, respectively. The mth element of a vector

a is [a]m, and the (m,n)th element of the matrix A is [A]m,n.

Symbols ⊙ denote the element-wise product of two matrices.

The cardinality of set A is given by |A|. Symbol ∅ denotes

empty set. The real and imaginary parts of complex numbers

are denoted by ℜ(·) and ℑ(·), respectively.  =
√
−1. sign (·)

is the sign function. The cumulative distribution function

(CDF) of the standard normal distribution is denoted by Φ(·).

II. CHANNEL ESTIMATION

A. System Model

Consider an uplink multi-user mmWave massive MIMO

system where K single antenna users are served by a BS.

The BS is equipped with a uniform linear array (ULA) of
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M antennas with half-wavelength inter-element spacing. The

uplink channel between the kth user and the BS is

hk =

Lk∑

l=1

αk,la (θk,l), (1)

where Lk is the number of dominant paths between

user-k and the BS, αk,l and θk,l denote the gain

and DOA of the lth path respectively, and a (θk,l) =[
1, e−π sin(θk,l), · · · , e−(M−1)π sin(θk,l)

]T
is the steering vec-

tor.

We assume that mixed-precision ADCs (full-resolution and

one-bit ADCs) are deployed at the BS, as shown in Fig. 1.

During pilot symbol transmission, each user transmits a length-

Np pilot sequence. The received signal Y ∈ CM×Np of the

BS can be written in matrix form as

Y = Q
(
HP+W

)
, (2)

where Q(·) is the element-wise quantization function, H =
[h1, · · · ,hK ] ∈ CM×K denotes the channel matrix, P ∈
CK×Np is the pilot matrix transmitted by k users, and W ∈
C
M×Np is the additive Gaussian noise with zero mean and

variance σ2. With mixed-precision ADCs, Q(·) has different

forms for full-resolution and one-bit ADCs respectively. If the

RF chain is followed by full-resolution ADC, then Q(·) is an

identity function, and Q(·) = sign(ℜ(·)) + sign(ℑ(·)) holds

for the case of one-bit ADC. Hence, (2) can be rewritten as

[Y]m,n =

{
[V]m,n, m ∈ A
sign (ℜ ([V]m,n)) + sign(ℑ([V]m,n)), m ∈ B

where V = HP+W, A and B are the index sets of RF chains

followed by full-resolution and one-bit ADCs, respectively.

Moreover, there are A ∪ B = {1, 2, . . . ,M}, A ∩ B = ∅,

|A| =MA and |B| =MB =M −MA.

B. The Proposed Channel Estimation Network

Assume that the pilot matrix P as well as the quantization

function Q(·) are perfectly known by the BS. Then, the BS

can recover the channel matrix H from the coarsely quantized

received signal Y by traditional channel estimation techniques,

e.g., the linear minimum mean square error (LMMSE) esti-

mation method [41], the near maximum likelihood estimator

[42], and the approximate message passing approach [9], [43].

However, the traditional channel estimators need long pilot

sequences and suffer from performance degradation due to

the coarse nonlinear quantization error.

On the other hand, DNNs are powerful tools to learning

complex and latent relationship among data. Therefore, we

resort to DL-based method to improve the channel estima-

tion performance and reduce the pilot transmission overhead.

The architecture of the proposed channel estimation network

(CENet) is depicted in Fig. 2. The real and imaginary parts

of the received signal Y are stacked as the input of CENet,

which is denoted by Ỹ ∈ R2M×Np :

Ỹ =

[
ℜ (Y)
ℑ (Y)

]
, Q

(
H̃P̃+ W̃

)
, (3)

CENet

C

C

RK3

block

RK3

block
CRK3

block

C RK3

block

RK3
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CRK3
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¯2
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¯5
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Fig. 2. The architecture of the proposed channel estimation network (CENet).

where

H̃ =

[
ℜ (H) −ℑ (H)
ℑ (H) ℜ (H)

]
, P̃ =

[
ℜ (P)
ℑ (P)

]
,W̃ =

[
ℜ (W)
ℑ (W)

]
,

and Q(·) reduces to real-valued element-wise quantization

function. Next, we split Ỹ based on the quantization precision

for the data processing stages, since it is more effective to

feed data with different precision into different networks. We

generate two antenna selection vectors a ∈ RM and b ∈ RM

based on A and B, respectively. The elements of a indexed by

A are 1, and the remaining elements are 0. The same policy

is applied for b and B, which yields

[a]m =

{
1, m ∈ A
0, m /∈ A , [b]m = 1−[a]m =

{
1, m ∈ B
0, m /∈ B .

(4)

Then, by broadcasting a and b into matrices and element-

wisely multiplied by the input of CENet Ỹ, we obtain two

matrices ỸA ∈ R2M×Np and ỸB ∈ R2M×Np respectively,

which yields

ỸA =

[
a · · · a

a · · · a

]
⊙ Ỹ, ỸB =

[
b · · · b

b · · · b

]
⊙ Ỹ. (5)

The matrices ỸA and ỸB contain full-resolution and one-

bit quantized data respectively, and are fed into two parallel

subnets of CENet. Since the two subnets share the same

architecture, we use subscript-A/B to differentiate the param-

eters. In the following context, we will only focus on the

parameters with subscript-A for ease of notation, while the

similar discussion holds for the parameters with subscript-B.

