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Abstract

This paper introduces a novel information-theoretic approach for studying the effects of mutual

coupling (MC), between the transmit and receive antennas, on the overall performance of single-input-

single-output (SISO) near-field communications. By incorporating the finite antenna size constraint using

Chu’s theory and under the assumption of canonical-minimum scattering, we derive the MC between two

radiating volumes of fixed sizes. Expressions for the self and mutual impedances are obtained by the use

of the reciprocity theorem. Based on a circuit-theoretic two-port model for SISO radio communication

systems, we establish the achievable rate for a given pair of transmit and receive antenna sizes, thereby

providing an upper bound on the system performance under physical size constraints. Through the lens

of these findings, we shed new light on the influence of MC on the information-theoretic limits of

near-field communications using compact antennas.

Index Terms

Circuit theory for communications, near-field wireless communications, SISO, mutual coupling,

induced EMF method, canonical minimum scattering antennas, Chu’s limit, compact antennas.

I. INTRODUCTION

A. Background and motivation

Near-field (NF) communication has diverse applications from chip-to-chip [1] and board-

to-board [2] communications to Internet-of-Things (IoT) applications like medical implantable
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devices [3], [4]. Yet, the increasingly complex circuitry of interconnect and compact antenna

design of these systems is a major data rate bottleneck in improving their overall performance.

Moreover, the close proximity between the transmit and receive antennas in NF communications

leads to strong interaction and the potential for a significant mutual coupling (MC) between

their induced reactive electromagnetic fields. This alters the electromagnetic behavior of both

antennas thereby widening the gap between the theoretically predicted performance when the

MC is ignored and the practically achieved performance of near-filed communication systems

[5], [6]. In this context, the strong NF interactions together with the significant MC effects must

be meticulously studied to ultimately characterize the physical limitations of near-field wireless

systems. The latter cannot be gauged by accounting for the MC effects only. In fact, the antenna

size must also be considered as an integral part of the actual performance analysis of wireless

NF communication systems. This is because the footprint of today’s wireless technology is

dominated by the antenna size, which cannot be miniaturized beyond the Chu limit [7] without

a degradation in the operational bandwidth.

The analysis and design of communication systems have historically evolved around the basic

percept of separating the physical and mathematical abstractions of communication theory1 [8]

based on different scientific principles. Several recent attempts to reconnect these areas include

wave theory of information [9], electromagnetic information theory [10], [11], and circuit theory

for communication [12]. Multiple studies in wave radiation and propagation confirmed that

circuit and electromagnetic field theories are essential for the analysis and design of near-

field communication systems [13]–[15]. Most of these studies, however, are limited to narrow-

band communications, and very few of them [16], [17] have so far considered the antenna

size as a physical constraint in their respective designs to characterize the achievable rate of

communication systems. Moreover, their analysis ignored the mutual coupling effect due to the

far-field assumption. When the operational frequency band is low, the near-field range is wide

enough to enable communication through inductive coupling [18], as used in tap-and-pay credit

card applications. However, in the radiative near-field and far-field regions, only communication

through the energy radiation process is possible. Taken together, this calls for a principled

approach applicable in all frequency bands and communication regions while systematically

incorporating the MC in a physically-consistent model [12] starting at the Maxwell’s equations

1Particularly the celebrated Shannon capacity formula for band-limited additive white Gaussian noise (AWGN) channels.
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level [19].

Physically-consistent models [12] refer to a class of models connecting the governing physics

of antennas with the mathematics of communication systems using circuit theory. Such models

are becoming popular because they provide a careful modeling of the antenna device within the

RF chain (e.g., matching network, LNA). This is key to understanding the realistic physical limits

on the achievable rate and develop optimization schemes to optimize it for wideband/compact

antenna design [20], [21].

Physically-consistent models come into play as an effective tool to describe the underlying

circuits of the near-field communication models. This is because they can incorporate the trans-

mit/receive antenna circuits (along with their associated self/mutual impedances) into the wireless

communication channel in contrast to standard wireless communication channels where only

the propagation effects (e.g., fading, shadowing, scattering) are considered. Moreover, in any

physically-consistent model, the noise cannot be regarded from a statistical viewpoint only, e.g.,

treating it as an additive Gaussian-distributed random variable. There is a need for a precise

description of the noise correlation at the receiver depending on the noise sources at both the

transmiter and the receiver along with the self/mutual impedances of the antennas.

B. Contributions

In this paper, we combine Chu’s [7] and canonical minimum scattering (CMS) antennas [22]

to develop a physically-consistent description of the wireless communication channel and the

noise correlation. This allows us to account for antenna size limitations using Chu’s theory [7]

and MC effects together independently of the antenna type. By operating at the lowest transverse

magnetic (TM) radiation mode only, Chu’s CMS antennas have the broadest bandwidth compared

to all the Chu’s antennas excited by higher-order radiation modes, thereby allowing to benefit

from their simplicity while being consistent with the physical constraints on the antenna size.

Therefore, the Chu approach enables us to decouple the analysis from a specific antenna design

yet capture the salient features of the broadest possible antenna that fits within a prescribed

sphere of radius a.

We characterize the MC by deriving the mutual impedances between two Chu’s CMS antennas

assumed confined in a spherical volume of radius aT and aR. While the NF mutual impedances

are commonly derived using the induced EMF method [23] for CMS antennas, applying it to

the Chu’s CMS antennas is not possible because their electromagnetic fields are only known
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outside their encompassing spheres. To overcome this limitation, we first establish an equivalence

between the radiated fields of a Chu’s CMS antenna and a Hertz dipole using the equivalence

theorem. After applying the induced EMF method to two Hertz dipoles, we use the obtained

Chu-Hertz equivalence to deduce the NF mutual impedances between two Chu’s CMS antennas.

We also derive their FF mutual impedance based on the Friis’s transmission equation.

Based on the obtained equivalent circuit models, we derive the mutual information between

the input and output signals of the system under the MC and the antenna size constraint for

reactive and radiative NF and FF communications. We find that the resulting signal-to-noise

ratio (SNR) depends strongly on the antenna size and that the performance degradation is more

pronounced when the antenna size becomes a small fraction of the wavelength. For the colinear

and parallel orientations of a SISO communication system, we show that the achievable rate of

the colinear orientation drops below the one of the parallel configuration in the radiative NF

region. Finally, we illustrate that the optimal power allocation provides a gain of up to 50% in

terms of achievable rate in the NF region and over 200% in the FF region.

C. Organization of the paper and notations

We structure the rest of this paper as follows. In Section II, we introduce the relevant

preliminaries of circuit theory for SISO communication and Chu’s theory [7] for size-constrained

antenna characterization. In Section III, we present the circuit-theoretic SISO communication

model and derive its input-output relationship for a given mutual impedance matrix. We then

specialize the channel of the circuit-theoretic model to both near- and far-field SISO communi-

cations. In Section IV, we compute the near- and far-field mutual impedance matrices using the

equivalence theorem between CMS antennas and Hertz dipoles. Then, in Section V, we derive

the achievable rate with uniform as well as optimal power allocation strategies. Finally, our

simulation results are presented in Section VI for both colinear and parallel antenna orientations,

from which we draw out some concluding remarks in the near- and far-field regions.

We also mention the common notation used in this paper. Given any complex number z, ℜ[z],
ℑ[z], and z return its real part, imaginary part, and complex conjugate. The statistical expectation

and variance are denoted as E[·] and Var[·]. We also use j to denote the imaginary unit (i.e.,

j2 = −1) and the symbol × to refer the cross product between two vectors. For a signal u(t),

we denote its Fourier transform by U(f). Throughout the paper, the derivation of the transfer

functions in the Fourier domain is assuming finite-energy signals, and we only consider by analyt-
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ical continuation general random stochastic processes once we invoke the power spectral density

(PSD). Moreover, c denotes the speed of light in vacuum (i.e., c ≈ 3×108), λ is the wavelength,

and kb = 1.38× 10−23m2 kg s−2 K−1 is the Boltzmann constant. µ = 1.25× 10−6mkg s−2 A−2

and ǫ = 8.85 × 10−12m−3 kg−1 s4A2 are the permeability and permittivity of vacuum. Finally,

k = ω
√
ǫ µ = 2π

λ
and η =

√
µ

ǫ
are the wave number and the wave impedance of a plane wave

in free space.

