
ar
X

iv
:2

20
1.

01
48

5v
1 

 [
ee

ss
.S

P]
  5

 J
an

 2
02

2

Exploiting Temporal Side Information in

Massive IoT Connectivity

Qipeng Wang, Liang Liu, Shuowen Zhang, Francis C.M. Lau

Abstract

This paper considers the joint device activity detection and channel estimation problem in a massive

Internet of Things (IoT) connectivity system, where a large number of IoT devices exist but merely

a random subset of them become active for short-packet transmission in each coherence block. In

particular, we propose to leverage the temporal correlation in device activity, e.g., a device active in

the previous coherence block is more likely to be still active in the current coherence block, to improve

the detection and estimation performance. However, it is challenging to utilize this temporal correlation

as side information (SI), which relies on the knowledge about the exact statistical relation between the

estimated activity pattern for the previous coherence block (which may be imperfect with unknown

error) and the true activity pattern in the current coherence block. To tackle this challenge, we establish

a novel SI-aided multiple measurement vector approximate message passing (MMV-AMP) framework.

Specifically, thanks to the state evolution of the MMV-AMP algorithm, the correlation between the

activity pattern estimated by the MMV-AMP algorithm in the previous coherence block and the real

activity pattern in the current coherence block is quantified explicitly. Based on the well-defined temporal

correlation, we further manage to embed this useful SI into the denoiser design under the MMV-AMP

framework. Specifically, the SI-based soft-thresholding denoisers with binary thresholds and the SI-based

minimum mean-squared error (MMSE) denoisers are characterized for the cases without and with the

knowledge of the channel distribution, respectively. Numerical results are given to show the significant

gain in device activity detection and channel estimation performance brought by our proposed SI-aided

MMV-AMP framework.
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I. INTRODUCTION

A. Motivation

In a typical massive Internet of Things (IoT) connectivity system, one base station (BS) is

expected to support 104 to 106 low-cost devices [2]. Due to the limited battery life, the low-cost

IoT devices are generally designed to stay in silence for a long period to save energy and become

active when triggered by external events, which leads to a sporadic traffic pattern [3], [4]. In

addition, the IoT traffic is usually with a stringent delay requirement such that the controllers

can take actions in real time based on the sensing data. To reduce the access delay, the grant-

free random access scheme [5] has recently attracted a lot of attention, where the active devices

can directly send the data to the BS without waiting for the permission from it. Therefore, for

enabling the grant-free random access in massive IoT connectivity systems with sporadic and

low-latency traffic, it is of paramount importance to investigate the strategies that can detect the

device activity and/or estimate the corresponding channels in a fast and accurate manner.

In the literature, it has been shown that the joint device activity detection and channel

estimation problem can be formulated as a sparse signal recovery problem and solved utilizing the

compressed sensing techniques, thanks to the sparse device activity [5], [6]. In particular, under

the framework of multiple measurement vector approximate message passing (MMV-AMP) [7],

[8], it has been shown in [5] that the activity detection error probability decreases significantly

as the number of antennas at the BS increases. Such an exciting result arises from exploiting

the spatial correlation in the device activities: if one device is active for one antenna, it is also

active for all the other antennas, and the measurements at the large number of antennas can be

jointly processed for improving the device activity detection accuracy. However, this theoretical

performance gain is achieved at the cost of high computational complexity for processing a large

number of measurements at the antennas, which is especially prohibitive for massive connectivity

systems where the number of devices is already very large. Therefore, a natural question is: if only

a small number of antennas are utilized to reduce the computational complexity, is it still possible

to achieve high-quality device activity detection and channel estimation? This paper provides an

affirm answer to the above question. Specifically, besides the spatial correlation, we identify that

the temporal correlation in the device activities among consecutive coherence blocks can also

be exploited to improve the device activity detection and channel estimation performance. Such

temporal correlation typically exists in practice due to the temporal correlation of the events



3

triggering the device activity. For example, if a device (e.g., sensor) is activated at one moment

due to some abnormal events, then this device is more likely to be still activated by this event in

the near future. Thus, the estimation result in the previous coherence block can be leveraged as

the side information (SI) for assisting the activity detection and channel estimation in the current

coherence block. In this paper, we aim to establish a new SI-aided MMV-AMP framework to

fully take advantage of the temporally-correlated device activity as the SI.

B. Prior Work

In the literature, the device activity detection and/or channel estimation problem under the

grant-free random access scheme has been widely studied for massive IoT connectivity.

1) Compressed sensing-based approach for grant-free massive IoT connectivity: Thanks to

the sparse device activity, the joint device activity and channel estimation problem can be cast as

a compressed sensing problem. Along this line, the AMP algorithm [7] was utilized for device

activity detection and channel estimation in some early works [5], [6], [9], where the state

evolution played a vital role for theoretically analyzing the performance of the AMP algorithm.

Particularly, [5] theoretically proved that with the MMV-AMP algorithm, the activity detection

error goes to zero when the number of antennas at the BS goes to infinity, indicating that

the massive multiple-input multiple-output (MIMO) technique is a good fit for massive IoT

connectivity. The AMP framework was also generalized to other related areas. For example,

the generalized MMV-AMP algorithm was considered in [10] in a broadband IoT setup; [11]

designed a transmission control scheme such that the user activity is more sparse to improve the

AMP performance; [12] used the AMP algorithm for the scenario where the data is transmitted

without previous preamble signals such that the data detection is performed together with the

device activity detection. Besides the AMP algorithm, other compressed sensing techniques are

also employed for device activity detection and channel estimation in massive IoT systems,

including the learning technique [13]–[15], the dimension reduction technique [16], and the

Reed-Muller detection technique [17].

In addition to the above standard compressed sensing framework, various SI exists in practice

that can provide useful information to improve the sparse signal recovery performance. For

example, when the partial knowledge about the support of the sparse signal to be estimated is

available, it was shown in [18], [19] that the weighted l1 minimization technique leads to an

improved performance, where the weights associated with the penalty of the elements that are
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more likely to be zero are set to be larger values. On the other hand, the temporal correlation

in the signals to be estimated, e.g., an IoT device in the previous coherence block will be more

likely to be activated by the same event in the current coherence block, can also be utilized in

compressed sensing algorithms [20], [21]. Specifically, [20] developed a Turbo extension of the

AMP algorithm based on the idea of factor graph, where the SI is embedded into the factor graph

models. However, this approach is not Bayesian-optimal and new factor graphs need to be craft

carefully for each new signal model with high complexity. To simplify the process for utilizing

the SI, [21] further proposed to incorporate the SI into the minimum mean-squared error (MMSE)

denoiser design under the single measurement vector (SMV) AMP framework when the signal

distribution information is known. However, in a multi-antenna communication system, how to

embed the temporal SI into the MMSE denoiser design under the MMV-AMP framework is still

an open problem. Moreover, if the channel distribution information is unknown, it is crucial to

study how to utilize the temporal SI in the AMP algorithm, which is missing in the literature.

2) Other approaches for grant-free massive IoT connectivity: Other than the above com-

pressed sensing-based approach, there are other strategies for grant-free massive IoT connectivity,

including the covariance-based approach and the unsourced random access based approach. First,

in the case when the channel estimation is not necessary, e.g., each device merely transmits a few

bits which can be embedded into its preamble selection pattern, it was shown in [22]–[24] that the

minimum preamble sequence length for device activity detection can be significantly shortened

by the covariance-based approach. However, if each device needs to transmit more bits such

that their channels need to be estimated similar to the conventional data transmission, the above

approach cannot be applied. On the other hand, the unsourced random access based approach

was proposed in [25] and widely studied in [26], [27]. Under this approach, each device employs

the same codebook, and the task of the decoder is to recover the list of transmitted messages

irrespective of the identity of the devices because the device identifier can be embedded in the

data. However, the decoding complexity under the unsourced random access based approach is

extremely high.