As illustrated in Fig. 2, the first part of the subnet is a

block to resize ỸA into the same shape of H̃ ∈ R
2M×K ,

which involves batch normalization layer, 2D convolutional

layer and LeakyReLU activation layer. Note that the output

size of this resizing block is C1,A × 2M ×K where C1,A is

output features of the convolutional layers. Then, as depicted

in Fig. 2, the C1,A × 2M × K data is fed into densely
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connected blocks, which is inspired by DenseNet [44]. Specif-

ically, for each block, the outputs of all preceding blocks

are concatenated along the first dimension and are used as

inputs, while its outputs are passed to all subsequent blocks.

The dense connection architecture has several advantages, e.g.,

requiring less computation to achieve high performance, and

alleviating the vanishing-gradient problem especially for the

one-bit quantized data. Nevertheless, the input size of the last

block grows exponentially as the depth of the dense connection

increases, which is computationally intensive and prevents us

from using too many densely connected blocks, especially for

massive MIMO scenario. The potential idea to address this

issue is to use few densely connected blocks (3 blocks for our

case) while design the inside architecture of each block, as

illustrated in the following context.

Denote the input and output of the ith densely connected

block as X̃i,A and Z̃i,A, respectively. Due to the dense

connection structure, we find that X̃i,A and Z̃i,A should have

the same size as Ci,A × 2M × K . Therefore, the block can

be interpreted as a decoding module that is widely used in

computer vision tasks such as image super-resolution. Inspired

by the super-resolution work in [45], we heuristically treat

the decoding process as a dynamical model. Then, we adopt

system of ordinary differential equations (ODE) to formulate

the dynamical model, which yields




dX̃i(t)

dt
= f

(
X̃i(t), t

)

X̃i(t0) = X̃i,A

X̃i(tN ) = Z̃i,A

, (6)

where f(·, t) : RCi,A×2M×K → RCi,A×2M×K is the time

dependence function, the initial value is X̃i(t0) = X̃i,A, and

the final condition of the dynamical process is the decoded

result as X̃i(tN ) = Z̃i,A. To find the approximate solution of

(6), we consider an iterative approach named as Runge-Kutta

method to numerically solve ODEs with initial conditions.

Specifically, the 3rd order Runge-Kutta method for (6) can

be written as

X̃i(tn+1) = X̃i(tn) +
1

6
(S1 + 4S2 + S3)

S1 = µf
(
X̃i(tn), tn

)

S2 = µf

(
X̃i(tn) +

1

2
S1, tn +

1

2
µ

)

S3 = µf
(
X̃i(tn)− S1 + 2S2, tn + µ

)
,

(7)

where µ is the step size.

Runge-Kutta method with higher order and smaller step size

could provide better approximation for the solution of (6).

Nevertheless, we cannot directly implement the Runge-Kutta

method, since the function f(·) is unknown and needs to be

designed as well. Then, for each block in the dense connection,

neural networks are utilized to replace the unknown function

f(·) and unfold the 3rd order Runge-Kutta method into multi-

layers structure, where a number of trainable parameters are

introduced to replace the coefficients in (7). This technique is

called deep-unfolding or model-driven neural network and has

also been used in [33], [34]. The proposed blocks are named

as RK3 model-driven blocks, and the input-output relations

of the ith densely connected RK3 model-driven block can be

described as

Z̃i,A = X̃i,A + β4 (G1 + β5G2 +G3) (8)

G1 = φ1

(
X̃i,A,Ω1

)
(9)

G2 = φ2

(
X̃i,A + β1G1,Ω2

)
(10)

G3 = φ3

(
X̃i,A + β2G1 + β3G2,Ω3

)
, (11)

where β1-β5 are introduced trainable parameters, φ(·,Ω) is

the input-output function of a neural network (involving batch

normalization layer, 2D convolutional layer and LeakyReLU

activation layer). Moreover, Ω denotes the weights and bias of

the network. The structures of the RK3 model-driven blocks

are illustrated in Fig. 2.

By feeding the matrices ỸA and ỸB into two subnets

consisted of densely connected RK3 model-driven blocks, we

obtain two outputs denoted by ĤA ∈ RCA×2M×K and ĤB ∈
RCB×2M×K , respectively. According to the features of dense

connection, we know CA =
∑3
i=1 Ci,A and CB =

∑3
i=1 Ci,B .

Since ĤA and ĤB contain different information and have

multiple features, we apply feature extraction by concatenating

ĤA and ĤB along the first dimension as the input of a fusion

network. Ultimately, we obtain the estimated channel matrix

Ĥ ∈ R2M×K from the output of the fusion network. The

structure of the fusion network and the whole architecture of

CENet are depicted in Fig. 2.

The loss function of the proposed CENet is the normalized

mean square error (NMSE) of the channel estimation, which

is given by

LCENet (ΘCENet) =
1

VK

V∑

v=1

K∑

k=1

∥∥∥h̃(v)
k − ĥ

(v)
k

∥∥∥
2

2∥∥∥h̃(v)
k

∥∥∥
2

2

, (12)

where ΘCENet contains all the trainable parameters of CENet,

V is the number of samples in each training batch, h̃k and ĥk
are the kth column vectors of H̃ and Ĥ respectively, and the

superscript-(v) is the index number in the training batch.

III. MIXED-PRECISION ADCS ALLOCATION

As mentioned in (2), the function Q(·) has multi-forms since

mixed-resolution ADCs are deployed at the BS. Therefore, we

next address the mixed-precision ADCs allocation problem:

given the number of full-resolution and one-bit ADCs, how

to maximize the channel estimation performance by properly

assigning the mixed-precision ADCs to different antennas.