II. PRELIMINARIES

In this section, we present the two-port circuit model associated with the NF and FF SISO

communication channel. We then recall the achievable rate of a SISO wireless communication

channel used as the criterion to evaluate the performance of the overall performance of a NF

SISO communication system in Section VI. We also present the equivalent circuit of the CMS

antenna based on Chu’s theory. In Section III, we will incorporate this antenna circuit to describe

the circuit model for NF communications.

A. Circuit theory for communication

The physically consistent study of random signals that are transmitted through wireless chan-

nels uses a circuit-theoretic approach (see [17] and [12] for more details). From circuit theory,

transmitted/received signals are either voltages or currents that flow through the ports of the

transmit/receive antennas. Finding the relationship between port variables at the transmitter(s) and

receiver(s) is key to modelling both near- and far-field communication channels in a physically

consistent way.

ZSISO

IT IR

+

−
VT

+

−
VR

Fig. 1: Equivalent circuit-theoretic model for SISO communication channels.

A SISO communication channel can be viewed as a two-port network as depicted in Fig. 1

connecting the port currents, (IT(f), IR(f)), and the port voltages, (VT(f), VR(f)), through an
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impedance matrix ZSISO as

[
VT(f)

VR(f)

]
=

[
ZT(f) ZTR(f)

ZRT(f) ZR(f)

]

︸ ︷︷ ︸
ZSISO(f)

[
IT(f)

IR(f)

]
. (1)

The diagonal entries, ZT and ZR, represent the self-impedances of transmit and receive antennas.

They correspond to input impedances of the antennas when these are hypothetically isolated

(i.e., when each antenna is considered alone). The off-diagonal entries, ZRT and ZTR, represent

the mutual transmit-receive and receive-transmit impedances, respectively, between transmit and

receive antennas. For Chu’s CMS antennas, the impedance matrix is calculated analytically in

Section IV, thereby leading to a compact two-port matrix description of SISO communication

systems along with their easy analysis.

B. Achievable rate of SISO wireless communication channels

The achievable rate of a continuous-time additive Gaussian noise channel with a certain

transmit band-limited power spectral density, Pt(f), is given by:

C =

∫ ∞

0

log2

(
1 +

Pt(f) |H(f)|2
N(f)

)
df [bits/s], (2)

where H(f) and N(f) are the Fourier transform of the channel h(t) and the PSD of the noise.

In (2), it is assumed that N(f) is either white or integrable, i.e.,
∫ +∞

−∞
N(f) df < ∞. Note

that by letting |H(f)|2 = 1 and N(f) = N0 in (2), one recovers the well-known capacity of

the AWGN channel. This is a standard result found in most information theory textbooks, e.g.

[24]. It is adopted hereafter in the context of circuit-theoretic modelling of NF and FF SISO

communications as the key criterion to evaluate the system performance using the Chu’s CMS

antennas. This is as opposed to the optimisation of the S-parameters which are the conventional

antenna’s figures of merit that illustrate its circuit behavior.

The achievable rate in (2) accounts for the MC effects and the antenna size when both H(f)

and N(f) are derived using the equivalent circuit-theoretic models of communication systems.

In this case, H(f) and N(f) are functions not only of the propagation conditions but also of

the self/mutual impedances of transmit/receive antennas as will be shown in Section V. In this

case, the PSD of the noise N(f) is still integrable but not white, thereby justifying the valid use

of (2) throughout the paper.
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C. The antenna size constraint from Chu’s theory

To incorporate the constraint on the antenna size appropriately, we resort to Chu’s seminal

work in [7]. There, Chu lays the foundations for the equivalent circuit models representing

the superposition of TMn radiation modes of a linearly polarized antenna that is embedded

inside a spherical volume of a given radius a. After deriving the electromagnetic (EM) fields

outside the sphere enclosing the antenna, Chu described the equivalent circuit for each radiation

mode TMn and uniquely determined its associated voltage Vn(f) and current In(f). We review in

Appendix I-1 the radiated EM fields of Chu’s antennas at the details needed for a comprehensive

exposure of their circuit-equivalent representations.

In wideband communications, antennas are expected to have the lowest Q-factor which can

only be achieved when they are operating at their lowest radiation mode. Indeed, the higher

the radiation mode, the larger the stored (i.e., non-radiated) energy in the sphere enclosing the

antenna. It is therefore enough to consider the lowest radiation mode only2, i.e., n = 1. The

corresponding port voltage and current, V1 and I1, of the antenna are expressed as [7]

V1(f) =

√
8πη

3

√
RA1

k

(
1 +

1

jka
− 1

j(ka)2

)
e−jka [V], (3a)

I1(f) = −
√

8πη

3

A1√
Rk

(
1 +

1

jka

)
e−jka [A], (3b)

where k = 2π f

c
and A1 is the complex coefficient of the TM1 mode and R is the resistance of

the antenna. In this case, the equivalent circuit for the TM1 wave or the so-called “Chu’s electric

antenna” is illustrated in Fig. 2.

L = aR

c
R

C = a

cR

I1(f)

ZChu(f)

+

−
V1(f)

Fig. 2: Equivalent circuit for the TM1 mode of Chu’s electric antennas.

2Combining the lowest magnetic and electric modes, TM1 and TE1, a.k.a., magneto-electric antennas [25], can improve the

Chu’s limit and thus achieve a better bandwidth. For simplicity consideration, we only consider the electric antenna only.
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Using basic circuit analysis, one can establish the expression of the associated input impedance

ZChu(f) =
V1(f)

I1(f)
=

1

j 2πf a
cR︸ ︷︷ ︸

ZC(f)

+
1

1
j 2πf aR

c

+ 1
R

︸ ︷︷ ︸
ZL(f)‖ZR(f)

=
c2R + j 2π f c aR− (2π f a)2R

j 2π f c a− (2π f a)2
[Ω]. (4)

We will rely in this paper on the circuit model of the Chu’s CMS antenna depicted in Fig. 2 to

obtain the maximum achievable rate for any transmitter and receiver of fixed sizes aT and aR.

III. SISO COMMUNICATION SYSTEM MODEL

In this section, we describe the circuit-theoretic model for SISO communications. First, we

explain the relationships between the noise sources in both NF and FF scenarios. We then derive

the generic input-output relationship of the channel model as function of the self and mutual

impedances of the transmit/receive antennas independently of the choice of the antenna. Next,

we incorporate transmit/receive Chu’s CMS antennas to describe the circuit model associated

with wideband SISO NF and FF communications. This highlights the flexibility of circuit models

[12] to provide a systematic approach to analyze both NF and FF communications, unlike the

communication models for NF communications through inductive coupling [18].

A. A circuit-theoretic SISO communication model

We consider the circuit-based model, depicted in Fig. 3, to study a SISO communication

system where the transmit and receive antennas are at either NF or FF separation distances. The

associated wireless channel is represented by the frequency-domain impedance matrix ZSISO given

in (1), which model both the NF and FF communication channels ZNF
SISO and Z

FF
SISO, depending on

whether the MC effects are taken into account or not. For more realistic scenarios, we hereafter

consider a noisy communication channel of the noiseless model in (1).

