
1

Efficient Channel Estimation for RIS-Aided MIMO
Communications with Unitary Approximate

Message Passing
Yabo Guo, Peng Sun, Zhengdao Yuan, Chongwen Huang, Qinghua Guo, Senior Member, IEEE, Zhongyong

Wang, and Chau Yuen, Fellow, IEEE

Abstract—Reconfigurable intelligent surface (RIS) is very
promising for wireless networks to achieve high energy efficiency,
extended coverage, improved capacity, massive connectivity, etc.
To unleash the full potentials of RIS-aided communications,
acquiring accurate channel state information is crucial, which
however is very challenging. For RIS-aided multiple-input and
multiple-output (MIMO) communications, the existing chan-
nel estimation methods have computational complexity growing
rapidly with the number of RIS units N (e.g., in the order of N2

or N3) and/or have special requirements on the matrices involved
(e.g., the matrices need to be sparse for algorithm convergence
to achieve satisfactory performance), which hinder their applica-
tions. In this work, instead of using the conventional signal model
in the literature, we derive a new signal model obtained through
proper vectorization and reduction operations. Then, leveraging
the unitary approximate message passing (UAMP), we develop
a more efficient channel estimator that has complexity linear
with N and does not have special requirements on the relevant
matrices, thanks to the robustness of UAMP. These facilitate the
applications of the proposed algorithm to a general RIS-aided
MIMO system with a larger N . Moreover, extensive numerical
results show that the proposed estimator delivers much better
performance and/or requires significantly less number of training
symbols, thereby leading to notable reductions in both training
overhead and latency.

Index Terms—Reconfigurable intelligent surface (RIS), channel
estimation, approximate message passing (AMP).
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RECONFIGURABLE intelligent surface (RIS) is a re-
configurable planar array with a massive number of

passive reflecting elements, which is capable of altering the
wireless propagation environment to achieve desired channel
responses. RIS has been recognized as a promising technology
in future wireless communications. With the aid of RIS,
wireless networks are able to achieve high energy efficiency,
improve the system capacity and radio coverage, enhance
massive connectivity, etc [1]–[16].

The research on RIS has attracted tremendous attention and
many works have been conducted to explore the potentials of
RIS-aided communications. Under the assumption of perfect
channel state information (CSI), energy-efficient designs were
studied in [1] with the assist of RIS for wireless communi-
cations. The works in [2] and [8] studied RIS-aided secrecy
communications. The work in [15] investigated the use of RIS
to enhance the energy harvesting and information transmission
capabilities of the internet of things systems. Energy efficient
transmission with distributed RISs was studied in [6]. The
works in [14] and [17] studied RIS-aided non-othogonal
multiple access. RIS-aided communications were extended to
millimeter-wave and Terahertz communications in [9], [16],
[18]. The works in [7] and [19] maximize the weighted sum
rate for both single and multi-cells networks. To unleash the
potentials of RIS aided communications, efficient accurate CSI
acquisition is crucial [5], [20]–[30].

In this work, we focus on channel estimation of RIS-
aided multiple-input multiple-output (MIMO) communica-
tions, which is challenging especially when the number of RIS
unit N is large. In [25], a two-stage algorithm that includes
a sparse matrix factorization stage and a matrix completion
stage was proposed for the estimation of cascaded (transmitter-
RIS and RIS-receiver) channel, where the RIS phase matrix
needs to be sparse and the channel between RIS and BS is
required to be a low-rank matrix. The work in [26] proposed
a trilinear semi-blind cascaded channel estimation problem, in
which the receiver estimates the channel coefficients and the
transmitted signals jointly, and a message passing algorithm
was developed. The algorithm has relatively low complexity,
but it also requires that the relevant matrices are sparse for
the convergence of the algorithm, thereby achieving good
performance. A message-passing algorithm was proposed in
[27] to estimate the cascaded channels by exploiting the
information on the slow-varying channel components and the
hidden channel sparsity, and its complexity growing with N2.
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The sparseness of the matrices may be achieved by using a
sparse RIS phase matrix, which however is not optimal in
terms of channel estimation and transmission, or by restricting
the applications to special scenarios with sparse channel
matrices. The work in [28] proposed a three-phase pilot-
based channel estimation framework for RIS-assisted uplink
multiuser communications, and the complexity of the method
is cubic in the number of RIS units N . In [29], leveraging the
parallel factor (PARAFAC) decomposition to represent high
dimensional tensors that involve unknown channels in different
unfolded forms, channel estimation methods based on alter-
nating least squares (ALS) and vector approximate message
passing (VAMP) were proposed to estimate the channels from
BS to RIS and from RIS to users alternatively. Although there
are no requirements on the sparseness of the involved matrices,
its complexity grows with N3, which is a concern for a large
or even a moderate N . In summary, the existing methods
have special requirements on the involved matrices and/or have
the scalability issue as their computational complexity rapidly
grows with N , which hinder their applications.