Specifically, the vectors a and b should be optimized under the

constraints |A| =MA, A∪B = {1, 2, . . . ,M}, A∩B = ∅ and
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SELNet.

(4). The joint mixed-precision ADCs allocation and channel

estimation problem can be written as

min
ψ(·),A,B

E

{
1
K

∑K
k=1

‖h̃k−ĥk‖2

2

‖h̃k‖2

2

}

s.t. [ĥ1, · · · , ĥK ] = ψ(P̃, ỸA, ỸB),
(3), (4) and (5),
|A| =MA, A ∩ B = ∅,
A∪ B = {1, 2, . . . ,M},

(13)

where ψ(·) is the channel estimator. A common way to solve

(13) is alternating optimization under the assumption that ψ(·)
is linear, e.g., LMMSE estimator. However, the constraints

in (13) are non-convex, and the two subproblems (one sub-

problem of channel estimator and the other of mixed-ADCs

allocation) are still non-convex. Moreover, the subproblem

of mixed-ADCs allocation is a combinatorial optimization

problem, and it is hard to find the optimal solution of (13)

with traditional approaches.

Inspired by the idea of alternating optimization, we utilize

two subnetworks to solve the two subproblems of (13), and

jointly optimize the two subnetworks. In particular, the CENet

proposed in Section II-B is adopted to find the nonlinear

channel estimator ψ(·), and then a subnet named by selection

network (SELNet) is designed to optimize the two antenna

selection vectors a and b. The connections and cooperations

between CENet and SELNet are depicted in Fig. 3. Detailed

design for SELNet is given in the following context.

From |A| = MA, A ∪ B = {1, 2, . . . ,M}, A ∩ B = ∅
and (4), we find that the vector a is MA-sparse and MA-

hot encoding. Therefore, the key of SELNet is to address the

MA-hot encoding constraint and generate a with differentiable

functions, which guarantees the successful back-propagation

during training stage. Specifically, SELNet first generates a

probability distribution vector u ∈ RM with softmax function

and yields

[u]m = [softmax(v)]m =
exp ([v]m)

∑M
i=1 exp ([v]i)

, (14)

where the vector v ∈ R
M is the output of the first block (A

FNN composed of three layers) of SELNet as shown in Fig. 3.

Note that each element of u lies in the interval (0, 1), and [u]m
can be interpreted as the probability of [a]m being 1. Hence,

a straightforward way to obtain the vector a is to find the MA

largest elements of u and set the corresponding elements in

the vector a as 1, i.e.,

A = arg top−MA(u), [a]m =

{
1, m ∈ A
0, m /∈ A , (15)

where arg top−MA returns the indices of the MA largest

elements. Then, we can obtain the vector b by b = 1− a, as

illustrated in Fig. 3.

With arg top−MA operator, SELNet now generates the

vectors a and b. However, the operator in (15) is non-

differentiable, which stymies the back-propagation algorithm

when training the networks. As a result, the neural layers

before this non-differentiable operator cannot be trained by the

back-propagation algorithm. To tackle this issue, we use (15)

for forward-propagation while replace (15) with a differen-

tiable operator during the back-propagation. Such replacement

becomes exact when some constraints are satisfied. Specifi-

cally, during back-propagation, we replace the vector a with

ũ defined as

[ũ]m =MA[u]m =MA
exp ([v]m)

∑M
i=1 exp ([v]i)

, (16)

where [ũ]m lies in the interval (0,MA), and
∑M

i=1[ũ]i =MA.

The forward, back-propagation and the structures of SELNet

are illustrated in Fig. 3. It is worth pointing out that the

operator in (16) is differentiable. Moreover, ũ equals to the

vector a with some constraints as stated in the following

Theorem:

Theorem 1. If a vector x = {[x1, x2, · · · , xM ]|∀m,xm ∈
R, xm ≥ 0} satisfies the following constraints:

‖x‖rr = xr1 + xr2 + · · ·+ xrM = K, (17)

‖x‖pp = xp1 + xp2 + · · ·+ xpM = K, (18)

‖x‖qq = xq1 + xq2 + · · ·+ xqM = K, (19)

K ≤M, 0 < r < p < q <∞, (20)

then the vector x is K-hot encoding vector, i.e., K elements

of x are ‘1’ and (M −K) elements of x are ‘0’.

Proof. Without loss of generality, we assume the elements

of the vector x are sorted in descending order as x =
[x1, x2, · · · , xL, 0, · · · , 0], where x1 > x2 > · · · , xL > 0
and L denotes the number of non-zero elements in x. Then,

the constraints of the vector x can be rewritten as

‖x‖rr = xr1 + xr2 + · · ·+ xrL = K, (21)

‖x‖pp = xp1 + xp2 + · · ·+ xpL = K, (22)

‖x‖qq = xq1 + xq2 + · · ·+ xqL = K, (23)

K ≤M, 0 < r < p < q <∞. (24)
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Additionally, we set c = q−r
q−p and d = q−r

p−r , which yields

c, d ∈ (1,∞) and

1

c
+

1

d
= 1,

r

c
+
q

d
= p. (25)

Now we can apply Hölder’s inequality for sums, which

states that

L∑

i=1

|yizi| ≤
(

L∑

i=1

|yi|c
) 1

c
(

L∑

i=1

|zi|d
) 1

d

, (26)

where c, d ∈ (1,∞) and 1
c +

1
d = 1. The equality in (26) holds

if and only if the vectors [y1, · · · , yL]T and [z1, · · · , zL]T are

linearly dependent.

