
ar
X

iv
:2

20
8.

03
98

6v
1 

 [
cs

.I
T

] 
 8

 A
ug

 2
02

2
1

One-Hop Listening Based ARQs for Low-Latency

Communication in Multi-Hop Networks

Jaya Goel and J. Harshan

Indian Institute of Technology Delhi, India.

Abstract

Inspired by emerging applications in vehicular networks, we address the problem of achieving high-reliability

and low-latency communication in multi-hop wireless networks. We propose a new family of Automatic-Repeat-

Requests (ARQs) based cooperative strategies wherein high end-to-end reliability is obtained using packet re-

transmissions at each hop while the low-latency constraint is met by imposing an upper bound on the total number

of packet retransmissions across the network. A hallmark of our strategies is the one-hop listening capability

wherein nodes utilize the unused ARQs of their preceding node just by counting the number of failed attempts

due to decoding errors. We further extend the idea of one-hop listening to multi-hop listening, wherein a set of

consecutive nodes form clusters to utilize the unused ARQs of the preceding nodes, beyond its nearest neighbour,

to further improve reliability. Thus, our strategies provide the high-reliability feature with no compromise in the

original latency-constraint. For the proposed strategies, we solve non-linear optimization problems on distributing

the ARQs across the nodes so as to minimize packet drop probability (PDP) subject to a total number of ARQs in

the network. Through extensive theoretical results on PDP and delay profiles, we show that the proposed strategies

outperform the best-known strategies in this space.

Keywords: ARQs, Multi-hop networks, Low-latency, High reliability, Cooperative protocols

I. INTRODUCTION

Multi-hop networks have found promising applications in wireless communication as they enhance the

reliability of communication between wireless devices that are either outside of each other’s coverage

area or unable to establish a communication link due to signal-blockage difficulties [1], [2], [3]. While

the problem of designing efficient and reliable protocols for multi-hop networks have been traditional

topics of interest, recent advances in the field of vehicle-to-vehicle/infrastructure (V2X) communication

have given rise to new requirements such as high-reliability and low-latency on the protocols [4], [5].

Example use-cases include autonomous V2X communication, in which strict deadlines are imposed on

Parts of this work were presented at IEEE Vehicular Technology Conference (VTC2021)-Spring in April 2021 [15].

http://arxiv.org/abs/2208.03986v1
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Fig. 1. Left-side: Among the existing contributions, [16] proposed a non-cooperative strategy (marked in yellow) and a cluster-based idea

(marked in blue) along with the non-cooperative strategy. The proposed semi-cumulative strategy (marked in pink) outperforms [16] with

no additional delay-overheads on the packet. Right-side: Table summarizing the technical differences between [16] and this work.

the round-trip delay between the vehicles and the infrastructure, after which either the messages become

stale or the deadline violation may result in catastrophic consequences [6]. Other well-known use-cases

of high-reliability and low-latency in multi-hop networks are networks of Unmanned Aerial Vehicles

(UAVs) [7], [8], [9], in which power-limited UAVs either act as relays in coordinating the movement of

autonomous vehicles, or act as airborne base-stations [10], [11], [12], [13]. Thus, owing to increasing

use-cases for achieving high-reliability and low-latency in multi-hop networks, the problem of designing

efficient, reliable and importantly low-latency protocols, is of utmost importance in the context of next-

generation networks. Some of the notable contributions in this field hitherto include [7], [8], [9], [15] and

[16]. Among them, [16] attempted to jointly accomplish high-reliability along with low-latency feature

by proposing ARQ based Decode and Forward (DF) strategies [14]. In such ARQ based DF strategies, a

given node is allowed to retransmit the packet a certain number of times when the next node in the chain is

unable to decode the packet. In particular, [16] takes a two-step approach: (i) a deadline on the end-to-end

delay for the packets is imposed depending on the application, and then (ii) using the deadline, a strategy

is proposed to forward the packets such that the fraction of packets that reach the destination within the

deadline is maximized. Although the ARQ based DF protocols are known to incur additional delay due

to the use of ACK/NACK in the reverse channel, they have been shown to offer reduced average end-

to-end delay on the packets when compared to fixed block-length coding schemes for a given worst-case

deadline constraint [16, Section IV.D]. This is because the ARQ based strategies ask for re-transmissions

only when the channels are in deep-fade thereby reducing the total number of re-transmissions when the
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packet travels through the network. As a result, even though the additional overhead for ACK/NACK is

added to the delay in each hop, the packets reach the destination within the deadline with high probability

since lower number of re-transmissions dominates the overhead introduced by ACK/NACK [16, Section

IV.D]. Furthermore, it has been shown that events of deadline violation occur with negligible probability

especially when (i) the time/frequency resources dedicated for ACK/NACK communication are negligible

compared to that of the payload, and (ii) the frame structure for low-latency communication is such that

the ACK/NACK in the reverse link is communicated immediately after decoding the packet.

In order to motivate this work, we first explain the worst-case deadline approach of [16] by assuming

that the delay overheads from ACK/NACK in the reverse channel are sufficiently small compared to the

payload. Suppose that the processing time at each hop is τp seconds (which includes packet encoding and

decoding time), the delay incurred for packet transmission at each hop is τd seconds (which includes the

propagation delay and the time-frame of the packet), and the delay incurred because of NACK overhead

is τNACK (which is the time taken for the transmitter to receive the NACK). Given the stochastic nature of

the wireless channel at each link, the total number of packet re-transmissions before the packet reaches the

destination is a random variable, denoted by n, and as a result, the end-to-end delay between the source and

the destination is upper bounded by n×(τp+τd+τNACK) seconds. In particular, when τNACK << τp+τd,

the end-to-end delay can be approximated as n× (τp + τd) seconds. Thus, when the packet size and the

decoding protocol at each node are established, and when the deadline on end-to-end delay (denoted by

τtotal) is known, we may impose an upper bound on n, provided by qsum = ⌊ τtotal
τp+τd

⌋.1 This implies that qsum

captures the maximum number of re-transmissions that can be tolerated over the multi-hop network in

order to respect the deadline on the delay. In the event when τNACK is not negligible compared to τp+τd,

we have the option of either using qsum = ⌊ τtotal
τp+τd

⌋ or qsum = ⌊ τtotal
τp+τd+τNACK

⌋. In the former case, while a

larger fraction of packets reach the destination due to higher qsum, a non-zero fraction of the packets that

reach the destination may arrive after the deadline, thereby violating the latency constraint. However, in the

latter case, although a smaller fraction of the packets reach the destination due to lower qsum, all of them

arrive within the deadline. Thus, with either options for deciding qsum, performance degrades as τNACK

increases. Henceforth, along the similar lines of [16], we use qsum = ⌊ τtotal
τp+τd

⌋ assuming that the frame

structure and the resources for ACK/NACK communication support the condition τNACK << τp + τd.

Once qsum captures the latency-constraint, the subsequent task is to handle the reliability metric by

distributing the qsum ARQs across the nodes. With this worst-case deadline approach, several cooperative

strategies were proposed in [16] to distribute qsum number of ARQs, for any qsum ∈ Z+, such that the

1We have assumed equal τp and τd at each relay node to obtain a relation between the end-to-end delay τtotal and the total number of

ARQs qsum. Note that equal τd holds in practice because the packet length is the same at each hop whereas the propagation delay is usually

negligible. However, if τp at each relay differs due to heterogeneous architecture for baseband signal processing, then an upper bound on

the total number of ARQs can still be obtained by considering the maximum of the processing delays offered by all the relays in the chain.
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reliability metric of packet drop probability (PDP) is minimized for any combination of Line-of-Sight

(LOS) components of the links. In particular, the cooperative strategies use a counter in the packet so that

the unused ARQs by a node can be used by the succeeding nodes in order to further reduce the PDP.

Although the cooperative strategies of [16] are appealing, the use of counters in the packet contributes to

additional communication-overhead in the packet. Therefore, we ask: (i) Are there cooperative strategies

for ARQ based DF protocols that DO NOT use a counter in the packet, and yet utilize the unused ARQs

without violating the latency constraint?, and (ii) If the use of counter is allowed, are there cooperative

strategies that outperform [16]? Towards answering these questions:

1) We propose a cooperative ARQ based DF protocol, referred to as the Semi-Cumulative (SC) strategy,

wherein every node is aware of the ARQs allotted to its preceding node in the network. As a result, each

node can use the unused ARQs of the preceding node, just by counting its number of failed packet

transmissions due to decoding errors (i.e., one-hop listening). Unlike the cooperative strategy of [16], the

SC strategy does not use a counter in the packet, and yet facilitates efficient utilization of unused ARQs

without compromising the latency constraint. Owing to the memory-property of sharing the unused ARQs,

we propose a Fibonacci series based method to write the PDP expression as a function of the ARQs.

Subsequently, we formulate an optimization problem for computing the optimal ARQ distribution that

minimizes the PDP subject to a sum constraint on the total number of ARQs. Furthermore, we present

theoretical results to compute near-optimal ARQ distributions using low-complexity methods, and show

that the SC strategy outperforms the non-cooperative method with no compromise on the delay constraints.

2) Despite using the SC strategy, there may be residual ARQs at some nodes which go unused. This

is because a node cannot listen to the number of incorrect decoding events of all the preceding nodes

in the chain. To circumvent this problem, we propose a Cluster-based Semi-Cumulative (CSC) strategy

in which a group of consecutive nodes form a cluster, such that every node in the cluster forwards the

information on the residual ARQs of its preceding node to the next node in the cluster through a counter

in the packet. Therefore, a node in the cluster can make use of the residual ARQs of all the preceding

nodes in the cluster. However, the nodes outside the cluster continue to use only the residual ARQs of

their immediately preceding node without the need for a counter. This way, we further reduce the PDP of

the network from that of the SC strategy without violating the sum constraint. Given the memory property

introduced by the residual ARQs, we first provide a method to write the PDP of the CSC strategy, and

then formulate an optimization problem to minimize the PDP subject to the sum constraint on the total

ARQs. Furthermore, theoretical results on the ARQ distribution within the cluster and outside the cluster

are also provided before proposing several low-complexity algorithms to solve the optimization.

3) Through extensive simulation results, we show that the proposed low-complexity algorithms for the

CSC strategy provide near-optimal ARQ distributions in minimizing the PDP. Furthermore, we show that
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SC strategy and its cluster variant respectively outperform the non-cooperative strategy and its cluster

variant [16] for a given number of total ARQs. In addition, unlike the cluster based non-cooperative

strategy, we show that the performance of the CSC strategy depends on the position of the cluster in the

network. This is because the unused ARQs of the last node of the cluster will have to be used by the next

node in the chain. We also present simulation results on packet delay profiles to highlight the impact of

cooperation on latency performance. We show that with no overhead to access residual ARQs from the

packet, the CSC strategies incur a marginal increase in average delay compared to the SC strategy. This

is due to more re-transmissions to provide lower PDP, and the need for updating the counter once at each

intermediate relay. However, it allows a majority of packets to reach the destination within the deadline.

In order to implement the proposed one-hop listening based strategies, every node requires the knowl-

edge of the ARQs allotted to itself and its preceding node. One possible strategy to achieve this task is

to use a control center that collects the long-term statistics of every node’s channel. Subsequently, the

control center can compute the optimal ARQ allocation for each node under a sum constraint on the total

number of ARQs, and then distribute the optimal ARQs to each node along with the ARQs allotted to

the preceding nodes. This overhead for backhaul coordination is minimal when the long-term statistics of

the channels vary slowly over time. As depicted in Fig. 1 and explained in the motivation part, [16] is

closest to our contributions. A summary of the key differences between our work and [16] is also listed

on the right side of Fig. 1. Other contributions that use ARQs for optimizing the network performance are

[19], [20], [21], [22]. None of these contributions address the optimal allocation of ARQs when the total

number of ARQs is constrained. A preliminary version of this work is in [15], wherein the SC strategy is

proposed. In addition to the contents of [15], this work applies the cluster based ideas on the SC strategy.