C. Main Contributions

This paper investigates the MMV-AMP algorithm for the joint device activity detection and

channel estimation problem in a massive IoT connectivity system, where the device activities are

temporally correlated. Specifically, two application scenarios are considered. In the first scenario,
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the distributions of the channels between the devices and the BS are assumed to be unknown, e.g.,

when the devices are underground or underwater sensors for which an accurate channel model

is difficult to obtain. In contrast, in the second scenario, the channel distribution information is

assumed to be perfectly known, e.g., for sensors in smart home and smart factories. For both

scenarios, this paper aims to fully exploit the temporal correlation in the device activity for

achieving better detection and estimation performance with a small number of antennas (thus

with low computational complexity). The main contributions of this paper are summarized as

follows.

• First, we propose a novel SI-aided MMV-AMP framework to incorporate the temporal SI into

the MMV-AMP framework. Specifically, in each coherence block, we aim to jointly utilize

the estimation result in the previous coherence block and the temporal activity correlation

to improve the activity detection and channel estimation performance. However, this is a

challenging task since the estimation result in the previous coherence block is generally

imperfect, thus cannot be directly utilized as the SI. Thanks to the state evolution of the

MMV-AMP algorithm, we model the useful SI theoretically and characterize the exact

statistical relationship between the SI in the previous coherence block and the real effective

channels in the current coherence block, which will serve as the basis of the denoiser designs

for both cases with unknown or known channel distribution information.

• Next, for the case without knowledge of the channel distribution information, we design

the SI-based soft-thresholding denoisers under the MMV-AMP framework. By formulating

the SI-based sparse signal recovery problem as a weighted group Least Absolute Shrinkage

and Selection Operator (LASSO) problem, we first derive the closed-form SI-based soft-

thresholding denoisers with a binary threshold - the threshold in the denoisers in the current

coherence block depends on whether a device is detected to be active or inactive in the previ-

ous coherence block. This is in sharp contrast to the conventional soft-thresholding denoisers

without SI where the threshold is not binary. Inspired by the minimax approach that is widely

used for the threshold design in soft-thresholding denoisers without channel distribution

information, we further design the binary threshold to optimize the (approximate) worst-

case estimation mean-squared error (MSE) with the (approximate) least-favorable channel

distribution. To our best knowledge, this is the first result to design the SI-based binary

threshold for soft-thresholding denoisers in the literature.



6

• Furthermore, for the case with knowledge of the channel distribution information, we

design the SI-based MMSE denoisers under the MMV-AMP framework. Based on the

exact statistical relationship between the SI in the previous coherence block and the device

effective channel in the current coherence block, we manage to characterize the closed-form

SI-based MMSE denoisers by minimizing the conditional MSE for estimating the device

effective channels. It is worth noting that our SI-based MMSE denoisers are Bayesian-

optimal and designed without the need of crafting complex factor graphs for every new

signals as compared to [20]. Moreover, different from [20] and [21], our denoisers can also

work for the more general MMV-AMP framework in multi-antenna systems.

D. Organization

The rest of the paper is organized as follows. Section II introduces the system model. Section

III establishes the SI-aided MMV-AMP framework. Section IV and Section V present the SI-

based denoiser design with unknown channel distribution information or with known channel

distribution information, respectively. Numerical results are provided in Section VI. Finally,

conclusions are drawn in Section VII.

Notations: Throughout the paper, scalars are denoted by lower-case letters, vectors by bold-

face lower-case letters, and matrices by bold-face upper-case letters. The identity matrix and the

all-zero matrix of appropriate dimensions are denoted as I and 0. For a full rank matrix M ,

M−1 denotes its inverse. For a matrix M , MH and MT denote its conjugate transpose and

transpose, respectively. The expectation operator is denoted as E[·]. The probability of an event

is denoted as Pr(·). The distribution of a circularly symmetric complex Guassian random vector

with mean x and covariance matrix Σ is denoted as CN (x,Σ). ∼ denotes distributed as. ‖ · ‖0
and ‖ · ‖ denote the l0 norm and l2 norm, respectively.

II. SYSTEM MODEL

A. Baseband Model

This paper considers the uplink communication in a massive IoT connectivity system consisting

of one BS equipped with M antennas and N single-antenna IoT devices. We assume quasi-

static block-fading channels, in which all user channels remain approximately constant in each

coherence block, but vary independently from block to block. Let J denote the number of

consecutive coherence blocks considered in this work. In each coherence block j, the channel
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from device n to the m-th antenna of the BS is denoted by h
(j)
n,m, whose distribution is denoted

by µ
(j)
n,m, i.e., h

(j)
n,m ∼ µ

(j)
n,m, ∀n,m, j. It is assumed that for each n, h

(j)
n,m’s are independent

and identically distributed (i.i.d.) over m and j, i.e., µ
(j)
n,m = µn, ∀m, j. For convenience, define

h(j)
n = [h

(j)
n,1, · · · , h(j)

n,M ]T ∈ C
M×1, ∀n, j. Then, each channel h(j)

n is distributed according to the

product measure µn,M = µn × · · · × µn ∈ GM , where GM is the family of probability measures

over CM×1. In practice, µn,M ’s may be unknown or known to the BS. We will study these two

cases in Sections IV and V, respectively.

Due to the sporadic data traffic in IoT networks, only a small set of devices become active

in each coherence block. We define the device activity indicator functions as follows:

δ(j)n =











1, if device n is active in coherence block j,

0, otherwise,
∀n, j, (1)

so that δ
(j)
n is a Bernoulli random variable with

Pr(δ(j)n = 1) = λ, Pr(δ(j)n = 0) = 1− λ, ∀n, j. (2)

In this paper, we consider the grant-free random access scheme [3] in our interested IoT

system, where at the beginning of each coherence block, the active devices transmit their pilot

sequences to the BS to perform joint device activity detection and channel estimation. Let sn =

[sn,1, . . . , sn,L]
T ∈ CL×1 denote the pilot sequence with length L assigned to device n, ∀n.

Similar to [3], [5], [6], it is assumed that all the entries in sn are generated according to the

i.i.d. complex Gaussian distribution with zero mean and variance 1/L, ∀n. Then, the received

signal at the BS in coherence block j is expressed as

Y (j) =

N
∑

n=1

δ(j)n sn(h
(j)
n )T +Z(j) = SX(j) +Z(j), ∀j, (3)

where Z(j) ∈ CL×M ∼ CN (0, σ2
zI) is the noise at the BS in coherence block j whose variance σ2

z

depends on the background noise power normalized by user transmit power, S = [s1, . . . , sN ] ∈
CL×N , and X(j) = [x

(j)
1 , . . . ,x

(j)
N ]T ∈ CN×M with x

(j)
n = δ

(j)
n h

(j)
n denoting the effective channel

of device n in coherence block j, ∀n, j. According to (2), the effective channel x
(j)
n follows

the distribution νn,M ∈ FM,λ, where FM,λ ≡ {νn | E
x
(j)
n ∼νn,M

[‖x(j)
n ‖0] ≤ Mλ} with ‖x(j)

n ‖0
indicating the number of non-zero elements in x

(j)
n , ∀n, j. Note that if device n is active, νn,M will

reduce to µn,M , i.e., the distribution of hn. Depending on the knowledge of channel distribution,
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the distribution of the effective channels may be unknown or known to the BS. In each coherence

block j, the job of the BS is to jointly detect the active devices and estimate their channels by

estimating X(j) based on its received signal Y (j) and its knowledge of the device pilots S,

without or with information about the distribution νn,M ’s.

B. Temporally-Correlated Device Activity Model

This paper considers the case of temporally-correlated device activity, which is modeled by a

Markov chain with the following transition probabilities:

Pr(δ(j)n = 1 | δ(j−1)
n = 1) = α,

Pr(δ(j)n = 0 | δ(j−1)
n = 1) = 1− α,

Pr(δ(j)n = 1 | δ(j−1)
n = 0) = β,

Pr(δ(j)n = 0 | δ(j−1)
n = 0) = 1− β,

∀n, j. (4)

In other words, if device n is active in coherence block j − 1, then with probability α ∈ [λ, 1),

it is still active in coherence block j; if device n is inactive in coherence block j− 1, then with

probability β ∈ (0, λ], it is active in coherence block j.1 Given the above temporal correlation,

we have the following four cases to model each device’s activity over two consecutive coherence

blocks j − 1 and j:

Case 1: A device is active for both coherence blocks j − 1 and j, i.e., x
(j−1)
n = h(j−1)

n and

x
(j)
n = h(j)

n , with probability αλ.