Hence, we choose yi = x
r/c
i and zi = x

q/d
i , and substitute

yi and zi into Hölder’s inequality (26). Then, we obtain

L∑

i=1

x
r
c

i x
q
d

i ≤
(

L∑

i=1

(x
r
c

i )
c

) 1
c
(

L∑

i=1

(x
q
d

i )
d

) 1
d

. (27)

Substituting (25) into (27) and after some algebra, we obtain

L∑

i=1

xpi ≤
(

L∑

i=1

xri

) 1
c
(

L∑

i=1

xqi

) 1
d

. (28)

Note that the inequality in (28) becomes an equality

with the constraints (21)-(23). Therefore, the two vectors

[x
r/c
1 , · · · , xr/cL ]T and [x

q/d
1 , · · · , xq/dL ]T must be linearly de-

pendent. With the linear dependence condition as well as the

constraints (21)-(23), and after some algebra, we can easily

obtain

L = K, (29)

x1 = x2 = · · · = xL = 1, (30)

which indicates that the vector x is K-hot encoding. This

completes the proof.

Note that the vector ũ in (16) satisfies ℓ1-norm constraint as

‖ũ‖1 = MA. According to Theorem 1, another two ℓp-norm

constraints are needed to ensure ũ being equal to the vector

a. Hence, for ease of computation and notation, we utilize ℓ2-

norm and ℓ3-norm with ‖ũ‖22 = MA and ‖ũ‖33 =MA as the

two constraints, which has also been adopted in [46]. However,

it is difficult to simultaneously embed both ℓ2-norm and ℓ3-

norm constraints for ũ in a neural network. Alternatively, we

can embed the constraints into the loss function of the network

so that the constraints are gradually satisfied during training

process. Specifically, the loss function of SELNet is given by

LSELNet (ΘSELNet) = γ1(‖ũ‖22 −MA)
2 + γ2(‖ũ‖33 −MA)

2,
(31)

where ΘSELNet contains all the trainable parameters of SEL-

Net, and the hyperparameters γ1 and γ2 are to balance the

two terms. During training stage, both ‖ũ‖22 − MA and

‖ũ‖33 −MA gradually reduce to zero when the loss LSELNet

keeps decreasing. Therefore, the approximation between ũ and

the vector a progressively becomes exact.

End-to-End Architecture

PDNet

Trainable weights

·

SELNet

·

b

1

¡a
CENet

eYA

eYB

a

eHeP

fW

eVeH

bH

element-wise productelement-wise product

Forward-propagation

Back-propagation

·

eP

sign(·)

soft-

sign(·)

sign(eV)sign(eV)

Norm-

alize

Fig. 4. The autoencoder-inspired end-to-end architecture for joint optimiza-
tion.

The forward and back-propagation of SELNet, the connec-

tions, and the cooperations between CENet and SELNet are

summarized in Fig. 3. The overall loss function is

LCENet (ΘCENet) + γ3LSELNet (ΘSELNet) , (32)

where γ3 is a hyperparameter. By jointly training CENet

and SELNet with the loss (32), both the nonlinear channel

estimator ψ(·) and the selection vector will be obtained.

IV. JOINT PILOT DESIGN AND CHANNEL ESTIMATION

Note that both Section II and III address the channel

estimation problem at the receiver side, while the pilot design

at the transmitter side has not been considered yet. By learning

the correlations and statistics of the wireless channel, we can

optimize the pilot signal to reduce the pilot overhead and

improve the channel estimation accuracy significantly [10].

The joint pilot design and channel estimation with mixed-

ADCs allocation problem can be formulated as

min
ψ(·),P̃,A,B

E

{
1
K

∑K
k=1

‖h̃k−ĥk‖2

2

‖h̃k‖2

2

}

s.t. [ĥ1, · · · , ĥK ] = ψ(P̃, ỸA, ỸB),
(3), (4) and (5),
|A| =MA, A ∩ B = ∅,
A∪ B = {1, 2, . . . ,M},
tr(P̃P̃T ) = Npρ,

(33)

where ρ denotes the average transmission power, and ψ(·) is

the channel estimator. Similar to the optimization problem in

(13), it is hard to solve (33) by traditional signal processing

methods due to the non-convexity and the combinatorial

optimization problem. Furthermore, it is worth noting that

a new solution of (33) needs to be obtained whenever the

channel H̃ changes, which hampers the effectiveness of the

traditional solver. To tackle this issue, we utilize DL-based

method to learn the features over a channel dataset and

obtain the corresponding jointly optimized pilot and channel

estimator. Specifically, we devise a subnet named by pilot

design network (PDNet) to cooperate with the aforementioned

CENet and SELNet, and then develop a autoencoder-inspired

end-to-end architecture to jointly optimize the three subnets,

as depicted in Fig. 4

From (3), we propose a neural network called PDNet to

realize the the matrix multiplication between H̃ and P̃. In

particular, if the input of the network is H̃, and the trainable
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weights of the network are P̃, and then the network outputs

H̃P̃. Furthermore, to embed the transmission power constraint

tr(P̃P̃T ) = Npρ into the network, a normalization layer

is applied to P̃ prior to the matrix multiplication operation,

which is given by

√
Npρ

P̃

‖P̃‖F
. (34)

The structure of PDNet is illustrated in Fig. 4. Note that the

trainable parameters of PDNet are optimized and obtained by

training the networks over dataset, and namely the optimized

pilot matrix P̃ is directly obtained from the thoroughly trained

weights of PDNet. Therefore, the key of the joint pilot design

and channel estimation with mixed-ADCs allocation problem

is to integrate PDNet, CENet and SELNet into a whole

architecture for the sake of joint optimization.

