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Abstract

Driven by the rapid growth of Internet of Things applications, tremendous data need to be collected

by sensors and uploaded to the servers for further process. As a promising solution, mobile crowd sensing

enables controllable sensing and transmission processes for multiple types of data in a single device. In

this paper, a typical user is considered that is required to sense and transmit data to a server, while it

is assumed to remain busy and incapable of sensing data during an interval. An optimization problem

is formulated to minimize the energy consumption of data sensing and transmission by controlling the

sensing and transmission rates over time, subject to the constraints on the sensing data sizes, transmission

data sizes, data casualty, and sensing busy time. This problem is highly challenging, due to the coupling

between the rates as well as the existence of the busy time. To deal with this problem, we first show

that it can be equivalently decomposed into two subproblems, corresponding to a search for the amount

of data size that needs to be sensed before the busy time (referred to as the height), as well as the

sensing and transmission rate control given the height. Next, we show that the latter problem can be

efficiently solved by using the classical string-pulling method, while an efficient algorithm is proposed

to progressively find the optimal height without the exhaustive search. Moreover, the solution approach

is extended to a more complex scenario where there is a finite-size buffer at the server for receiving

data. Last, simulations are conducted to evaluate the performance of the proposed design.
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I. INTRODUCTION

The development of Internet of Things (IoT) applications for Smart Cities has enabled a

series of services such as auto-driving, pollution assessment, temperature measurement, and

public-safety surveillance [1]. Nonetheless, the wide range of services require tremendous data

with a variety of types, which need to be collected by the sensors and sent to the servers [2]. In

the conventional wireless sensor networks (WSN), it is hard for a sensor to collect diverse types

of data due to its limited sensing coverage and scalability [3]. To overcome such bottleneck,

mobile crowd sensing (MCS) has been proposed by leveraging handheld and wearable IoT

devices equipped with multiple sensing modules to collect different types of data [4].

Despite the multiple types of collected data at the sensors, delivering them to the server

simultaneously will result in a heavy communication burden if not impossible. Fortunately, the

different task requirements with respect to both data size and delay tolerance can be exploited

for efficient radio resource management, which is known as the differentiated radio resource

management (DRRM) [5]. As an intelligent communication method, DRRM integrates different

task requirements (such as delay tolerance) and wireless link conditions (such as channel state)

to design device access, resource allocation and interference coordination [6]. Different from the

traditional communication schemes, DRRM not only focuses on spectrum efficiency, but also

on the quality of service (QoS) for the sensing tasks [7]. For instance, auto-driving needs ultra

reliable low latency communication (URLLC) of sensed data to ensure safety [8]. In contrast,

pollution assessment requires enhanced mobile broadband (eMBB) for carrying massive sensed

data, but is less sensitive to transmission delay [9]. In essence, DRRM is an integration between

the application layer and the physical layer, i.e., the information of the application layer is used

to guide the resource allocation in the physical layer. Based on DRRM, the controllable data

sensing and transmission processes of IoT devices can be utilized to improve the efficiency of

MCS [10].

The investigation of DRRM can be traced back to the earlier works on the long-term rate

control, where multiple tasks exist in the same server with different requirements of data size

and delay tolerance [11]–[15]. It was found in [11] that varying packet transmission time can

reduce the energy consumption for transmitting given a fixed amount of data. Inspired by such

findings, the optimal rate-control policy was proved to have the string-pulling (SP) structure

for minimizing the total transmission energy while satisfying the QoS constraints of tasks [12].

In essence, the optimality of SP structure is due to the convexity of the objective function in
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the optimization problem. The algorithm for deriving the SP structure was further extended to

account for the data transmission cases with bursty data arrival [13], finite data buffer [14], and

time-varying channels [15], respectively.

The optimality of rate control with SP structure was further extended to DRRM in other

scenarios including energy-harvesting (EH) [16]–[22], channel estimation (CE) [23], relaying

[24], caching [25], mobile edge computing (MEC) [26], and edge learning (EL) [27]. In EH

systems, the power control policy with SP structure was proved to be optimal for transmission

delay minimization given the profiles of energy arrivals [16], battery capacity [17], battery

leakage [18], energy cooperation [19], channel states [20], circuit power consumption [21],

and user states [22]. As for CE, the joint training period and power control based on SP

structure was proved to be optimal for minimizing the channel estimation error [23]. Taking

relay into consideration, the SP structure based joint source and relay power allocation over

time was designed for maximizing the throughput [24]. As for caching, the joint design of the

transmission and caching policies based on SP structure was carried out for minimizing the

traffic and energy costs over the backhaul links [25]. In MEC systems, the offloading data size

with the SP structure over the whole computing duration was proved to be optimal for energy

consumption minimization given the central processing unit (CPU) state information [26]. As for

EL, the jointly data partition and transmission rate design based on SP structure was proposed for

minimizing the transmission energy consumption as well as the classification errors of multiple

learning tasks including support vector machines and convolutional neural networks [27]. Despite

the rich literatures on SP structure based DRRM, all of them only focus on data transmission

process without taking the data sensing process into consideration.

By relaxing the simple assumption of one-shot or bursty data arrivals in literatures [26], [27],

the data sensing process of MCS device is controllable [28]. Therefore, the sensing rate can be

optimized together with the transmission rate to minimize the total energy consumption for data

sensing and transmission. Moreover, as the sensing modules of MCS device might be occupied

by other applications (e.g., the camera is occupied when the device holder is in video call), the

sensing process need to be suspended in such duration, which is known as the busy time interval

[29]. During such an interval, the sensing rate has to be zero, while the transmission module can

work as normal. However, as the data need to be sensed before transmission, the sensing process

and transmission process naturally interact with each other. The interdependence of sensing and

transmission processes together with the existence of busy time result in coupling optimization
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variables and nontrivial problem. By exploiting the SP structure as well as taking geometrical

analysis in this paper, the optimal sensing and transmission rate controls are derived for the

scenarios with finite or infinite data buffer capacity.

The main contributions of this work are summarized below.

• Optimal Sensing and Transmission Rate Control given Fixed Height: Given the requirements

of tasks w.r.t. data size and delay tolerance, the data sensing and transmission rate are jointly

optimized to minimize the total energy consumption of sensing and transmission. Due to

the fact the the data need to be sensed before transmission, the sensing and transmission

rates are coupled together, which makes the optimization problem non-trivial. The existence

of busy time interval in practice further complicates the problem. To obtain the tractable

solution, a vital concept namely height is introduced in this paper, which specifies the

amount of data that needs to be sensed before the busy time. Given the fixed height, the

optimal sensing and transmission rates controlling policies can be obtained by using the SP

method.