1) Incorporating noise into the noiseless communication channel model: Accounting for the

noise sources at the transmit and receive antennas boils down to injecting their background

noise at both the input and output ports. This can be done when the two-port network is only

composed of passive components which have the same absolute temperature T as the surrounding

environment [12]. This situation is called thermal equilibrium noise and corresponds to the case

where the two-port network noise originates solely from the thermal agitation of electrons as they

flow inside its all-passive components. To this end, we introduce two voltage sources ṼN,T(f) and
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−+VT

R − +

ṼN,T

+

−
V ′
1

I1

ZSISO

+

−
V1

+

−
V2

I2

+

−
V ′
2

− +

ṼN,R

Rin

IRin

−+

− +

ṼN,LNA

+

−
VR

VLNA

Transmit signal
generator the wireless channel

Receiver

extrinsic

noise

Receiver LNA
Transmit

extrinsic

noise

Fig. 3: SISO communication model including the signal generator, the transmit and receive extrinsic noises, the

communication channel with antenna mutual coupling, and the LNA model with the associated intrinsic noise. The

output voltage VR is connected to the load impedance of a receive device. The frequency argument was dropped to

lighten the notation in the figure.

ṼN,R(f) at the transmitter and receiver ports as depicted in Fig. 3. There, the terminals of the non-

ideal generator voltage VT(f) (i.e., with internal resistance R) are connected to the transmitting

antenna through a noisy input port with the current-voltage pair (V1(f), I1(f)). Likewise, the

noisy receive antenna terminals are connected to the outside world through the output port with

current-voltage pair (V2(f), I2(f)).

When the mutual coupling is ignored (e.g., the FF scenario), the noise voltages ṼN,T(f) and

ṼN,R(f) are uncorrelated from each other, i.e.:

E

[
ṼN,T(f) ṼN,R(f)

]
= 0. (5)

Besides, the PSDs SṼN,T
(f) and SṼN,R

(f) of the noise voltage signals ṼN,T(f) and ṼN,R(f) with

finite energy, are given by [12], [26]

SṼN,T
(f) = 4 kb T ℜ[ZT(f)], (6a)

S
ṼN,R

(f) = 4 kb T ℜ[ZR(f)]. (6b)

In NF communications, the noise voltages ṼN,T(f) and ṼN,R(f) are correlated due to the MC

induced by the non-zero mutual impedances between the transmit and receive antennas. The

cross-correlations SṼN,T,ṼN,R
(f) and SṼN,R,ṼN,T

(f) between ṼN,T(f) and ṼN,R(f) are given by

[12], [26]

SṼN,T,ṼN,R
(f) = 4 kb T ℜ[ZTR(f)], (7a)

S
ṼN,R,ṼN,T

(f) = 4 kb T ℜ[ZRT(f)]. (7b)
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Together, the impedance matrix and the noise covariance matrix provide the circuit-theoretic

description of the NF and FF communication channels modelled in Fig. 3. This model encap-

sulates the transmit and receive antenna responses together with the NF and FF propagation

aspects, hence the convenience of circuit-theoretic models for communication systems analysis

[12].

2) The receive LNA model: The LNA is modeled as a noisy frequency-flat device with gain

β, with the input-output voltage relationship

VLNA(f) = β V ′
2(f) [V]. (8)

For an amplifier with an input impedance Rin and a noise figure Nf, we compute the PSD of the

intrinsic noise voltage, ṼN,LNA(f), generated inside the LNA as 4 kb T Rin (Nf − 1) [27, chapter

10]. Moreover, the amplifier noise voltage, ṼN,LNA(f), is uncorrelated with the transmit noise

voltage, ṼN,T(f), and the receive noise voltage, ṼN,R(f).

3) The input-output relationship of the channel model: Adding the noise to both the input

and output ports of the SISO communication channel model transforms its linear input-output

relationship (1) into an affine one. By applying Kirchhoff’s voltage law (KVL) in Fig. 3, we

obtain an affine noisy two-port communication channel model:

[
V ′
1(f)

V ′
2(f)

]
= ZSISO

[
I1(f)

I2(f)

]
+

[
ṼN,T(f)

ṼN,R(f)

]
. (9)

Moreover, using the definitions of V ′
1(f) and V ′

2(f) from (9), and VLNA(f) from (8) and basic

circuit analysis, the relationship between the output voltage VR(f) and the input voltage VT(f)

is obtained as follows:

VR(f) = ṼN,LNA(f) + β Rin

ZTR(f)
(
VT(f) + ṼN,T(f)

)
+ (R + ZT) ṼN,R(f)(

Rin + ZR(f)
) (

R + ZT(f)
)
− Z2

TR(f)
, (10)

which can be rewritten in the same form as the conventional model for wireless communication

channels:

VR(f) = H(f) VT(f) +W (f). (11)

In (11), VT(f) is the frequency domain representation of the real pass-band signal, v(t), to be

transmitted over the channel. H(f) represents the transfer function of the channel and W (f) is
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the Fourier transform of the noise w(t) given by:

H(f) =
β Rin ZRT(f)(

Rin + ZR(f)
) (

R + ZT(f)
)
− Z2

TR(f)
, (12a)

W (f) = ṼN,LNA(f) + β Rin

ZRT(f) ṼN,T(f) + (R + ZT(f)) ṼN,R(f)(
Rin + ZR(f)

) (
R + ZT(f)

)
− Z2

TR(f)
, (12b)

wherein the self and mutual (NF and FF) impedances, i.e., diagonal and off-diagonal entries of

ZSISO, can be derived using the electromagnetic coupling model as will be shown in Section IV.

One can also notice that the noise in (12b) depends on self/mutual impedances, unlike the

conventional assumption of independent additive Gaussian noise. The derived SISO model in

(11) and (12) requires the expressions of the NF and FF mutual impedances, namely, ZNF
SISO and

Z
NF
SISO, to fully characterize the SISO communication circuit model given in Fig. 3. The analytical

expressions of these two impedance matrices will be established in Section IV.

B. Circuit-theoretic models for near- and far-field SISO communications

The SISO channel model established in (11) and (12) is not tailored to Chu’s CMS antennas.

Its equivalent circuit in Fig. 3 must include the circuit of Chu’s CMS antennas from Fig. 2.

By doing so, this will fully characterize its NF and FF electromagnetic radiation properties

when the mutual impedances of Chu’s CMS antennas are specified. Using Chu’s CMS antenna

modelled in Fig. 2 at both the transmitter and the receiver, the SISO model in Fig. 3 gives a

near-field circuit-theoretic model depicted in Fig. 4. There, the two current-dependent sources,

Is1 and Is2 , account for the transmitter-receiver and receiver-transmitter reaction currents when

the transmitter and the receiver are in close proximity (i.e., near-field).

−+VT

R − +

ṼN,T

+

−
V ′
1

I1

C = aT

cR1

L = aTR1

c
R1

IR1+

−
V1 R2

IR2

L = aRR2

c

C = aR

cR2

+

−
V2

I2

+

−
V ′
2

− +

ṼN,R

Rin

IRin

−+

− +

ṼN,LNA

+

−
VR

Is2

Is1

VLNA

CMS transmit antenna CMS receive antenna

Transmit signal
generator the near-field wireless channel, ZNF

SISO, accounting for Chu’s antenna mutual coupling
Receiver

extrinsic

noise

Receiver LNA
Transmit

extrinsic

noise

Fig. 4: Near-field SISO communication model of Fig. 3 wherein ZSISO was replaced by the NF channel Z
NF
SISO

composed of two electrical Chu antennas from Fig. 2. The transmit
/

receive antennas involve controlled current

sources Is1
/
Is2 by IR2

/
IR1

which model their mutual electromagnetic influence in the NF region.
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Unlike the near-field circuit model in Fig. 4, the far-field model illustrated in Fig. 5 does not

involve the receiver-transmitter reaction current Is1 since the electrical properties of the receiver

do not influence those of the transmitter, i.e., ZTR = 0.