To overcome the problems of the existing methods, lever-
aging the unitary approximate message passing (UAMP) al-
gorithm [31]–[33], we design a new RIS channel estimator in
this work. As a variant of the AMP algorithm [34], UAMP
achieves remarkably improved robustness by using a unitary
transformation, which enables it to deal with a linear reverse
problem with a general (or tough) system transfer matrix while
with low complexity [32], [33]. In this work, instead of using
the conventional signal model for RIS channel estimation in
the literature, we derive a new signal model through proper
vectorization and reduction operations, which reformulates the
channel estimation to a structured signal recovery problem.
Then a factor graph representation is developed, and a message
passing algorithm is derived, where UAMP plays a crucial
role. Thanks to the low complexity and robustness of UAMP,
the proposed algorithm is very efficient, which has complexity
linear with the number of RIS units N , and does not have
special requirements on the relevant matrices. These enable the
applications of the proposed algorithm to a general RIS aided
MIMO system with a larger N . The Cramér-Rao lower bound
(CRLB) for the channel estimation considered is derived
to serve as a performance benchmark. Extensive numerical
results show that, with much lower complexity, the proposed
channel estimator significantly outperforms existing ones in
terms of channel estimation performance and/or the training
overhead.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model and problem
formulation of RIS channel estimation. In Section III, the
problem is reformulated, a new signal model is obtained and
the problem is represented as a factor graph. Then the UAMP
based message passing algorithm is developed in Section III-B,
and the CRLB for channel estimation is derived in Section V.
Numerical results are provided in Section VI, followed by
conclusions in Section VII.

Notations-Boldface lower-case and upper-case letters denote
vectors and matrices, respectively. Superscripts AH and AT

represent conjugate transpose and transpose, respectively, and

A∗ represents the conjugate of A. A Gaussian distribution of
x with mean x̂ and variance νx is denoted by N (x; x̂, νx) .
Notations ⊗ and � represent the Kronecker and Khatri-Rao
products, respectively. The relation f(x) = cg(x) for some
positive constant c is written as f(x) ∝ g(x). We use a · b
and a · /b to represent the element-wise product and division
between vectors a and b, respectively. The notation a.−1

denotes the element-wise inverse operation to vector a. We
use |A|2 to denote element-wise magnitude squared operation
forA, ‖a‖ to denote the l2 norm of a, and ‖A‖F to denote the
Frobenius norm ofA. The notation < a > denotes the average
operation for a, i.e., the sum of the elements of a divided by
its length. We use 1 and 0 to denote an all-one vector and an
all-zero vector with a proper length, respectively. The notation
Diag(a) represents a diagonal matrix with a as its diagonal
and In donates a n× n identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

BS

RIS

G

User 1

User 2

User KObstacle

Fig. 1: Illustration of RIS-aided MIMO uplink transmission.

We consider RIS-aided MIMO uplink transmission as
shown in Fig. 1, where the BS equipped with M antennas
receives signals from K users. A RIS with N passive reflecting
elements is equipped between the BS and users, each user
equipped with a single antenna (the extension to multiple
antennas is straightforward). The RIS is attached to the facade
of a building in the vicinity of users. Due to the highly
attenuation caused by unfavorable propagation environments
such as tall buildings, the direct propagation path between the
BS and users is neglected [29].

We denote the channel matrix between the BS and the RIS
by G ∈ CM×N , and use H , [hu1 , . . . ,h

u
K ] ∈ CN×K to

represent the channel matrix between the RIS and the K users,
where huk denote the channel vector from the k-th user to the
RIS. With the l-th (l = 1, 2, . . . , L) RIS phase configuration,
the K consecutive received signals Yl ∈ CM×K is given by

Yl = GDiag(Φl,:)HX +Wl, (1)

where Φl,: is the l-th row of the RIS phase matrix Φ ∈ CL×N
(part of the RIS phase configurations) and Wl models the zero
mean complex additive white Gaussian noise (AWGN) with
precision β (i.e., variance β−1), and X ∈ CK×K denotes
the transmitted orthogonal training matrix from the users, i.e.,
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XXH = IK . Right-multiplying both sides of (1) by XH

leads to

Ỹl = GDiag(Φl,:)H + W̃l, (2)

where Ỹl , YlX
H ∈ CM×K , and W̃l , WlX

H ∈ CM×K .
As X is a unitary matrix, entries of W̃l are still zero-mean
white Gaussian with the same noise precision β.

During the training process, L configurations of the RIS are
used, leading to L matrices {Ỹl, l = 1, ..., L}, based which we
aim to estimate the channel matrices. As the number of RIS
unit N can be large, low complexity of channel estimators is
crucial for practical implementation. The cubic or quadratic
complexity (in terms of N ) of existing channel estimation
algorithms can be a concern in their applications. During the
training process, the RIS undergoes L configurations. In order
to reduce the training overhead and communication latency,
a small L is desirable. We address the above challenges by
reformulating the RIS channel estimation to a structured signal
recovery problem with a new signal model and develop an
efficient message passing algorithm. In particular, we do not
make any special requirements on the matrices G, H or Φ.

III. PROBLEM REFORMULATION AND FACTOR GRAPH
REPRESENTATION

A. New Model for RIS Channel Estimation

Instead of using model (2) directly, we reformulate it to a
new model through vectorization and reduction, which leads
to a structured signal recovery problem. Vectorizing (2) leads
to

vec(Ỹl) = (HT ⊗G)vec (Diag(Φl,:)) + vec(W̃l), (3)

where the vector vec (Diag(Φl,:)) can be represented as

vec (Diag(Φl,:)) = [φl,1,0
T
N , φl,2,0

T
N , . . . ,0

T
N , φl,N ]T , (4)

and φl,n donates the n-th (n = 1, 2, . . . , N ) element of Φl,:.
Here we note that, the vector vec (Diag(Φl,:)) is highly sparse,
and the non-zeros elements of vec (Diag(Φl,:)) are separated
by all-zero vector 0N . This can be exploited to significantly
reduce the dimension of (3). We drop the zero elements in
vec (Diag(Φl,:)) and the corresponding columns in HT ⊗G,
then (3) can be reduced to

ỹl = S̃ΦT
l,: + w̃l, (5)

where ỹl , vec(Ỹl) ∈ CKM×1, S̃ , HT �G ∈ CKM×N ,
S̃ΦT

l,: = (HT ⊗ G)vec (Diag(Φl,:)), and w̃l , vec(W̃l) ∈
CKM×1. By stacking {ỹl, l = 1, ..., L} into a matrix, we have
Ỹ = S̃ΦT + W̃ , which is rewritten as

Y = ΦS +W . (6)

where Y = Ỹ T , W = W̃ T and

S = S̃T = (HT �G)T ∈ CN×KM . (7)

Now we can see from (6) that, the channel estimation is
reformulated as the recovery of the matrix S, which admits the
structure (7). We can also treat S as an intermediate variable,
as our aim is to estimate H and G.