• Optimal Design with Infinite Server Data Buffer Capacity: For a server with infinite data

buffer capacity, the original rates optimization problem can be converted to a search for

the optimal height. Based on the property of the objective function, the upper and lower

bounds of the area where the optimal height lies in are derived. The whole searching area

is further divided into a series of sub-areas due to the different expressions of the objective

function with respect to different heights.. Finally, the optimal height in each sub-area is

obtained based on the convexity of the objective function and the global optimal height is

further determined by comparing the local optimums.

• Optimal Design with Finite Server Data Buffer Capacity: The versatility of the above

solving approaches is further demonstrated by an extension to the case with finite data

buffer capacity of the server. Specifically, the transmitted data size is upper bounded by

the data buffer capacity and thus the algorithm is adjusted correspondingly, while the SP

structure also holds in the optimal design for this case.

The rest of this paper is organized as follows. The system model and problem formulation are

described in Section II. The optimal design of sensing and transmission rates control in the case

with infinite server data buffer capacity is presented in Section III, which is further extended

to account for the case with finite server data buffer capacity in Sections IV. The experimental

results are presented in Section VI. The conclusions are drawn in Section VII.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the system as shown in Fig. 1, a server has N tasks to be executed at time instants

{t1, t2, ..., tN}. Completing the n-th task (e.g., learning model training [27]) requires Dn amount

of data sensed and wirelessly transmitted by mobile devices before instant tn. Both the sensing

and transmission rates are varying from time to time, denoted by s(t) and r(t) respectively.

Let C denote the number of central processing unit (CPU) cycles for sensing one bit of data,

the CPU cycle frequency can be determined by f(t) = s(t)C. Following the models in [26],

[30], [31], under the assumption of a low CPU voltage, the sensing power consumption Ps(t) =

αf 2(t) = αC2s2(t), where α is a constant determined by the circuits. According to the Shannon

capacity [32], the transmission power consumption Pt(t) =
σ2

g
(er(t)/B − 1) with σ2, g, and B

denoting the noise power, effective channel power gain, and spectrum bandwidth respectively.

The objective is to minimize the energy consumption for data sensing and transmission, i.e,

min
s(t),r(t)

∫ tN

t=0

[
αC2s2(t) +

σ2

g
(er(t)/B − 1)

]
dt. (1)

To guarantee the execution of tasks, both the sizes of the sensed and transmitted data should be

no less than Dn before instant tn, which are known as the data requirement constraints:

(Data sensing requirement)
∫ tj

t=0

s(t) ≥
j∑

n=1

Dn, j = 1, 2, ...N, (2)

(Data transmission requirement)
∫ tj

t=0

r(t) ≥
j∑

n=1

Dn, j = 1, 2, ..., N. (3)

If the amount of data that can be sensed or transmitted in the n-th epoch is larger than Dn, such

epoch can be used to sense or transmit extra data required by the subsequent tasks. The extra

sensed data and transmitted data are stored in the buffers of the mobile device and the server

respectively, whose capacities are both assumed to be infinite. Since data needs to be sensed

before transmission, the amount of transmitted data should be no longer than that of sensed data

through the whole duration, which is known as the casualty constraint and expressed as∫ τ

t=0

s(t)dt ≥
∫ τ

t=0

r(t)dt,∀τ ∈ [0, tN ]. (4)

Despite data sensing, the mobile devices may have other tasks. Therefore, the CPU of mobile

device might be busy and no data can be sensed during some time intervals, e.g., [b1, b2] as

shown in Fig. 1. The time sequence {t′i} = {t1, ..., ti, b1, ti+1, ..., tj, b2, tj+1, ..., tN} are divided

into N ′ = N + 2 epochs with the length T ′i = t′i − t′i−1 for i = 1, ..., N ′ and t′0 = 0.
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Figure 1: MCS system with multiple tasks

B. Problem Formulation

Based on the above discussion, the corresponding optimization problem can be formulated as

min
s(t),r(t)

∫ tN

t=0

[
αC2s2(t) +

σ2

g
(er(t)/B − 1)

]
dt (5a)

(P1) s.t.
∫ tj

t=0

s(t) ≥
j∑

n=1

Dn, j = 1, ...N, (5b)

∫ tj

t=0

r(t) ≥
j∑

n=1

Dn, j = 1, ..., N, (5c)∫ τ

t=0

s(t)dt ≥
∫ τ

t=0

r(t)dt,∀τ ∈ [0, tN ], (5d)

s(t) = 0,∀t ∈ [b1, b2]. (5e)

It should be noted that
∫ tN
t=0

s(t)dt =
∫ tN
t=0

r(t)dt =
∑N

n=1Dn must hold when the optimum is

achieved, otherwise one can always decrease s(t) or r(t) without conflicting other constraints,

and thus reduce the power consumption. The constraints in (5b) and (5c) guarantee the sensing

and transmission of the required amount of data. The constraints in (5d) indicate that the data

should be sensed before transmitted. The constraints in (5e) specify the duration when no data

can be sensed.

III. JOINT OPTIMIZATION OF SENSING AND TRANSMISSION RATES

In this section, the original problem is first simplified without loss of optimality by converting

the continuous variables {r(t)}, {s(t)} into discrete variables {ri}, {si} based on the structure of

rate optimal control. To solve the simplified problem, an algorithm namely height search based

on the SP structure is proposed.
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A. Structure of Optimal Rate Control

For the energy minimization problem, the following lemma shows that the constant-rate sensing

and transmission within each epoch is optimal.

Lemma 1 (Optimality of Constant Rate). In each epoch, the constant-rates sensing and trans-

mission are optimal.

Proof. Assume that there are two sensing rates before and after instant t′i ∈ [t′a, t
′
b), denoted as si

and si+1 respectively. The sensing energy consumption is Es = αC2s2i (t
′
i−t′a)+αC2s2i+1(t

′
b−t′i).

Let s′ = si(t
′
i−t′a)+si+1(t

′
b−t
′
i)

t′b−t′a
denote the new sensing rate over [t′a, t

′
b), the sensing power becomes

P ′s = αC2
(
si(t
′
i−t′a)+si+1(t

′
b−t
′
i)

t′b−t′a

)2
. Due to the convexity, P ′s ≤ αC2s2i

t′i−t′a
t′b−t′a

+ αC2s2i+1
t′b−t

′
i

t′b−t′a
. The

sensing energy consumption over this duration is E ′s = αC2(t′b− t′a)
(
si(t
′
i−t′a)+si+1(t

′
b−t
′
i)

t′b−t′a

)2
≤ Es.