II. SEMI-CUMULATIVE ARQ STRATEGY FOR MULTI-HOP NETWORKS

Consider an N-hop network, as shown in Fig. 2, wherein a source node intends to communicate its

messages to a destination through a set of N − 1 relay nodes that operate using an ARQ based decode

and forward (DF) strategy. In this model, the multi-hop network is characterized by the LOS vector

c = {c1, c2, . . . , cN} and the ARQ distribution q = {q1, q2, . . . , qN}, such that ci ∈ [0, 1] represents the

LOS component of the fading channel of the i-th hop and qi represents the number of re-transmissions

allotted to the transmitter of the i-th hop, for 1 ≤ i ≤ N . Formally, let S ⊂ CK denote the channel code

employed at the source node of rate R bits per channel use, i.e., R = 1
K
log2(|S|). Let x ∈ S denote

the packet (traditionally referred to as a codeword) transmitted over the multi-hop network such that

1
K
E[|x|2] = 1. When x is transmitted over the i-th link, for 1 ≤ i ≤ N , the corresponding received signal

after K channel uses is given by yi = hix + ni ∈ CK , where hi is a quasi-static Ricean fading channel

given by hi =
√

ci
2
(1+ ι)+

√
(1−ci)

2
gi, such that ι =

√
−1, gi is distributed as CN (0, 1), ni is the additive
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Fig. 2. Depiction of an N -hop network implementing the SC strategy. The vector [c1, c2, . . . , cN ] denotes the LOS vector of the network,

and qi, for 1 < i ≤ N , denotes the ARQs allotted to the i-th hop. In this model, every node knows the number of ARQs allotted to its

preceding node. As a result, it can use the residual ARQs of the preceding node just by listening to the number of failed decoding attempts.

white Gaussian noise (AWGN) vector at the receiver of the i-th link, distributed CN (0, σ2IK). We assume

that the receiver of each link has perfect knowledge of its channel, however, there is no knowledge about

the channel at the transmitter side.

When decoding the packet in the i-th hop, if the instantaneous mutual information of the channel

is less than the transmission rate R, then the receiver will not able to decode the packet correctly. In

the regime of asymptotic block-lengths, i.e., K → ∞, this event completely characterizes the decoding

error probability of the i-th hop, denoted by Pi. In particular, with asymptotic block-lengths, Pi would

be Prob
(

R > log2(1 + |hi|2α)
)

, where α = 1
σ2 is the average signal-to-noise-ratio (SNR) of the i-th

link. However, in the regime of non-asymptotic block-lengths, i.e., when K < ∞, the corresponding

non-asymptotic decoding error probability, as derived in [17], can be computed as

Pi =

∫

R+

Q

(√

K

V (Γi)
(C(Γi)− R)

)

fΓi
(Γi)dΓi, (1)

where Γi = |hi|2α is the instantaneous SNR of the wireless channel in the i-th hop, fΓi
(.) is the probability

density function of the instantaneous SNR Γi, C(Γi) = log2(1 + Γi) is the Shannon channel capacity,

V (Γi) =
Γi

2
Γi+2

(Γi+1)2
log2

2e is the back-off factor for finite block-length, and finally, Q(x) = 1√
2π

∫∞
x

e−
u2

2 du.

Note that the expression in (1), which is derived using the achievable rates in [18], is applicable for any K,

and it collapses to the asymptotic outage probability expression as a special case when K → ∞. Owing to

the above mentioned error events, the transmitter of the i-th hop is allotted qi number of re-transmissions

in order to successfully forward the packet to the next node in the network. The receiver of the i-th hop,

for each i, uses the Type-1 ARQ model, wherein the received signal yi corresponding to a failed attempt

is not used to decode the subsequent attempts. Despite using this ARQ based DF strategy, if a transmitter

is unable to transmit the packet within qi number of ARQs, then the packet is said to be dropped in the

network. Since the packet can be dropped at any hop in the network, we use PDP as the reliability metric

of interest, which is defined as the fraction of packets that do not reach the destination.

To achieve higher reliability than the ARQ based DF protocol in [16], we propose the semi-cumulative

model, as shown in Fig. 2, wherein every intermediate relay node can use residual ARQs unused by its

previous node in the chain. This simple idea stems from the fact that although qi re-transmissions are
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allotted to a transmitter, the actual number of re-transmissions can be less than qi owing to the stochastic

nature of the wireless channel. To facilitate this, we assume that every node has the knowledge of the

number of ARQs given to its preceding node in addition to the ARQs allotted to itself. Thus, we call this

strategy a “one-hop listening” strategy. Since a given node can use unused ARQs from its previous node,

the total number of ARQs used by it can be more than the number of ARQs allotted to it. As a result, the

next node in the chain, despite knowing the number of ARQs allotted to its preceding node, does not know

how long to wait for the successful transmission of the packet especially when the preceding node has used

all its quota of assigned ARQs. To fix this coordination issue, each intermediate node will have to wait

for a fixed amount of time to receive the packet from its previous node beyond which the packet is said

to be dropped in the network. Unlike the non-cooperative strategy of [16], in this method, an intermediate

node can get more re-transmissions than the number allotted to it just by listening to the number of failed

decoding attempts of the preceding node. Note that no counter is needed in the packet, and as a result, the

communication-overhead is zero. Although each relay node is allowed multiple transmissions (including

the number of unused ARQs of its preceding node) to communicate the packet to the next node, there

is a non-zero probability with which the packet is dropped in the network since the sum of the ARQs

allotted to all the nodes in the network is bounded, i.e.,
∑N

i=1 qi = qsum. Henceforth, we denote the PDP

of the SC ARQ based DF strategy by pdps,N , where s in the subscript highlights the SC strategy, and N

denotes the number of hops in the network. Note that pdps,N is some function of {Pi, 1 ≤ i ≤ N} given

in (1). Thus, to provide reliability along with low-latency constraint, we propose to solve Problem 1:

Problem 1: For an N-hop network with LOS vector c, a given SNR α = 1
σ2 , and a given qsum,

solve q∗1, q
∗
2, . . . q

∗
N = arg min

q1,q2,...qN
pdps,N , subject to qi ∈ {Z+ ∪ 0}, ∀i, such that

∑N

i=1 qi = qsum.

A. PDP Expression of Semi-Cumulative Strategy

Towards solving Problem 1 with low-complexity algorithms, we derive an expression for the PDP of the

SC strategy, and then formally prove that the SC strategy outperforms the non-cooperative ARQ strategy

in [16]. Since the preliminary version of this work in [15] already contains the SC strategy, we refer the

readers to [15] for the proofs.

Theorem 1: The PDP expression for an N-hop SC strategy is given by

pdps,N = P
q1
1 + (1− P1)P

q2
2 F2 + . . .+

N−1∏

i=1

(1− Pi)P
qN
N FN , (2)

where Fj , for 2 ≤ j ≤ N , is a function of P1, P2, . . . , Pj−1 (as given in (1)) and q1, q2, . . . , qj−1 that can

be computed using Fibonacci series.
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Theorem 2: For a given q = [q1, q2, . . . , qN ], at high SNR values, the PDP of the SC strategy is upper

bounded by the PDP of the non-ARQ strategy.

Using pdps,N , we propose low-complexity algorithms to solve Problem 1 in the next section.

B. Optimal ARQ Distribution of the SC Strategy

For an N-hop network with q = [q1, q2, . . . , qN−1, qN ], suppose that the ARQs for the first N − 2 hops

are fixed, and we are interested in computing the optimal values of qN−1 and qN that minimizes the PDP.

If we start with q̃ = [q1, q2, . . . , 0, qN−1 + qN ], it may give us a sub-optimal PDP. Therefore, using q̃,

as we keep transferring one ARQ from the last node to the penultimate node, we can expect the PDP

to decrease, and then start to increase beyond a certain number of transfers. Towards understanding this

transition of PDP, we are interested in understanding the structure of the ARQ distribution when the PDPs

of network with q = [q1, q2, . . . , qN−1, qN ] and q
′

= [q1, q2, . . . , qN−1 + 1, qN − 1] are equal. Once we

obtain this relation, we can analytically compute the values of qN−1 and qN for a given q1, q2, . . . , qN−2,

which in turn reduces the search space for computing the optimal ARQ distribution. This result is formally

captured in the following theorem.

Theorem 3: To find the optimal distribution of ARQs for an N-hop network, brute force search can be

reduced into brute force search for (N − 2)-hop network by fixing ARQs q1, q2, . . . , qN−2.

In Theorem 3, we have proved that the search space for the N-hop network can be reduced to the

search space of an (N − 2)-hop network. Henceforth, we refer to this reduction as a one-fold technique.

For a large value of N , we observe that the one-fold technique may not be feasible to implement in

practice. Therefore, we propose low-complexity algorithms to further reduce the search space under the

framework of multi-folding algorithms, that are generalizations of the one-fold algorithm.

III. LOW-COMPLEXITY ALGORITHMS FOR THE SC STRATEGY

In the proposed multi-folding algorithm, as presented in Algorithm 1, instead of folding the network

once from N-hop to (N − 2)-hop, we fold it multiple times to (N − 4)-hop, (N − 6)-hop and so on up

to a 2-hop network or a 1-hop network depending on whether N is even or odd, respectively. When the

network is reduced (or folded) to a j-hop network, we need to provide a sum of q̃sum,j ARQs to it, and it

is clear that q̃sum,j can take all possible values in a range [j, qsum−(N−j)+1]. When folding the network

up to j-hops, for j ≥ 4 and j ≥ 3 when N is even and odd, respectively, we fix the ARQs for the first

(j − 2)-hops and then compute qj−1 and qj using Theorem 3 for each value of q̃sum,j . Subsequently, we

create a list of ARQ distributions [q1, . . . , qj], denoted by Lj , by varying the values of q̃sum,j . Following

a similar procedure, the candidates of Lj are used to generate Lj+2 for the (j +2)-hop network by using

Theorem 3 for each value of q̃sum,j+2. This way, a list of ARQ distributions are obtained through LN for
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the original N-hop network. It is clear that the size of the search space LN reduces with increase in the

number of folds.

To further reduce the size of the search space from that of Algorithm 1, we propose to retain the ARQ

distribution that gives us minimum PDP for a given q̃sum,j from the list Lj . This way, only one ARQ

distribution survives for a given q̃sum,j , thereby significantly reducing the list size when the algorithm

traverses to q̃sum,N . In the process of obtaining qj for each q̃sum,j , we minimized the PDP conditioned

on q̃sum,j and [q1, q2, . . . , qj−2]. However, since the optimal distribution of the folded network may not

contribute to the optimal distribution of the original N-hop network, we also propose to select the ARQ

distribution that is second in the list for that q̃sum,j and [q1, q2, . . . , qj−2]. In other words, for each q̃sum,j

in Lj we choose the ARQ distribution that minimizes the PDP, and for that selected ARQ distribution,

we also pick the ARQ distribution obtained by giving one ARQ from the last node to the penultimate

node. Evidently, this technique gives a significantly shorter list compared to the multi-folding approach.

Algorithm 1 Multi-folding algorithm for the SC strategy

Require: N , qsum, P = [P1, P2, . . . , PN ].
Ensure: Lfinal ⊲ Stores the list of ARQ distributions in search space

1: Lk = {φ} for k = 1, 2, . . . , N .

2: if N = odd then ⊲ Start with fixing q1
3: L1 = {[1, qsum − (N − 1) + 1]}.