A. Autoencoder Inspired End-to-End Architecture

Note that the pilot signal is transmitted by the users,

while the channel will have to be estimated at the BS. This

indicates that the joint optimization of PDNet, CENet and

SELNet should be implemented in an end-to-end manner,

where the transmitter, the receiver, the process of transmission

and the quantization should be involved and emulated. The

autoencoder [47] is an end-to-end optimized neural network

where the input is copied to the output, and some hidden

layers called encoder and decoder are used to learn the latent

representations. Hence, we will develop an end-to-end network

structure inspired by the architecture of autoencoder. The

analogy is given as follows: 1) the channel matrix is the

input; 2) the proposed PDNet denotes the encoder to learn

the latent features of the channel matrix; 3) a noise layer

and a quantization layer are appended to mimic the noise

and quantizer of the receiver; 4) the proposed SELNet and

CENet are regarded collectively as the decoder to process

the quantized received signal; 5) the output is the estimated

channel matrix. The structure of the end-to-end network is

depicted in Fig. 4.

We can then obtain the jointly optimized pilot, channel

estimator and selection vectors by training the end-to-end

network with the following aggregate loss function

L(ΘPDNet,ΘCENet,ΘSELNet) = LCENet (ΘCENet)

+ γ3LSELNet (ΘSELNet) , (35)

where ΘPDNet denotes the trainable weights of PDNet. How-

ever, the quantization layer hinders the back-propagation of the

end-to-end network, because the quantization function sign(·)
is not differentiable at the origin and has zero derivative

everywhere else. Consequently, the proposed PDNet that is

prior to the quantization layer cannot be trained by the back-

propagation algorithm.

To address this issue, we can use a differentiable function

to approximate the sign(·) function. In [48], the sigmoid

function with adjustable slope has been utilized to replace

sign(·), where the steepness of the sigmoid function is slowly

Fig. 5. The The input-output relationships of softsign function with different
values of κ.

increased during training progress. Specifically, the sigmoid

function with adjustable slope is denoted by

softsign(x) = 2 sigmoid(κx)−1 =
2

1 + exp(−κx)−1, (36)

where κ is the factor to adjust the steepness. The input-output

relationships of the sigmoid function with different value of κ
are illustrated in Fig. 5, and it can be found that increasing κ
will make the sigmoid function steeper. Here we propose two

choices to utilize the adjustable sigmoid function: 1) replacing

sign(·) with the adjustable sigmoid for both forward and

back-propagation; 2) using sign(·) for forward-propagation

and the adjustable sigmoid for back-propagation. Now the non-

differentiation problem is addressed by using the adjustable

sigmoid function. Next, we focus on the training and imple-

mentation strategies for the whole end-to-end network.

B. Off-line Training and On-line Implementation

The whole end-to-end network architecture for joint pilot

design and channel estimation with mixed-ADCs allocation

is demonstrated in Fig. 4. The training of the whole end-to-

end network can be performed in an off-line manner (e.g.,

cloud computing and remote server) with sufficient dataset

of the channel matrix. When the whole network is trained

and optimized, the network is then properly split and assigned

to the transmitters and receivers, respectively. The details are

given as follows:

During off-line training stage, the data-flow diagram for

the forward-propagation is illustrated in Fig. 4. Notice that

in the back-propagation, the vector a is replaced by ũ for the

proposed SELNet, and sign(·) is replaced by the adjustable

sigmoid for the quantization layer. Moreover, the adaptive

moment estimation (Adam) optimizer [49] is utilized in the

back-propagation to update the trainable parameters ΘPDNet,

ΘCENet and ΘSELNet by minimizing the loss functions in

(35).

After the whole end-to-end network is trained, it can be

implemented in practical systems. Specifically, we obtain the

optimized pilot directly from the weights of PDNet and assign
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Algorithm 1 Training and deployment of the end-to-end

network

1: initialize: Training dataset D of H̃, the number of iter-

ations Niter, hyperparameters C1,A-C3,A, C1,B-C3,B and

κ, and trainable parameters ΘPDNet, ΘCENet, ΘSELNet.

2: On-line Training:

3: for i = 1 : Niter do

# forward-propagation #

4: Draw a random subset of D to generate a mini-batch

5: Feed H̃ into PDNet to obtain: H̃P̃

6: The noise layer outputs: Z̃ = H̃P̃+ W̃

7: The quantization layer outputs: sign(Z̃)
8: SELNet generates: a, b = 1− a and ũ

9: Compute the quantized signals: ỸA =

[
a · · · a

a · · · a

]
⊙

Z̃, ỸB =

[
b · · · b

b · · · b

]
⊙ sign(Z̃)

10: Input ỸA and ỸB into CENet and estimate: Ĥ

11: Compute the loss: L(ΘPDNet,ΘCENet,ΘSELNet)
# back-propagation #

12: Replace sign(·) with (36) for the quantization layer

13: Replace the vector a with (16) for SELNet

14: Apply back-propagation algorithm and update ΘPDNet,

ΘCENet and ΘSELNet by Adam optimizer

15: end for

16: Acquire the optimized pilot from the weights of PDNet

17: Obtain the optimized vectors a and b from SELNet

18: Acquire the optimized CENet

19: Off-line Deployment:

20: Assign the pilot to the users for the uplink transmission

21: Allocate the mixed-ADCs at the BS based on a and b

22: Deploy CENet at the BS to estimate Ĥ from ỸA and ỸB

Output: Ĥ

the pilot to the users. Then, the BS allocate the mixed-ADCs

according to the selection vectors a and b that are optimized

by SELNet. Furthermore, the optimized CENet is deployed

at the BS to estimate the channel matrix from the quantized

received signal. Additionally, the network will be retrained and

re-implemented until the statistics of the wireless channel has

changed significantly.