Therefore, the energy consumption under the new policy is less than that under the original

policy for sensing the same amount of data in this epoch, and thus the original policy cannot

be optimal. Following the similar approach, the transmission rate has the same property.

Based on Lemma 1, the optimal sensing and transmission rates s(t) and r(t) might only

change at {t′i}. The corresponding rates in the i-th epoch are denoted by si and ri, respectively.

As there is no task to be executed at instants b1 and b2, D′i = 0 when t′i = b1 or t′i = b2, while

D′i = Dn when t′i = tn. Therefore, the original problem can be converted to:

min
{ri≥0},{si≥0}

N ′∑
i=1

[
αC2s2i +

σ2

g
(eri/B − 1)

]
T ′i (6a)

(P2) s.t.
j∑
i=1

siT
′
i ≥

j∑
i=1

D′i, j = 1, ...N ′, (6b)

j∑
i=1

riT
′
i ≥

j∑
i=1

D′i, j = 1, ...N ′, (6c)

j∑
i=1

siT
′
i ≥

j∑
i=1

riT
′
i , j = 1, ...N ′, (6d)

si = 0,∀t′i ∈ [b1, b2]. (6e)

It should be noted that the coupling rates in (6d) and the existence of busy time in (6d) make

(P2) non-trivial. A feasible solution is illustrated in Fig. 2. To derive the optimal solution, an

useful concept namely height h is introduced, which denotes the amount of data that needs to

be sensed before the busy time interval b1.
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Figure 2: A feasible rate control scheme

B. Optimal Rates based on Given Height

Given a certain height h, the optimization of sensing rates before the busy time interval aims

at constructing the shortest path from a starting point (e.g., (t0, 0) in Fig. 2) to an ending point

(e.g., (b1, h) in Fig. 2) above the floor determined by the required data size {Dn}, which can

be performed by pulling a stretched string from the starting point to the ending point above the

floor and known as SP. The SP structure also holds for optimizing the sensing rates after the

busy time interval by pulling a stretched string from (b2, h) to (tN ,
∑N

n=1DN) above the floor

determined by {Dn}. The corresponding optimized rates have the following property:

Lemma 2 (Optimal Rate Control above the Floor). The optimal rate above the floor is non-

increasing along the epochs. Moreover, the rate might decrease only when the data requirement

constraint is active.

Proof. Due to the convexity of Ps(t), if two feasible rates in consecutive epochs i and i+1 satisfy

si < si+1, one can always find a feasible rate s′ = siT
′
i+si+1T

′
i+1

T ′i+T
′
i+1

with less energy consumption.

Moreover, if there exists a gap between the sensed and required data size, there exists room for

equalizing the rates in two epochs to reduce the energy consumption. Such property also holds

for data transmission with the specified proof in Section III-B of [27].

Based on the non-increasing property of the rate given in Lemma 2, the SP algorithm in [27] is

applied to obtain the optimal sensing rates in each epoch by iteratively finding the rate curve with

the largest slope, which is summarized in Algorithm 1. As for transmission rate optimization,

the feasible region is a tunnel with the floor determined by the required data size {Dn}, and the

ceiling determined by the height h during the busy time interval due to the casualty constraint

(4). The optimized rates based on SP in such tunnel have the following property:
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Algorithm 1 SP Algorithm for Optimal Rate Control above the Floor.

Input: required data sizes {Dn} at instants {tn} for N tasks.

Output: the optimal rates {r∗i } and durations {T ∗i }.

1: Initialize j0 = 0, i = 0.

2: while ji < N

3: Update i = i+ 1.

4: Calculate ji = argmaxj:ji−1<j≤N

{∑j
n=ji−1+1Dn

tj−tji−1

}
.

5: Calculate r∗i =
{∑ji

n=ji−1+1Dn

tji−tji−1

}
.

6: Calculate T ∗i = tji − tji−1
.

7: End while

8: Return the optimal sensing rates {r∗i } and durations {T ∗i }.

Lemma 3 (Optimal Rate Control in the Tunnel). The optimal rate in the tunnel might only

decrease when the data requirement constraint is active, and might only increase when the

casualty constraint is active.

Proof. Suppose that the rate changes at arbitrary time t, so that r(t−) 6= r(t+). Let r′ = r(t−)+r(t+)
2

be the constant rate in [t− τ, t+ τ ]. If r(t−) < r(t+), then r′ is feasible only when the casualty

constraint is inactive. If r(t−) > r(t+), then r′ is feasible only when the data requirement

constraint is inactive. According to Lemma 1, the application of r′ can reduce the energy

consumption and thus the original rates are not optimal. The specified proof can be found

in Section IV-A of [27].

Based on Lemma 3, the SP algorithm in [27] is applied to obtain the optimal transmission

rates in each epoch by iteratively finding the feasible region and the corresponding constant rates,

which is summarized in Algorithm 2. Though the optimal sensing and transmission rates based

on a certain height can be obtained by applying Algorithms 1 and 2 separately, the casualty

constraints in the non-busy time intervals are ignored. Fortunately, it can be proved that the rates

determined by Algorithms 1 and 2 won’t violate the casualty constraints, the whole process for

finding the optimal sensing and transmission rates is summarized in Algorithm 3.

Proposition 1 (Optimal Sensing and Transmission Rates Given Fixed Height). The solutions

obtained by Algorithm 3 are the optimal sensing and transmission rates given the fixed height.
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Algorithm 2 SP Algorithm for Optimal Rate Control in the Tunnel.

Input: required data sizes {Dn} at instants {tn}, maximum data sizes {A(tm)} at instants {tm}.

Output: the optimal rates {r∗i } and durations {T ∗i }.

1: Initialize vb = 0, v1 = 0, i = 0, n1 = 0.

2: while M > 0

3: Update i = i+ 1.

4: for m = 1, ...,M

5: rlow[m] =
∑

n:0≤tn<tm
Dn

tm
,

6: rhigh[m] = A(tm)
tm

,

7: r[m] = [rlow[m], rhigh[m]] = {r|rlow[m] ≤ r ≤ rhigh[m]}.

8: end for

9: Update vb = max {v|
⋂u
m=1 r[m] 6= ∅,m = 1, 2, ...,M}.

10: if vb =M

11: Update v1 = max
{
v|rlow[v] ∈

⋂vb
j=1 r[m]

}
, r∗i = re[v1], T ∗i = tv1 .

12: else

13: if r[vb + 1] falls below
⋂vb
m=1 r[m]

14: Update v1 = max {v|rlow[v] ∈
⋂vb
m=1 r[m]}, r∗i = rlow[v1] and T ∗i = tv1 .