Case 2: A device is active in coherence block j− 1, but becomes inactive in coherence block

j, i.e., x
(j−1)
n = h(j−1)

n and x
(j)
n = 0, with probability (1− α)λ.

Case 3: A device is inactive in coherence block j− 1, but becomes active in coherence block

j, i.e., x
(j−1)
n = 0 and x

(j)
n = h(j)

n , with probability β(1− λ).

Case 4: A device is inactive for both coherence blocks j − 1 and j, i.e., x
(j−1)
n = 0 and

x
(j)
n = 0, with probability (1− β)(1− λ).

Similar to [20] and [21], we assume that each Markov chain operates in steady-state such

that the probability that a device becomes active is λ over all the J coherence blocks, i.e., (2).

Under this condition, the relation between α and β is given by

αλ+ β(1− λ) = λ. (5)

1In practice, the values of α and β can be learned by the method proposed in [32].
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Due to this relation, the Markov chains are completely characterized by two parameters λ and

α.

Under the temporal correlation modeled by (4), we should not detect the device activity over

consecutive coherence blocks in an independent manner as in [5], [6], since the device activity in

the previous coherence block can provide SI for improving the detection and estimation accuracy

in the current coherence block. However, in each coherence block j, only an imperfect estimation

of x
(j−1)
n , ∀n, for the previous coherence block j − 1, denoted by x̂(j−1)

n , ∀n, is available at the

BS. Despite the temporal correlation shown in (4), it is non-trivial to model a precise statistical

relation between x
(j)
n and x̂(j−1)

n , ∀n, since the connection between x
(j−1)
n and x̂(j−1)

n , ∀n, is in

general unknown. Without knowing such a statistical relation, it is possible that the imperfect

estimation in the previous coherence block provides wrong SI for the estimation in the current

coherence block, which may even degrade the system performance. This motivates us to pursue

a systematic approach that is able to leverage the SI to improve the average performance of the

activity detection and channel estimation.

Note that in the case without using SI, [5] and [6] showed that the estimation of X(j) based

on (3) is a compressed sensing problem, since many rows in X(j) are zero vectors due to the

sparse device activity. Moreover, the MMV-AMP algorithm has been used to estimate the row-

sparse matrix X(j) in each coherence block. In the rest of this paper, under the framework of

MMV-AMP, we study the statistical relation between x̂(j−1)
n ’s and x

(j)
n ’s in adjacent blocks and

show how this relation can be utilized to establish an efficient SI-aided MMV-AMP framework.

III. SI-AIDED MMV-AMP FRAMEWORK

In this section, we establish the SI-aided MMV-AMP framework. Under this framework, we

will introduce what SI should be used and how to utilize it to improve the performance.

A. SI-Aided MMV-AMP Framework

In coherence block j, the SI-aided MMV-AMP algorithm will generate an estimation of X(j),

denoted by X̂
(j)

= [x̂
(j)
1 , . . . , x̂

(j)
N ]T , based on the signal received in the current coherence block

as shown in (3) and the estimation made by SI-aided MMV-AMP algorithm in the previous

coherence block, i.e., X̂
(j−1)

. Specifically, in coherence block j, the SI-aided MMV-AMP

algorithm starts from X
(j)
0 = 0 , R

(j)
0 = Y (j), and then iterates as follows:

x
(j)
n,t+1 = η

(j)
n,t

(

x
(j)
n,t + (R

(j)
t )Hsn, fn,j

(

x̂(j−1)
n

)

)

, (6)
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R
(j)
t+1 = Y

(j) − SX (j)
t+1 +

N

L
R

(j)
t

〈

η
(j)
n,t

′
(

x
(j)
n,t +

(

R
(j)
t

)H
sn, fn,j

(

x̂(j−1)
n

)

)〉

. (7)

In (6) and (7), t denotes the index of algorithm iteration starting from 0, X
(j)
t = [x

(j)
1,t , . . . ,x

(j)
N,t]

T

denotes the estimation of X(j) at the t-th iteration of the SI-aided MMV-AMP algorithm,

fn,j(x̂
(j−1)
n ) is a function of x̂(j−1)

n which is used as the SI for device n, R
(j)
t is the corresponding

residual at iteration t, η
(j)
n,t(·, ⋄) ∈ CM×1 is the denoising function for device n, η

(j)
n,t

′
(·, ⋄) is the

first-order derivative of η
(j)
n,t(·, ⋄) with respect to the first variable ·, and 〈·〉 is the averaging

operation over all entries of η
(j)
n,t

′
(·, ⋄). Let X (j)

∞ = [x
(j)
1,∞, . . . ,x

(j)
N,∞]T and R(j)

∞ denote the

estimation of x
(j)
n and the corresponding residual after the convergence of the SI-aided MMV-

AMP algorithm in coherence block j. Then, we have x̂(j)
n = x

(j)
n,∞, ∀n, j. Note that after the

convergence of the SI-aided MMV-AMP algorithm in the j-th coherence block, the device activity

detection is done by performing the log-likelihood ratio (LLR)-based detection to x̂(j)
n , ∀n.

Specifically, define H0 and H1 as the hypotheses that a device is inactive and active, respectively.

Then, the LLR-based detection rule is [6]:

‖x̂(j)
n +

(

R(j)
∞

)H
sn‖

H1

≷
H0

l, ∀n, j, (8)

where l is a common threshold for all the devices.

To summarize, under our proposed framework, we first implement the SI-aided MMV-AMP

algorithm shown in (6) and (7) to estimate the user effective channels, and then apply the LLR-

based approach shown in (8) to detect the active devices. Since the LLR-based detectors are

standard, in the rest of this paper, we focus on the open problem of how to embed the SI

into the MMV-AMP algorithm design to improve the performance of the conventional MMV-

AMP algorithms used in [5], [6]. It is observed in (6) and (7) that there are two challenges in

designing the SI-aided MMV-AMP algorithm: what SI, i.e., fn,j(x̂
(j−1)
n ), should be used and

how to design the denoisers by utilizing the SI. In the following two subsections, we tackle the

above two issues, respectively.

B. Identifying SI From State Evolution

Under the SI-aided MMV-AMP framework, there exists the state evolution in the asymptotic

regime where N,K,L → ∞ with fixed N/L and N/K. Specifically, at each iteration t of the

AMP algorithm to estimate X(j), x
(j)
n,t + (R

(j)
t )Hsn is statistically equivalent to:

x̃
(j)
n,t = x

(j)
n +

(

Σ
(j)
t

)
1
2v(j)n , ∀n, j, t, (9)
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where v
(j)
n ∈ C

M×1 ∼ CN (0, I) is the noise independent of x
(j)
n and Σ

(j)
t ∈ C

M×M is the

state. Define a set of random vectors X(j)
n ∈ CM×1, V (j)

n ∈ CM×1, and X̂
(j−1)

n ∈ CM×1 which

capture the distribution of x
(j)
n , v

(j)
n , and x̂(j−1)

n , respectively, ∀n, j. Then, in the asymptotic

regime where N,K,L → ∞ with fixed N/L and N/K, the state evolution is given by:

Σ
(j)
t+1 = σ2

zI +
N

L
× 1

N

N
∑

n=1

E
[(

η
(j)
n,t

(

X(j)
n + (Σ

(j)
t )

1
2V (j)

n , fn,j(X̂
(j−1)

n )
)

−X(j)
n

)

×
(

η
(j)
n,t

(

X(j)
n + (Σ

(j)
t )

1
2V (j)

n , fn,j(X̂
(j−1)

n )
)

−X(j)
n

)H]

, ∀j, t.
(10)

Note that in coherence block j, we already have the estimation of X(j−1), i.e., x̂(j−1)
n = x