−+VT

R − +

ṼN,T

+

−
V ′
1

I1

C = aT

cR1

L = aTR1

c
R1

IR1+

−
V1 R2

IR2

L = aRR2

c

C = aR

cR2

+

−
V2

I2

+

−
V ′
2

− +

ṼN,R

Rin

IRin

−+

− +

ṼN,LNA

+

−
VR

Is

VLNA

CMS transmit antenna CMS receive antenna

Transmit signal
generator the far-field wireless channel, ZFF

SISO, accounting for CMS antenna mutual coupling
Receiver

extrinsic

noise

Receiver LNA
Transmit

extrinsic

noise

Fig. 5: Far-field SISO communication model of Fig. 3 wherein ZSISO was replaced by the FF channel Z
FF
SISO

composed of two electrical Chu antennas from Fig. 2. Only the receive antenna involves a controlled current source

Is by IR1
to model the electromagnetic influence of the transmit antenna on the receive antenna in the FF region.

As will be shown in Section IV, this difference affects the computation of the mutual impedances

of Chu’s CMS antennas only. The self-impedances, ZT and ZR, remain unchanged since they

do not depend on the separating distance between the transmitter and the receiver. Furthermore,

in accordance with Figs. 4 and 5, both ZT and ZR are obtained from (4) as the self-impedances

of the transmit and receive Chu’s antennas with sizes aT and aR and resistances R1 and R2,

respectively.

IV. COMPUTATION OF THE NEAR- AND FAR-FIELD IMPEDANCE MATRICES

In this section, we derive the mutual impedances involved in the NF and FF SISO channel

impedance matrices, ZNF
SISO and Z

FF
SISO. In particular, the NF mutual impedances are derived using

the induced EMF method owing to the Chu-Hertz equivalence established in Appendix II-B.

The FF mutual impedance, however, is obtained based on the Friis’ equation.

A. Computation of the near-field mutual impedances

1) Induced EMF analysis and the Chu-Hertz equivalence: The induced EMF method consists

in studying the electromotive forces that are induced on the antenna structure under a known

current distribution. Given an incident field, Ein, impinging on a receive antenna of aperture A,

the induced open-circuit voltage, Voc, at its terminals is given by [28]

Voc = − 1

I0

∫

A

Ein(ℓ) I(ℓ) dℓ, (13)
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where I0 is the input port current when the antenna is transmitting. The explicit knowledge of

the current distribution I(ℓ) in (13) renders the induced EMF method incompatible with Chu’s

CMS antennas whose radiated EM fields (described in Appendix I-1) are known outside their

encompassing spheres only. To overcome this limitation, we resort to the equivalence theorem

and establish a relationship between the mutual impedances of two Hertz dipoles,
(
ZHertz

RT , ZHertz
TR

)
,

and the mutual impedances of two Chu’s CMS antennas,
(
ZChu

RT , ZChu
TR

)
. To that end, we show in

Appendix I (cf. Result 1 below) that the EM fields and the radiation resistance of a Chu antenna
(
EChu, HChu

)
are equivalent to

(
EHertz, HHertz

)
of a Hertz dipole when the complex coefficient

A1 of the TM1 mode of radiation in (3) is appropriately chosen.

Result 1. The radiation of a Hertz dipole ℜ
[
ZHertz

SISO

]
having a uniform current distribution, I ,

and a Chu’s antenna ℜ
[
ZChu

SISO

]
can be made equal by adequately choosing the mode coefficient,

A1, of the TM1 mode pertaining to the Chu’s electric antenna is

A1 = j
Ik2c

4πf

√
3ℜ
[
ZHertz

SISO

]

2πη
⇐⇒ ℜ

[
ZChu

SISO

]
= ℜ

[
ZHertz

SISO

]
. (14)

Proof. See Appendix I.

Using the equivalent radiated power, which is a direct consequence of the radiation resistance

equivalence in (14), we derive the following relationship between the mutual impedances of two

Chu’s antennas and two Hertz dipoles:

Result 2. The mutual impedance equivalence between two Hertz dipoles and two Chu’s antennas

is given by:
ZHertz

RT√
ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

] =
ZChu

RT√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

] , (15a)

ZHertz
TR√

ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

] =
ZChu

TR√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

] . (15b)

Proof. See Appendix II-B.

It is therefore enough to apply the induced EMF method on two Hertz dipoles and then deduce

the mutual impedance between two Chu’s antennas using Result 2.

2) Near-field mutual impedance calculation: We consider a pair of transmit and receive Hertz

dipoles in the same plane. The dipoles are separated by a distance d, aligned with respect to

(w.r.t.) their axes w and z, respectively, and arbitrarily rotated with angles β and γ w.r.t. their

connecting axis r as depicted in Fig. 6.
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d

HertzR

w

γ

HertzT

z

β

r

θ

Fig. 6: Transmit and receive Hertz dipoles HertzT

/
HertzR of length dℓT

/
dℓR in the same plane, arbitrarily oriented

in free space, and separated (in close proximity) by a distance d [m].

The mutual impedances between the two Hertz dipoles, HertzT and HertzR, are given by (see

Appendix II-A):

ZHertz
RT = ZHertz

TR = −3 k2
0 c

2

4π2f 2

√
ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

]
[
1

2
sin(β) sin(γ)

(
1

j k0 d
+

1

(j k0 d)2

+
1

(j k0 d)3

)
+ cos(γ) cos(β)

(
1

(j k0 d)2
+

1

(j k0 d)3

)]
e−j k0 d. (16)

The fact that the mutual impedances are equal is a consequence of the Lorentz reciprocity theo-

rem. Indeed, the latter states that the reaction of the transmit antenna’s electromagnetic fields to

the current in the receive antenna is equal to the reaction of the receive antenna’s electromagnetic

fields to the current in the transmit antenna. Moreover, when the two antennas are of the same

type/size, the self-impedances must be equal. Therefore, the near-field communication channel

is represented by a 2×2 symmetric impedance matrix Z
NF
SISO whose diagonal entries are equal

only when aT = aR.

Using (16) and the Chu-Hertz mutual impedance equivalence established in Result 2, the mutual

impedances between two Chu antennas are obtained as:

ZChu
RT = ZChu

TR = −3 k2
0 c

2

4π2f 2

√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

]
[
1

2
sin(β) sin(γ)

(
1

j k0 d
+

1

(j k0 d)2
+

1

(j k0 d)3

)

× cos(γ) cos(β)

(
1

(j k0 d)2
+

1

(j k0 d)3

)]
e−j k0 d.

(17)

Now that we obtained the NF mutual impedances, we turn our focus in the next subsection to

the FF case where we derive the FF mutual impedance based on the Friis’ transmission equation.



15

B. Computation of the far-field mutual impedance

Unlike the computation of the NF mutual impedances where a minimum of EM theory was

invoked to model the MC effect, the FF channel model in (5) is governed by the Friis’ equation

which relates the squared current magnitudes of the transmitter and the receiver as follows:

|Is(f)|2 = 4 |IR1
(f)|2

(
c

4πfd

)2

GT GR

R1

R2
[A2]. (18)

In (18), d is the distance between the transmit and receive antennas which have gains GT and

GR, respectively. For transmit/receive Chu’s CMS antenna, we have that GT and GR are equal to

3/2 in the equatorial plane [29, chapter 6]. Using basic circuit analysis and (5), the expression

of the FF mutual impedance, ZChu
RT (f), is expressed as (see Appendix III):

ZChu
RT (f) =

(
j 2π f aT

c+ j 2π f aT

)
c

2πfd

√
GT GR R1

R2

j 2π f R2

j 2π f + c
aR

[Ω]. (19)

The other mutual impedance ZChu
TR (f) represents the proportionality coefficient between the

transmit voltage, V1(f), and the receive current, I2(f). Since antennas are reciprocal, we have

ZRT(f) = ZTR(f). Moreover, the signal attenuation in the far-field region between the transmitter

and the receiver is very large, i.e.:

∣∣ZChu
TR (f)

∣∣ =
∣∣ZChu

RT (f)
∣∣ ≪

∣∣ZChu
T (f)

∣∣. (20)

This justifies the so-called “unilateral approximation” [12] which stipulates that in the far-field

region one has
∣∣ZChu

TR (f)
∣∣ ≈ 0. As a consequence, the FF impedance matrix Z

FF
SISO is neither

symmetric nor diagonal since only the transmitter is driving the electrical properties of the

receiver. Now that the input-output relationship in (12) is fully characterized for both NF and

FF SISO communications, we are ready to find the achievable rate under transmit and receive

antenna size constraints.