15: else

16: Update v1 = max {v|rhigh[v] ∈
⋂vb
m=1 r[m]}, r∗i = rhigh[v1] and T ∗i = tv1 .

17: end if

18: end if

19: Update M=M−v1, tm= tm+v1−tv1 , n1=max{n|tn≤ tv1}, tn= tn+n1−tv1 , t0=0.

20: Update D′ = r∗i T
∗
i −
∑n1

n=0Dn, Dn = Dn+n1 , D1 = D1−D′, A(tm) = A(tm+v1)−r∗i T ∗i .

21: end while

22: Return the optimal rates {r∗i } and durations {T ∗i }.

Proof. It can be observed that the only constraint that causes the coupling relationship between

sensing and transmission rates is constraint (6d). Without this constraint, the optimal sensing rate

s∗(t) and transmission rate r∗(t) can be derived by algorithms 1 and 2, respectively. Then we

only need to prove that the rates derived by algorithms 1 and 2 are feasible w.r.t. the constraint
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Algorithm 3 Optimal Sensing and Transmission Rates Searching Algorithm given Fixed Height.

Input: Required data amounts {Dn} at instants {tn} for N tasks, busy time interval [b1, b2],

and the amount of sensed data (height) h before the busy time.

Output: Optimal transmission rates {r∗i } and durations {T ri ∗}, optimal sensing rates {s∗i } and

durations {T si ∗}.

1: Initialize n1 = max{n|tn < b1}, n2 = min{n|tn > b2}.

2: Set {D1
n} = {D0, D1, D2, ..., Dn1 , h} at instants {t1n} = {t0, t1, t2, ..., tn1 , b1}.

3: Set {D2
n} = {h,Dn2 − h,Dn2+1 − h, ..., Dn − h} at instants {t2n} = {b2, tn2 , tn2+1, ..., tn}.

4: Given {D1
n}, {D2

n}, {t1n} and {t2n}, find the optimal sensing rates {s1i }, {s2i } and durations

{T 1
i }, {T 2

i } by Algorithm 1.

5: Get the optimal sensing rates {s∗i } = {{s1i }, 0, {s2i }} and durations {T si ∗} = {{T 1
n}, b2 −

b1, {T 2
n}}.

6: Obtain {tm} by sorting the instants {tn}, b1, b2 in increasing order.

7: Set A(tm) = h if tm = b1 or tm = b2. Otherwise, A(tm) = +∞.

8: Find the optimal transmission rates {r∗i } and durations {T ri ∗} by Algorithm 2.

9: Return {r∗i }, {T ∗i }, {s∗i }, {T ∗∗i }

(6d). Assume that constraint (6d) is violated for the interval [ti, ti+1], we can decrease the

transmission rate r(t) such that r(t) = s(t) in [ti, ti+1]. Since
∫ tj
t=0

s(t)dt ≥
∑j

n=1Dn, so does∫ tj
t=0

r(t)dt ≥
∑j

n=1Dn. Therefore, the transmission energy can be reduced without violating

any constraints, which contradicts the optimality of r∗(t) and thus impossible.

Remark 1 (Optimal Rates without Busy Time). When there is no busy time, both the optimal

sensing and transmission rates have the SP structures and can be derived by Algorithm 1, which

are equal to each other in all time slots, i.e., s(t) = r(t) ∀ t ∈ [0, tN ].

C. Searching Area for the Optimal Height

According to Proposition 1, the remaining problem is to search for the optimal height. The

first part of height searching algorithm is to find a specific area where the optimal height lies

in, which depends on the lemmas below.
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Figure 3: The lower bound of searching area for optimal height

Lemma 4 (Minimum Sensing Energy Consumption). The sensing energy consumption achieves

its minimum when the sensing rates in the epochs adjacent to the busy time interval are equal.

Proof. Given the height h, the sensing energy consumption in the epochs adjacent to the busy

time interval will be αC2b1(
h
b1
)2 + αC2(T − b2)(

D−h
t−b2 )

2, which is firstly decreasing and then

increasing with increasing h. Let the derivative w.r.t h equal to 0, one can get h
b1

= D−h
t−b2 .

Remark 2 (Effect of Height on Sensing Rates). It can be observed from the proof of Lemma 4

that the sensing rate before the busy time is increasing with the height, while the sensing rate

after the busy time is decreasing with the height.

Based on Lemma 4, the lower bound of the searching area for the optimal height is obtained

in the following proposition.

Proposition 2 (Lower Bound of the Searching Area). The lower bound of the searching area

is the height that the sensing rates in the epochs adjacent to the busy duration are equal if it is

feasible. Otherwise the lower bound is the required data size by the end of the busy time.

Proof. According to Lemma 4, the sensing energy consumption won’t be reduced by decreasing

the height. As for transmission, since the height represents the amount of sensed data, decreasing

the height will make the casualty constraint more stringent. As shown in Fig. 3, suppose that

the optimal transmission rates are {r1, r2, r3} given the height hl. By decreasing the height to

h′l, the transmission rates turns to {r1, r′2, r′3}. Due to the convexity of the Shannon capacity,

the transmission energy consumption Et(r2) + Et(r3) ≤ Et(r
′
2) + Et(r

′
3) as r′2 < r2 < r3 < r′3.

That is to say, the transmission energy consumption won’t be reduced by decreasing the height.

Therefore, such height is the lower bound of the searching area if it is feasible. If hl is not
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Figure 4: The upper bound of searching area for optimal height

feasible, the lower bound is the required data size by the end of the busy time since it is the

lowest achievable height towards the minimum sensing energy consumption.

On the other hand, the upper bound can be determined by optimizing the transmission and

sensing rates sequentially, which is given in the following proposition.

Proposition 3 (Upper Bound of the Searching Area). The upper bound of the searching area is

the height that is derived by solely optimizing the transmission rates without considering sensing.

Proof. As shown in Fig. 4, the optimal transmission rates without taking sensing into consider-

ation has the SP structure with the floor determined by the required data size, and thus can be

derived by Algorithm 1. The corresponding height at the end of busy time b2 is hu. According

to Lemma 2, the optimal transmission rates won’t change by increasing hu and so does the

transmission energy consumption. Given the height hu, the optimal sensing rates before and

after the busy time interval can also be derived by Algorithm 1. Due to the casualty constraint,

one can get s1 ≥ r1. As for the epoch after the busy time interval, since the point (b2, hu) lies

on the curve of r3, one can get r3 = s3 according to Algorithm 1. According to Lemma 3, one

can get s1 ≥ r1 ≥ r2 ≥ r3 = s3. That is to say, the sensing rate before the busy time is no less

than that after busy time, which indicates that the height hu ≥ hl. Therefore, the sensing energy

consumption will not be reduced by increasing the height hu. Since the total energy consumption

will not be reduced by increasing the height hu, such height is the upper bound.