4: Assign p = 3.

5: for j = p : 2 : N do

6: for i1 = 1 : |Lj−2| do

7: [q1, . . . , qj−2] = Lj−2(i1)
8: Compute qj using [q1, . . . , qj−2] by applying Theorem 3

9: for q̃sum,j = j : (qsum − (N − j) + 1) do.

10: Compute qj−1 = q̃sum,j −
∑j

t=1,t6=j−1
qt.

11: Insert [Lj−2(i1)||qj−1||qj ] to Lj only if qj−1 ≥ 0.

12: end for

13: end for

14: end for

15: Lfinal = LN .

16: else if N = even then ⊲ Start with fixing q1 and q2.

17: L2 = {{q1, q2} ∈ Z
2
+|q1 + q2 ∈ [2, qsum − (N − 2) + 1]}

18: Assign p = 4, and repeat steps from line number 5 to 15.

19: end if

A. Simulation Results and Complexity Analysis

In the first part, we show that the packets of the ARQ based SC strategy that reach the destination

arrive within the given deadline constraint with a high probability, provided the delay overheads from

ACK/NACK are sufficiently small. To generate the results, qsum is obtained as ⌊ τtotal
τp+τd

⌋ without considering

the resources for ACK/NACK in the reverse channel, where τtotal, τd and τp are as defined in Section I.

Subsequently, we introduce different resolution of delays from NACK, say τNACK time units, and then

study its impact on the end-to-end delay on the packets. Assuming τp + τd = 1 microsecond, we set the
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Fig. 3. Variation of average delay on the packets and the deadline violation parameter (η) for various τNACK when using the SC strategy.

deadline for end-to-end packet delay as qsum microseconds. Then, by sending an ensemble of 106 packets to

the destination through the SC strategy, we compute the following metrics when τNACK ∈ {0.2, 0.4, 0.6, 1}
microseconds: (i) the fraction of packets that were dropped in the network (denoted by WDrop) due to

insufficient ARQs at the intermediate nodes, (ii) the fraction of packets that reach the destination after

the deadline (denoted by WDeadline), and finally, (iii) the average end-to-end delay on the packets. These

metrics are plotted in Fig. 3 for various values of SNR at a specific value of N and the LOS vector c. The

plots suggest that the average delay is significantly lower than that of the deadline especially when τNACK

is small, owing to the opportunistic nature of ARQ strategies. However, as τNACK increases, the average

delay is pushed closer to the deadline. Furthermore, to capture the behaviour of deadline violations due

to higher τNACK , in Fig. 3, we also plot η =
WDrop+WDeadline

WDrop
. The plots confirm that when τNACK is

sufficiently small compared to τp + τd (see τNACK = 0.2µs at SNR = 15, 20 dB), the packets that reach

the destination arrive within the deadline with an overwhelming probability as η = 1 at those values.

In the rest of the section, we present simulation results to analyse the PDP of the SC strategy for various

values of N, qsum, and LOS vectors. Henceforth, to generate the simulation results for a given LOS vector

c and SNR, we use the saddle-point approximation in [17, Theorem 2] on (1) to compute {Pi, 1 ≤ i ≤ N}.

As emphasized in [17, Section V], these approximations are tight for Ricean channels when R > 0.5 and

when the block-length K is in few hundreds. Therefore, for the proposed approximation to be valid, we

use the block-length K = 500 in this simulation setup. In general, when the saddle-point approximation

in [17, Theorem 2] is not tight, {Pi, 1 ≤ i ≤ N} in (1) must be computed using numerical methods.

First, in Fig. 4, we present simulation results to compare the PDP of the SC strategy with that of the

non-cooperative strategy [16]. Although we have proved the dominance of our strategy theoretically, the

plots confirm that the PDP of the SC strategy outperforms the PDP of the non-cooperative strategy with no

increase in the communication-overhead on the packet. Furthermore, to showcase the benefits of using the

multi-fold algorithm and the greedy algorithm, we plot the minimum PDP offered by these algorithms for

N = 5 and N = 6 in Fig. 4. The plots confirm that while the multi-fold algorithm provides near-optimal
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ARQ distribution, the greedy algorithm is successful in offering the optimal ARQ distributions

In terms of complexity, for an N-hop network, the size of the search space for the SC strategy is upper

bounded by
(
qsum+N−1

N−1

)
. However, with the multi-fold algorithm, we have shown that the search space

can be reduced. To showcase the reduction, we plot the size of the search space (LN ) of the multi-fold

algorithm for N = 5 and N = 6. For these cases, since we can fold the network at most twice, we have

shown the results for both one-fold and two-fold cases. The simulation results, as shown in Fig. 5, display

significant reduction in the list size as we move to one-fold and two-fold. Finally, the plots also show

that the list size of the greedy algorithm is shorter than the multi-fold case, and it is, therefore, amenable

to implementation in practice.
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Fig. 4. PDP plots when using an SC strategy with exhaustive search (no fold), 1-fold, 2-fold and greedy strategies with c1 =
[0.1, 0.3, 0.1, 0.5, 0.2], c2 = [0.5, 0.5, 0.5, 0.5, 0.5], c3 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5] and c4 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] at SNR = 10
dB and rate R = 1.
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Fig. 5. List sizes for an SC strategy with exhaustive search, 1-fold, 2-fold and greedy strategies with c1 = [0.1, 0.3, 0.1, 0.5, 0.2], c2 =
[0.5, 0.5, 0.5, 0.5, 0.5], c3 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5] and c4 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] at SNR= 10 dB and rate R = 1.

Although the above presented results showcase the reduction in the overall list size for computing the

minimum PDP, they do not capture the number of computations at the destination in order to arrive at

the final lists. If we include the computations required to apply the results of Theorem 3 at each level of

multi-folding, it is clear that the greedy algorithm offers minimum complexity owing to fewer surviving

distributions at each level. From the above results, we conclude that the proposed SC strategy can be
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preferred to the non-cooperative strategy. In the next section, we explore methods to further improve the

reliability of the SC strategy by including the counters in the packet.

IV. CLUSTER BASED SEMI-CUMULATIVE STRATEGY

In the SC strategy, the benefit of cooperation is limited if an intermediate node uses more ARQs than

the number allotted to it. For instance, in a 3-hop network with ARQ distribution [q1, q2, q3] = [4, 3, 5],

suppose that the first hop consumes 2 attempts and the second hop consumes 4 attempts by utilizing one

residual ARQ from the first hop. Although one residual ARQ is still unused from the first two hops,

the third hop cannot utilize this because the second hop has used more ARQs than its allotted quota.

On the other hand, if the transmitter of the third hop had the knowledge of residual ARQs entering the

transmitter of the second hop, then it would have used that one unused ARQs. Thus, to take advantage

of the residual ARQs of the preceding nodes, we require a counter in the packet that would be updated

with the residual ARQs at each hop. Formally, the set of consecutive nodes in the network that use a

counter to share the residual ARQs in the packet is referred as a cluster [16]. To explain the cluster-based

idea, with q1 denoting the number of ARQs allotted to the first hop, let the first node in the cluster make

q1 − r1 number of attempts to successfully transmit the packet to the second node in the chain, for some

0 ≤ r1 ≤ q1− 1. After that, when the second node receives the packet successfully, it updates the counter

with a number equal to the sum of ARQs allotted to itself and the residual ARQs coming to the previous

hop, i.e., q2 + r1 ARQs, and then transmits the packet to the next node. If the second node of the cluster

uses q2+ r1− r2 attempts, then the third node updates the counter with q3+ r2 ARQs before transmitting

the packet. This way, each receiving node in the cluster updates the counter only once and recovers the

total number of unused ARQs by the previous nodes.

Using the above idea, we propose a Cluster based Semi-Cumulative (CSC) strategy on an N-hop

network wherein we make a group of nodes that acts as a cluster, as exemplified in Fig. 6. As the

grouping of nodes can be done anywhere in the network, we propose three cases, namely, Case-1: cluster

placed at the beginning by grouping a set of first few nodes. The network is made up of two portions,

a cluster portion followed by a semi-cumulative portion (see (a) in Fig. 6). Case-2: cluster placed at

an intermediate position. The N-hop network is made up of three portions, a semi-cumulative portion

followed by a cluster, which in-turn is followed by a semi-cumulative portion (see (b) in Fig. 6). Case-3:

cluster placed at the end by grouping a set of last few nodes in the network. The network is made up of

two portions, a semi-cumulative portion followed by a cluster (see (c) in Fig. 6). Overall, the nodes inside

the cluster can utilize the unused ARQs of all the preceding nodes in the cluster, whereas the nodes in the

semi-cumulative portion(s) utilize the unused ARQs of its preceding node only. Henceforth, a multi-hop

network employing the CSC strategy is referred to as the CSC network.
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Virtual Link Packet + Counter Intermediate Relays

Fig. 6. An illustrative example of a 5-hop network where a cluster is formed by grouping 3 consecutive nodes: (i) the cluster at the beginning

(Case-1), (ii) the cluster at an intermediate position (Case-2), and (iii) the cluster at the end (Case-3).

Similar to the SC strategy, we are interested in computing the optimal ARQ distribution on the N-hop

CSC network such that its PDP is minimized for a given qsum. Let Nsu and Nsw represent the hop sizes of

the semi-cumulative portions, and Ncy represent the hop size of the cluster. Here the first subscript indicates

the type of the sub-network, and the subscripts u ∈ {1} and y ∈ {1, 2} and w ∈ {2, 3} are jointly used to

represent their placement in the N-hop network. Consequently, we have Nsu+Ncy+Nsw = N . In particular,

the valid combinations of u, y, w that capture the three cases of the CSC network are Case-1: y = 1 along

with w = 2 implying that a cluster of size Nc1 is followed by a semi-cumulative network of size Ns2. Case-

2: y = 2 along with u = 1 and w = 3 implying that a cluster of size Nc2 is between two semi-cumulative

networks of size Ns1 and Ns3. Finally, Case-3: u = 1 and y = 2 implying that a cluster of size Nc2 follows

a semi-cumulative network of size Ns1. Furthermore, let the ARQ distribution on the nodes in the cluster

be denoted by qcy = [qcy,1, qcy,2, . . . , qcy,Ncy
], and the ARQ distribution on the nodes of the semi-cumulative

portions be qsu = [qsu,1, qsu,2, . . . , qsu,Nsu
] and qsw = [qsw,1, qsw,2, . . . , qsw,Nsw

]. Given that a sum constraint

is imposed on the ARQs, we have
∑Nsu

k=1 qsu,k+
∑Ncy

k=1 qcy,k+
∑Nsw

k=1 qsw,k = qsum as long as the combinations

of u, y, w are valid. Thus, in contrast to the usual notation on the ARQ vector q = [q1, q2, . . . , qN ], we

use q = [qsu,1, qsu,2, . . . , qsu,Nsu
︸ ︷︷ ︸

qsu

qcy,1, qcy,2, . . . qcy,Ncy
︸ ︷︷ ︸

qcy

, qsw,1, qsw,2, . . . , qsw,Nsw
︸ ︷︷ ︸

qsw

], for valid combinations of

u, y, w. Similarly, we use P = [Psu,1, Psu,2, . . . , Psu,Nsu
Pcy,1, Pcy,2, . . . Pcy,Ncy

, Psw,1, Psw,2, . . . , Psw,Nsw
]

instead of P = [P1, P2, . . . , PN ], to highlight the association of the outage probabilities to either the semi-

cumulative portion or the cluster. With the above notations on a CSC network, the optimization problem
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for ARQ distribution is given in Problem 2 by encompassing all the three cases. As presented in Problem

2, pdpcs,N represents the PDP at the destination wherein the subscript cs highlights the CSC network.