V. ACHIEVABLE RATE OPTIMIZATION METHODOLOGY

The maximum achievable rate is the largest mutual information between the input and the

output of the communication channel. By inspecting Figs. 4 and 5, it is seen that the transmit

voltage waveform vT(t) is under full control of the system designer. Unlike traditional purely

statistical channel models (e.g. AWGN channels), however, it is now possible to also optimize the
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NF and FF impedance matrices, ZNF
SISO and Z

FF
SISO, to improve the achievable rate. The maximum

achievable rate is thus given by:

C = max
ZSISO, PvT

I(vT(t); vR(t)) (21a)

= max
ZSISO, PvT

∫ ∞

0

log2

(
1 +

Pt(f) |H(f)|2
N(f)

)
df (21b)

≈ max
PvT

∫ ∞

0

log2

(
1 +

Pt(f) |H(f)|2
N(f)

) ∣∣∣∣
ZSISO=Z

Chu
SISO

df [bits/s], (21c)

where the last approximation follows from the fact that we consider the “optimal” (i.e. broadest)

transmit/receive antennas for a fixed size3. In (21a), I(vT(t); vR(t)) is the mutual information

between the two random processes representing the input and output voltages/signals of the

communication system [24], [30]. Moreover, PvT
is the probability measure on the space of

input/generator voltages, vT(t), which for any finite set of time instants {t1, t2, . . . , tn}, specifies

the following joint cumulative distribution function:

PvT
[vT(t1) ≤ v1, vT(t2) ≤ v2, . . . vT(tn) ≤ vn], ∀(v1, v2, . . . , vn) ∈ R

n. (22)

In designing the probability law of the generator, we suppose that the expected per-frequency

power, Pt(f), satisfies:

Pt(f) ≤ Pmax, ∀ f, (23)

where Pmax is the maximum power that the generator can supply due to regulatory restrictions

or hardware constraints. In the sequel, we study the impact of the physical size constraints at

both the transmitter and the receiver by restricting the volumes encompassing their antennas to

be of finite radii, namely aT and aR, respectively.

A. Maximum achievable rate of near-field SISO wireless channels

The maximum achievable rate given in (2) can now be evaluated using the channel response

H(f) established in (12a) and the PSD derived for the noise W (f) obtained in (12b). To this

end, we introduce the following two quantities:

X(f) =
∣∣ZChu

RT (f)
∣∣2ℜ

[
ZChu

T (f)
]
+
(
R +ZChu

T (f)
)
ZChu

TR (f)ℜ
[
ZChu

RT (f)
]

+
(
R + ZChu

T (f)
)
ZChu

TR (f) ℜ
[
ZChu

TR (f)
]
+
∣∣R + ZChu

T (f)
∣∣2ℜ

[
ZChu

R (f)
]
, (24a)

Y (f) =
∣∣∣
(
Rin + ZChu

R (f)
) (

R + ZChu
T (f)

)
−
(
ZChu

TR (f)
)2 ∣∣∣

2

. (24b)

3This is why we only use the terminology “maximum achievable rate” instead of “capacity” throughout the paper.
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By employing (24) and the noise auto/cross-correlation properties in (5)–(7), we show that:

i) The square magnitude of the channel response H(f) is expressed as:

|H(f)|2 = β2R2
in

∣∣ZChu
RT (f)

∣∣2

Y (f)
. (25)

ii) The PSD of the noise is given by:

N(f) = kb T
Rin

R

[
(Nf − 1) + β2Rin

X(f)

Y (f)

]
. (26)

With (25) and (26), the achievable rate in (2) is now fully characterized as function of the

self/mutual impedances of Chu’s CMS antennas. The band-limited transmit PSD Pt(f) is the

only remaining variable subject to optimization, which will be the subject of the next subsection.

B. Achievable rate with optimal transmit power allocation

Under a total power budget, Pmax, the maximum achievable rate in (2) can be optimized w.r.t.

the transmit PSD, Pt(f), thereby leading to the following power allocation (PA) problem:

CPA = max
Pt(f)

∫ ∞

0

log2

(
1 +

Pt(f) |H(f)|2
N(f)

)
df [bits/s],

subject to

∫ fc+
W
2

fc−
W
2

Pt(f) df ≤ Pmax,

(27)

where W is the absolute bandwidth and fc is the center frequency of W . The solution of (27)

can be found iteratively by the well-know frequency-domain water filling procedure [24]:

Pt (f) =





Pmax max
(
0, 1

γ0
− 1

γ(f)

)
, γ(f) ≥ γ0

0 , γ(f) < γ0.
(28)

Here, γ(f) = |H(f)|2/N(f) and γ0 = µPmax log(2) with µ being the Lagrange multiplier of

the Lagrangian function associated to (27). By letting Pt(f) = Pt (f), the maximum achievable

rate under optimal power allocation, CPA, becomes:

CPA =

∫ ∞

0

max

(
0, log2

(
γ(f)

γ0

))
df [bits/s]. (29)

The threshold value γ0 can be obtained by numerically integrating the following power constraint:
∫ ∞

0

Pt (f)

Pmax

df =

∫ ∞

0

(
1

γ0
− 1

γ(f)

)
df = 1. (30)

Using the established expression of the achievable rate under antenna size constraints for both

NF and FF scenarios, we now examine the effect of the transmit and receive antenna sizes on

the overall performance of SISO communications.
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VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results for the maximum achievable rate of SISO

communications under antenna size constraints at both the transmitter and the receiver by

inspecting the behavior of the following metrics:

• the SNR as a function of the frequency with SNR(f) = Pt(f) |H(f)|2/N(f),

• the maximum achievable rate in (2) under transmit and receive antenna size constraints with

uniform power allocation,

• the maximum achievable rate in (29) under optimal power allocation.

We also examine the performance under the following two configurations:

a) colinear configuration as depicted in Fig. 7a where the axes of transmit and receive antennas

are colinear,

b) parallel configuration as depicted in Fig. 7b where the axes of transmit and receive antennas

are parallel.

dTransmitter Receiver

z = w = r

γ

(a) colinear configuration

d

Receiver
w

γ

Transmitter

z
β

r

(b) parallel configuration

Fig. 7: Two special relative orientation between the transmit and receive antennas of the general case shown in

Fig. 6: (a) colinear configuration with γ = π and β = 0, (b) parallel configuration with γ = 3π

2
and β = π

2
.

In both scenarios, the Chu’s sphere encompassing the transmit (resp. receive) antenna has a

radius aT (resp. aR) with aT + aR ≤ d. The latter condition ensures that the transmit and receive

spheres do not overlap in the near-field region so that the equivalence theorem can still be used

to find the corresponding mutual impedances.