The detailed steps of training and implementation are sum-

marized in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we present simulation results to show the

effectiveness of the proposed joint pilot design and channel

estimation method, and make comparisons with the state-of-

the-art algorithms.

A. Dataset generation

We consider that the BS has a ULA with M = 64
antennas serving K = 8 users, where each user has Lk = 3
channel paths. The initial values of all the 24 DOAs are

randomly generated within the interval [−80◦, 80◦]. The initial

values of the channel complex gains are randomly generated

with independent and identically distributed as CN (0, 1). To

generate the dataset, small perturbations are added to the

initial values of the DOAs and channel gains. Specifically,

perturbations randomly generated within the interval [−4◦, 4◦]
are added to the initial DOAs, and perturbations randomly

generated with CN (0, 0.04) are added to the initial channel

gains. The generated datasets of H̃ are randomly divided into

training and testing sets with 100, 000 and 5, 000 samples,

respectively.

B. Network Hyperparameters Configuration

Adam optimizer is adopt for the end-to-end network training

with batch size 100. The initial learning rate is set as 2 ×
10−3 and exponential decay every 20 epochs. The decay factor

and the maximum number of epochs are set as 0.7 and 200,

respectively.

The output features of the densely connected RK3 model-

driven blocks in CENet are denoted by C1,A-C3,A and C1,B-

C3,B. The output features are set as C1,A = 60, C2,A = 120,

C3,A = 240, C1,B = 20, C2,B = 40 and C3,B = 80.

The layer size of the 3-layers FNN in SELNet is set as 16,

32 and 64, respectively, and LeakyReLU activation function

is used in the the 3-layers FNN. The hyperparameters of the

loss function of SELNet in (31) are set as γ1 = γ2 = 1. The

penalty factor γ3 in (32) is initially set as γ3 = 0.01 and 0.02
increment every epoch with maximum value 0.5.

The pilot length Np is a hyperparameter of the trainable

weights P̃ ∈ C2K×Np in PDNet, and we will investigate the

performances of the proposed method under different values

of Np. The steepness factor κ in (36) is set as κ = 70 for

better approximation of sign(·).

C. Evaluation Metrics

The performance metrics of channel estimation are defined

as the normalized mean square error (NMSE)

NMSE , E





1

K

K∑

k=1

∥∥∥h̃k − ĥk

∥∥∥
2

2∥∥∥h̃k
∥∥∥
2

2




, (37)

where h̃k and ĥk are the kth column vectors of H̃ and Ĥ

respectively. The channel is normalized, and SNR is defined

as

SNR , 10 log10

(
‖P̃‖2F
Npσ2

)
dB, (38)

where the noise variance W̃ is set as σ2 = 1. According

to (34), SNR equals to the ratio of the average transmission

power ρ to σ2 (SNR = 10 log10
(
ρ
σ2

)
) when the channel is

normalized.

The performances of the following channel estimation al-

gorithms will be taken as comparisons:

• The compressed sensing based gridless generalized ap-

proximate message passing (GL-GAMP) algorithm that

exhibits superior performance over the state-of-the-art

channel estimation algorithms [9]. The pilot sequence

is chosen as a length-Np Zadoff-Chu (ZC) sequence,
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and each row of the pilot matrix P is a circularly

shifted version of the ZC sequence, which assures the

orthogonality of the pilot sequences for different users.

Moreover, all ADCs are one-bit precision.

• "CENet, 1-bit": the pilot sequence is ZC sequence, and

all ADCs are one-bit precision. We only use CENet at

the BS to estimate the channel matrix.

• "PDNet+CENet, 1-bit": all ADCs are one-bit precision.

We use PDNet and CENet with the end-to-end architec-

ture for joint pilot design and channel estimation.

• "PDNet+CENet, fixed MA = #": there are MA full-

resolution ADCs. We omit SELNet and use a fixed

allocation strategy for the mixed-precision ADCs, i.e., the

set A is fixed and unoptimized.

• We replace the densely connected RK3 model-driven

blocks in CENet with regular CNNs, which is a modifi-

cation of the algorithm in [26]. We add the term "CNN"

to denote this case.

The abbreviations and configurations of the comparison algo-

rithms are summarized in Table I.

D. Performance Analysis

In Fig. 6, the NMSE of channel estimate is plotted over

SNR, where Np = 64. Note that GAMP only considers

unstructured channel model without DOA estimation, while

GL-GAMP [9] estimates DOAs as well as channel gains and

then reconstruct the angular domain channel. Hence, GAMP

has poor performance than GL-GAMP. Compared with GL-

GAMP, "CENet, 1-bit" algorithm has the same configurations

about pilot and quantization resolution but utilize a DL-based

channel estimation method. We observe that "CENet, 1-bit"

outperforms GL-GAMP with more than 3 dB performance

gap in the high SNR regime, which shows the superiority

of the proposed CENet over the traditional channel estimator

with one-bit quantization. Moreover, it can be seen that

there is considerable performance gap between "CENet, 1-

bit" and "PDNet+CENet, 1-bit", which shows the effectiveness

of the proposed pilot design approach. This indicates that

the proposed PDNet can optimize the pilot to capture the

intrinsic characteristics of the sparse mmWave channels, and

then significantly enhance the channel estimation performance

by collaborated with CENet. Furthermore, the results also

show that "PDNet+CENet, fixed MA = 16" has notable

performance improvement over "PDNet+CENet, 1-bit", since

16 full-resolution ADCs are utilized. Hence, one effective way

to increase the estimation accuracy is to increase the number

of high-resolution ADCs with mixed-precision architecture.