B. Probabilistic and Factor Graph Representation
We consider recovering the signal using the message passing

techniques, in particular leveraging UAMP to achieve low
complexity while with high robustness. We first represent
the problem in a probabilistic form. It is noted that UAMP
works with a unitary transform of the linear observation
model (6), which is crucial to achieving high robustness.
So, to facilitate the use of UAMP later, we first carry out
a unitary transformation to (6) based on the singular value
decomposition (SVD) Φ = UΛV , leading to

R = ΨS +W , (8)

where R = UHY , Ψ = UHΦ = ΛV and W = UHW .
Since U is unitary, entries in W are still AWGN with
precision β.

Note that S̃ = [s̃1, . . . , s̃N ], HT = [h1, . . . ,hN ] and G =
[g1, . . . , gN ]. Then, according to S̃ =HT �G, we have

s̃n = hn ⊗ gn, (9)

where hn = [h1,n, . . . , hK,n]
T , gn = [g1,n, . . . , gM,n]

T

and s̃n = [s̃1,1,n, . . . , s̃m,k,n, . . . , s̃M,K,n]
T with s̃m,k,n =

hk,ngm,n. Let J = KM , and note that R = [r1, . . . , rJ ],
S = [s1, . . . , sJ ], and W = [w1, . . . ,wJ ]. Define an
auxiliary variable Z , [z1, . . . ,zJ ] with zj = Ψsj . Then,
the joint distribution of H,G,S, S̃,Z and β given R can be
factorized as

p(H,G,S, S̃,Z, β|R)

∝ p(R|Z, β)p(S̃|S)p(Z|S)p(S̃|H,G)p(H)p(G)p(β)

= p(S̃|S)p(β)
∏

n
p(s̃n|hn, gn)p(hn)p(gn)

∏
j
p(rj |zj , β)

× p(zj |sj)

, fS(S̃,S)fβ(β)
∏

n
fs̃n(s̃n,hn, gn)fhn(hn)fgn(gn)

×
∏

j
frj (zj , β)fzj (zj , sj). (10)

where the involved distributions are listed in Table I. To facili-
tate the factor graph representation of the factorization in (10),
local functions (factors) are defined, and the correspondence
between the distributions and local functions are also shown in
Table I. It is noted that p(H) and p(G) represent the priors for
the channel matrices H and G, respectively. When no priors
are available for the channel matrices, the priors can be set to
be a non-informative one, e.g., ρh = ρg = +∞ in Table I.
The factor graph representation is depicted in Fig. 2.

TABLE I: Factors and distributions in (10).

Factor Distribution Function
fβ p(β) ∝ β−1

fhn
p(hn) CN (hn;0K , ρhIK)

fgn p(gn) CN (gn;0M , ρgIM )

frj p(rj |zj , β) N (rj ; zj , β
−1IL)

fzj p(zj |sj) δ(zj −Ψsj)

fs̃n p(s̃n|hn, gn) δ(s̃n − hn ⊗ gn)
fS p(S̃|S) δ(S̃T − S)
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z1

...

zJ

fz1

fzJ

s1

sJ

fs̃1

fs̃N

s̃1
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s̃N

g1

gN

fr1

frJ

β

fβ fS
h1

...

hN

fh1

fg1

fhN

fgN

Fig. 2: Factor graph representation of (10).

Our aim is to find the posteriori distributions p(H|R) and
p(G|R) and their estimates in terms of a posteriori means,
i.e., Ĥ = E {H|R} and Ĝ = E {G|R}. We note that it
is difficult to find the exact a posteriori distributions, and
approximate inference has to be resorted. In next section, we
will develop a low complexity message passing algorithm to
find their approximations. To facilitate the message passing
algorithm design, a scalar factor graph representation is shown
in Fig. 3.

IV. UAMP BASED MESSAGE PASSING ALGORITHM FOR
RIS CHANNEL ESTIMATION

In this section, we develop an efficient message passing
algorithm for approximate inference, where UAMP is incor-
porated to deal with the most computationally intensive part of
message passing, which is crucial to achieving low complexity
while with high robustness. The message passing algorithm
carries out an iterative process, where each iteration involves
a forward message passing process and backward message
passing process in the graph shown in Fig. 2 or Fig. 3. We
use mA→B(x) to denote a message passed from node A to
node B, which is a function of x. For Gaussian messages, the
arrows above its mean and variance indicate the direction of
the message passing. In addition, we use b(x) to denote the
belief of a variable x. Note that, if a forward computation
requires backward messages, the relevant messages in the
previous iteration is used by default.

A. Forward Message Passing

In the forward direction, according to the rules of variational
message passing [35], we have

mfrj→zj (zj) ∝ exp

{∫
β

b(β) log frj

}
∝ N

(
zj ; rj , β̂

−1
)
, (11)

where

b(β) ∝ mfrj→β(β)fβ

∝ βLJ−1 exp

∑
j=1

−β
(
‖rj − ẑj‖2 + 1Tνzj

) ,

(12)

and

β̂ =

∫
β

βb(β) =
LJ∑

j=1(‖rj − ẑj‖2 + 1TLνzj )
. (13)

It is noted that in the above equation, ẑj and the message
mfrj→β(β) are required to compute β̂, which are obtained
from the last iteration and their computations are delayed to
(71) and (74).