Problem 2: For an N-hop CSC network with a given LOS vector c, Ncy, Nsu, Nsw, SNR α = 1
σ2 ,

and qsum, solve argmin
q

pdpcs,N , subject to q ∈ {0 ∪ Z+}N such that
∑Nsu

k=1 qsu,k +
∑Ncy

k=1 qcy,k +
∑Nsw

k=1 qsw,k = qsum for all valid combinations of u, y, w.

Towards solving the above problem, the following questions must be answered, (i) How to write the

closed-form expression for pdpcs,N in Case-1, Case-2 and Case-3, (ii) Once the expression for pdpcs,N is

written, how to allocate the ARQs to the nodes that are part of the cluster, and those that are outside the

cluster. A particularly interesting question under the question in (ii) is “Does the optimal ARQ distribution

on the nodes in the cluster depend on the position of the cluster? To justify the relevance of this question,

note that in both Case-1 and Case-2, the node that follows the cluster can use the residual ARQs of the

last node of the cluster by listening to its number of failed transmissions. In contrast, in Case-3, there

is no node after the cluster that requires unused ARQs. Thus, whether or not non-zero ARQs must be

allotted to the last node of the cluster depends on the position of the cluster. Henceforth, in the rest

of this section, we follow a 3-step approach to solve Problem 2: Step 1: For a given qsum, qsu qsw,

characterize the structure of qcy that minimizes the PDP. Step 2: Using the results of Step 1, form a

virtual semi-cumulative network, and minimize its PDP. Step 3: Apply the structure of qcy obtained in

Step 1 on the solution of Step 2.

As part of Step 1, we propose to solve Problem 3 that addresses the optimal ARQ distribution within

the cluster conditioned on the ARQs allotted to the semi-cumulative network(s). In contrast to Problem

2, Problem 3 addresses to maximize the Packet Survival Probability (PSP) at the last node of the

cluster for any given residual ARQs. Formally, the PSP at the Ncy-th node of the cluster is denoted

by pspcy,Ncy
(rcy,Ncy−1), where rcy,Ncy−1 denotes the number of residual ARQs coming from the (Ncy−1)-

th node of the cluster. We remark that it is imperative to take the PSP approach due to the presence of a

semi-cumulative network after the cluster.

Problem 3: For an N-hop CSC network with a given LOS vector c, SNR α = 1
σ2 , qsu, qsw

and qsum, solve arg max
qcy,1,qcy,2,...qcy,Ncy−1

pspcy,Ncy
(rcy,Ncy−1), ∀rcy,Ncy−1, where [qcy,1, qcy,2, . . . qcy,Ncy−1] ∈

{0 ∪ Z+}Ncy−1, such that
∑Nsu

k=1 qsu,k +
∑Ncy

k=1 qcy,k +
∑Nsw

k=1 qsw,k = qsum for all valid u, y, w.

A. Theoretical Results for Cluster based Semi-Cumulative Strategy

First, we consider a CSC network with either Case-1 or Case-2. For a given qsu and qsw, the following

theorem proves that except the last node of the cluster, all the ARQs on the nodes inside the cluster must

be transferred to the first node of the cluster in order to maximize the PSP at the last node of the cluster.
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Theorem 4: In Case-1 and Case-2, giving all the ARQs of the first Ncy − 1 nodes of the cluster to the

first node of the cluster maximizes the PSP at the Ncy-th hop of the cluster for any given residual ARQs

rcy,(Ncy−1) at the Ncy-th hop.

Proof: We divide the proof into two parts depending on the placement of the cluster in the network.

Case I : With the cluster placed at the beginning, we have Nc1+Ns2 = N . Let qc1 = {qc1,1, qc1,2, . . . , qc1,Nc1}
and qs2 = {qs2,1, qs2,2, . . . , qs2,Ns2} represent the ARQ distribution of the networks c1 and s2, respectively.

Therefore, the overall ARQ distribution of the N-hop network satisfies the constraint
∑Nc1

k1=1 qc1,k1 +
∑Ns2

k2=1 qs2,k2 = qsum. We prove the theorem using the induction method. For the initialization step, let

Nc1 = 3 and qc1 = {qc1,1, qc1,2, qc1,3}. Since PSP is the metric of interest, let the residual ARQ arriving at

the 3rd hop be rc1,2, where the range of rc1,2 is [0, qc1,1+qc1,2−2]. We prove that {qc1,1+qc1,2, 0} maximizes

the PSP at the 3rd hop of the cluster for any residual ARQ. For the ARQ distribution {qc1,1, qc1,2}, let

the consumption profile of ARQs at the first two hops of the cluster be q̃c1 = {q̃c1,1, q̃c1,2} such that

q̃c1,1 ≤ qc1,1 and qc1,1+ qc1,2 = q̃c1,1+ q̃c1,2+ rc1,2. In order to result in rc1,2 residual ARQs, the PSP at the

3rd hop of the cluster is pspc1,3(rc1,2) = (1− Pc1,1)(1− Pc1,2)(
∑qc1,1

i=1 P i−1
c1,1P

qc1,1+qc1,2−rc1,2−i−1
c1,2 ). Note that

when the exponent term of Pc1,2 goes negative, we discard the corresponding terms from PSP expression

as those terms are invalid. Similarly, with ARQ distribution {qc1,1 + qc1,2, 0}, the PSP at the 3rd hop with

rc1,2 residual ARQs is psp
′

c1,3(rc1,2) = (1 − Pc1,1)(1 − Pc1,2)(
∑qc1,1+qc1,2

i=1 P i−1
c1,1P

qc1,1+qc1,2−rc1,2−i−1
c1,2 ), and

similar to pspc1,3, we discard the terms with negative exponent on Pc1,2. After solving the difference of

psp
′

c1,3(rc1,2) and pspc1,3(rc1,2), we get psp
′

c1,3(rc1,2)− pspc1,3(rc1,2) = (1− Pc1,1)(1− Pc1,2)(
∑qc1,2

i=1 P i−1
c1,1

P
qc1,1+qc1,2−rc1,2−i−1
c1,2 ). It can be observed that psp

′

c1,3(rc1,2) ≥ pspc1,3(rc1,2) (because qc1,2 ≥ 0) where

equality holds when qc1,2 = 0 or 1. Therefore, the initialization step is proved. Now, we assume that the

result is also true for Nc1 = t+ 1 for any t ≥ 3. As a consequence, the optimal ARQ distribution which

maximizes the PSP at the (t + 1)-th hop for any given rc1,t is {qc1,1 + qc1,2 + . . . + qc1,t, 0, . . . , 0}. Now,

we have to prove that the same result is true for Nc1 = t+ 2.

Let rc1,(t+1) be the number of residual ARQs at (t + 2)-th node, where the range of rc1,(t+1) is

[0,
∑t+1

i=1 qc1,i−(t+1)]. Let pspc1,(t+2)(rc1,t+1) and pspc1,t+1(rc1,t) be the PSP at the (t+2) and (t+1) nodes,

respectively. Conditioned on a given qc1,t+1, we want to write pspc1,t+2(rc1,t+1) in terms of pspc1,t+1(rc1,t).

This means for a given rc1,t, the (t+1)-th node must make (qc1,t+1+ rc1,t− rc1,t+1) attempts out of which

one is successful and the others are unsuccessful. The PSP at (t+ 2)-th node is

pspc1,t+2(rc1,t+1) = (1− Pc1,t+1)
∑

rc1,t

pspc1,t+1(rc1,t)P
qc1,t+1+rc1,t−rc1,t+1−1
c1,t+1 , (3)

where (1 − Pc1,t+1)P
qc1,t+1+rc1,t−rc1,t+1−1
c1,t+1 represents the probability that qc1,t+1 + rc1,t − rc1,t+1 ARQs are

consumed at (t+1)-th node. Note that once rc1,t is fixed, the second term in the summation of (3) is fixed.
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This implies that to maximize pspc1,t+2(rc1,t+1) for a given qc1,t+1, we need to maximize pspc1,t+1(rc1,t) for

every rc1,t in the valid range. From the induction step, we have already assumed that the ARQ distribution

{qc1,1+ qc1,2+ . . .+ qc1,t, 0, . . . , 0} maximizes the PSP for any residue at the (t+1)-th hop. Therefore, by

invoking the result from (t + 1)-hop network, the optimal ARQ distribution for the (t + 2)-hop network

conditioned on qc1,t+1 is of the form qc1,t+1 = {qc1,1 + qc1,2 + . . .+ qc1,t, 0, . . . , 0, qc1,t+1}. As the last step

of this proof, we need to show that qc1,t+1 must be transferred to the first node of the cluster in order

to maximise the PSP for any residue at the (t + 2)-th hop. Using proof by contradiction, let us assume

that qc1,t+1 > 1 maximizes the PSP for any residue at the (t + 2)-th hop. In that case, let us focus on

the ARQ consumption profile q̃c1,t+1 = {q̃c1,1, q̃c1,2, . . . , q̃c1,t+1} of the first t + 1 nodes of the cluster

that results in rc1,t+1 = 0 at node t + 2. We immediately note that when qt+1 > 1 in qc1,t+1, it is not

possible to have ARQ consumption of the form {qc1,1+ qc1,2+ . . .+ qc1,t− (t−1)+1, 1, . . . , 1, qc1,t+1−1}
because a node cannot borrow from its succeeding node. Therefore, the mass point value on the above

consumption profile is 0. On the other hand, if qc1,t+1 = 0 or 1 in qc1,t+1, we can obtain every possible

ARQ consumption profile, and hence in this case, we have a non-zero mass point value against each

ARQ consumption profile. This is a contradiction as it results in higher value of pspc1,t+2(rc1,t+1 = 0)

compared to that when qt+1 > 1 in qc1,t+1. Thus, the optimal ARQ distribution that maximizes PSP for

every residue at the (t + 2)-th hop is {qc1,1 + qc1,2 + . . . + qc1,t+1, 0, . . . , 0}. Although the ARQ on the

(t+ 1)-th node can be either 0 or 1, we have used 0 in this proof.

Case II : In this case, the cluster is placed in between two semi-cumulative networks such that N =

Ns1+Nc2+Ns3. As a consequence, the first node of the cluster can make use of the residual ARQs from

its previous node in addition to the ARQs allotted to it. Let rs1,Ns1 ∈ [0, qs1,Ns1 −1] be the residual ARQs

from the last node of the s1 network. Therefore, the first node of the cluster can use ARQs in the range

[qc2,1, qc2,1 + rs1,Ns1]. Since a semi-cumulative network precedes the cluster, the PSP at the first and the

last nodes of the cluster are given in (4) and (5), respectively. -

pspc2,1(rs1,Ns1) = (1− P
qs1,Ns1
s1,Ns1

)
∑

rs1,Ns1−1

psps1,Ns1(rs1,Ns1−1)P
qs1,Ns1

−1−rs1,Ns1
s1,Ns1

. (4)

pspc2,Nc2(rc2,Nc2−1) = psps1,Ns1(rs1,Ns1−1)pspc2,Nc2(rc2,Nc2−1|rs1,Ns1−1, qc2,1, . . . , qc2,Nc2−1). (5)

The LHS of (4) is fixed since the ARQ distribution on the semi-cumulative part s1 is fixed. However,

the LHS of (5) depends on the ARQs allotted to the first Nc2 − 1 nodes of the cluster as well as how the

residual ARQ entering the first node of the cluster is used. It can be observed that in order to maximize

the LHS of (5) we need to maximize the second term of (5) because psps1,Ns1(rs1,Ns1−1) is constant. By

using Case I, we can maximize the second term by transferring all the ARQs of the first Nc2 − 1 nodes
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along with the residual ARQs from s1 to the first node of the cluster. This completes the proof.