(j−1)
n,∞ ,

∀n. According to (9), x̂(j−1)
n + (R(j−1)

∞ )Hsn in the previous coherence block is statistically

equivalent to

x̃(j−1)
n,∞ = x(j−1)

n +
(

Σ
(j−1)
∞

)
1
2v(j−1)

n , ∀n, j, t, (11)

where Σ
(j−1)
∞ denotes the state of the MMV-AMP algorithm shown in (10) after it converges

in coherence block j − 1. It is worth noting that the correlation between the previous block’s

estimated effective channels plus residue, i.e., x̂(j−1)
n + (R(j−1)

∞ )Hsn’s, and true effective chan-

nels, i.e., x
(j−1)
n ’s, can be built based on (11) as well as the statistical equivalence between

x̂(j−1)
n +(R(j−1)

∞ )Hsn’s and x
(j−1)
n +(Σ(j−1)

∞ )
1
2v

(j−1)
n ’s, while the correlation between the previous

coherence block’s effective channels and the current coherence block’s effective channels, i.e.,

x
(j)
n ’s, can be built based on (4). Thus, the correlation between x̂(j−1)

n + (R(j−1)
∞ )Hsn and x

(j)
n

can be built for all the devices and all the adjacent blocks. Moreover, after the convergence

of the MMV-AMP in coherence block j − 1, x̂(j−1)
n and (R(j−1)

∞ )Hsn can be obtained via (6)

and (7), respectively. This motivates us to adopt the following SI to design the denoisers in the

MMV-AMP algorithm:

fn,j
(

x̂(j−1)
n

)

= x̂(j−1)
n +

(

R(j−1)
∞

)H
sn, ∀n, j. (12)

After identifying the SI, the next question is how to utilize the correlation between x̂(j−1)
n +

(R(j−1)
∞ )Hsn’s and x

(j)
n ’s to design the denoisers in (6) for both the cases with unknown channel

distribution information and known channel distribution information.

C. Denoiser Design for SI-Aided MMV-AMP Framework

Under the AMP framework, as long as the denoiser is a Lipschitz continuous function, the

algorithm will converge. However, different denoisers will lead to very diverse performance. To
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achieve the best performance in the MMV-AMP algorithm, the denoisers should be carefully

designed based on (9) and the SI given in (12). If the distribution of x
(j)
n ’s, i.e., νn,M ’s, is

unknown in (9), we can apply the group LASSO technique [33] to design the denoisers, similar

to [31]. Specifically, the group LASSO problem for the linear model (9) is characterized as

minimize
η
(j)
n,t(·,⋄)

1

2

∥

∥

∥
x̃
(j)
n,t−η

(j)
n,t

(

x̃
(j)
n,t, fn,j

(

x̂(j−1)
n

))

∥

∥

∥

2

+ θ
(j)
n,t

(

fn,j
(

x̂(j−1)
n

))

∥

∥

∥
η
(j)
n,t

(

x̃
(j)
n,t, fn,j

(

x̂(j−1)
n

))

∥

∥

∥
, ∀n, j, t,

(13)

where θ
(j)
n,t(fn,j(x̂

(j−1)
n ))>0 is a known parameter (which, however, needs to be carefully designed

based on the SI) to control the sparsity of η
(j)
n,t

(

x̃
(j)
n,t, fn,j

(

x̂(j−1)
n

))

. Note that under our proposed SI-

aided MMV-AMP framework, θ
(j)
n,t(fn,j(x̂

(j−1)
n )) is a function of the SI given in (12). Intuitively, if

device n in the previous coherence block is detected as active (or inactive), i.e., ‖fn,j(x̂(j−1)
n )‖ > l

(or ‖fn,j(x̂(j−1)
n )‖ < l), θ

(j)
n,t(fn,j(x̂

(j−1)
n )) should be set to be a smaller (or larger) value in the

current coherence block such that x
(j)
n tends to be a non-zero (or zero) vector, i.e., device n will

be detected to be active (or inactive) with a higher probability. As a result, θ
(j)
n,t(fn,j(x̂

(j−1)
n )) can

be defined as a binary threshold [18] [19]:

θ
(j)
n,t

(

fn,j
(

x̂(j−1)
n

))

=











θ
(j)
1,n,t, if ‖fn,j

(

x̂(j−1)
n

)

‖ > l,

θ
(j)
2,n,t, if ‖fn,j

(

x̂(j−1)
n

)

‖ < l,
∀n, j, t, (14)

where θ
(j)
1,n,t ≤ θ

(j)
2,n,t. Given the above binary threshold θ

(j)
n,t(fn,j(x̂

(j−1)
n )), the closed-form solution

to problem (13) is

η
(j)
n,t

(

x̃
(j)
n,t,fn,j

(

x̂(j−1)
n

))

=











x̃
(j)
n,t−

θ
(j)
n,t

(

fn,j

(

x̂
(j−1)
n

))

x̃
(j)
n,t

‖x̃
(j)
n,t‖

, if ‖x̃(j)
n,t‖≥θ

(j)
n,t

(

fn,j
(

x̂(j−1)
n

))

,

0, if ‖x̃(j)
n,t‖<θ

(j)
n,t

(

fn,j
(

x̂(j−1)
n

))

,

∀n, j, t,

(15)

which is the well-known soft-thresholding denoisers, but with a binary threshold depending on

the estimation in the previous coherence block. This denoiser design does not depend on the

distribution of x
(j)
n ’s, as shown in (15). Note that if the SI is not utilized, θ

(j)
n,t(fn,j(x̂

(j−1)
n )) =

θ
(j)
t , ∀n, should hold over all the coherence blocks. In this case, the optimization of θ

(j)
t is

considered in [7], [29], [30]. However, under our considered SI-aided MMV-AMP framework,

the challenge is how to design θ
(j)
n,t(fn,j(x̂

(j−1)
n )) in (14) based on the SI. In Section IV, we will

deal with this issue for SI-based binary threshold design under the soft-thresholding denoisers

architecture.
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On the other hand, if the distribution of x
(j)
n,t’s , i.e., νn,M ’s, is known in the linear model (9),

we can design the denoisers to minimize the MSE for the estimation of x
(j)
n . Specifically, define

a set of random vectors X̃
(j)

n,t ∈ CM×1, X(j)
n ∈ CM×1, and X̂

(j−1)

n ∈ CM×1 which capture the

distribution of x̃
(j)
n,t, x

(j)
n , and x̂(j−1)

n , respectively, ∀n, j. The MMSE minimization problem is

formulated as

minimize
η
(j)
n,t(·,⋄)

E

[

∥

∥η
(j)
n,t

(

X̃
(j)

n,t, fn,j
(

X̂
(j−1)

n

))

−X(j)
n

∥

∥

2|X̃(j)

n,t= x̃
(j)
n,t, fn,j

(

X̂
(j−1)

n

)

= x̃(j−1)
n,∞

]

, ∀n, j, t.

(16)

The optimal solution to the above problem leads to the MMSE denoisers:

η
(j)
n,t

(

x̃
(j)
n,t, fn,j

(

x̂(j−1)
n

))

= E

[

X(j)
n | X̃(j)

n,t = x̃
(j)
n,t, fn,j

(

X̂
(j−1)

n

)

= x̃(j−1)
n,∞

]

, ∀n, j, t. (17)

Note that if the SI in the previous coherence block is not utilized, the closed-form characterization

of the MMSE denoisers is given in [5] under the i.i.d. Rayleigh fading channel model. The

challenge of the SI-based MMSE denoisers shown in (17) lies in how to derive the conditional

expectation if the SI is considered. In Section V, we will deal with this issue when the user

channels h(j)
n ’s follow the i.i.d. Rayleigh fading model.