A. SNR under uniform power control

We first plot in Fig. 8 the SNR as a function of the electrical distance/separation, d/λ,

for two antenna sizes, a/λp ∈ {20, 25} with (aT, aR) = (a, a), for both the colinear and
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parallel configurations. Here, λp is the peak wavelength, i.e., the wavelength calculated at the

highest SNR. In (26), we set the noise factor to Nf = 5 dB and the noise temperature to

T = 300 [K]. Fig. 8 reveals that the colinear antenna configuration yields higher SNR than

0 0.2 0.4 0.6 0.8 1
35
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50

55

60

65

70

75

80

85

Fig. 8: SNR as a function of the electrical distance/separation, d/λ, for both the parallel and colinear configurations

and two different antenna sizes, a, with Pmax = 10 [mW] and d = 4 [mm].

the parallel configuration as long as d/λ / 0.38. Thereafter, the SNR decreases quickly and

becomes much smaller than that of the parallel configuration. The threshold distance d ≈ 0.38 λ

can be interpreted as the limit between the NF and FF regions. In fact, when antennas are closely

spaced, most of the communication happens through the radial/NF component of the electric

field Er which is aligned along the colinear axis and vanishes in the FF region. It should be

noticed that when d ≈ λ the degradation of the SNR due to finite antenna sizes almost vanishes.

This can be attributed to the fact that the antenna size relative to the wavelength increases thereby

making the antennas not electrically small anymore, i.e., they do not store a lot of near-field

reactive energy.

We also compare in Fig. 9 the SNR using the exact mutual impedance in (17) against the SNR

based on the FF mutual impedance in (19). We observe that the FF approximation becomes

reasonably accurate starting from d ≈ 0.5 λ. This confirms the widely adopted half-wavelength

spacing choice in 4G/5G antenna design for a fixed antenna size.

B. Maximum achievable rate under uniform power control

In Fig. 10, we vary the electrical size λ/a and plot the maximum achievable rate in (2) with the

channel response in (25) and the noise PSD in (26). The carrier frequency is set to fc = 25 [GHz]
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Fig. 9: SNR as a function of the electrical distance/separation, d/λ, for the parallel configuration and two different

antenna sizes, a, with fc = 1 [GHz] and Pmax = 10 [mW].

and the bandwidth is taken to be W = 0.2 fc. In Fig. 10, we distinguish three different regimes

depending on the antenna separation. These are the reactive NF region depicted in Fig. 10a, the

radiative NF region (a.k.a. Fresnel region) depicted in Fig. 10b, and the FF region depicted in

Fig. 10c. As seen there, the colinear antenna configuration yields a higher achievable rate in the

reactive NF region due to the strong radial component of the electric field Er. In contrast, in

the radiative NF region the parallel configuration yields a slightly higher SNR than the colinear

configuration. In the FF region, both configurations exhibit the same achievable rate since the

contribution of the field Er is negligible. It is also seen that the three regimes admit different

achievable rate behaviors, which could not be simply attributed to the difference in the SNR

values.

Fig. 11 plots the achievable rate as a function of d/λ for the same antenna sizes already used

in Fig. 8 while varying the bandwidth as a fraction of the carrier frequency fc. There, it is

observed that the increase in bandwidth, as well as the antenna size, have a significant effect

on the achievable rate in both the parallel and colinear configurations. As already observed in

Fig. 10, when the distance is larger than approximately 0.38 λ, the parallel configuration also

yields a higher achievable rate than the colinear configuration and vice versa when d / 0.38 λ.

The FF plot in Fig. 11c, for both the parallel and colinear configurations, looks different due to

the considered low-SNR regime as opposed to the high-SNR regime in the NF regions shown

in Figs. 11a and 11b.

In addition, Figs. 11a and 11b demonstrate that the achievable rate of the colinear configuration
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(a) Reactive near-field region at d = 0.15 λ.
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(b) Radiative near-field region at d = 0.45 λ.
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(c) Far-field region at d = 2λ.

Fig. 10: Plots of the achievable rate as a function of the the electrical distance/separation, a/λ, for the parallel

and colinear configurations with fc = 25 [GHz], W = 0.2 fc, a = λ/20, and Pmax = 10 [mW] in (a) the reactive

near-field region, (b) the radiative near-field region, and (c) the far-field region.

(resp., parallel) is higher than that of the parallel (resp., colinear) configuration in the near-field

(resp. far-field) region independently of the fraction of the bandwidth, thereby validating the

results obtained previously. Motivated by this observation, we inspect more closely the effect

of signaling bandwidth by plotting in Fig. 12 the achievable rate as a function of the so-called

bandwidth ratio. The latter is measured as the ratio of the largest frequency, fmax, to the smallest

frequency, fmin, in the frequency band. The results are shown for the reactive NF, radiative NF,

and FF regions in Figs. 12a, 12b, and 12c, respectively.

In line with the previous numerical results, in the reactive near-field region, the achievable rate is

higher for the colinear configuration as long as fmax/fmin ≤ 8. In the radiative near-field region,

however, the parallel configuration provides a higher achievable rate. In the far-field region,

the two configurations yield the same performance since the unilateral approximation becomes

asymptotically exact as the separation distance goes to infinity. We observe that the optimal
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(a) Near-field: colinear configuration
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(b) Near-field: parallel configuration
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Fig. 11: Plots of the achievable rate as a function of d/λ at fc = 25 [GHz] for the near-field region in (a) and

(b), and the far-field region in (c) using both colinear and parallel configurations with two antenna sizes and

Pmax = 0.1 [mW]. The far-field plot in (c) corresponds to both parallel and colinear configurations.

signalling bandwidth decreases from the reactive to the radiative near-field region and increases

largely in the far-field region. The optimal bandwidth ratio is around 5 (i.e., W = 15 [GHz])

for the colinear configuration in the radiative near-field region all the way up to 60 (i.e., W =

300 [GHz]) in the far-field region. It should be noted that the aforementioned values are highly

dependent on the transmit power as well as the smallest frequency in the band, and thus must

be optimized depending on the situation.

C. Maximum achievable rate under optimal power allocation

Here, we study the impact of the SNR, or equivalently the transmit power Pt(f), on the

performance of compact antennas under optimal power control. Fig. 13 depicts the achievable

rate for two antenna sizes, a, with λ/a ∈ {20, 25}. The horizontal axis shows the ratio d/λ for
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Fig. 12: Plots of the achievable rate as a function of the bandwidth ratio fmax/fmin for the parallel and colinear

configurations at fmin = 5 [GHz] with Pmax = 0.1 [mW] in the near-field and far-field regions.

both uniform power allocation, i.e., Pt(f) = Pmax/W , as well as optimal power allocation (OPA)

Pt(f) = Pt (f) given in (28). The bandwidth is fixed to W = 0.2 fc with fc = 25 [GHz] and

the maximum transmit power is Pmax = 10 [mW]. The usual crossing between the colinear and

parallel configurations is again observed at d ≈ 0.38 λ which separates the near- and far-field

regions. It can be noticed that the optimal power allocation provides a gain of up to 50% in

terms of achievable rate in the near-field region and over 200% in the far-field region.

VII. CONCLUSION

In this paper, we analyzed a SISO communication system using the achievable rate criterion

by jointly accounting for the physical size limitation of the transmit and receive antennas, and the

mutual coupling effects. By employing a circuit-theoretic approach, we incorporated the effects
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Fig. 13: Plots of the achievable rate with and without optimal power allocation (OPA) as a function of d/λ for the

parallel and colinear configurations with fc = 25 [GHz], W = 0.2 fc and Pmax = 10 [mW] in the near- and far-field

regions. The far-field plot in (b) corresponds to both parallel and colinear configurations.

of mutual coupling and the finite-size of Chu’s CMS transmit/receive antennas in the channel

response and the noise PSD. After establishing an equivalence between Chu antennas and Hertz

dipoles, we computed both the near- and far-field mutual impedances using the induced EMF

method and the Friis’ equation, respectively. This led to a full characterization of the input/output

relationship of the proposed circuit-equivalent model. We also examined the effect of the mutual

coupling on the achievable rate for both colinear and parallel relative orientations of the transmit

and receive antennas under both uniform and optimal power allocation strategies. The analysis

presented in this paper can be further extended to colinear/parallel MIMO systems using multi-

port circuit theory where the benefit of spatial multiplexing can be investigated under the mutual

coupling effect. For future work, it would be interesting to go beyond the assumption that the

antennas are both linear time invariant (i.e., without active components, switches, and moving

parts) and linearly polarized.