The following theorem shows that the above discussed ARQ distribution within the cluster minimizes

the average PDP at the destination for a given ARQ allocation on the semi-cumulative networks.

Theorem 5: In Case-1 and Case-2, for a given qsu and qsw, by maximizing the PSP at the Ncy-th hop

of the cluster for any residual ARQs, we minimize the average PDP at the destination.

Proof: First, we consider Case-1 where the cluster of size Nc1 is followed by a semi-cumulative

network of size Ns2. For this case, we have already proved that the ARQ distribution {qc1,1 + qc1,2 +

. . . + qc1,Nc1−1, 0, . . . , 0} maximizes the PSP at Nc1-th hop of the cluster for every rc1,Nc1−1. Further-

more, let qc1,Nc1 be the number of ARQs given to the last node of the cluster, and therefore, the

Nc1-th node can use upto qc1,Nc1 + rc1,Nc1−1 ARQs. If Nc1-th node uses more than qc1,Nc1 attempts

(because of residual ARQs as indicated in the packet), then the first node of the s2 network cannot

get ARQ benefits. However, if the Nc1-node uses fewer than qc1,Nc1 attempts, then the first node of

the s2 network can borrow the residual ARQs unused by the Nc1-th node. Formally, we can write

the PSP at the first node of s2 network with respect to the PSP at Nc1-th hop as psps2,1(rc1,Nc1) =

(1−Pc1,Nc1)
∑

rc1,Nc1−1
pspc1,Nc1(rc1,Nc1−1)P

qc1,Nc1
−1+rc1,Nc1−1−rc1,Nc1

c1,Nc1
, where rc1,Nc1−1 and rc1,Nc1 represent

the number of residual ARQs arriving at Nc1-th node and first node of s2 network, respectively. Similarly,

the PSP at the second node of the s2 network and at the destination are respectively given by

psps2,2(rs2,1) = (1− Ps2,1)
∑

rc1,Nc1

psps2,1(rc1,Nc1)P
qs2,1−1+rc1,Nc1

−rs2,1
s2,1 ,

psps2,D(rs2,Ns2) = (1− Ps2,Ns2)
∑

rs2,Ns2−1

psps2,Ns2(rs2,Ns2−1)P
qs2,Ns2

−1+rs2,Ns2−1−rs2,Ns2
s2,Ns2

,

where D represents the destination of the N-hop network (i.e. the Ns2-th hop). It must be observed that

since pspc1,Nc1(rc1,Nc1−1) is maximized for each rc1,Nc1−1, the term psps2,1(rc1,Nc1) is maximized for each

rc1,Nc1 . Furthermore, by repeating the steps in the similar way, we maximize the PSP at the destination

for every rs2,Ns2 . As a result, the average PSP is maximized at the destination, which in turn minimizes

the average PDP at the destination. This completes the proof when the cluster is placed at the beginning.

We can use a similar approach to prove the statement of the theorem for Case-2.

Theorem 6: In Case-3, for a given qsu and qsum, giving all the ARQs of the Ncy nodes of the cluster

to the first node of the cluster minimizes the PDP at the destination

Proof: The proof is along the similar lines of Theorem 4 and Theorem 5 with the exception that the

ARQs allotted to the last node of the cluster must also be transferred to the first node of the cluster; this

is because there is no semi-cumulative network following the cluster in Case-3.

For a given CSC network, once the ARQs on the N nodes is known, we have so far completed Step
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1 in our approach. In order to complete Step 2, it is important to write the expression for the PDP of the

network. Given that it is challenging to write the PDP expression owing to the memory property in the

strategy, we provide a set of rules to write the PDP expression for any N . Similar to the PDP expression

for the SC strategy, we continue to make use of binary sequences, however, without using the structure

of Fibonacci series owing to the presence of the cluster in the network. For the ease of explaining our

procedure, if the cluster is placed other than the last position in the N-hop network, we split the cluster

into two parts. The first part of the cluster is the group of first Ncy − 1 nodes, henceforth referred to as

the virtual node called node v. Similarly, the last node of the cluster is referred to as node v + 1. On the

other hand, when the cluster is placed at the last position of the network, all the Ncy nodes of the cluster

are treated as node v. Therefore, we replace the cluster by either two virtual hops or one virtual hop

depending on its location in the network. Consequently, we will replace the physical N-hop network by a

virtual Ñ-hop network, where Ñ = N − (Nc1− 1)+1, Ñ = N − (Nc2 − 1)+1, and Ñ = N − (Nc2)+ 1,

for Case-1, Case-2, and Case-3, respectively. On this Ñ -hop network, the effective ARQ vector is given

by q = [qsu,1, qsu,2, . . . , qsu,Nsu
, qv, qv+1, qsw,1, qsw,2, . . . , qsw,Nsw

] ∈ {0 ∪ Z+}Ñ , where qv =
∑Ncy−1

i=1 qcy,i,

and qv+1 = qcy,Ncy
for Case-1 and Case-2, whereas qv =

∑Ncy

i=1 qcy,i for Case-3. The procedure for writing

the PDP expression for this virtual Ñ-hop network is explained in the next theorem.

Theorem 7: After replacing the cluster by node v and node v + 1 in an N-hop CSC network, the PDP

expression for the Ñ -hop network can be written in closed-form.

Proof: For the virtual Ñ-hop network, we can write the PDP expression at the destination as pdpcs,Ñ =

pdpcs,1h+pdpcs,2h+ . . .+pdpcs,Ñh, where pdpcs,kh, for 1 ≤ k ≤ Ñ , denotes the probability that the packet

is dropped at the k-th hop. To write the expression of pdpcs,kh, for each k ∈ {1, 2, . . . , Ñ}, we recommend

using a set of k-length binary sequences to characterize the packet surviving event till the k-th hop. Similar

to Theorem 1, while writing the expression for pdpcs,kh, a bit ‘0′ in the m-th position of the sequence,

for 1 ≤ m < k, indicates that the m-th node forwards the packet to its next node without borrowing the

residual ARQs from its preceding node. Similarly, bit ‘1′ indicates that the m-th node forwards the packet

after borrowing the residual ARQs from its preceding node. For a given k, we discard the invalid sequences

that do not follow the rules of CSC network These rules are: (a) sequences starting with 1 at the MSB must

be discarded since the first node is the source, (b) sequence containing all 0 is invalid, (c) in a sequence,

two consecutive ′1′ can only occur at the positions of v and v+1 nodes of the cluster, because node v+1 of

the cluster can borrow from node v irrespective of whether node v node has borrowed from its preceding

node or not. This event occurs when the cluster is placed other than last position in the N-hop network.

Therefore, a k-length sequence is invalid if it contains consecutive ones at any positions except for the

above mentioned case, and (d) the last bit of the sequence can be either ‘0′ or ‘1′ as it represents whether

the packet is dropped at the k-th node with no borrowing or borrowing of residual ARQs from the (k−1)-
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th node, respectively. First, we collect the set of valid k-length sequences, and then based on whether k

is odd or even, we propose a procedure to use the k-length sequences to construct pdpcs,kh. We divide the

k-length sequence into the chunks of bits from the left to the right such that first chunk contains only the

MSB bit and the subsequent bits are divided into the chunks of two bits. If k is odd, we end up with a chunk

of two bits at the end, otherwise, we end up with a chunk of one bit. To map the bits to corresponding

PDP terms, we parse the chunks of the sequence from left to right, and then replace the chunks with the

terms as listed in Table.I. Among the terms in the table, the notation pspv(·) represents the probability that

packet reaches node v+1 after consuming as many ARQs in the argument by the virtual node. Similarly,

pdpv(·) represents the probability that the packet is dropped by the virtual node despite consuming as

many ARQs in the argument. In this process, it is important to identify the locations of node v and node

v + 1 for every k. This way, each valid binary sequence is written as the product of terms of the form

βγ1,γ2I , βγ1,γ2I , βγ1,γ2E , and βγ1,γ2E as given in Table.I, for valid combinations of γ1 ∈ {0, 1, 01, 10, 11}
and γ2 ∈ {s, v, v+1, ss, sv, v(v+1), (v+1)s}. Once a k-length sequence is replaced by the corresponding

expression, we add the expressions of all the valid k-length sequences to obtain Bk. Finally, using Bk,

we obtain (i) pdpcs,kh =
∏k−1

i=1 (1− Ps1,i)(Ps1,k)
qs1,kBk, when k ≤ Ns1, (ii) pdpcs,kh =

∏k−1
i=1 (1− Ps1,i)Bk,

when k = Ns1 + 1, (iii) pdpcs,kh =
∏k−2

i=1 (1 − Ps1,i)(Pv+1)
qv+1Bk, when k = Ns1 + 2 (referred to as a

special case in Table. I) and (iv) pdpcs,kh = (1−Pv+1)
∏Ns1

i=1(1−Ps1,i)
∏t−1

j=1(1−Ps2,j)(Ps2,t)
qs2,tBk, when

k ≥ Ns1 + 2 + t, where 1 ≤ t ≤ Ns2 for all above cases. Overall, we get pdpcs,Ñ =
∑Ñ

i=1 pdpcs,ih.

Example 1: We pick the case wherein the cluster is followed by a semi-cumulative network with

Nc1 = 3 and Ns2 = 2. The network is shown in Fig. 6(a) and the ARQ distribution is given by

q = [qv, qv+1, qs2,1, qs2,2], where qv is the number of ARQs given to the first Nc1 − 1 hops of the cluster

and qv+1 is the number of ARQs given to the last node of the cluster. Therefore, a 5-hop network can be

visualized as a 4-hop virtual network. To write the expression for pdpcs,4h, the valid 4-length sequences are

{0101, 0010, 1101}, where we map ′0101′ to (
∑qv

i=1 pspv(qv−i−1)
∑i−1

j=1 P
qv+1+j
v+1 )(

∑qs2,1
i=1 P

qs2,1−i

s2,1 P
qs2,1+i−1
s2,1 ),

′0010′ to (
∑qv

i=1 pspv(qv − i))(
∑qv+1

i=1 P
qv+1−i
v+1 P

qs2,1+i−1
s2,1 )(P

qs2,2
s2,2 ) and ′1101′ to (

∑qv
i=1 pspv(qv − i))

(
∑qv+1

i=1 P
qv+1−i
v+1 )(

∑qs2,1
i=1 P

qs2,1−i

s2,1 P
qs2,2+i−1

s2,2 ). Similarly, we can write pdpcs,kh for k = 1, 2, 3 by using valid k-

length binary sequences, and then write the overall PDP as pdpcs,4 = pdpcs,1h+pdpcs,2h+pdpcs,3h+pdpcs,4h.

From the above results, we have shown that the PDP for the CSC strategy can be written using the ARQ

vector is q = [qsu,1, . . . , qsu,Nsu
, qv, qv+1, qsw,1, . . . , qsw,Nsw

] ∈ {0 ∪ Z+}Ñ , where qv =
∑Ncy−1

i=1 qcy,i, and

qv+1 = qcy,Ncy
. Since q satisfies the sum constraint

(
∑Nsu

k=1 qsu,k

)

+ qv + qv+1 +
(
∑Nsw

k=1 qsw,k

)

= qsum, it

is straightforward to compute the optimal ARQ distribution [q∗su,1, . . . , q
∗
su,Nsu

, q∗v , q
∗
v+1, q

∗
sw,1, . . . , q

∗
sw,Nsw

]

through exhaustive search. Subsequently, we can complete Step 3 by obtaining the optimal ARQ distri-

bution of the N-hop network as q∗cy,1 = q∗v , q∗cy,Ncy
= q∗v+1 and q∗cy,j = 0 for 1 < j < Ncy. However, since

exhaustive search is not practical, we present theoretical results on complexity reduction to compute the
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optimal ARQ distribution for all the three cases under Step 2.