Here, the 16 full-resolution ADCs are equispaced within the

M = 64 antennas for the "PDNet+CENet, fixed MA = 16"

case, whereas the equispaced deployment is not necessarily

optimal. As a comparison, we illustrate the performance of

the proposed end-to-end architecture with SELNet that will

optimize the selection vectors. It is seen that the proposed

algorithm with MA = 16 surpasses "PDNet+CENet, fixed

MA = 16" in high SNR regime, which indicates that different

mixed-ADCs allocation will affect the performance notably.

This results show the effectiveness of the proposed architecture

with SELNet to optimize the allocation of mixed-ADCs.
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Fig. 6. NMSE versus SNR; M = 64 and Np = 64. Performance comparison
of the proposed method and benchmark algorithms.
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Fig. 7. NMSE versus SNR; M = 64 and Np = 64. Solid line and dashed
line denote the performances of the densely connected RK3 model-driven
blocks and regular CNNs, respectively.

Fig. 7 shows the NMSE of channel estimation algorithms

versus SNR, where M = 64, Np = 64 and the number of

full-resolution ADCs is MA = 16 for mixed-ADCs cases. In

Fig. 7, the dashed lines denote the results by replacing the

densely connected RK3 model-driven blocks in CENet with

regular CNNs. Besides the similar phenomena shown in Fig. 6,

we observe that there is a notable gap between the solid line

and dashed line for each method. In particular, compared to

regular CNNs, there is a significant performance improvement

by using the RK3 model-driven blocks with dense connections

in CENet. These results show the effectiveness and superior of

the proposed CENet over the regular neural network structures.

Fig. 8 shows the NMSE of channel estimation algorithms

versus SNR, where M = 64 and Np = 64. Similar phenomena

of Fig. 6 can also be seen in Fig. 8, where "CENet, 1-

bit" is much better than traditional GL-GAMP algorithm and
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TABLE I
ABBREVIATIONS AND CONFIGURATIONS OF THE COMPARISON ALGORITHMS

algorithm pilot one-bit full-resolution ADCs channel
abbreviation design ADCs ADCs allocation estimation

GAMP no, ZC M 0 - GAMP [9]

GL-GAMP no, ZC M 0 - GL-GAMP [9]

CENet, 1-bit no, ZC M 0 - CENet

PDNet+CENet, 1-bit yes, PDNet M 0 - CENet

PDNet+CENet, fixed MA = # yes, PDNet M −# # fixed CENet

CNN - - - - regular CNNs

proposed, MA = # yes, PDNet M −# # SELNet CENet
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Fig. 8. NMSE versus SNR; M = 64 and Np = 64. We set MA = 24 for
the mixed-ADCs cases.

"PDNet+CENet, 1-bit" has significant performance improve-

ment over "CENet, 1-bit". Additionally, in Fig. 8, we set

MA = 24 with 24 full-resolution and 40 one-bit ADCs

utilized. Unlike the configuration of Fig. 6, since 24 full-

resolution ADCs can not be equispaced within M = 64
antennas, we consider two configurations for mixed-ADCs

allocation denoted by "fixed MA = 24, No.1" and "fixed

MA = 24, No.2", respectively. As can be seen, there is

a notable performance gap between "PDNet+CENet, fixed

MA = 24, No.1" and "PDNet+CENet, fixed MA = 24, No.2",

which indicates that different allocations of full-resolution

ADCs affect channel estimation accuracy significantly. Hence,

to illustrate the performance gains by optimizing the allocation

of mixed-ADCs, the performance of the proposed end-to-

end architecture with MA = 24 is also shown in Fig. 8.

We see that the proposed end-to-end architecture outperforms

"PDNet+CENet, fixed MA = 24, No.1" and "PDNet+CENet,

fixed MA = 24, No.2" remarkably, which shows the effective-

ness of the proposed end-to-end architecture with SELNet to

optimize the allocation of mixed-ADCs and improve channel

estimation performance.

Fig. 9 displays the NMSE of channel estimation algorithms

over SNR, where M = 64 and Np = 64. Similar phenomena
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Fig. 9. NMSE versus SNR; M = 64 and Np = 64. Performance comparison
of the proposed method and benchmark algorithms, where MA = 10.

for GL-GAMP, "CENet, 1-bit" and "PDNet+CENet, 1-bit"

can be seen in Fig. 9. Moreover, the results for the mixed-

ADCs cases are also illustrated in Fig. 9, where 10 full-

resolution and 56 one-bit ADCs utilized. Specifically, for

"PDNet+CENet, fixed MA = 10", the index set of RF

chains in which the full-resolution ADCs are deployed is

{1, 9, 17, 25, 33, 41, 49, 57, 13, 53}. While, for the proposed

end-to-end architecture, the allocation for mixed-ADCs is

optimized by SELNet. Unlike the results of Fig. 6 and Fig. 8,

the curve of the proposed end-to-end method almost overlaps

that of "PDNet+CENet, fixed MA = 10" as shown in Fig. 9.