IV. SI-BASED DENOISER DESIGN WITH UNKNOWN CHANNEL DISTRIBUTION

In the case without knowledge of the channel distribution, the SI-based soft-thresholding

denoisers are given in (15). The main technical issue is how to design the binary threshold

θ
(j)
n,t(fn,j(x̂

(j−1)
n ))’s in (14) based on the SI. Following [7], [29]–[31], in this section, we apply

the minimax approach to design the threshold. Under this approach, we first obtain the least-

favorable channel distribution µn,M that leads to the maximum MSE for estimating x
(j)
n among

all the channel distributions in GM , ∀n. Then, we design the binary threshold shown in (14)

to minimize the above MSE. In other words, we try to design the binary threshold such that

the worst-case performance of the soft-thresholding denoisers based MMV-AMP algorithm is

optimized when the channel distribution is unknown.

In coherence block j, given the binary threshold θ
(j)
1,n,t, θ

(j)
2,n,t, and the channel distribution

µn,M , we define the MSE for estimating x
(j)
n at the t-th iteration of the AMP algorithm with

the SI-based soft-thresholding denoisers (15) as

MSE
(j)
n,t(θ

(j)
1,n,t, θ

(j)
2,n,t,µn,M) = E

X
(j)
n ,X̂

(j−1)
n ,V

(j)
n

[

∥

∥η
(j)
n,t

(

X(j)
n + (Σ

(j)
t )

1
2V (j)

n , fn,j(X̂
(j−1)

n )
)

−X(j)
n

∥

∥

2
]
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=Pr(δ(j)n =0,δ̂(j−1)
n =1) E

X
(j)
n ,V

(j)
n

[

∥

∥η
(j)
n,t

(

X (j)
n +(Σ

(j)
t )

1
2V (j)

n ,fn,j(X̂
(j−1)

n )
)

−X(j)
n

∥

∥

2 |δ(j)n =0,δ̂(j−1)
n =1

]

+Pr(δ(j)n =0,δ̂(j−1)
n =0) E

X
(j)
n ,V

(j)
n

[

∥

∥η
(j)
n,t

(

Xn
(j)+(Σ

(j)
t )

1
2V (j)

n ,fn,j(X̂
(j−1)

n )
)

−X(j)
n

∥

∥

2 |δ(j)n =0,δ̂(j−1)
n =0

]

+Pr(δ(j)n =1,δ̂(j−1)
n =1) E

X
(j)
n ,V

(j)
n

[

∥

∥η
(j)
n,t

(

X(j)
n +(Σ

(j)
t )

1
2V (j)

n ,fn,j(X̂
(j−1)

n )
)

−X(j)
n

∥

∥

2 |δ(j)n =1,δ̂(j−1)
n =1

]

+Pr(δ(j)n =1,δ̂(j−1)
n =0) E

X
(j)
n ,V

(j)
n

[

∥

∥η
(j)
n,t

(

X(j)
n +(Σ

(j)
t )

1
2V (j)

n ,fn,j(X̂
(j−1)

n )
)

−X(j)
n

∥

∥

2 |δ(j)n =1,δ̂(j−1)
n =0

]

=Pr(δ(j)n =0,δ̂(j−1)
n =1)R

(j)
n,t(0, θ

(j)
1,n,t) + Pr(δ(j)n =1,δ̂(j−1)

n =1) E

h
(j)
n ∼µn,M

[

R
(j)
n,t(h

(j)
n , θ

(j)
1,n,t)

]

+Pr(δ(j)n =0,δ̂(j−1)
n =0)R

(j)
n,t(0, θ

(j)
2,n,t)+Pr(δ(j)n =1,δ̂(j−1)

n =0) E

h
(j)
n ∼µn,M

[

R
(j)
n,t(h

(j)
n , θ

(j)
2,n,t)

]

, ∀n, j, t,

(18)

where

R
(j)
n,t(x

(j)
n , θ

(j)
i,n,t) = E

V
(j)
n

[

∥

∥g
(j)
n,t

(

x(j)
n + (Σ

(j)
t )

1
2V (j)

n , θ
(j)
i,n,t

)

−x(j)
n

∥

∥

2
]

, i = 1, 2, ∀n, j, t, (19)

and

g
(j)
n,t(x̃

(j)
n,t, θ

(j)
i,n,t) = (x̃

(j)
n,t − θ

(j)
i,n,t

x̃
(j)
n,t

‖x̃(j)
n,t‖

) I(‖x̃(j)
n,t‖ ≥ θ

(j)
i,n,t), i = 1, 2, ∀n, j, t, (20)

with I(·) denoting the indicator function. Then, the optimal threshold for the least-favorable

distribution can be obtained by solving the following problem

(θ
(j),∗
1,n,t, θ

(j),∗
2,n,t) = argmin

θ
(j)
1,n,t,θ

(j)
2,n,t

max
µn,M

MSE
(j)
n,t(θ

(j)
1,n,t, θ

(j)
2,n,t,µn,M), ∀n, j, t. (21)

Note that in (18), both the probabilities Pr(δ
(j)
n ,δ̂

(j−1)
n )’s and the channel estimation MSEs

E
h
(j)
n ∼µn,M

[

R
(j)
n,t(h

(j)
n , θ

(j)
i,n,t)

]

’s, i = 1, 2, are functions of the distribution of h(j)
n ’s, i.e., µn,M ’s.

Especially, the device activity detection is based on (8), and the distribution µn,M will thus affect

the probabilities of the events that δ̂
(j−1)
n = 1 and δ̂

(j−1)
n = 0, ∀n. As a result, even given the

binary threshold, it is non-trivial to find the least-favorable distribution to maximize the MSE

in (18). This motivates us to find an approximate least-favorable channel distribution that has

the closed-form probability density function (PDF) and can approach the MSE achieved by the

least-favorable channel distribution.

It was shown in [5] that under the conventional AMP algorithm without utilizing SI, the

performance of the device activity detection is very good. Especially, when the number of
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antennas goes to infinity, perfect device activity detection can be achieved, i.e., δ̂
(j−1)
n = δ

(j−1)
n

holds almost surely for each device n. As a result, in practice, we usually have Pr(δ
(j)
n , δ̂

(j−1)
n ) ≈

Pr(δ
(j)
n , δ

(j−1)
n ), ∀n. In other words, the channel distribution does not affect Pr(δ

(j)
n , δ̂

(j−1)
n ) too

much. However, due to the use of the non-orthogonal pilot sequences, the channel estimation

MSEs are large even under the perfect detection case [28]. As a result, the channel distribution

has a significant impact on channel estimation MSEs. Therefore, instead of focusing on the

exact least-favorable distribution that can maximize the MSE in (18), which is complicated,

in the following, we focus on the PDF of the distribution that tends to maximize the channel

estimation MSEs E
h
(j)
n ∼µn,M

[R
(j)
n,t(h

(j)
n , θ

(j)
i,n,t)]’s, i = 1, 2. It was shown in [7], [29] that in the

SMV case, i.e., M = 1 and h
(j)
n is a scalar, ∀n, j, E

h
(j)
n ∼µn,1

[

R
(j)
n,t(h

(j)
n , θ

(j)
t )
]

is maximized when

|h(j)
n | goes to infinity, i.e., µn,1 = δ∞(|h(j)

n |), ∀n, j, where δ∞(·) denotes the point mass at ∞.

In the case when M > 1 such that h(j)
n is a vector, ∀n, j, [31] showed that the maximum of

E
h
(j)
n ∼µn,M

[

R
(j)
n,t(h

(j)
n , θ

(j)
t )
]

is achieved when ‖h(j)
n ‖ goes to infinity, ∀n, j. Since we assume in

this paper that the user channels are i.i.d. over m, we define the following channel distribution

as the approximate least-favorable channel distribution to maximize the MSE given in (18)

µ̂∗
n,M = µ̂∗

n × · · · × µ̂∗
n = δ∞(|h(j)

n,1|)× · · · × δ∞(|h(j)
n,M |), ∀n, j. (22)

With the approximate least-favorable channel distribution given in (22), we simplify the MSE

in (18). First, we have the following lemma.