B. Complexity Reduction for Case-1 and Case-2

In the following theorem, we show that the optimal ARQ distribution of the Ñ-hop network can be

computed by using the search space for the first Ñ − 2 values of q.

Theorem 8: For Case-1 and Case-2, to find the optimal ARQ distribution, the brute force search of an

Ñ -hop network can be reduced to the brute force search for (Ñ − 2)-hop network.

TABLE I

BINARY SEQUENCE BASED PDP EXPRESSION FOR Ñ -HOP CSC NETWORK

Nodes Chunk Chunks βs Expression
size terms

First

position

s (MSB) 1 0 β0,sI
∑qs1,1

i=1 P
qs1,1−i

s1,1 ,

v (MSB) 1 0 β0,vI
∑q̄v

i=1 pspv(qv − i+ 1), where
q̄v = qv − (Nc1 − 2).

Middle For (s, s) combinations, the indices
positions m,m− 1, m+ 1 refer to positions of the nodes

m < Ñ inside the semi-cumulative portions

s, s 2 00 β00,ssI

(
∑qsx,(m−1)

i=1 P
qsx,m−1−i

sx,m−1

)(
∑qsx,m

j=1 P
qsx,m−j
sx,m

)

, for x ∈ {u,w}.

s, s 2 01 β01,ssI

(
∑qsx,m−1

i=1 P
qsx,m−1−i

sx,m−1

)(
∑i−2

j=0 P
qsx,m+j
sx,m

)

.

s, s 2 10 β10,ssI

(
∑i−2

j=0 P
qsx,m+j
sx,m

)(
∑qsx,(m+1)

k=1 P
qsx,(m+1)−k

sx,(m+1)

)

,

where i is residual ARQs from previous node.

s, v 2 00 β00,svI

(
∑qs1,Ns1

i=1 P
qs1,Ns1

−i

s1,Ns1

)(
∑q̄v

j=1 pspv(qv − j + 1)
)

.

s, v 2 01 β01,svI

(
∑qs1,Ns1

i=1 P
qs1,Ns1

−i

s1,Ns1

)(
∑i−1

j=1 pspv(qv + i− 1− j + 1)
)

.

s, v 2 10 β10,svI

(
∑i−2

j=0 P
qs1,Ns1

+j

s1,Ns1

)(
∑q̄v

k=1 pspv(qv − k + 1)
)

,

where i is residual ARQs from previous node.

v + 1, s 2 00 β00,(v+1)sI

(
∑qv+1

i=1 P
qv+1−i

v+1

)(
∑qsw,1

i=1 P
qsw,1−i

sw,1

)

.

v + 1, s 2 01 β01,(v+1)sI

(
∑qv+1

i=1 P
qcy,v+1−i

v+1

)(
∑i−2

j=0 P
qsw,1+j

sw,1

)

.

v + 1, s 2 10 β10,(v+1)sI

(
∑i−1

j=0 P
qv+1+j

v+1

)(
∑qsw,1

k=1 P
qsw,1−k

sw,1

)

.

v, v + 1 2 00 β00,v(v+1)I

(
∑q̄v

i=1 pspv(qv − i+ 1)
)(

∑qv+1
j=1 P

qv+1−j

v+1

)

.

v, v + 1 2 01 β01,v(v+1)I

(
∑q̄v

i=1 pspv(qv − i+ 1)
)(

∑i−1
j=0 P

qv+1+j

v+1

)

.

v, v + 1 2 10 β10,v(v+1)I

(
∑i−1

j=1 pspv(qv + i− 1− j + 1)
)(

∑qv+1

k=1 P
qv+1−k

v+1

)

,

where i is the residual ARQs from previous node.

v, v + 1 2 11 β11,v(v+1)I

(
∑i−1

j=1 pspv(qv + i− 1− j + 1)
)(

∑j−1
k=0 P

qv+1+k

v+1

)

,

where i is the residual ARQs from previous node.

Last

positions

s, s 2 01 β01,ssE
∑qsw,Nsw

−1

i=1 P
qsw,Nsw−1−i

sw,Nsw−1 P i−1
sw,Nsw

,

s, s 2 10 β10,ssE
∑i−2

j=0 P
qs1,Nsw−1+j

s1,Ns1−1

s, v 2 01 β01,svE
∑qs1,Ns1

i=1 P
qs1,Ns1

−i

s1,Ns1
PDPv(qv + i− 1),

s, v 2 10 β10,svE
∑i−2

j=0 P
qs1,Ns1

+j

s1,Ns1
PDPv(qv)

v + 1, s 2 01 β01,(v+1)sE

∑qv+1

i=1 P
qv+1−i

v+1 P i−1
sw,1,

v + 1, s 2 10 β10,(v+1)sE

∑i−2
j=0 P

qv+1+j

v+1

v, v + 1∗ 2 01 β01,v(v+1)E

(
∑q̄v

i=1 pspv(qv − i+ 1)
)

P i−1
v+1.

v, v + 1∗ 2 11 β11,v(v+1E

(
∑i−1

j=1 pspv(qv + i− 1− j + 1)
)

P
j−1
v+1 ,

* Special where i is the residual ARQs from previous node.
case

s (LSB) 1 0 β0,sE 1,

s (LSB) 1 1 β1,sE P i−1
sw,Nsw

where i is the residual ARQs from the previous node.

v (LSB) 1 1 β1,vE PDPv(qv + i− 1) where i is the residual ARQs from the previous node.
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Proof: Let the ARQ distribution of the Ñ -hop network be q̃cs,Ñ = [q̃cs,1, q̃cs,2, . . . , q̃cs,Ñ−1, q̃cs,Ñ ],

where either q̃cs,Ñ−1 = qsw,Nsw−1, q̃cs,Ñ = qsw,Nsw
, or q̃cs,Ñ−1 = qv+1, q̃cs,Ñ = qsw,1. Similarly, let

the outage probability vector be [P̃cs,1, P̃cs,2. . . . , P̃cs,Ñ ] = [Psu,1, . . . , Psu,Nsu
, Pv, Pv+1, Psw,1, . . . , Psw,Nsw

],

where Pv = pspv({qcy,1, . . . , qcy,Ncy−1}) is as defined in Theorem 7, Pv+1 = Pcy,Ncy
. Our approach for

the proof is to fix the ARQs for the first Ñ − 2 nodes, and then transfer the ARQs from the last node

to the penultimate node until the PDP is minimized. When we give one ARQ from last node to the

penultimate node, we obtain q̃
′

cs,Ñ
= [q̃cs,1, q̃cs,2, . . . , q̃cs, ˜N−1 + 1, q̃cs,Ñ − 1]. Now, the PDP expressions

with q̃cs,Ñ and q̃
′

cs,Ñ
, respectively, can be written as pdpcs,Ñ = pdpcs,Ñ−2 + pdpcs,(Ñ−1)h + pdpcs,Ñh,

pdp
′

cs,Ñ
= pdp

′

cs,Ñ−2
+ pdp

′

cs,(Ñ−1)h
+ pdp

′

cs,Ñh
, where the individual expressions are the probabilities that

the packet is dropped at the intermediate links. Also, it can be noted that the last two nodes must be

either only semi-cumulative nodes or a v + 1 node that is followed by a semi-cumulative node. It is

straightforward to note that pdpcs,jh = pdp
′

cs,jh for 1 ≤ j ≤ Ñ−2 since the first Ñ−2 terms are the same

in q̃cs,Ñ and q̃
′

cs,Ñ
, when cluster is placed other than the last position. Therefore, similar to Theorem 3,

on equating pdpcs,Ñ = pdp
′

cs,Ñ
, we get pdpcs,(N−1)h − pdp

′

cs,(Ñ−1)h
= −(pdpcs,Ñh − pdp

′

cs,Ñh
), where we

can write pdp
′

cs,(Ñ−1)h
= P̃cs,Ñ−1

(

pdpcs,(Ñ−1)h

)

because at the (Ñ − 1)-th hop, every term of B
′

Ñ−1
gets

multiplied by P̃cs,Ñ−1 (outage probability of the (Ñ−1)-th hop) since one ARQ has been transferred from

the Ñ -th hop. Hence, we can write pdpcs,(Ñ−1)h(1 − P̃cs,Ñ−1) = −(pdpcs,Ñh − pdp
′

cs,Ñh
). On expanding

the above equation and including (1− P̃cs,Ñ−1) in the product loop, we can write

(
BÑ−1

∏Ñ−2

i=1,i6=j,s.t.P̃cs,j=Pv
P̃

qcs,i
cs,i

)

= P̃
q̃
cs,Ñ

cs,Ñ

(P̃−1

cs,Ñ
B

′

Ñ
−BÑ )

∏Ñ−1

i=1,i6=j,s.t.P̃cs,j=Pv
P̃

q̃cs,i
csi

. (6)

where BÑ and B
′

Ñ
are the terms obtained using the binary sequence representation corresponding to

pdpcs,Ñh and pdp
′

cs,Ñh
, respectively. In the rest of the proof, we will show that

P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

does not

contain q̃cs,Ñ−1 in it. Towards that direction, note that both B
′

Ñ
and BÑ contain the same number of terms

in their expansion using binary sequences, however, with the difference that the terms q̃cs,Ñ and q̃cs,Ñ−1

in BÑ appear as q̃cs,Ñ − 1 and q̃cs,Ñ−1 + 1 in B
′

Ñ
, respectively. When constructing B

′

Ñ
and BÑ using

binary sequences of length Ñ , we partition the terms of B
′

Ñ
and BÑ into two categories, namely: the

sequences that end with ‘01’ and sequences that end with ‘10’. This is because the states of the nodes

before the last two digits are the same for both B
′

Ñ
and BÑ . As a result, for the sequences that end

with ‘01’, we can take the term β01,γ2E, for γ2 ∈ {(v + 1)s, ss} at the locations Ñ − 1 and Ñ , common,

and only focus on its effect in
B

′

Ñ
−P̃

cs,Ñ
B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

. Similarly, for the sequences that end with ‘10’, we can take

the term β10,γ2I , for γ2 ∈ {v(v + 1), (v + 1)s, ss} common at the locations Ñ − 2 and Ñ − 1 and only

focus on its effect in
P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

. To handle the former case, the term β01,γ2E from B
′

Ñ
is of the form

∑q̃
cs,Ñ−1+1

i=1 P̃
q̃
cs,Ñ−1+1−i

cs,Ñ−1
P̃ i−1

cs,Ñ
, whereas the term β01,γ2E from BÑ is of the form

∑q̃
cs,Ñ−1

i=1 P̃
q̃
cs,Ñ−1−i

cs,Ñ−1
P̃ i−1

cs,Ñ
.

By taking P̃
q̃
cs,Ñ−1

cs,Ñ−1
common from both the above terms, the difference of the two corresponding terms in
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P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

is 1
P̃
cs,Ñ

, and this is because of the equality

q̃
cs,Ñ−1∑

i=1

P̃−i

cs,Ñ−1
P̃ i−1

cs,Ñ
−

q̃
cs,Ñ−1+1
∑

i=1

P̃ 1−i

cs,Ñ−1
P̃ i−2

cs,Ñ
= − 1

P̃cs,Ñ

. (7)

This completes the proof that
P̃−1
N

B
′

Ñ
−B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

does not contain q̃cs,Ñ−1 in it from sequences ending with ‘01’.