Moreover, one can also observe from Fig. 4 that the sensing and transmission rate curves

are overlapping after the busy time interval. Indeed, such a property is valid accounting for all

heights in the searching area as given in the following lemma.
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Figure 5: Sub-areas determined by critical points

Lemma 5 (Sensing and Transmission after the Busy Time Interval). For all heights in the

searching area, the sensing and transmission rate curves are overlapped after the busy time

interval.

Proof. The first step is to prove that the amount of sensed data should be equal to that of

transmitted data by the end of the busy time interval. Otherwise the data that has been sensed

should be more than that has been transmitted due to the casualty constraints. In such case,

decreasing the height will reduce the sensing energy consumption and thus contradicts the

optimality. Therefore, both the sensing and transmission rate curves has the same start and end

points after the busy time interval. According to Remark 1, these two curves are overlapping.

D. Searching Area Division

After determining the searching area, the remaining work is to find the height that enables the

optimal sensing and transmission rates. To execute the height search, the changing of total energy

consumption with the varying height should be analyzed at first. According to Propositions 2

and 3, the sensing or transmission energy consumption will decrease or increase respectively

as the height decreases in the searching area. As the total energy consumption is comprised of

that both for sensing and transmission, whether it is increasing or decreasing with the change of

height is hard to determine. Moreover, the SP structure will also change with the varying height.

As shown in Fig. 5, the original rates before and after the point (t1, D1) will no longer be equal

if the height h decreases. The points leading to such change are defined as the critical points,

which divide the the whole searching area into a series of sub-areas. Once the height drops from
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one sub-area to another, the expression of total energy consumption will change. Therefore, it is

extremely complex to obtain the optimal height through traditional bisectional searching method

if not impossible.

To enable efficient searching, all the critical points and corresponding heights need to be

found out. As shown in Fig. 6, the critical points are the subset of {(tj,
∑j

n=1Dn)} that might

cause the change of SP structure denoted by {(tm,
∑m

n=1Dn)}. As for the case before the end

of busy time, the point with the largest slope maxj
∑j

n=1Dn

tj−t0 should be the first critical point.

By setting this critical point (tm,
∑m

n=1Dn) as the new start, the next critical point is the point

with the largest slope maxj
∑j

n=m+1Dn

tj−tm . As for the case after the end of busy time, the first

critical point is the one with the smallest slope minj

∑N
n=j+1Dn

tN−tj
denoted by (tm,

∑m
n=1Dn),

and the subsequent critical points can be found by checking the smallest slope minj

∑m
n=j+1Dn

tm−tj .

Therefore, all the critical points and corresponding heights can be found sequentially by the

Algorithm 4. Specifically, as the height decreases, the first critical point is (t1, D1) and the

next three are (t6,
∑6

n=1Dn), (t3,
∑3

n=1Dn), and (t5,
∑5

n=1Dn). It should be noted that the

points (t2,
∑2

n=1Dn), (t4,
∑4

n=1Dn) and (t7,
∑7

n=1Dn) are not critical since otherwise the data

requirement constraints will be violated. Once a critical point (tm,
∑m

n=1Dn) before the end

of busy time is determined, the rate won’t change with the height in duration [t0, tm], which

is known as the unchanged interval. As for the critical point after the busy time interval, the

unchanged interval is [tm, tN ].
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Algorithm 4 Critical Points and Corresponding Heights Searching Algorithm

Input: Required data amounts {Dn} at instants {tn} for N tasks, busy time [b1, b2]

Output: Critical points {(tm,
∑m

n=1Dn)} in searching area and corresponding heights {hm}.

1: Initialize j0 = 0, i = 0.

2: while tji ≤ b1

3: Update i = i+ 1.

4: Calculate ji = argmaxj:tji−1
<tj≤b1

{∑j
n=ji−1+1Dn

tj−tji−1

}
.

5: Calculate hji = (b1 − tji−1
)

∑ji
n=ji−1

Dn

tji−tji−1
+
∑ji

n=1Dn.

6: end while

7: Let tji = t0

8: while tji ≤ b2

9: Update i = i+ 1.

10: Calculate ji = argmaxj:tji−1
<tj≤b2

{∑j
n=ji−1+1Dn

tj−tji−1

}
.

11: Calculate hji = (b2 − tji−1
)

∑ji
n=ji−1

Dn

tji−tji−1
+
∑ji

n=1Dn.

12: end while

13: Let tji = tN

14: while tji ≤ tN

15: Update i = i+ 1.

16: Calculate ji = argminj:b2<tj≤tji−1

{∑ji−1
n=j+1Dn

tji−1
−tj

}
.

17: Calculate hji =
∑ji

n=1Dn − (tji − b2)
∑ji−1

n=ji+1Dn

tji−1
−tji

.

18: end while

19: Sort the heights in decreasing order denoted by {hm}.

20: Return The critical points {(tm,
∑m

n=1Dn)} and corresponding heights {hm}.

E. Height searching

After finding all the critical points and corresponding heights, the remaining steps are to

determine the local optimal height that results in the smallest energy consumption in each sub-

area, and get the global optimal height by comparing these local optimal heights. In each sub-area,

the heights that might reach local optimum are given in the following proposition.

Proposition 4 (Local optimal height in each sub-area). The local optimal height in each sub-area
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Algorithm 5 Global Optimal Rates Searching Algorithm

Input: Required data amounts {Dn} at instants {tn} for N tasks, busy time [b1, b2].

Output: The global optimal height h∗, sensing rates s∗(t), and transmission rates r∗(t).

1: Determine the searching area according to Propositions 2 and 3.

2: Find all critical points {(tm,
∑m

n=1Dn)} and corresponding heights {hm} by Algorithm 4.

3: Obtain the local optimal height {h∗m} in each sub-area determined by the critical points

according to Proposition 4.

4: Get the global optimal height h∗ = argminh∗m E(h
∗
m).

5: Get the optimal sensing and transmission rates s∗(t) and r∗(t) by Algorithm 3 based on h∗.

6: Return the global optimal height h∗, sensing rates s∗(t), and transmission rates r∗(t).

locates either at the boundary of such sub-area or where the derivate of energy consumption

with respect to the height equals to zero.