The Gaussian form of the message in (11) suggests the
following model

rj = zj +wj , (14)

where the noise wj is Gaussian with mean zero and precision
β̂. This allows seamless integration with the forward recursion
of UAMP. Here, assume that the mean and variance of sj
are available, i.e., ŝj and νsj . Specially, we assume sj have
a common variance νsj , and the corresponding computation
will be detailed later. Following UAMP, we define a vector
ψ ∈ CL×1 as

ψ = |Ψ|21N . (15)

Then we calculate two vectors νpj and pj as

νpj = ψνsj , (16)

pj = Ψŝj − νpj · µj , (17)

where µj is a vector that is computed in last iteration.
According to UAMP, we update the intermediate vectors νµj

and µj by

νµj
= 1L./(νpj

+ β̂−11L), (18)
µj = νµj

· (rj − pj), (19)

Then compute vectors νqj and qj with

νqj = 1N ./|ΨH |2νµj
, (20)

qj = ŝj + νqj .Ψ
Hµj , (21)

The message qj and νqj are the mean and variance of sj .
According to the belief propagation derivation of (U)AMP,
we have

msj→fs(sj) = N (sj ; qj ,Diag(νqj )). (22)

Stack qj and νqj into matrices as

Q = [q1, . . . , qJ ] , (23)

νQ = [νq1 , . . . ,νqJ ] , (24)

Due to the deterministic relationship between S and S̃, i.e.,
S̃T = S, as shown in Table I, we have

Q̃ = QT = [q̃1, . . . , q̃N ] , (25)

νQ̃ = νTQ = [νq̃1 , . . . ,νq̃N ], (26)

and the vectors q̃n ∈ CJ×1 and νq̃n ∈ CJ×1 can be divided
into K length-M vectors, i.e.,

q̃n =
[
q̃T1,n, . . . , q̃

T
K,n

]T
, (27)
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j=1

j=J

Fig. 3: Scalar factor graph representation of (10).

νq̃n = [νTq̃1,n , . . . ,ν
T
q̃K,n

]T . (28)

Let νq̃k,n
= 〈νq̃k,n

〉, and the message ms̃n→fs̃n (s̃n) can be
expressed as

ms̃n→fs̃n (s̃n) = N (s̃n; q̃n,Diag(ν′q̃n)), (29)

where
ν′q̃n =

[
νq̃1,n , . . . , νq̃K,n

]T ⊗ 1M . (30)

Next, we compute the message at fs̃n , hn and gn. It is
noted that s̃n ∈ CJ×1 also can be divided into K length-M
vectors and expressed as

s̃n = [s̃T1,n, . . . , s̃
T
K,n]

T , (31)

where s̃k,n , [s̃1,k,n, . . . , s̃M,k,n, ]
T . We further factorize the

function fs̃n(s̃n,hn, gn) as

fs̃n(s̃n,hn, gn) =
∏
m,k

fs̃m,k,n
(hk,n, gm,n), (32)

and the factor fs̃m,k,n
(hk,n, gm,n) is shown in Fig. 4.

s̃m′,k,n

s̃m,k,n

s̃m,k′,n

fs̃m′,k,n

fs̃m,k,n

fs̃m,k′,n

...

...

hk,n

gm,n

fhk,n

fgm,n

Fig. 4: Factor graph representation of fs̃m,k,n
.

With the definition q̃k,n , [q̃1,k,n, . . . , q̃M,k,n]
T , (29) im-

plies that

ms̃m,k,n→fs̃m,k,n
(s̃m,k,n) = N

(
s̃m,k,n; q̃m,k,n, νq̃k,n

)
, (33)

and we note that the factor fs̃m,k,n
= δ (s̃m,k,n − hk,ngm,n)

as shown in Table I. To compute the message
mfs̃m,k,n

→gm,n (gm,n) with belief propagation at factor
node fs̃m,k,n

, we need to integrate out sm,k,n and hk,n.

However, due to the multiplication of gm,n and hk,n, the
message will be intractable even the incoming message
mhk,n→fs̃m,k,n

(hk,n) is Gaussian. To solve this, we first
apply belief propagation and eliminate the variable s̃m,k,n to
get an intermediate function node f̃s̃m,k,n

(hk,n, gm,n), i.e.,

f̃s̃m,k,n
(hk,n, gm,n)=

∫
s̃m,k,n

ms̃m,k,n→fs̃m,k,n
(s̃m,k,n) · fs̃m,k,n

= N
(
s̃m,k,n; q̃m,k,n, νq̃k,n

)
. (34)

This turns the function node fs̃m,k,n
with the hard constraint

δ (s̃m,k,n − hk,ngm,n) to a soft function node, enabling the
use of variational inference to handle hk,n and gm,n. With
the intermediate local function f̃s̃m,k,n

(hk,n, gm,n), we can
compute the outgoing message mfs̃m,k,n

→gm,n
(gm,n) as

mfs̃m,k,n
→gm,n

(gm,n) ∝ exp

{∫
hk,n

b (hk,n) log f̃s̃m,k,n

}
∝ N (gm,n;

→
gm,k,n,

→
ν gm,k,n

), (35)

where
→
ν gm,k,n

=
νq̃k,n∣∣∣ĥk,n∣∣∣2 + νhk,n

, (36)