Lemma 1: Consider the SI-based soft-thresholding denoisers given in (15) and the approximate

least-favorable channel distribution given in (22). Under the asymptotic regime where N,K,L →
∞ with fixed N/L and N/K, the state evolution defined by (10) always stays as a diagonal

matrix with identical diagonal entries, i.e.,

Σ
(j)
t =

(

τ
(j)
t

)2
I, ∀j, t. (23)

Proof: Lemma 1 can be proved using the similar induction method as that in Appendix B

of [5], which is omitted here due to the space limitation.

With the simplified state shown in (23), we are able to characterize the MSE shown in (18)

under the approximate least-favorable channel distribution (22).

Theorem 1: Consider the SI-based soft-thresholding denoisers given in (15), the approximate

least-favorable distribution given in (22), and the temporal correlation model for device activity
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shown in (4), under the asymptotic regime where N,K,L → ∞ with fixed N/L and N/K.

Define

̟(j)(θ
(j)
i,n,t)=

(θ
(j)
i,n,t)

2Γ
(

M,(
θ
(j)
i,n,t

τ
(j)
t

)2
)

−2θ
(j)
i,n,tτ

(j)
t Γ

(

M+ 1
2
, (

θ
(j)
i,n,t

τ
(j)
t

)2
)

+(τ
(j)
t )2Γ

(

M+1,(
θ
(j)
i,n,t

τ
(j)
t

)2
)

Γ(M)
,

i = 1, 2, ∀n, j, t, (24)

and

ς(j−1)
∞ =

Γ(M, (l(j−1))2(τ
(j−1)
∞ )−2)

Γ(M)
, ∀j, (25)

where Γ (·) and Γ (·, ·) denote the Gamma function and the upper incomplete Gamma function

[34], respectively. Under the approximate least-favorable distribution given in (22), the MSE

given in (18) is expressed as

MSE
(j)
n,t(θ

(j)
1,n,t, θ

(j)
2,n,t, µ̂

∗
n,M) = MSE

(j)
1,n,t(θ

(j)
1,n,t, µ̂

∗
n,M) + MSE

(j)
2,n,t(θ

(j)
2,n,t, µ̂

∗
n,M), ∀n, j, t, (26)

where

MSE
(j)
1,n,t(θ

(j)
1,n,t, µ̂

∗
n,M) =

(

β(1− λ)ς(j−1)
∞ + αλ

)(

(τ
(j)
t )2M + (θ

(j)
1,n,t)

2
)

+
(

(1− β)(1− λ)ς(j−1)
∞ + (1− α)λ

)

̟(j)(θ
(j)
1,n,t), ∀n, j, t, (27)

and

MSE
(j)
2,n,t(θ

(j)
2,n,t, µ̂

∗
n,M) = β(1− λ)(1− ς(j−1)

∞ )
(

(τ
(j)
t )2M +(θ

(j)
2,n,t)

2
)

+ (1− β)(1− λ)(1− ς(j−1)
∞ )̟(j)(θ

(j)
2,n,t), ∀n, j, t. (28)

Proof: Please refer to Appendix A.

After characterizing the MSE under the approximate least-favorable channel distribution (22)

in Theorem 1, we aim to find the best binary threshold to minimize the MSE in (26):

θ̂
(j),∗
i,n,t = argmin

θ
(j)
i,n,t

MSE
(j)
i,n,t(θ

(j)
i,n,t, µ̂

∗
n,M), i = 1, 2, ∀n, j, t. (29)

The optimal solution to problem (29) can be found via Theorem 2.

Theorem 2: Define two functions of θ
(j)
1,n,t and θ

(j)
2,n,t as follows

f1(θ
(j)
1,n,t)=[(1−β)(1−λ)ς(j−1)

∞ +(1−α)λ]ξ(j)(θ
(j)
1,n,t)+[β(1−λ)ς(j−1)

∞ +αλ]θ
(j)
1,n,t, ∀n, j, t,

(30)

f2(θ
(j)
2,n,t)=(1− β)(1− λ)(1− ς(j−1)

∞ )ξ(j)(θ
(j)
2,n,t)+β(1− λ)(1− ς(j−1)

∞ )θ
(j)
2,n,t, ∀n, j, t, (31)
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with ς
(j−1)
∞ given in (25) and

ξ(j)(θ
(j)
i,n,t) =

θ
(j)
i,n,tΓ

(

M, (
θ
(j)
i,n,t

τ
(j)
t

)2
)

− τ
(j)
t Γ

(

M + 1
2
, (

θ
(j)
i,n,t

τ
(j)
t

)2
)

Γ(M)
, i = 1, 2, ∀n, j, t. (32)

There always exists a unique positive solution θ̂
(j),∗
1,n,t to the equation f1(θ

(j)
1,n,t) = 0 and a unique

positive solution θ̂
(j),∗
2,n,t to the equation f2(θ

(j)
2,n,t) = 0. Then, θ̂

(j),∗
i,n,t , i = 1, 2, ∀n, j, t, is the optimal

solution to problem (29).

Proof: Please refer to Appendix B.

Note that in Theorem 2, the solution to (30) and (31) can be easily obtained by the bisection

method, since both f1(θ
(j)
1,n,t) and f2(θ

(j)
2,n,t) are increasing functions over θ

(j)
1,n,t and θ

(j)
2,n,t, ∀n, j, t.

As a result, we may take θ̂
(j),∗
i,n,t , i = 1, 2, ∀n, j, t, as the binary threshold to the SI-based soft-

thresholding denoisers (15) in the SI-aided MMV-AMP algorithm when the channel distribution

is unknown. Since the binary threshold is obtained based on the approximate least-favorable

channel distribution, it is anticipated that the performance under other channel distributions will

be further improved in general.

In the following, we provide a numerical example to show the effect of the SI on the SI-

based soft-thresholding denoiser design when the device activity is temporally correlated. In this

example, we set M = 1, λ = 0.1, α = 0.91 > λ, β = 0.01 < λ, ς
(j−1)
∞ = 0 and τ (j) = 2× 10−6.

Fig. 1 shows the SI-based soft-thresholding denoisers when a device was detected as an active

and inactive device in the previous coherence block, respectively, as well as the denoisers without

using SI. Compared to the denoisers without using SI, it can be observed that when a device

is detected to be active (or inactive) previously, the SI-based soft-thresholding denoisers tend to

detect this device as an active (or inactive) device in the current coherence block.

V. SI-BASED DENOISER DESIGN WITH KNOWN CHANNEL DISTRIBUTION

In this section, we consider the case where the PDF of the channel is unknown, and introduce

how to adopt the Bayesian approach to design the SI-based MMSE denoisers η
(j)
n,t (·, ⋄)’s for

signal recovery. Specifically, we consider the Rayleigh fading channel model as an example,

i.e., h(j)
n ∼ CN (0, γnI), ∀n, j, where γn is the path loss of device n. It is worth noting that

the SI-based MMSE denoiser design can be extended to other channel models as long as the

channel distribution is known.

At the (t+1)-th iteration of the AMP algorithm in coherence block j, the available information

includes x
(j)
n,t + (R

(j)
t )Hsn from the current coherence block whose distribution is modeled by



18

-4 -3 -2 -1 0 1 2 3 4 5

10-6

-3

-2

-1

0

1

2

3
10-6

Fig. 1. Comparison of soft-thresholding denoisers with or without using SI.

(9) and the SI from the previous coherence block x̂(j−1)
n + (R(j−1)

∞ )Hsn whose distribution is

modeled by (11). Based on the above information, the SI-based MMSE denoisers can be further

expressed as

E[X
(j)
n | X(j)

n +
(

Σ
(j)
t

)
1
2V (j)

n = x̃
(j)
n,t,X

(j−1)
n +

(

Σ
(j−1)
∞

)
1
2V (j−1)

n = x̃(j−1)
n,∞ ], ∀n, j, t. (33)

To characterize the SI-based MMSE denoisers (33), we first derive the following result.

Lemma 2: Let X̃
(j)

n,t =X
(j)
n +(Σ

(j)
t )

1
2V (j)

n and X̃
(j−1)

n,∞ =X(j−1)
n +(Σ(j−1)

∞ )
1
2V (j−1)

n whereX(j)
n ,

X(j−1)
n , V (j)

n , and V (j−1)
n capture the distribution of x

(j)
n , x

(j−1)
n , v

(j)
n , and v

(j−1)
n , respectively.