Note that this argument holds when γ2 ∈ {(v + 1)s, ss}. To handle the sequences that end with ‘10’,

we can have three types of terms based on the positions of node v and node v + 1 and their status of

borrowing the residual ARQs. One type of term is β01,ssE which contributes to B
′

Ñ
a term of the form

∑q̃
cs,Ñ−2

i=1 P̃
q̃
cs,Ñ−2−i

cs,Ñ−2

∑i−2
k=0 P̃

q̃
cs,Ñ−1+1+k

cs,Ñ−1
. Similarly, the term β01,ssE contributes to BÑ a term of the form

∑q
cs,Ñ−2

i=1 P̃
q̃
cs,Ñ−2−i

cs,Ñ−2

∑i−2
k=0 P

q̃
Ñ−1+k

cs,Ñ−1
. After taking out P̃

q̃
Ñ−1

cs,Ñ−1
common, we can evaluate that

P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ

P̃
q
Ñ−1

cs,Ñ−1

does not contain q̃Ñ−1. Furthermore, the other type of term is β01,v(v+1)E which contributing to B
′

Ñ

a term of the form
∑q̃

cs,Ñ−2

i=1 pspcs,Ñ−2(q̃cs,Ñ−2 − i + 1)
∑i−1

j=1 P̃
q̃
cs,Ñ−1+j

cs,Ñ−1
. Similarly, the term β01,v(v+1)E

contributing to BÑ is of the form
∑q̃

cs,Ñ−2

i=1 pspcs,Ñ−2(q̃cs,Ñ−2 − i + 1)
∑i−1

j=1 P̃
q̃
Ñ−1+j−1

cs,Ñ−1
. Therefore, after

taking out P̃
q̃
Ñ−1

cs,Ñ−1
common, we can show that

P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ

P̃
q̃
Ñ−1

cs,Ñ−1

does not contain q̃Ñ−1. Similar result can

also be proved for the third type of term β11,v(v+1)E . This completes the proof that
B

′

Ñ
−P̃

cs,Ñ
B

Ñ

P̃
q̃
cs,Ñ−1

cs,Ñ−1

does not

contain q̃cs,Ñ−1 in it from sequences ending with ‘10’.

Henceforth, equation (6) is written as R̃1,Ñ = P̃
q̃
cs,Ñ

cs,Ñ
R̃2,Ñ , wherein R̃1,Ñ ,

(
B

Ñ−1
∏Ñ−2

i=1,i6=j,s.t.P̃cs,j=Pv
P̃

qcs,i
cs,i

)

and R̃2,N ,
(P̃−1

cs,Ñ
B

′

Ñ
−B

Ñ
)

∏Ñ−1

i=1,i6=j,s.t.P̃cs,j=Pv
P̃

q̃cs,i
cs,i

do not contain the terms P̃
q̃
cs,Ñ

cs,Ñ
and q̃cs,Ñ−1. Hence, R̃1,Ñ and R̃2,Ñ are

constants since {P̃cs,i | i = 1, 2, . . . , Ñ} and {q̃cs,i | i = 1, 2, . . . , Ñ − 2} are fixed. Now, we can rewrite

the equality condition as P̃
q̃
Ñ

Ñ
=

R̃1,Ñ

R̃2,Ñ

, or as q̃cs,Ñ =

(
log

R̃
1,Ñ

R̃
2,Ñ

)

log P̃
cs,Ñ

. Note that in our work, we have a condition

that qcs,i ∈ Z+, however, the solution of q̃cs,Ñ =

(
log

R̃
1,Ñ

R̃
2,Ñ

)

log P̃
cs,Ñ

may not belong to Z+. It implies that to find the

optimal solution which lies in Z+, we need to obtain either ⌈q̃cs,Ñ⌉ or ⌊q̃cs,Ñ⌋ from the equality condition.

It can be observed that ⌈q̃cs,Ñ⌉ will decrease P̃
⌈q

cs,Ñ
⌉

cs,Ñ
, and this implies that pdpcs,Ñ > pdp

′

cs,Ñ
, and this is a

sub-optimal solution because when we give one more ARQ from the last hop to the second last hop, PDP

decreases. On the other hand, if we use ⌊q̃cs,Ñ⌋, then P̃
⌊q̃

cs,Ñ
⌋

cs,Ñ
increases, which implies pdpcs,Ñ < pdp

′

cs,Ñ
.

Therefore, on giving one more ARQ from the last hop to second last hop, PDP increases, and this implies

that using q̃cs,Ñ = ⌊
(
log

R̃
1,Ñ

R̃
2,Ñ

)

log P̃
cs,Ñ

⌋ in q̃cs,Ñ captures the optimal solution conditioned on the first Ñ −2 ARQ

numbers. Thus, on fixing q̃1, q̃2, . . . , q̃Ñ−2, we can analytically compute q̃Ñ , and also compute q̃Ñ−1 using

the relation q̃cs,Ñ−1 = qsum −∑Ñ

t=1,t6=Ñ−1 q̃cs,t.
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Henceforth, the reduction technique in Theorem 8 is referred to as the one-fold technique since the

search space for the Ñ-hop network is reduced to that of an (Ñ − 2)-hop network. In the next section,

we present the results on complexity reduction for Case-3.

C. Complexity Reduction for Case-3

When the cluster is placed at the last position in the network, it is not possible to obtain the results

along the lines of Theorem 8. This is because the PDP at node v is not of the form of the PDP of

a semi-cumulative node. To circumvent this problem, we present a new one-fold algorithm, which is

as explained below. First, we split the N-hop network into two parts namely N̂1-hop and N̂2-hop sub-

networks such that N̂1 = Ns1 + 1 includes all the nodes of the semi-cumulative network along with the

first node of the cluster, and N̂2 = Nc2 − 1 includes all the nodes of the cluster except the first node.

Let the outage probabilities and ARQ vector of N̂1-hop network be given by P̂1 = [P̂1, P̂2, . . . , P̂N̂1
] =

[Ps1,1, Ps1,2, . . . , Ps1,Ns1, Pc2,1], where P̂N̂1
= Pc2,1 (outage probability of the first node of the cluster) and

q̂1 = [q̂1, q̂2, . . . , q̂N̂1
] = [qs1,1, qs1,2, . . . , qs1,Ns1 , qc2,1]. Since the N̂1-hop network is also semi-cumulative,

we apply Theorem 3 on it by feeding a total of qsum,N̂1
= qsum− (Nc2−1) ARQs. This way, we compute

the list of ARQ distributions for the N̂1-hop network, which is as large as the search space for (N̂1 − 2)-

hop network. Subsequently, for each ARQ distribution in the list, we transfer (Nc2 − 1) ARQs to qN̂1

by assigning qc2,j = 0 for 2 ≤ j ≤ Nc2, and then compute the optimal ARQ distribution of the N̂-hop

network. Through this process, the size of the list is reduced to that of a (N̂1 − 2)-hop network thereby

reducing the complexity. The pseudocode for the proposed method is provided in Algorithm 3.

V. LOW-COMPLEXITY ALGORITHMS FOR CLUSTER BASED SEMI-CUMULATIVE STRATEGY

For large values of Ñ , the one-fold technique might not be feasible to implement in practice. Therefore,

to further reduce the complexity, we propose multi-folding and greedy algorithms for all the three cases.

A. List Generation using Multi-Folding for the CSC Strategy

In the proposed multi-folding algorithm, instead of folding the network once from Ñ-hop to (Ñ − 2)-

hop, we fold it multiple times to (Ñ − 4)-hop, (Ñ − 6)-hop and so on, upto a 2-hop network or a 1-hop

network depending on Ñ , and the positions of node v and node v + 1 in the network. The pseudocodes

of the multi-folding algorithm are presented in Algorithm 2 for Case-1, Algorithm 3 for Case-3, and

Algorithm 4 for Case-2. In Case-1, we use Algorithm 2 with Ñ = N − (Nc2 − 1) + 1. Similar to

Algorithm 1, for the first j-hop network, such that j ∈ {3, 4}, we fix a total number of ARQs, denoted

by qsum,j , in the range [(j + Nc1 − 2), qsum,Ñ − (Ñ − j) + 1], and then compute qj−1 and qj using the

ratio R̃j from Theorem 8. Subsequently, using the list from the j-hop network, a list of ARQs is obtained
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Algorithm 2 Multi-folding list algorithm for Case-1 of the CSC strategy

Require: N , Nc1, Ñ , qsum, Outage probabilities of the links

Ensure: Lfinal - List of ARQ distributions in search space

1: Lk = {φ} for k = 1, 2, . . . , Ñ
2: if Ñ is odd then ⊲ Start with fixing q̃cs,1 and q̃cs,2
3: L1 = {[Nc1 − 1, qsum − (Ñ − 1) + 1]}
4: Assign p = 3
5: for j = p : 2 : Ñ do

6: for i1 = 1 : |Lj−2| do

7: [q̃cs,1, . . . , q̃cs,j−2] = Lj−2(i1)
8: Compute q̃cs,j from [q̃cs,1, . . . , q̃cs,j−2] by using Theorem 8

9: for q̃sum,j = (j + (Nc1 − 1)− 1) : (qsum − (Ñ − j) + 1) do.

10: Compute q̃cs,j−1 = q̃sum,j −
∑j

t=1,t6=j−1
q̃cs,t.

11: Insert [Lj−2(i1)||q̃cs,j−1||q̃cs,j ] to Lj if q̃cs,j−1 ≥ 0
12: end for

13: end for

14: end for

15: Lfinal = LÑ .

16: else if Ñ is even then ⊲ Start with fixing q̃cs,1 and q̃cs,2
17: L2 = {{q̃cs,1, q̃cs,2} ∈ Z2

+|q̃cs,1 + q̃cs,2 ∈ [Nc1, qsum − (Ñ − 2) + 1]}
18: Assign p = 4, and repeat steps from line number 5 to 15

19: end if

for the j + 2-hop network, eventually generating a list for the Ñ -hop network. Similarly, in Case-3, we

use Algorithm 3 with Ñ = N − (Nc2 − 1). The pseudocode presented in the algorithm captures the

ideas presented in Section IV-C. In this case, the multi-folding algorithm as discussed in Section III is

applicable on the N̂1-hop network which only comprises semi-cumulative nodes. Finally, in Case-2, we

use Algorithm 4 with Ñ = N − (Nc2 − 1) + 1. Here, when the network is reduced (or folded) to a j-hop

network, we need to identify the locations of node v and node v+1 in the folded network. This is because

the ARQs for node v and node v + 1 must not be computed in the same iteration as it does not result

in complexity reduction. Therefore, we split the virtual Ñ -hop network into three parts, namely: Ñ1-hop,

Ñ2-hop and Ñ3-hop networks such that Ñ = Ñ1 + Ñ2 + Ñ3, wherein (Ñ1 + Ñ2)-hop networks contain

the semi-cumulative nodes preceding the cluster along with node v, and Ñ3-hop network contains node

v + 1 along with the semi-cumulative nodes that follow the cluster. Note that this case invokes results

from Algorithm 3 while folding within the Ñ1-hop network.

B. Multi-Folding based Greedy Algorithms for the CSC Strategy

To further reduce the size of the search space from that in Algorithms 2, 3 and 4, we propose to retain

the ARQ distribution that gives the minimum PDP for a given q̃sum,j from the list Lj . This way, only

one ARQ distribution survives for a given q̃sum,j , thereby significantly reducing the list size when the

algorithm traverses to q̃sum,N̂1
(refer to Algorithms 3, 4) and q̃sum,Ñ1

(refer to Algorithm 2). In addition,

for the ARQ distribution that survives for a given q̃sum,j , we generate one more ARQ distribution by
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Algorithm 3 Multi-fold algorithm for Case-3 of the CSC strategy

Require: N̂1, N̂2, qsum, q
sum,N̂1

= qsum − (Nc2 − 1), P̂1 = [P̂1, P̂2, . . . , P̂N̂1
]

Ensure: Lfinal - List of ARQ distributions in search space

1: if N̂1 is odd then

2: L1 = {[1, qsum,N̂1
− (N̂1 − 1) + 1]}

3: Assign p = 3
4: for j = p : 2 : N̂1 do

5: for i1 = 1 : |Lj−2| do

6: [q̂1, . . . , q̂j−2] = Lj−2(i1)
7: Compute q̂j from [q̂1, . . . , q̂j−2] using Theorem 3

8: for q̃sum,j = j : (q
sum,N̂1

− (N̂1 − j) + 1) do

9: Compute q̂j−1 = q̃sum,j −
∑j

t=1,t6=j−1
q̂t

10: Insert [Lj−2(i1)||q̂j−1||q̂j ] in Lj if q̂j−1 ≥ 0 && j < N̂1

11: Insert [Lj−2(i1)||q̂j−1||q̂j + N̂2] in Lj if q̂j−1 ≥ 0 && j = N̂1

12: end for

13: end for

14: end for

15: Lfinal = L
N̂1

.