→
gm,k,n =

q̃m,k,nĥ
∗
k,n∣∣∣ĥk,n∣∣∣2 + νhk,n

, (37)

with ĥk,n and νhk,n
being the approximate a posteriori mean

and variance of hk,n, which are computed in (52) and (51).
With belief propagation and referring to Fig. 4, the message
mgm,n→fgm,n

(gm,n) can be represented as

mgm,n→fgm,n
(gm,n) = N

(
gm,n;

→
gm,n,

→
ν gm,n

)
, (38)

with

→
ν gm,n

= 1/

K∑
k=1

1
→
ν gm,k,n

, (39)
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→
gm,n =

→
ν gm,n

K∑
k=1

→
gm,k,n
→
ν gm,k,n

. (40)

So, the marginal of gm,n can be expressed as

b (gm,n) = mgm,n→fgm,n
(gm,n) fgm,n

∝ N
(
gm,n; ĝm,n, νgm,n

)
, (41)

with

νgm,n =

→
ν gm,n

ρg

ρg +
→
ν gm,n

, (42)

ĝm,n =

→
gm,nρg

ρg +
→
ν gm,n

. (43)

Similarly, we can compute the message mfs̃m,k,n
→hk,n

as

mfs̃m,k,n
→hk,n

(hk,n) ∝ N
(
hk,n;

→

hm,k,n,
→
νhm,k,n

)
, (44)

where
→
νhm,k,n

=
νq̃k,n

|ĝm,n|2 + νgm,n

, (45)

→

hm,k,n =
q̃m,k,nĝ

∗
m,n

|ĝm,n|2 + νgm,n

, (46)

with ĝm,n and νgm,n being the approximate a posteriori mean
and variance of gm,n, which are computed in (43) and (42).
With belief propagation, the message mhk,n→fhk,n

(hk,n) can
be represented as

mhk,n→fhk,n
(hk,n) = N

(
hk,n;

→

hk,n,
→
νhk,n

)
, (47)

with

→
νhk,n

= 1/

M∑
m=1

1
→
νhm,k,n

, (48)

→

hk,n =
→
νhk,n

M∑
m=1

→

hm,k,n
→
νhm,k,n

. (49)

The marginal of hk,n can be expressed as

b (hk,n) = mhk,n→fhk,n
(hk,n) fhk,n

∝ N
(
hk,n; ĥk,n, νhk,n

)
, (50)

with

νhk,n
=

→
νhk,n

ρh

ρh +
→
νhk,n

, (51)

ĥk,n =

→

hk,nρh

ρh +
→
νhk,n

. (52)

This is the end of forward message passing.

B. Backward message passing

Next, we elaborate the backward message passing. The
backward message from hk,n to fs̃m,k,n

can be expressed as

mhk,n→fs̃m,k,n
(hk,n) =

b (hk,n)

mfs̃m,k,n→hk,n
(hk,n)

, (53)

They are represented collectively as mhn→fs̃n (hn), which is

Gaussian with mean
←

hn and variance Diag(←νhn
). With the

factor graph shown in Fig. 4, the mean and variance can be
computed as

←
νhn =

(
(1K ./νhn)⊗ 1M − 1J ./

→
νhn

).−1
, (54)

←

hn =
←
νhn ·

(
(ĥn./νhn

)⊗ 1M −
→

hn./
→
νhn

)
, (55)

where νhn
= [νh1,n

, . . . , νhK,n
]T , ĥn = [ĥ1,n, . . . , ĥK,n]

T ,[
→
νhn

]
(k−1)M+m

=
→
νhm,k,n

and
[→
hn

]
(k−1)M+m

=
→

hm,k,n.

Similarly, the message mgn→fsn (gn) is also Gaussian with
mean

←
gn and variance Diag(←νgn), which can be computed as

←
νgn =

(
1K ⊗ (1M ./νgn)− 1J ./

→
νgn

).−1
, (56)

←
gn =

←
νgn ·

(
1K ⊗ (ĝn./νgn)−

→
gn./

→
νgn

)
, (57)

where νgn = [νg1,n , . . . , νgM,n
]T , ĝn = [ĝ1,n, . . . , ĝM,n]

T ,[
→
νgn

]
(m−1)K+k

=
→
ν gm,k,n

and
[
→
gn

]
(m−1)K+k

=
→
gm,k,n. Then, the backward message mfs̃n→s̃n(s̃n) =

N (s̃n;
←

s̃n,
←
ν s̃n) with

←

s̃n =
←

hn ·
←
gn, (58)

←
ν s̃n = |

←

hn|2 ·
←
νgn +

←
νhn
· |←gn|2 +

←
νhn
· ←νgn , (59)

where
←

s̃n = [
←

s̃
T

1,n, . . . ,
←

s̃
T

K,n]
T and

←
ν s̃n =

[
←
ν
T

s̃1,n , . . . ,
←
ν
T

s̃K,n
]T . Following (U)AMP, the backward

message is combined with message ms̃n→fs̃n (s̃n), i.e.,

νs̃k,n
=
(
1/νqk,n

1M + 1M ./
←
ν s̃k,n

).−1
, (60)

ˆ̃sk,n = νs̃k,n
·
(
1/νs̃k,n

q̂k,n +
←

s̃k,n./
←
ν s̃k,n

)
, (61)

Stack νs̃k,n
and ˆ̃sk,n into

νS̃ = [νs̃1 , . . . ,νs̃N ], (62)

ˆ̃
S = [ˆ̃s1, . . . , ˆ̃sN ], (63)

where

νs̃n = [νTs̃1,n , . . . ,ν
T
s̃K,n

]T , (64)

ˆ̃sn = [ˆ̃s
T

1,n, . . . ,
ˆ̃s
T

K,n]
T . (65)