Define

φ
(

x̃
(j)
n,t, x̃

(j−1)
n,∞

)

=
1

1 + 1−λ
λ

βψ
Σ

(j)
t

(x̃
(j)
n,t)ψ

γnI+Σ
(j−1)
∞

(x̃
(j−1)
n,∞ )+(1−β)ψ

Σ
(j)
t

(x̃
(j)
n,t)ψ

Σ
(j−1)
∞

(x̃
(j−1)
n,∞ )

αψ
γnI+Σ

(j)
t

(x̃
(j)
n,t)ψ

γnI+Σ
(j−1)
∞

(x̃
(j−1)
n,∞ )+(1−α)ψ

γnI+Σ
(j)
t

(x̃
(j)
n,t)ψ

Σ
(j−1)
∞

(x̃
(j−1)
n,∞ )

,

∀n, j, t. (34)

Then,

E[X
(j)
n | X̃(j)

n,t = x̃
(j)
n,t, X̃

(j−1)

n,∞ = x̃(j−1)
n,∞ ] = φ(x̃

(j)
n,t, x̃

(j−1)
n,∞ )γn(γnI +Σ

(j)
t )−1x̃

(j)
n,t, ∀n, j, t, (35)

and

E[X
(j)
n (X(j)

n )
H | X̃(j)

n,t = x̃
(j)
n,t, X̃

(j−1)

n,∞ = x̃(j−1)
n,∞ ] = φ(x̃

(j)
n,t, x̃

(j−1)
n,∞ )

(

γnI − γ2
n(γnI +Σ

(j)
t )−1

+ γ2
n(γnI +Σ

(j)
t )−1x̃

(j)
n,t(x̃

(j)
n,t)

H(γnI +Σ
(j)
t )−1

)

, ∀n, j, t.
(36)

Proof: Please refer to Appendix C.
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With Lemma 2, the state evolution can be further simplified.

Lemma 3: Given the SI-based MMSE denoisers in (33), under the asymptotic regime where

N,L,K → ∞ with fixed N/L and N/K. The matrix Σ
(j)
t generated by the state evolution (10)

always stays as a diagonal matrix with identical diagonal entries, i.e.,

Σ
(j)
t =

(

τ
(j)
t

)2
I, ∀j, t. (37)

Proof: Lemma 3 can be proved using the similar induction method as that in Appendix B

of [5], which is omitted here due to space limitation.

With the simplified state shown in Lemma 3, we can thus derive the simplified SI-based MMSE

denoisers in Theorem 3.

Theorem 3: Consider the SI-aided MMV-AMP algorithm given by (6) and (7) under the

temporal correlation model for device activity shown in (4). Define

∆
(j)
n,t =

(

τ
(j)
t

)−2 −
((

τ
(j)
t

)2
+ γn

)−1
, ∀n, j, t. (38)

Under the asymptotic regime where N,L,K → ∞ with fixed N/L and N/K, the MMSE

denoisers (33) in coherence block j with the SI given in (12) are expressed as:

η
(j)
n,t

(

x̃
(j)
n,t, fn,j

(

x̂(j−1)
n

))

=
γn
(

γn +
(

τ
(j)
t

)2)−1
x̃
(j)
n,t

1 + 1−λ
λ
µ
(j)
n,t × β+(1−β)µ

(j−1)
n,∞

α+(1−α)µ
(j−1)
n,∞

, ∀n, j, t, (39)

where

µ
(j)
n,t =

(

(

τ
(j)
t

)2
+ γn

(

τ
(j)
t

)2

)M

exp
(

−∆
(j)
n,t‖x̃(j)

n,t‖2
)

, ∀n, j, t, (40)

and (τ
(j−1)
∞ )2 can be obtained from the state evolution (10) and (37) after AMP converges in

coherence block j − 1.

Proof: By plugging (37) into (35), the results in Theorem 3 can be readily derived.

To gain insights from Theorem 3, we discuss several special cases. First, if the user activity

is independent over different coherence blocks, i.e., α = β = λ such that Pr(δ
(j)
n | δ(j−1)

n ) =

Pr(δ
(j)
n ), ∀n, j, the denoisers in (39) will reduce to

η
(j)
n,t

(

x̃
(j)
n,t, fn,j(x̂

(j−1)
n )

)

=
γn

(

γn+(τ
(j)
t )2

)−1

x̃
(j)
n,t

1 + 1−λ
λ
µ
(j)
n,t

, ∀n, j, t, (41)

which are the MMSE denoisers proposed in [5], [6] without taking SI into account. This is

because if there is no temporal correlation in the user activity, SI will have no effect on the

MMSE denoiser design. Second, if (τ
(j−1)
∞ )2 → ∞, it can be shown from (40) that µ

(j−1)
n,∞ = 1,
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Fig. 2. Comparison of MMSE denoisers with or without using SI.

∀n. Then, the MMSE denoisers shown in (39) will also reduce to the MMSE denoisers in (41)

proposed in [5], [6] without taking SI into account. This is because according to (11) and (23),

(τ
(j−1)
∞ )2 can be viewed as the equivalent noise power for estimating X(j−1) by AMP. If this

noise power is infinite but the power of each row in X(j−1) is finite, then the estimation does

not provide any useful information for the estimation in the next block, despite the existence of

temporal correlation in activity.

Next, we provide a numerical example to show the gain of using SI in the MMSE denoiser

design when the device activity is temporally correlated. In this example, we set M = 1, λ = 0.1,

α = 0.91 > λ, β = 0.01 < λ, τ (j) = τ (j−1) = 2 × 10−6, and γ = 1 × 10−8. Fig. 2 shows the

SI-based MMSE denoisers when |x̃(j−1)| = 1 × 10−3 and |x̃(j−1)| = 1 × 10−7 as well as the

denoisers without using SI. Compared to the denoisers without using SI, it is observed that when

|x̃(j−1)| is larger (or smaller), i.e., the device tends to be detected as an active (or inactive) device

in the previous block, the SI-based MMSE denoisers estimates x(j) as zero over a smaller (or

larger) range of x̃(j), i.e., the device tends to be detected as an active (inactive) device in the

current coherence block.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the performance of the proposed

SI-aided MMV-AMP framework in massive IoT connectivity systems without or with channel

distribution information. We assume that there are N = 2000 devices randomly located in a cell

of radius R = 500 meters (m). The channels are generated according to the Rayleigh fading

model where the path loss is modeled as −128.1− 36.7 log10(dn) in dB, with dn in kilometers
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(km) denoting the distance from device n to the BS. We consider the communication over J = 10

coherence blocks, while in each coherence block, we have λ = 0.1, α = 0.55, and β = 0.05.

Next, the user transmit power is set as 23 dBm. Last, the power spectrum density of the noise

is −169 dBm/Hz, while the bandwidth of the channel is set as 10 MHz.

A. Activity Detection and Channel Estimation Performance with Unknown Channel Distribution

First, we consider the case that the BS does not know the channel distribution and evaluate

the performance of device activity detection and channel estimation achieved by our proposed

SI-aided MMV-AMP frameowrk with soft-thresholding denoisers. We consider two benchmark

schemes. Specifically, to obtain a performance upper bound, we consider the scheme where the

SI is always perfect, i.e., δ̂
(j−1)
n = δ

(j−1)
n , ∀n, j, and the optimal binary threshold in (14) is

derived using exhaustive search; while to obtain a performance lower bound, we consider the

scheme where the SI is not utilized in the AMP algorithm [29].

To start with, we consider the case when the BS is equipped with one antenna, i.e., M = 1.