Proof. According to the definition, the rates in unchanged interval won’t change with the heights

and so does the corresponding energy consumption. As for sensing, consider one critical point

before b1 denoted by (tm1 ,
∑m1

n=1Dn) and one after b2 denoted by (tm2 ,
∑m2

n=1Dn). The changing

part of sensing energy consumption w.r.t. the height h in the sub-area determined by these points

can be expressed as Es(h) = αC2[(
h−

∑m1
n=1Dn

b1−tm1
)2(b1−tm1)+(

∑m2
n=1Dn−h
tm2−b2

)2(tm2−b2)]. As for trans-

mission, the critical point before b2 is denoted by (tm3 ,
∑m3

n=1Dn), while that after b2 should be

the same one as (tm2 ,
∑m2

n=1Dn) since the curves of transmission and sensing are overlapped ac-

cording to Lemma 5. The changing part of transmission energy consumption w.r.t the height h in

this sub-area is Et(h) = σ2

g
[exp(

h−
∑m3

n=1Dn

(b2−tm3 )B
)(b2−tm3)+exp(

∑m2
n=1Dn−h

(tm2−b2)B
)(tm2−b2)−2]. Therefore,

the changing part of total energy consumption E(h) = Es(h)+Et(h) = αC2[(
h−

∑m1
n=1Dn

b1−tm1
)2(b1−

tm1)+ (
∑m2

n=1Dn−h
tm2−b2

)2(tm2 − b2)]+ σ2

g
[exp(

h−
∑m3

n=1Dn

(b2−tm3 )B
)(b2− tm3)+ exp(

∑m2
n=1Dn−h

(tm2−b2)B
)(tm2 − b2)− 2].

One can get dE(h)
dh

= 2αC2[
h−

∑m1
n=1Dn

b1−tm1
−

∑m2
n=1Dn−h
tm2−b2

]+ σ2

gB
[exp(

h−
∑m3

n=1Dn

(b2−tm3 )B
)−exp(

∑m2
n=1Dn−h

(tm2−b2)B
)] and

d2E(h)
dh2

= 2αC2[ 1
b1−tm1

+ 1
tm2−b2

]+ σ2

gB2 [exp(
h−

∑m3
n=1Dn

(b2−tm3 )B
)/(b2−tm3)+exp(

∑m2
n=1Dn−h

(tm2−b2)B
)/(tm2−b2)] >

0. If the solution of dE(h)
dh

= 0 lies in the sub-area, then it is the local optimal height. Otherwise

the local optimal height lies in the boundary of this sub-area.

Based on Proposition 4, all local optimal heights in each sub-area can be found. After

comparing the corresponding total energy consumption of the local optimal heights from different
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sub-areas, one can get the global optimal height. The optimal sensing and transmission rates can

then be obtained by Algorithm 3. The whole process is summarized in Algorithm 5.

IV. EXTENSION FOR FINITE DATA BUFFER CAPACITY CASE

Inspired by the policy in the previous section, the joint data sensing and transmission rates

control for the case with finite data buffer capacity of the server is investigated in this section.

Constrained by the maximum capacity Dmax of the buffer, the size of stored data at the server

should obey the buffer constraints, i.e.,

(transmission data buffer)
j∑
i=1

riT
′
i −

j−1∑
i=1

D′i ≤ Dmax, j = 1, ...N ′, (7)

where D0 = 0 represents that no data is required at instant t0. After incorporating the data buffer

constraints, the optimization problem can be formulated as

min
{ri≥0},{si≥0}

N ′∑
i=1

[
αC2s2i +

σ2

g
(eri/B − 1)

]
T ′i (8a)

(P3) s.t.
j∑
i=1

siT
′
i ≥

j∑
i=1

D′i, j = 1, ...N ′, (8b)

j∑
i=1

riT
′
i ≥

j∑
i=1

D′i, j = 1, ...N ′, (8c)

j∑
i=1

riT
′
i −

j−1∑
i=1

D′i ≤ Dmax, j = 1, ...N ′, (8d)

j∑
i=1

siT
′
i ≥

j∑
i=1

riT
′
i , j = 1, ...N ′, (8e)

si = 0,∀t′i ∈ [b1, b2]. (8f)

To solve problem (P3), the height search algorithm is modified as elaborated below.

A. Searching Area Division for Determining Local Optimal Height

Due to the finite data buffer capacity, the original upper and lower bounds derived in the

previous section might not hold. Specifically, the upper bound is no longer determined by SP of

transmission rate curve above the floor via Algorithm 1, but should be determined by the one

accounting for finite data buffer capacity in [27] as summarized in Algorithm 6, which finds the

feasible region determined by the data buffer capacity and the corresponding constant rates in a

recursive manner.
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Algorithm 6 SP Algorithm for Optimal Rate Control with Finite Data Buffer.

Input: required data amounts {Dn} at instants {tn} for N tasks, data buffer capacity Dmax.

Output: the optimal transmission rates {r∗i } and durations {T ∗i }.

1: Initialize ub = 0, u1 = 0, i = 0.

2: while N > 0

3: Update i = i+ 1.

4: for j = 1, ..., N

5: re[j] =
∑j

n=0Dn

tj
,

6: rf [j] =
∑j−1

n=0Dn+Dmax

tj
,

7: r[j] = [re[j], rf [j]] = {r|re[j] ≤ r ≤ rf [j]}.

8: end for

9: Update ub = max
{
u|
⋂u
j=1 r[j] 6= ∅, j = 1, 2, ..., N

}
.

10: if ub = N

11: Update u1 = max
{
u|re[u] ∈

⋂ub
j=1 r[j]

}
, r∗i = re[u1], T ∗i = tu1 .

12: else

13: if r[ub + 1] falls below
⋂ub
j=1 r[j]

14: Update u1 = max
{
u|re[u] ∈

⋂ub
j=1 r[j]

}
, r∗i = re[u1], T ∗i = tu1 .

15: else

16: Update u1 = max
{
u|rf [u] ∈

⋂ub
j=1 r[j]

}
, r∗i = rf [u1], T ∗i = tu1 .

17: end if

18: end if

19: Update N = N − u1, tn = tn+u1 − tu1 , D′ = r∗i T
∗
i −

∑u1
n=0Dn.

20: Update Dn = Dn+u1 , D1 = D1 −D′.

21: end while

22: Return the optimal transmission rates {r∗i } and durations {T ∗i }.

As shown in Fig. 7, the upper bound might be higher than the buffer capacity constraint.

Moreover, due to Lemma 3, the rate might increase when achieving the buffer capacity constraint.