This indicates that the performance gains by optimizing the

mixed-ADCs allocation become smaller when the number of

full-resolution ADCs decreases.

Fig. 10 plots the NMSE of channel estimation algorithms

over SNR by varying the value of MA, where M = 64 and

Np = 64. As can been seen in Fig. 10, the channel estimation

error of the proposed end-to-end architecture decreases when

the number of full-resolution ADCs, MA, increases. The

reason is straightforward that less quantization errors will

be introduced when more full-resolution ADCs are utilized.

Meanwhile, there are nonzero error floors for all the methods
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Fig. 10. NMSE versus SNR for different values of MA, where M = 64
and Np = 64.
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Fig. 11. NMSE versus SNR for different values of Np, where M = 64 and
MA = 16.

with mixed-precision ADCs (MA < 64), especially in the

high SNR regime. Nevertheless, we observe that the nonzero

error floor of the proposed end-to-end method is eliminated

when all RF chains are equipped with full-resolution ADCS

(MA = 64). This indicates that the nonzero error floor is

caused by the amplitude information loss introduced by one-

bit quantization in the high SNR regime, which is also called

stochastic resonance phenomenon. Moreover, these results

show that one way to increase the estimation accuracy is to

increase the ratio of high-resolution ADCs in mixed-precision

architecture.

Next, we study the impact of the pilot length Np on the

channel estimation performance. Fig. 11 displays the NMSE

of the proposed method and "PDNet+CENet, fixed MA = 16",

where M = 64 and the 16 full-resolution ADCs are equis-

paced within the M = 64 antennas for the "PDNet+CENet,

fixed MA = 16". It can been seen that the proposed end-to-
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100

Fig. 12. BER versus SNR with different channel estimation results, where
M = 64, MA = 16, and 16QAM is used.

end method outperforms "PDNet+CENet, fixed MA = 16" for

each value of Np, which indicates that the proposed end-to-

end architecture with SELNet can optimize the allocation of

mixed-ADCs to further improve channel estimation accuracy.

Moreover, the results also show that increasing the pilot length

Np can improve the performances of both the methods. The

reason is that increasing Np will increase the transmission

energy for fixed average transmission power ρ. Furthermore,

we see that the proposed method for Np = 64 has the

same performance with "PDNet+CENet, fixed MA = 16,

Np = 128" in the high SNR regime, which indicates that the

pilot overhead can be reduced to half with optimized mixed-

ADCs allocation.

For the last numerical study, we show the effects of different

channel estimation methods on the data detection. Specifically,

during payload data transmission, the received signal is

y = Q
(
Hx+w

)
, (39)

where x ∈ CK , ‖x‖22 = ρ, and w ∈ CM is Gaussian noise

with zero mean and variance σ2. Similar to (3), the real-valued

form of the received signal is given by ỹ = Q
(
H̃x̃+ w̃

)
. The

maximum likelihood (ML) detector for x̃ is formulated as

argmax
x̂∈S

B̃∏

i=1

Φ

(√
2

σ2
ỹih̃

T
i x̂

)
Ã∏

j=1

1√
πσ

e−
(h̃T

j
x̂−ỹj)

2

σ2 , (40)

where S is the constellation set, h̃Ti is the ith row of H̃,

Ã = {A,A+M} and B̃ = {B,B+M}. The exhaustive search

over S is required to solve (40), which is computationally

intensive. Inspired by [42], we relax the constraint x̂ ∈ S as

argmax
x̂∈R2K

‖x̂‖2
2
≤ρ

B̃∏

i=1

Φ

(√
2

σ2
ỹih̃

T
i x̂

)
Ã∏

j=1

1√
πσ

e−
(h̃T

j
x̂−ỹj)

2

σ2 . (41)

Note that (41) is a convex optimization problem, where the

objective is log-concave and the constraint is convex. Hence,

we use the aforementioned channel estimation methods to
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obtain H, and then apply CVX toolbox to solve (41), where

SNR (dB) is defined as 10 log10
(
ρ
σ2

)
.

Fig. 12 plots the uncoded bit error rate (BER) of the

detector in (41) with different channel estimation results,

where M = 64, MA = 16, and 16QAM is used. Comparing

Fig. 12 with Fig. 6, we find that higher channel estimation

accuracy leads to lower BER. Moreover, there is a remarkable

performance gap between one-bit and mixed-precision channel

estimation, which shows the superiority of the mixed-ADCs

architecture. Furthermore, it can be seen that the proposed

end-to-end estimation method outperforms "PDNet+CENet,

fixed MA = 16", which shows the effectiveness of the mixed-

ADCs allocation optimization. Meanwhile, there are nonzero

error floors for all methods in the high SNR regime, since the

amplitude information is lost during one-bit quantization.

VI. CONCLUSIONS

In this paper, by applying DL methods, we investigate the

joint pilot design and channel estimation as well as mixed-

ADCs allocation problem for mmWave massive MIMO. For

the channel estimator, we proposed a Runge-Kutta model-

driven densely connected network that can alleviate the

vanishing-gradient problem. We devise a pilot design network

where the optimized pilots are obtained directly from the

trained weights. Moreover, for the mixed-ADCs allocation

optimization, we develop a selection network to choose the

antennas for mixed-ADCs allocation. Furthermore, we adopt

an autoencoder-based end-to-end architecture to jointly train

these networks. Numerical results have been carried out to

show the superior performance of the proposed methods in

channel estimation.
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