7

Further, we can obtain νS = νT
S̃

and Ŝ =
ˆ̃
S
T

with

νS = [νs1 , . . . ,νsJ ], (66)

νsj = 〈νsj 〉, (67)

Ŝ = [ŝ1, . . . , ŝJ ], (68)

ŝj = [ŝj,1, . . . , ŝj,N ], (69)

According to the belief propagation derivation of (U)AMP,
it holds that

mzj→frj (zj) = mfzj
→zj (zj) = N (zj ;pj ,Diag(νpj )),

(70)
where pj and νpj are computed in the forward direction. It is
noted that the factor node frj connects the variable node β.
According to the rules of the variational message passing, the
message mfrj→β(β) can be expressed as

mfrj→β(β) ∝ exp


J∑
j=1

∫
zj

b(zj) log frj

 , (71)

where b(zj) is the approximate marginal of zj , which can be
expressed as

b(zj) ∝ mfrj→zj (zj)mzj→frj (zj)

= N
(
zj ; ẑj ,Diag

(
νzj
))
, (72)

where
νzj = 1L./

(
1L · /νpj

+ β̂1L

)
, (73)

ẑj = νzj ·
(
pj · /νpj + β̂rj

)
, (74)

with β̂ being the approximate a posteriori mean of the noise
precision that is obtained with (13). It is noted that in the
above derivation, the message mfrj→zj (zj) is required, which
is Gaussian, i.e., mfrj→zj (zj) = N (zj ; rj , β̂

−1) , and its
derivation is shown in (11). Then, it is not hard to show that
the message

mfrj→β(β) ∝ β
LJ exp


J∑
j=1

−β
(
‖rj − ẑj‖2 + 1TLνzj

) .

(75)
This is the end of backward message passing.

The message passing algorithm is summarized in Algorithm
1 and it can be terminated when it reaches a maximum number
of iteration or the difference between the estimates of two
consecutive iterations is less than a threshold.

C. Computational Complexity Analysis

We analyze the computational complexity of the proposed
algorithm and compare it with that of sate-of-the-art algo-
rithms. The UAMP-based message passing algorithm needs
pre-processing, i.e., performing a single economic SVD for Φ
and unitary transformation, and the complexity is O(NL2).
It noted that the SVD can be carried out offline and there

Algorithm 1 UAMP-Based Channel Estimation for RIS-Aided
MIMO System
Input: A feasible Φ, ε > 0 and the maximum number of
iteration Imax.
Initialize: ĥk,n, νhk,n

= 1, ŝj = 0, νsj = 1,µj = 0, ∀k, n, j,
and β̂ = 1.
Repeat:

1: update noise precision β̂ with (13);
2: ∀j: update νpj and pj with (16) and (17);
3: ∀j: update νµj

and µj with (18) and (19);
4: ∀j: update νqj and qj with (20) and (21);
5: ∀n: update ν′q̃n and q̃n with (30) and (27);
6: ∀m, k, n: update

→
ν gm,k,n

and
→
gm,k,n with (36) and (37);

7: ∀m,n: update
→
ν gm,n

and
→
gm,n with (39) and (40);

8: ∀m,n: update νgm,n
and ĝm,n with (42) and (43);

9: ∀m, k, n: update
→
νhm,k,n

and
→

hm,k,n with (45) and (46);

10: ∀k, n: update
→
νhk,n

and
→

hk,n with (48) and (49);
11: ∀k, n: update νhk,n

and ĥk,n with (51) and (52);

12: ∀n: update
←
νhn

and
←

hn with (54) and (55);
13: ∀n: update

←
νgn and

←
gn with (56) and (57);

14: ∀n: update
←
ν s̃n and

←

s̃n with (59) and (58);
15: ∀k, n: update νs̃k,n

and ˆ̃sk,n with (60) and (61);
16: ∀j: update νsj and ŝj with (67) and (69);
17: ∀j: update νzj and ẑj with (73) and (74);
18: Construct Ĥ = [ĥ1, . . . , ĥN ]T with ĥn =

[ĥ1,n, . . . , ĥK,n]
T and Ĝ = [ĝ1, . . . , ĝN ] with

ĝn = [ĝ1,n, . . . , ĝM,n]
T .

Until ||Ĥ−H||2F ‖H‖
−2
F < ε and ||Ĝ−G||2F ‖G‖

−2
F < ε or

the number of iteration is more than Imax.
Output: β̂, Ĥ and Ĝ that are the estimations of β, H and
G, respectively.

is no matrix inversion involved in Algorithm 1. Also note
that the formulated problem is a multiple measurement vector
one. The complexity of the proposed algorithm is domi-
nated by the computation of p in step 1, which requires
O(NLKM + LKM), and the computations of νq and q in
step 6, which require O(NLKM+NKM) and O(NLKM),
respectively. It can be shown that the overall complexity of
the algorithm is O(NLKM) + O(NKM) per iteration. As
we consider a general RIS-aided MIMO system without any
special requirements on the (channel or RIS phase) matrices,
the most relevant algorithms for comparison are the ALS-
based algorithm and VAMP-based algorithm in [29]. The
complexity of the ALS-based algorithm is O(NLKM +
L(M+K)N2)+O(N3) per iteration, and that of the VAMP-
based algorithm isO((M+K)N3+(M+K)N2) per iteration.
It is noted that N is the number of RIS units, which can be
much larger than M , K and L. From the analysis, we can
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see that the complexity of the proposed algorithm, which is
linear with N , is significantly smaller than that of the ALS or
VAMP-based algorithm.