Therefore, the lower bound might be higher than the upper bound as the sensing rate before

the busy time interval might be less than that after it. In this special case, the optimal height is

given in the proposition below.
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Figure 7: Violated upper bound in the finite data buffer capacity case
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Figure 8: Violated lower bound in the finite data buffer capacity case

Proposition 5 (Optimal height in Special Case). If the lower bound is higher than the upper

bound, the optimal height locates exactly at the lower bound.

Proof. The minimum sensing energy consumption is achieved at the lower bound, while the

transmission energy consumption remains unchanged when the height is moved from the upper

bound to the lower bound.

As shown in Fig. 8, the lower bound derived in Proposition 2 might also be higher than the

buffer capacity constraint. In this case, if the upper bound is higher than the lower bound, then

the optimal height still exists between the two bounds, while the transmission rate is constrained

by the lower one of the optimal height or the buffer capacity constraint.

To execute the height searching, the changing of total energy consumption with the varying

height should be analyzed at first. The data buffer constraints might cause the change of the

SP structure with the varying height. For example, the sensing rates before and after the point
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Figure 9: Critical points and corresponding heights in the finite data buffer capacity case

(t3, D3+Dmax) become equal when the height decreases from h1 to h2 as shown in Fig. 9. The

points leading to such changes are also known as the critical points. Another type of critical

point such as (t6, D6) results in non-equal rates before and after it as defined in the previous

section. The corresponding height at which the critical point is valid is defined as the critical

height. The critical heights divide the whole searching area into a series of sub-areas.

The algorithm for finding the critical heights is summarized in Algorithm 7 and described

below. The algorithm starts from a given height h, based on which the next critical height is

found by comparing the slopes of the rate curves. A new variable namely busy time instant b is

introduced to represent one of b1 and b2. The slope of the non-zero rate curve that connects the

point (b, h) is defined as the nearest rate, while the non-zero rate curve that connects the nearest

rate curve is defined as the second nearest rate curve. The time interval in which the rate remains

as a constant is called the constant rate interval. For example, the nearest rate of point (b1, h1)

in Fig. 9 is r2 with the constant rate interval [t3, b1], and the second nearest rate is r1 with the

constant rate interval [t0, t3]. Similarly, the nearest rate of point (b2, h3) is r′4 with the constant

rate interval [b2, t6], and the second nearest rate is r′5 with the constant rate interval [t6, t8]. It

should be noted that to find the next critical height, the Algorithm 7 need to be executed four

times w.r.t. both the sensing and transmission rates before and after the busy time interval. The

next critical height is the largest one among the four heights. All the critical heights are found
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Algorithm 7 Iterative Algorithm for Finding the Next Critical Height

Input: Required data amounts {Dn} at instants {tn} of N tasks, busy time end b, height h,

nearest rate r1 and corresponding constant rate interval of h : [tm1 , ..., tn1 ], second-nearest

rate r2 and corresponding constant rate interval h : [tm2 , ..., tn2 ].

Output: The next critical height h in searching region and constant rate interval.

1: if b ≥ tn1

2: Compute the slope
∑i

n=m1+1Dn

ti−tm1
for every ti in [tm1+1, ..., tn1 ].

3: Find the point in [tm1+1, ..., tn1 ] with maxk

∑i
n=m1+1Dn

ti−tm1
denoted by tk.

4: if r1 < r2

5: Set w =
∑k

m1+1Dn

tk−tm1
.

6: else if r1 > r2

7: Set w = max{
∑k

m1+1Dn

tk−tm1
, r2}. If r2 is larger, set k = m2.

8: end if

9: Get hnew = w(b− tk) +
∑k

n=0Dn, and the constant rate interval [tk, ..., tn1 ].

10: else if b ≤ tm1

11: Compute the slope
∑n1

n=i+1Dn

tn1−ti
for every ti in [tm1 , ..., tn1−1].

12: Find the point in [tm1 , ..., tn1−1] with mink
∑n

n=i+1Dn

tn1−ti
denoted by tk.

13: if r1 > r2

14: Set w =
∑n1

k+1Dn

tn1−tk
.

15: else if r1 < r2

16: Set w = min{
∑n1

k+1Dn

tn1−tk
, rk+1}. If r2 is smaller, then set k = n2.

17: end if

18: Get hnew =
∑k

n=0Dn − w(tk − b), and the constant rate interval [tm1 , ..., tk].

19: end if

20: Return The next critical height hnew, and the constant rate interval.

by executing Algorithm 7 iteratively from the upper bound to the lower bound.

As the expression of energy consumption does not change with the height in each sub-area,

the local optimal height in each sub-area can be also obtained based on Proposition 4.
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Algorithm 8 SP Algorithm for Obtaining Optimal Rates with Finite Buffer given Fixed Height.

Input: Required data amounts {Dn} at instants {tn} of N learning tasks, busy time interval

[b1, b2], height h, and data buffer capacity Dmax

Output: the optimal transmission rates {r∗i } and durations {T ri ∗}, the optimal sensing rates {s∗i }

and durations {T si ∗}.

1: Initialize n1 = max{n|tn < b1}, n2 = min{n|tn > b2}, n3 = max{n|tn < b2}

2: Set {D1
n} = {D0, D1, D2, ..., Dn1 , h} at instants {t1n} = {t0, t1, t2, ..., tn1 , b1}

3: Set {D2
n} = {h,Dn2 − h,Dn2+1 − h, ..., Dn − h} at instants {t2n} = {b2, tn2 , tn2+1, ..., tn}

4: Given {D1
n}, {t1n} and {D2

n}, {t2n}, Dmax, find the optimal sensing rates {s1i }, {s2i } and

durations {T 1
i }, {T 2

i } by Algorithm 1.

5: Get the optimal sensing rates {s∗i } = {{s1i }, 0, {s2i }} and durations {T si ∗} = {{T 1
n}, b2 −

b1, {T 2
n}}.

6: Obtain {tm} by sorting the instants {{tn}, b1, b2} in increasing order.

7: Set A(tm) = min{h,
∑n1

n=0Dn +Dmax} if tm = b1, A(tm) = min{h,
∑n3

n=0Dn +Dmax} if

tm = b2. Otherwise, A(tm) =
∑n−1

n=0Dn +Dmax if tm = tn.

8: Find the optimal transmission rates {r∗i } and durations {T ri ∗} by Algorithm 2.

9: Return {r∗i }, {T ∗i }, {s∗i }, {T ∗∗i }

B. Optimal Rates based on Given Height

Given a certain height, Algorithm 8 is proposed to determine the sensing and transmission

rates. Specifically, the sensing rates before and after busy time interval are determined by

Algorithm 1 as they are irrelevant with the data buffer constraints. Nevertheless, the transmission

rates are constrained by both the finite data buffer capacity and the sensing rates. Therefore, the

Algorithm 2 is applied to obtain the transmission rates with the maximum data size in each epoch

settled as the lower one of the height and the data buffer constraint. Following the similar proof

of Proposition 1, Algorithm 8 yields the optimal and feasible sensing and transmission rates

given the fixed height h. The whole process for finding the optimal sensing and transmission

rates is summarized in Algorithm 9.