16: else if N̂1 is even then ⊲ Start with fixing q̂1 and q̂2
17: L2 = {{q̂1, q̂2} ∈ Z2

+|q̂1 + q̂2 ∈ [2, q
sum,N̂1

− (N̂ − 2) + 1]}
18: Assign p = 4, and repeat steps from line number 4 to 15

19: end if

Algorithm 4 Multi-folding list algorithm for Case-2 of the CSC strategy

Require: N , Ns1, Nc2, Ns3, Ñ , qsum, P̃cs = [P̃cs,1, P̃cs,2, . . . , P̃cs,Ñ ]
Ensure: Lfinal - List of ARQ distributions in search space

1: Lk = {φ} k = 1, 2, . . . , Ñ
2: Split network Ñ = Ñ1 + Ñ2 + Ñ3 such that Ñ1 = Ns1 + 1, Ñ2 = Nc2 − 2 and Ñ3 = Ns3 + 1
3: Assign qsum,Ñ1

= [Ns1 + 1, qsum − (Ñ2 + Ñ3)]
4: for k1 = 1 : |qsum,Ñ1

| do

5: Call Algorithm 3 with qsum,N̂1
= qsum,Ñ1

(k1), N̂1 = Ñ1, P̂1 = P̃Ñ1
and N̂2 = Ñ2

6: LÑ1,k1
= {L

N̂1
|q̃j+1 6= 0 for q̃j = 0 or 1 where j ∈ {1, 2, . . . , Ñ1 − 2} and q̃Ñ1

≥ Nc2 − 1 for q̃Ñ1−1
≤ 1 }

7: Insert LÑ1,k1
into LÑ1

8: end for

9: Assign p = Ñ1 + 2
10: Assign N̄ = Ñ − 1 if Ñ3 is odd, otherwise, assign N̄ = Ñ

11: for j = p : 2 : N̄ do

12: for i1 = 1 : |Lj−2| do

13: [q̃1, . . . , q̃j−2] = Lj−2(i1)
14: Compute q̃j from [q̃1, . . . , q̃j−2] using Theorem 8

15: for q̃sum,j = j + Ñ2 : (qsum − (Ñ − j) + 1) do.

16: Compute q̃j−1 = q̃sum,j −
∑j

t=1,t6=j−1
q̃t.

17: Insert [Lj−2(i1)||q̃j−1||q̃j ] in Lj if q̃j−1 ≥ 0
18: end for

19: end for

20: end for

21: if Ñ3 is odd then

22: for j1 = 1 : |LÑ−1
| do

23: Compute q̃Ñ = qsum − sum(LÑ−1
(j1)), where sum(·) is the sum of elements in LÑ−1

(j1)
24: Insert [LÑ−1

(j1)||q̃Ñ ] in LÑ if q̃Ñ ≥ 0
25: end for

26: end if

27: Lfinal = LÑ
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Fig. 7. PDP comparison: Case-1 (first three hops constitute cluster), Case-2 (third hop to fifth hop forming a cluster) and Case-3 (fourth

hop to sixth hop forming a cluster) with c1 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5] and c2 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] at rate R = 1.

giving one ARQ from the last node to the penultimate node for every j. This is along the similar lines

of the greedy algorithm for the multi-folding algorithm in the SC strategy. If we capture the number of

computations required to arrive at the final lists, it is clear that the greedy algorithm offers minimum

complexity owing to fewer surviving distributions at each level.

VI. SIMULATION RESULTS ON CLUSTER BASED SEMI-CUMULATIVE STRATEGY

In this section, we present simulation results to showcase the benefits of using a cluster inside the

N-hop semi-cumulative network for Case-1, Case-2 and Case-3. First, we present simulation results on

the PDP and the complexity reduction of the proposed algorithms. For the experiment set up, we consider

a 6-hop network such that Case-1 has Nc1 = 3 and Ns2 = 3. Similarly, in Case-2, we have Ns1 = 2,

Nc2 = 3 and Ns3 = 1, and in Case-3, we have Ns1 = 3 and Nc2 = 3. Similar to Section III-A, we use

the saddle-point approximation in [17, Theorem 2] on (1) to compute {Pi, 1 ≤ i ≤ N}, for a given c and

SNR, and also use K = 500.
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Fig. 8. Plots depicting the PDP comparison for Case-1 (first three hops constitute cluster) and Case-2 (third hop to fifth hop forming a

cluster) with no-fold, 1-fold, 2-fold and greedy strategies where c1 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5] and c2 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3].
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Fig. 9. On the left: Plots illustrating the PDP comparison for Case-3 with no-fold, 1-fold algorithm where c1 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5]
and c2 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3], SNR = 10 dB, rate R = 1. In this case, the last three hops constitute the cluster. On the right: Plots

depicting the reduction in list size for Case-3 with exhaustive search, and 1-fold algorithms.

In Fig. 7, we plot the minimum PDP offered by the optimal ARQ distribution for each case as a function

of qsum. From Fig. 7, it is clear that Case-3 shows a great improvement in PDP because the number of

nodes contributing to node v is three, whereas in Case-1 and Case-2, we have node v + 1, such that if it

uses residual ARQs from its previous node, then, the next node in the chain cannot make use of residual

ARQs from node v + 1. To showcase the significance of multi-folding and the greedy algorithms for

Case-1 and Case-2, in Fig. 8, we plot the minimum PDP from the list of ARQ distributions by making

use of exhaustive search, one-fold, two-fold and greedy algorithms. We use the same LOS vectors as in

Fig. 7, i.e., c1 and c2 at SNR = 10 dB. Similarly for Case-3, the results on PDP analysis are shown in the

left-side of Fig. 9. It can be observed that folding techniques provide near-optimal ARQ distributions.

To evaluate the complexity reduction of our algorithms, we plot the list size for all the three cases as

a function of qsum in the right side of Fig. 9 and in Fig. 10. From the plots, we observe a significant

reduction in the list size by using the one-fold method, and further reduction in the list size when using

the multi-fold and the greedy algorithms. In Case-3, as Ñ = 4, we could not apply the multi-folding

technique because the network-size does not allow to fold more than once. However, for large Ñ , we can

apply the multi-folding and the greedy algorithms to reduce the list size to a small number.

Owing to the use of ACK/NACK, [16] has shown that the average delay offered by the ARQ based

strategy is much smaller compared to other strategies for packet retransmissions. We highlight that similar

results are also applicable in this work. In the rest of this section, we present delay analysis on packets to

study the delay-overhead introduced by the use of the cluster in Case-1, Case-2 and Case-3 scenarios. Let

us assume that we want to secure the packets from eavesdropping, and therefore, every node in the cluster

encrypts the counter portion of the packet after updating it with the residual ARQs. As a result, when

the packet is successfully decoded at the next node, it needs to decrypt it by using an appropriate crypto-

primitive. Since this procedure results in an additional processing delay on the packet, we represent this



28

8 10 12 14 16
100

101

102

103

104

Li
st

 S
iz

e

8 10 12 14 16
100

101

102

103

104

Li
st

 S
iz

e

Case-1, No Fold Case-1, 1 Fold Case-1, 2 Fold Case-1, Greedy Case-2, No Fold Case-2, 1 Fold Case-2, 2 Fold Case-2, Greedy

8 10 12 14 16
100

101

102

103

104

Li
st

 S
iz

e

8 10 12 14 16
100

101

102

103

104

Li
st

 S
iz

e

Fig. 10. Plots depicting the reduction in list size for Case-1 (first three hops constitute cluster) and Case-2 (third hop to fifth hop forming

a cluster) with no fold, 1 Fold, 2 Fold and Greedy strategies where c1 = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5] and c2 = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3].
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Fig. 11. Simulation results on delay profiles (for non-dropped packets) using a 6-hop network with c = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5], at rate

R = 1, and SNR = 10 dB with 106 packets (some packets are dropped due to either outage or deadline violations). We have Case-1

(first three hops constitute cluster), Case-2 (third hop to fifth hop constitutes cluster), Case-3 (last three hops constitute cluster) and the SC

strategy (with no cluster). In the legend, Pnd denotes the fraction of non-dropped packets used to compute the delay profile.

delay by Tc microseconds. Assuming that the delay introduced on the packet per hop for each transmission

is T = 1 microseconds (including both ACK/NACK), we analyse the effect of crypto-primitives on end-

to-end delay by choosing Tc = αT , where α = 0, 0.5, and 1. In Fig. 11, we have shown the delay profiles

of all three cases along with that of the SC strategy, wherein a delay profile refers to the probability mass

function on the delay experienced by an ensemble of packets that reach the destination. Evidently, delay

profiles are same for the SC strategy irrespective of the value of α. Furthermore, if the effect of α is

not considered when designing qsum, then there is a non-zero probability that some packets may reach

the destination beyond the deadline. Therefore, in addition to PDP, we define a new metric referred to as

probability of deadline violation (PDV), which can be defined as the probability that the packets either do

not reach the destination before the deadline or get dropped in the network. In Fig. 12, we plot the PDV

of the four strategies as a function of α for a 6-hop network with different parameters. Since qsum = 12,
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Fig. 12. Simulation results on probability of deadline violation using a 6-hop network with c = [0.9, 0.2, 0.4, 0.7, 0.1, 0.5], at rate R = 1
and SNR = 10 dB with 106 packets. For comparison, we have Case-1, Case-2, Case-3 and the SC strategy (with no cluster). For all the

cases, Tc = αT microseconds refers to the additional processing delay in updating the counter by a single node.

the deadline for packets to reach the destination is 12 microseconds. The plots confirm that: (i) The PDV

of the semi-cumulative network do not change with α. (ii) The PDV of the CSC strategy increases with

increasing values of α; this is because some of the nodes make use of the counter in the packet. (iii) The

worst-hit are Case-2 and Case-3 strategies with small qsum as every node in the cluster has to modify the

counter, thereby adding a significant delay of Nc1Tc microseconds to the packet. However, in Case-1, the

nodes except the first node of the cluster need to encrypt and decrypt, and hence, the additional delay

from the cluster is (Nc1 − 1)Tc microseconds. Overall, the simulation results of Fig. 12 show that CSC

strategy outperforms the SC strategy when α is small. However, as α increases, the performance degrades.

VII. SUMMARY

We have proposed a new family of cooperative ARQ strategies to assist low-latency communication

in multi-hop networks. We have derived closed-form expressions on the PDP of the proposed strategies,

and have solved the non-linear optimization problem of minimizing their PDP under a sum constraint on

the total number of ARQs. We have shown that our strategies outperform the best-known strategies in

this space. In this work, we have considered equal processing delays at each node to impose an upper

bound on the total number of ARQs. However, in general, when the processing delays at the nodes are

unequal, the questions on How to bound the total number of ARQs? and subsequently, How to solve the

ARQ optimization problem? are some interesting directions for future research.
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