APPENDIX I: THE CHU-HERTZ RADIATION RESISTANCE EQUIVALENCE

In this appendix, we show the equivalence between the radiation of the Chu’s electric antenna

ℜ
[
ZChu

]
and the Hertz dipole ℜ

[
ZHertz

]
, which allows us to use them interchangeably as needed

throughout the paper. To this end, we perform the following three steps:

1) Write the radiated EM fields of both antennas in spherical coordinates (r, θ, φ),
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2) Apply the equivalence principle on the equivalent current distributions JChu and JHertz im-

pressed by a Chu’s electric antenna and a Hertz dipole on an enclosed sphere S. In doing

so, it will be possible to characterize the radiated EM fields of the Chu’s antenna by finding

the value of the complex coefficient A1 of the TM1 mode,

3) Use the value of A1 to recover the equality between ℜ
[
ZChu

]
and ℜ

[
ZHertz

]
by computing

the radiated power.

1) The radiated EM fields of the Chu antenna: For an arbitrary current distribution enclosed

in a sphere of radius a, Chu has shown in [7] that its radiated EM fields are expressed in terms

of a complete set of spherical waves (each of which corresponding to a TMn mode) as follows:

Hφ =

∞∑

n=1

An P
1
n(cos θ) hn(kr), (31a)

Er = −j

√
µ

ǫ

∞∑

n=1

An n(n + 1)Pn(cos θ)
hn(kr)

kr
, (31b)

Eθ = j

√
µ

ǫ

∞∑

n=1

An P
1
n(cos θ)

1

kr

∂

∂r

(
r hn(kr)

)
. (31c)

In (31), Pn(cos θ) and P 1
n(cos θ) refer to the Legendre polynomial of order n and the associated

Legendre polynomial of first kind, respectively. In addition, hn(kr) denotes the spherical Hankel

function of the second kind, and An represents the complex coefficient of the TMn mode.

For the Chu’s electric antenna operating at the TM1 mode (i.e., n = 1), the expressions of the

EM fields (31) are explicitly given by:

Hφ =
A1

k
sin θ

e−jkr

r

(
1 +

1

jkr

)
, (32a)

Eθ =

√
µ

ǫ

A1

k
sin θ

e−jkr

r

(
1 +

1

jkr
− 1

(kr)2

)
, (32b)

Er = 2j

√
µ

ǫ

A1

k
cos θ

e−jkr

r

(
1

kr
+

1

j(kr)2

)
. (32c)

2) The radiated EM fields of the Hertz dipole antenna: The radiated EM fields of a Hertz

dipole having a uniform current distribution, I , over its infinitesimal length, dl, are given by
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[31]:

Hφ = jk
Idℓ

4π
sin θ

e−jkr

r

(
1 +

1

jkr

)
, (33a)

Eθ = jkη
Idℓ

4π
sin θ

e−jkr

r

(
1 +

1

jkr
− 1

(kr)2

)
, (33b)

Er = kη
Idℓ

2π
cos θ

e−jβr

r

(
1

kr
+

1

j(kr)2

)
. (33c)

3) The relationship between the equivalent current distributions JChu and JHertz: Given the

EM fields
(
EChu, HChu

)
in (32) and

(
EHertz, HHertz

)
in (33), finding the relationship between the

equivalent current distributions JChu and JHertz boils down to applying the equivalence principle

[31, Chapter 12] depicted in Fig. 14. When the current sources on the structure of the Chu’s

antenna and the Hertz dipole are replaced by fictitious equivalent sources Jeq = n̂×Hout, they

produce the same EM fields
(
Eout, Hout

)
in the outside volume Vout.

(a) (b)

Fig. 14: The equivalence principle substitutes the current distribution Jantenna of an arbitrary antenna in (a) with

its equivalent current Jeq = n̂×Hout impressed on the surface S in (b) to produce the same fields Eout and Hout

outside Vout when the inside fields Ein and Hin in Vin are 0.

Therefore, requiring the equivalent current sources JChu and JHertz to be identical yields:

n̂×HChu = n̂×HHertz, (34)

which, after equating (32a) and (33a), leads to the condition:

A1 = jk2 Idℓ

4π
. (35)

Now, we recall the definition of the radiation resistance ℜ
[
ZHertz

]
of the Hertz dipole when

regarded as an impedance ZHertz:

ℜ
[
ZHertz

]
=

2π

3
η

dℓ2

λ2
. (36)
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Upon rearrangement of (36) and substitution for dℓ in (35), the final expression of the complex

coefficient A1 becomes:

A1 = j
Ik2c

4πf

√
3ℜ
[
ZHertz

]

2πη
. (37)

Now, given the TM1 mode coefficient A1 in (37), the radiated EM fields
(
EChu, HChu

)
are fully

characterized according to (32).

4) The equality between the radiation of the electric Chu’s antenna ℜ
[
ZChu

]
and the Hertz

dipole ℜ
[
ZHertz

]
: To compute the radiation resistance ℜ

[
ZChu

]
of the Chu’s electric antenna as

a function of the radiation resistance ℜ
[
ZHertz

]
of the Hertz dipole, we will first calculate the

total radiated power PChu by the Chu’s electric antenna on a sphere of radius a. This can be

achieved by integrating the energy density S = 1
2
ℜ
[
E×H

]
over the solid angle of a sphere of

radius a as follows:

PChu(a) =

∫

sphere

S · dS =
1

2

∫ 2π

0

∫ π

0

(
EθHφ−ErHφ

)
a2 sin θ dθ dφ =

4π

3

η

k2
|A1|2, (38)

where dS = r̂ sin(θ) dθ dφ is the normal surface vector. We then identify the radiation resistance

ℜ
[
ZChu

]
by treating the Chu’s antenna as a resistance with a power loss PChu = 1

2
I2ℜ

[
ZChu

]
,

which is equated with (38) to yield the following relationship between ℜ
[
ZChu

]
and A1:

|A1|2 =
3k2I2

8πη
ℜ
[
ZChu

]
. (39)

Finally, we combine (37) and (39) to obtain ℜ
[
ZChu

]
= ℜ

[
ZHertz

]
, thereby confirming the

identical radiated EM fields for both the Hertz dipole and the electrical Chu’s antenna.

APPENDIX II: THE CHU-HERTZ MUTUAL IMPEDANCE EQUIVALENCE

A. Mutual impedance between two Hertz dipoles

In this appendix, we derive the mutual impedances between two electrical Chu’s antennas in

close proximity which characterise the off-diagonal entries of the impedance matrix describing

a SISO near-field communication channel.
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Given a current I0 that is uniformly distributed along its length dl, a Hertz dipole radiates an

electric field in spherical coordinates (r, θ, φ) which is given by:

Eθ = j
η0 k0 I0 dℓ

4π

(
1 +

1

j k0 r
− 1

(k0 r)2

)
e−j k0 r

r
sin(θ), (40a)

Er =
η0 I0 dℓ

2π

(
1

r
− j

k0 r2

)
e−j k0 r

r
cos(θ), (40b)

Eφ = 0. (40c)

Let HertzT and HertzR denote two transmit and receive Hertz dipole antennas of length dlT

and dlR and radiation resistance ℜ
[
ZHertzT

]
and ℜ

[
ZHertzR

]
, respectively, which are located at

an arbitrarily fixed plane and separated by a distance d as shown in Fig. 6. HertzR is oriented

along a chosen w-axis whose direction vector can be written as ŵ = cos(γ) r̂ + sin(γ) θ̂. The

orientation of HertzT coincides with the z-axis to simplify the calculation of the electric field.