V. SIMULATION RESULTS

This section provides simulation results to evaluate the performance of the proposed algo-

rithms. Each point in the figures is obtained by averaging over 100 simulation realizations, with
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Algorithm 9 Global Optimal Rates Searching Algorithm in Finite Data Buffer Capacity Case

Input: Required data amounts {Dn} at instants {tn} of N learning tasks, busy time [b1, b2],

data buffer capacity Dmax.

Output: The global optimal height h∗, sensing rates s∗(t), and transmission rates r∗(t).

1: Determine the lower and upper bounds hl and hu.

2: if hl ≥ hu

3: Get the global optimal height h∗ = hl.

4: else

5: Find all critical heights {hm} by executing Algorithm 7 iteratively.

6: Obtain the local optimal height {h∗m} in each sub-area according to Proposition 4.

7: Get the global optimal height h∗ = argminh∗m E(h
∗
m).

8: end if

9: Get the optimal sensing and transmission rates s∗(t) and r∗(t) by Algorithm 8.

10: Return the global optimal height h∗, sensing rates s∗(t), and transmission rates r∗(t).

independent channels in each realization. According to the settings in LTE [33], the channels

are under Rayleigh fading with bandwidth B = 10 MHz and noise power σ2 = −79.5 dBm.

Following the settings in [26] and [31], the required number of CPU cycles per bit is C = 500

cycles/Bit, and the constant determined by the circuits is α = 10−28. Despite our proposed

joint design of joint sensing and transmission rate control denoted by JSTRC, three benchmark

schemes are considered for performance comparison. The UB and LB schemes set the upper or

lower bound on the searching area as the height and obtains the corresponding rates respectively,

while the sensing and transmission rates are derived based on a random choosen height in the

RH scheme.

A. Joint Sensing and Transmission Rates Control with Infinite Data Buffer Capacity

In the case with infinite data buffer capacity, there are 5 tasks to be executed at time instants

{10, 20, 80, 90, 200} s with the required amount of data {500, 500, 500, 700, 300} bits. The busy

time interval is [55, 85] s. The specific sensing and transmission rates based on JSTRC scheme

are depicted in Fig. 10. One can observe that the SP structure holds for the optimal sensing and

transmission rates control, which is in accordance with the theoretical analysis.
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Figure 10: Optimal data sensing and transmission rates in the infinite buffer capacity case

The total energy consumption versus the total amount of required data by all tasks is illustrated

in Fig. 11, where the amount of data required by each task increases proportionally. It can be

observed that the total energy consumption will increase with the increasing amount of required

data, as sensing and transmitting more data will result in higher energy consumption. Moreover,

our proposed JSTRC scheme has the best performance comparing with other three baseline

schemes, which verifies the effectiveness of height searching. It should also be noted that the

LB scheme has the worst performance. The reason is that the optimal height is closer to the upper

bound than the lower bound as the transmission process with exponential power-rate relationship

dominates the total energy consumption.

Fig. 12 further demonstrates the total energy consumption versus the total time duration for

all tasks, where the delay tolerance of each task increases proportionally. It can be observed

that the total energy consumption decreases with the increasing time duration, as enlarging the

duration can save the energy consumption for sensing and delivering the same amount of data.

B. Joint Sensing and Transmission Rates Control with Finite Data Buffer Capacity

In the case with finite data buffer capacity, there are 5 tasks to be executed at time instants

{10, 20, 80, 90, 200} s with the required amount of data {500, 500, 500, 700, 300} bits. The data

buffer capacity is Dmax = 1000 bits. The busy time interval is [55, 85] s. The specific sensing

and transmission rates based on JSTRC scheme are depicted in Fig. 13. One can observe that
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Figure 11: Energy consumption versus the total data amount in the infinite buffer capacity case
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Figure 12: Energy consumption versus the total time duration in the infinite buffer capacity case

the SP structure still holds for the optimal sensing and transmission rates control in the case

with finite data buffer capacity.

The total energy consumption versus the total amount of required data in the case with finite

data buffer capacity is illustrated in Fig. 14, where the amount of data required by each task

increases proportionally. It can be observed that our proposed JSTRC scheme still has the best

performance. Moreover, the energy consumption in this case is larger than that with infinite data

buffer capacity, since the finite data buffer capacity will add extra constraints on the original
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Figure 13: Optimal data sensing and transmission rates in the finite buffer capacity case
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Figure 14: Energy consumption versus the total data amount in the finite buffer capacity case

problem and makes the original optimum infeasible.

Fig. 15 demonstrates the total energy consumption versus the total time duration for all tasks

in the case with finite data buffer capacity. It can be observed that our proposed JSTRC scheme

still has the best performance, while the performance of LB scheme is close to optimal when

the total time duration T ≥ 380 s. The reason is that in such case the optimal height is close to

the lower bound of the searching area.

To show the effect of data buffer capacity on the performance, the total energy consumption
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Figure 15: Energy consumption versus the total time duration in the finite buffer capacity case

versus the data buffer capacity is further depicted in Fig. 16. It can be observed that our

proposed JSTRC scheme has the minimum energy consumption, which is first decreasing with the

increasing data buffer capacity and then saturates. The reason is that the data buffer constraints

become less stringent as the data buffer capacity increases. Moreover, the energy consumption of

the UB scheme first decreases and the increases with the increasing data buffer capacity. That is

because the decreasing trend of transmission energy consumption is dominated at the beginning,

while the increasing trend of sensing energy consumption becomes dominated as the data buffer

capacity increases.

VI. CONCLUSION

In this paper, we investigate the design of joint sensing and transmission rates control for

energy efficient mobile crowd sensing. The joint design is formulated as a complex optimization

problem due to the intrinsic coupling between the controlling variables as well as the existence of

busy time. To deal with such problem, the SP algorithms are exploited to determine the optimal

sensing and transmission rates given the fixed height and an efficient algorithm is proposed

to obtain the optimal height. Such a solution approach is further extended to account for the

case with finite data buffer capacity at the server. This work opens a new direction for energy

efficient joint sensing and transmission rates control. The performance of the schemes is verified

via simulations. The current design can be extended for more complex scenarios with time-

varying channels and multiple sensors.
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Figure 16: Energy consumption versus the data buffer capacity
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