TABLE II: Complexity Comparison

Algorithm Complexity
UAMP O(NLKM) +O(NKM)

ALS O(NLKM+L(M+K)N2)+O(N3)

VAMP O((M +K)N3 + (M +K)N2)

V. CRAMÉR-RAO LOWER BOUND

In this section, we derive the CRLB for the RIS channel
estimation, which is used to serve as another performance
benchmark, besides the ALS and VAMP-based algorithms.

We firstly rewrite the system model as

Ỹ = (HT �G)ΦT + W̃ , (76)

and define a complex parameter θ ∈ C2N(M+K)×1, which
includes all of unknown complex parameters in H and G as

θ ,
[
hT1 , . . . ,h

T
N , g

T
1 , . . . , g

T
N ,h

H
1 , . . . ,h

H
N , g

H
1 , . . . , g

H
N

]T
.

(77)

The likelihood function of Ỹ can be expressed as

p(Ỹ ;θ)=
(
πσ2)−KML

exp

{
−σ−2

L∑
l=1

∥∥∥ỹl−(HT �G)ΦT
l,:

∥∥∥2},
(78)

and the logarithm of likelihood function can be expressed as

ln(p(Ỹ ;θ))=−KML ln
(
πσ2)−σ−2

L∑
l=1

∥∥∥ỹl−(HT�G)ΦT
l,:

∥∥∥2,
(79)

Then, define fθ , ln(p(Ỹ ;θ)) and the Fisher information
matrix (FIM) J θ ∈ C(2N(M+K))×(2N(M+K)) can be obtained
by

J θ = E

{(
∂fθ
∂θ

)(
∂fθ
∂θ

)H}
. (80)

The partial derivatives of fθ with respect to θ can be
expressed as

∂fθ
∂hk,n

=σ−2
L∑

l=1

{
[ΦT

l,:]ng
T
n

(
([Y

′
l ]:,k))

∗−((HT )k,:�G)∗(ΦT
l,:)

∗
)}
,

(81)

∂fθ
∂gm,n

=σ−2
L∑

l=1

{
[ΦT

l,:]nh
T
n

(
(Y
′
l )m,:)

H−(HT �Gm,:)
∗(ΦT

l,:)
∗
)}

,

(82)

∂fθ
∂h∗

k,n

=

(
∂fθ
∂hk,n

)∗

,
∂fθ
∂g∗m,n

=

(
∂fθ
∂gm,n

)∗

. (83)

where [ΦT
l,:]n is the n-th element of ΦT

l,:, Y
′

l ,
[ỹ1,l, . . . , ỹK,l] ∈ CM×K and ỹk,l ∈ CM×1 represents the
sub-vectors of ỹl as

ỹl = [ỹT1,l, . . . , ỹ
T
K,l]

T . (84)

Hence, the FIM J θ can be expressed as

J θ =

[
P 0
0 P∗

]
, (85)

where P is shown in (86) at the top of next page and the size
of P and 0 are (N(M +K))× (N(M +K)). The inverse of
the FIM of θ gives, under some regularity conditions, a lower
bound for the augmented covariance matrix of an unbiased
estimator of θ as

J −1θ =

[
P−1 0

0 (P−1)∗
]
, (87)

where P−1 is given by

P−1 =

[
ΩH I
IH ΩG

]
, (88)

and ΩH ∈ CKN×KN and ΩG ∈ CMN×MN are the CRLB
matrices for the estimates of H and G, respectively, and I ∈
CKN×MN represents the remaining sub-matrices.

Furthermore, P can be divided into four sub-matrices as

P =

[
PHH PHG

PH
HG PGG

]
, (89)

where PHH ∈ CKN×KN , PGG ∈ CMN×MN and PHG ∈
CKN×MN , as shown in (86). According to the formula for
inverse of a partitioned Hermitian matrix in [36], we can obtain
ΩH and ΩG as following

ΩH =(PHH −PHGP−1GGP
H
HG)

−1, (90)

ΩG =(PGG −PH
HGP

−1
HHPHG)

−1. (91)

So the CRLB of H and G can be donated as

CRLBH =
trace(ΩH)

KN
, (92)

CRLBG =
trace(ΩG)

MN
. (93)

VI. SIMULATION RESULTS

In this section, we provide extensive numerical experiments
to demonstrate the superior performance of the proposed
UAMP-based channel estimation algorithm. For comparison,
we also include the ALS-based and VAMP-based channel
estimation algorithms in [29]. The threshold ε = 10−3 and
the maximum number of iterations is set to 30. The entries of
H and G are independently drawn from a complex Gaussian
distribution with zero mean and unit variance. The scaling
ambiguity of the estimation is eliminated in the calculation of
the normalized mean square error (NMSE). The SNR (in dB)
is defined as

SNR =10 log10

NE
{
‖Φ‖2F

}
Lβ−1

 . (94)
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P =



E
{(

∂f
∂h1,1

)(
∂f

∂h∗1,1

)}
. . . E

{(
∂f

∂h1,1

)(
∂f

∂h∗
K,N

)}
E
{(

∂f
∂h1,1

)(
∂f

∂g∗1,1

)}
. . . E

{(
∂f

∂h1,1

)(
∂f

∂g∗
M,N

)}
...

...
...

...
E
{(

∂f
∂hK,N

)(
∂f

∂h∗1,1

)}
. . . E

{(
∂f

∂hK,N

)(
∂f

∂h∗
K,N

)}
E
{(

∂f
∂hK,N

)(
∂f

∂g∗1,1

)}
. . . E

{(
∂f

∂hK,N

)(
∂f

∂g∗
M,N

)}
E
{(

∂f
∂g1,1

)(
∂f

∂h∗1,1

)}
. . . E

{(
∂f

∂g1,1

)(
∂f

∂h∗
K,N

)}
E
{(

∂f
∂g1,1

)(
∂f

∂g∗1,1

)}
. . . E

{(
∂f

∂g1,1

)(
∂f

∂g∗
M,N

)}
...