Such configuration corresponds to HertzT and HertzR being aligned w.r.t. their axes w and z,

respectively, and arbitrarily rotated with angles β and γ w.r.t. their connecting axis r.

To compute the mutual impedance ZHertz
TR , one should consider the observation point over HertzR

along ŵ. When HertzR is open-circuited, the relationship between the induced open-circuit

voltage of ZTR, denoted as VTR,oc, and the electric field ETR(r, θ) generated by HertzT and

incident on HertzR is

VTR,oc = − 1

I0,R

∫∫

HertzR

ETR(r, θ) I0,R(r, θ) dr dθ

= −dlR

[
Er(r, θ) cos(γ) + Eθ(r, θ) sin(γ)

]∣∣∣∣
r=d, θ=β

= −η0 I0,T dℓT dℓR k
2
0

2π

[
1

2
sin(β) sin(γ)

(
1

j k0 d
+

1

(j k0 d)2
+

1

(j k0 d)3

)

+ cos(γ) cos(β)

(
1

(j k0 d)2
+

1

(j k0 d)3

)]
e−j k0 d, (41)

where we carried out the integration explicitly because the length dlR of the Hertz dipole is
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infinitesimal. Using (41), the mutual impedance ZHertz
RT is

ZHertz
RT =

VTR,oc

I0,T

= −η0 dℓT dℓR k
2
0

2π

[
1

2
sin(β) sin(γ)

(
1

j k0 d
+

1

(j k0 d)2
+

1

(j k0 d)3

)

+ cos(β) cos(γ)

(
1

(j k0 d)2
+

1

(j k0 d)3

)]
e−j k0 d. (42)

Substituting for dlR and dlT in (42) using (36) yields the final expression

ZHertz
RT = −3 k2

0 c
2

4π2f 2

√
ℜ
[
ZHertzT

]
ℜ
[
ZHertzR

]
[
1

2
sin(β) sin(γ)

(
1

j k0 d
+

1

(j k0 d)2
+

1

(j k0 d)3

)

+ cos(β) cos(γ)

(
1

(j k0 d)2
+

1

(j k0 d)3

)]
e−j k0 d.

(43)

Note that ZTR = ZRT, due to the reciprocity theorem when applied on HertzT and HertzR.

B. Mutual impedances of Chu’s antennas

Given the mutual impedance between two Hertz dipoles (43) and the equivalence between

Chu’s electrical antennas and Hertz dipoles established in Appendix I in terms of radiation

resistance, it is possible to deduce the mutual impedance between two electrical Chu’s antennas

without recalculating them from scratch.

To this end, we consider two near-field SISO communication scenarios:

• Scenario 1: an electrical Chu’s antenna as a transmitter to a receiving Hertz dipole antenna,

• Scenario 2: a Hertz dipole antenna as a transmitter to a receiving electrical Chu’s antenna.

For the first scenario, we establish a relationship between the current of the electrical Chu’s

antenna, IChu
T , and the current of the Hertz dipole, IHertz

R . The current of the electrical Chu’s

antenna is given by [7]:

IChu
T = −

√
8πη

3

A1

k

ka− j

ka
e−jka. (44)

After injecting the expression of A1 established in (35) into (44) and computing its squared

norm, one obtains:

(IChu
T )2 =

η k2 dℓ2T
6π

(IHertz
R )2

(ka)2 + 1

(ka)2
. (45)
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Using the definition of the self-impedance of the Chu’s electric antenna (4) and substituting dlT

with its expression from (36), (45) reduces simply to:
(

IChu
T

IHertz
R

)2

=
ℜ
[
ZHertz

R

]

ℜ
[
ZChu

T

] , (46)

or equivalently:

IChu
T =

√
ℜ
[
ZHertz

R ]

ℜ
[
ZChu

T ]
IHertz

T . (47)

Similarly, if we consider the second scenario (i.e., by swapping the types of the transmit

and receive antennas in the first scenario), we obtain in pure analogy to (47) the following

relationship:

IHertz
T =

√
ℜ
[
ZChu

R

]

ℜ
[
ZHertz

T

] IChu
T , (48)

which, when combined with (47) yields:

(IChu
T )2

√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

]
= (IHertz

T )2
√

ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

]
. (49)

The identity in (49) can now be used to deduce the relationship between the mutual impedance

of two Hertz dipoles, ZHertz
TR , and the mutual impedance of two electrical Chu’s antennas, ZChu

TR .

In fact, for two Hertz dipole antennas, the mutual impedance between the first and second

antennas is given by:

ZHertz
TR = − 1

(IHertz)2

∫
EHertz

TR (r, θ) IHertz(r, θ) dr dθ. (50)

Since the electrical Chu’s antenna and the Hertz dipole have the same radiated EM fields, as

well as, the same current distribution JChu and JHertz as already shown in Appendix I, one can

replace EHertz
TR (r, θ) with EChu

TR (r, θ), and IHertz(l) with IChu(l). By doing so, (50) leads to:

Z
Hertz
TR = − 1

(IHertz)2

∫
EChu

TR (r, θ) IChu(r, θ) dr dθ, (51)

which yields, after normalizing both sides with the same factor:

ZHertz
RT√

ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

] = − 1

(IHertz)2
√
ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

]
∫

EChu
TR (r, θ) IChu(r, θ) dr dθ. (52)

After substituting the denominator of the right-hand side of (52) with (47), it follows that:

ZHertz
RT√

ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

] =
ZChu

RT√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

] , (53)
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which allows one to deduce the mutual impedance ZChu
RT between two electrical Chu’s antennas

given the mutual impedance ZHertz
RT and the self-impedances of the two antennas. Owing to the

reciprocity theorem, by switching the roles of the transmit and receive antennas, one can establish

the equality in (53) using ZHertz
TR and ZChu

TR instead of ZHertz
RT and ZChu

RT , thereby obtaining:

ZHertz
TR√

ℜ
[
ZHertz

T

]
ℜ
[
ZHertz

R

] =
ZChu

TR√
ℜ
[
ZChu

T

]
ℜ
[
ZChu

R

] . (54)

APPENDIX III: THE DERIVATION OF THE FAR-FIELD MUTUAL IMPEDANCE

We resort to basic circuit theory analysis of the FF SISO communication model described in

Fig. 5 to find the FF mutual impedance, ZChu
RT (f). Using the current divider, IR1

(f) and I1(f)

are related as follows:

IR1
(f) = I1(f)

(
j 2π f aT

c+ j 2π f aT

)
[A]. (55)

To find the transmit-receive ZChu
RT (f) that relates the receiver voltage V2(f) and the transmitter

current I1(f), we first open-circuit the receiver current by setting I2(f) = 0. The equivalent

impedance ZR2 ‖L of the parallel-connected resistor R2 and the inductance L = aR R2/c is then

given by:

ZR2 ‖L(f) =
j 2π f R2

j 2π f + c
aR

[Ω]. (56)

By recalling the expression of |Is(f)| in (18) and using Ohm’s law for the impedance ZR2 ‖L(f),

i.e., V2(f) = ZR2 ‖L(f) Is(f) one obtains:

V2(f) = IR1
(f)

c

2πfd

√
GT GR R1

R2

j 2π f R2

j 2π f + c
aR

[V]. (57)

Injecting (55) into (57) yields:

V2(f) = I1(f)

(
j 2π f aT

c + j 2π f aT

)
c

2πfd

√
GT GR R1

R2

j 2π f R2

j 2π f + c
aR

[V], (58)

from which we obtain the expression of ZChu
RT (f) given in (19).
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