...
...

...
E
{(

∂f
∂gM,N

)(
∂f

∂h∗1,1

)}
. . . E

{(
∂f

∂gM,N

)(
∂f

∂h∗
K,N

)}
E
{(

∂f
∂gM,N

)(
∂f

∂g∗1,1

)}
. . . E

{(
∂f

∂gM,N

)(
∂f

∂g∗
M,N

)}


. (86)

In order to estimate the RIS channels during the training
phase, the RIS goes through L configurations, which leads to
the RIS phase matrix Φ in (6). In the simulations, we consider
two methods. One is that the RIS units are turned on or off
randomly, leading to a matrix Φ with entries 1 or 0 [37],
which is called a binary matrix hereafter. In the simulations
we assume that each entry in Φ takes 1 or 0 with the same
probability. The other one is that the phases of the RIS units
are set to some discrete values, and in particular, the phase
matrix Φ is part of the DFT matrix (called partial DFT matrix),
as in [22].

We evaluate the performance of estimators in terms of
the NMSE of estimated channel matrices Ĥ and Ĝ. The
NMSE performance of various estimators versus SNR with
L = N = K = M = 64 is shown in Fig. 5, where Fig.
5 (a) and (b) are for partial DFT matrix and binary phase
matrix, respectively. It is observed that the proposed UAMP-
based algorithm significantly outperforms the ALS-based and
VAMP-based channel estimators for both H and G, especially
in the case that Φ is a binary matrix. Note that the NMSEs
of H and G are very similar. To keep the figures clear, we
only show the NMSE performance of H in the subsequent
simulation results.

In Fig. 6, with N = K = M = 64, we compare
the NMSE performance versus SNR of the estimators with
different values of L. According to the results, the performance
of the UAMP-based method is significantly better than that
of the ALS and VAMP-based methods, especially when L
is relatively small. As smaller L (the number of RIS phase
configurations needed for channel estimation) is highly de-
sirable to reduce the training overhead and latency, next we
vary the value of L and examine the performance of the
estimators. The results are shown in Fig. 7, where the SNR
is set to 20dB, and Φ is partial DFT matrix in (a) and binary
matrix in (b). It can be seen that, with the increase of L, the
performance of all estimators improves, as expected. However,
the performance improvement of the ALS and VAMP-based
estimators is very slow with L. We can also see from Fig. 7
(a) that, the UAMP-based estimator with L = 16 achieves the
same performance of ALS and VAMP-based estimators with
L = 32. According to Fig. 7 (b), the UAMP-based estimator
with L = 16 even outperforms the ALS and VAMP-based
estimators with L = 32. The results demonstrate that the use
of the proposed algorithm can lead to a huge reduction in
training overheads.
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Fig. 5: NMSE performance of the estimators versus SNR,
where L = N = K =M = 64. (a) Partial DFT matrix; (b)

Binary matrix.

We next examine the impact of the number of RIS units
N on the performance of channel estimation, where we set
L = K = M = 32. As a smaller N leads to a less number
of channel coefficients to be estimated, for a fixed L the
performance of the estimators improves with the decrease
of N . In Fig. 8, we can find that, in the case of binary
matrix, the performance of the UAMP-based estimator with
N = 128 is even better than that of the ALS and VAMP-
based estimators with N = 32, which again demonstrates the
superior performance of the proposed one. The performance of
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Fig. 6: NMSE performance of the estimators versus SNR for
N = K =M = 64 and different L (a) Partial DFT matrix;

(b) Binary matrix.

the UAMP-based algorithm, the ALS algorithm and the CRLB
are shown in Fig. 9, where L = K = M = N = 16. We can
see that the performance of UAMP-based algorithm is almost
the same as the CRLB, which is significantly better than that
of the ALS algorithm.

From the above results, we find that the performance of
the proposed UAMP-based algorithm consistently show good
performance for both partial DFT matrix and binary matrix.
In contrast, the ALS and VAMP-based algorithms exhibit
significantly worse performance in the case of binary matrix,
compared to the partial DFT matrix.

We also investigate the performance of the estimation with
iteration number for different Φ when the SNR is 20dB. The
results are shown in Fig. 10. It can be seen that the proposed
algorithm converges fast in different cases, especially when
Φ is a partial DFT matrix. It is worth mentioning that the
estimation of the noise precision (reciprocal of the variance)
is incorporated in the UAMP-based channel estimator, so no
separate noise power estimator is needed. In Fig. 11, we
compare the estimated noise power and its true value, where
Φ is a partial DFT matrix. In Fig. 11 (a), the estimate of
the noise variance with the iteration number is shown, where
the SNR is 20dB. We can see that the convergence is fast.
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Fig. 7: NMSE performance of the estimators versus L,
where N = K =M = 64 and SNR=20dB. (a) Partial DFT

matrix; (b) Binary matrix.

The results in Fig. 11 (b) show that the proposed algorithm
provides accurate noise variance estimates for a wide range of
SNRs.

VII. CONCLUSIONS

In this paper, we have addressed the issue of channel
estimation in RIS-aided MIMO communications. Through
vectorization and reduction, we obtain a new signal model
for channel estimation, based on which a message passing
based algorithm is developed, leveraging UAMP. Compared
to the state-of-the-art algorithms, the proposed algorithm does
not have any special requirements on the matrices involved,
and it shows significant advantages in computational complex-
ity, estimation performance and training overhead. Extensive
numerical results demonstrate the merits of the proposed
algorithm.
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