In this case, we term our proposed algorithm as SMV-AMP with SI. In Fig. 3(a), we show

the tradeoff between the probabilities of false alarm PFA and missed detection PMD under

L = 500, which is obtained by varying the value of the threshold l in (8). It is observed from

Fig. 3(a) that our proposed framework outperforms the conventional AMP algorithm without

utilizing SI. Moreover, under our proposed SI-aided AMP framework, the performance achieved

in coherence block 10 is much better than that achieved in coherence block 2, which is better

than that achieved in coherence block 1. This shows that our proposed framework is capable of

intelligently exploiting the SI obtained in the previous coherence block to improve the detection

performance. At last, it is observed that after several coherence blocks, the performance of our

proposed SI-aided AMP framework will converge very closely to the performance upper bound

where the SI is perfect and the binary threshold is obtained using exhaustive search. This implies

that although we design the binary threshold (13) for the approximate least-favorable channel

distribution, it also works well under the Rayleigh fading channel.

Besides the device activity detection, we show in Fig. 3(b) the channel estimation performance

under the Rayleigh fading channel model. For the performance metric, we define the normalized

MSE for channel estimation in coherence block j as

NMSE(j) =

∑N
n=1 E[‖x̂(j)

n − x(j)
n ‖2]

∑N

n=1 E[‖x
(j)
n ‖2]

, ∀j. (42)



22

10-4 10-3 10-2 10-1 100

P
FA

10-4

10-3

10-2

10-1

100

P
M

D

SMV-AMP without SI
SMV-AMP with SI, Coherence Block 1
SMV-AMP with SI, Coherence Block 2
SMV-AMP with SI, Coherence Block 4
SMV-AMP with SI, Coherence Block 10
Detection Performance Upper Bound

(a) Activity Detection Performance

450 460 470 480 490 500 510 520 530 540
L

10-6

10-5

10-4

10-3

10-2

N
M

SE

SMV-AMP without SI
SMV-AMP with SI, Coherence Block 1
SMV-AMP with SI, Coherence Block 2
SMV-AMP with SI, Coherence Block 4
SMV-AMP with SI, Coherence Block 10
SMV-AMP with Perfect SI

(b) Channel Estimation Performance

Fig. 3. Activity detection and channel estimation performance under SI-aided SMV-AMP framework with unknown channel

distribution
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Fig. 4. Activity detection and channel estimation performance under SI-aided MMV-AMP framework with unknown channel

distribution

We consider a pilot sequence length ranging from 450 to 540. It is observed that the performance

of our proposed SI-aided AMP framework will converge very closely to that achieved by the

AMP algorithm with perfect SI, especially when the pilot sequence is long such that the imperfect

SI can provide accurate information on the device activity in the previous coherence block.

Secondly, we consider the case when the BS is equipped with multiple antennas with M = 2.

In this case, we term our proposed framework as MMV-AMP with SI. Figs. 4(a) and 4(b)

show the tradeoff between the probabilities of false alarm PFA and missed detection PMD under

L = 450 and the normalized MSE with L ranging from 430 to 520, respectively. It is observed

that compared to the single-antenna case in Fig. 3, it takes much fewer coherence blocks before

the performance of the SI-aided MMV-AMP framework converges to a stable state. This is
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Fig. 5. Activity detection and channel estimation performance under SI-aided SMV-AMP framework with known channel

distribution
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Fig. 6. Activity detection and channel estimation performance under SI-aided MMV-AMP framework with known channel

distribution

because with multiple antennas, the SI in the previous coherence block is more accurate, which

can be utilized more efficiently in the current coherence block. Moreover, similar to the SMV

case, our proposed SI-aided MMV-AMP framework significantly outperforms the MMV-AMP

algorithm without using SI, and also performs closely to the MMV-AMP algorithm with perfect

SI. The above results validate the effectiveness of our proposed framework with unknown channel

distribution.

B. Activity Detection and Channel Estimation Performance with Known Channel Distribution

Next, we evaluate the performance of our proposed SI-aided MMV-AMP framework when

the channel distribution is known. We consider three benchmark schemes. Besides the AMP
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algorithms with perfect SI or without SI, we also consider the dynamic compressed sensing via

approximate message passing (DCS-AMP) algorithm proposed in [20] as the benchmark scheme.

The DCS-AMP is implemented in filtering model to match our setting. In Fig. 5(a) , we show

the tradeoff between the probabilities of false alarm PFA and missed detection PMD when the

BS is equipped with one antenna (i.e., M = 1) and the length of the pilot sequence is set as

L = 300, while in Fig. 5(b), we show the normalized MSE performance when M = 1 and

L ranges from 290 to 320. It is observed that similar to the case without channel distribution

information, when the Rayleigh fading channel model is known, the performance of our proposed

SI-aided AMP algorithm is much better than that of the AMP algorithm without using SI, and

very close to the AMP algorithm with perfect SI. It is also observed that the proposed SI-aided

SMV-AMP algorithm outperforms the DCS-AMP algorithm significantly in coherence blocks

3 and 5, because our proposed scheme is built on the true statistical correlation between the

estimation in the last coherence block and the user effective channels in the current coherence

block. Similar observations are also observed from Fig. 6 when the BS is equipped with M = 2

antennas, where the pilot sequence length is set as L = 250 in Fig. 6(a) and that varies from

240 to 270 in Fig. 6(b). Last, by comparing Fig. 3 and Fig. 5, as well as Fig. 4 and Fig. 6,

it is observed that for both the single-antenna BS case and the multi-antenna BS case, if the

channel distribution is known and utilized, the device activity detection and channel estimation

performance can be significantly improved.

VII. CONCLUSIONS

In this paper, we proposed a comprehensive framework to utilize the temporal device activity

correlation among adjacent blocks for device activity detection and channel estimation in massive

IoT connectivity systems, in order to improve the detection and estimation performance with a

small number of BS antennas. Specifically, we established a novel SI-aided MMV-AMP frame-

work, where the estimation result in the previous coherence block is leveraged as SI for devising

higher-quality denoisers in the current coherence block. For the case with unknown channel

distribution information, we proposed a design for the SI-based soft-thresholding denoisers

based on the least-favorable channel distribution. For the case with known channel distribution

information, we derived the SI-based MMSE denoisers. Numerical results show that the proposed

SI-aided MMV-AMP framework significantly improves the detection and estimation performance

compared to the conventional MMV-AMP algorithms without exploiting SI, which validates
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the effectiveness of our proposed framework in smartly exploiting SI. Therefore, the proposed

framework provides a promising approach to achieve high-quality activity detection and channel

estimation even with a small number of antennas at the BS.

APPENDIX A

PROOF OF THEOREM 1

In this proof, for simplicity, we omit the subscript n in the notations. First, the probability of

the event δ(j) = 0 and δ̂(j−1) = 1 is

Pr(δ(j) = 0, δ̂(j−1) = 1) = Pr(δ(j) = 0, δ̂(j−1) = 1, δ(j−1) = 0) + Pr(δ(j) = 0, δ̂(j−1) = 1, δ(j−1) = 1)

(a)
= Pr(δ(j) = 0 | δ(j−1)=0)Pr(δ̂(j−1) = 1 | δ(j−1) = 0)Pr(δ(j−1) = 0)

+ Pr(δ(j) = 0 | δ(j−1) = 1)Pr(δ̂(j−1) = 1 | δ(j−1) = 1)Pr(δ(j−1) = 1)

(b)
= (1− β)(1− λ)

Γ
(

M, (l(j−1))2(τ
(j−1)
∞ )−2

)

Γ(M)
+ (1− α)λ, ∀j, (43)

where (a) is due to the fact that δ(j) and δ̂(j−1) are independent given δ(j−1) [35], and (b) holds

because given the approximate least-favorable distribution (22), we have

Pr(δ̂(j−1) = 1 | δ(j−1) = 0) = Pr(‖V (j)‖ >
l(j−1)

τ
(j−1)
∞

)=
Γ
(

M, (l(j−1))2(τ
(j−1)
∞ )−2

)

Γ(M)
, ∀j, (44)

Pr(δ̂(j−1) = 1 | δ(j−1) = 1) = 1, ∀j. (45)

Moreover, when δ(j) = 0 and δ̂(j−1) = 1, the channel estimation MSE is

E
[

‖g
(j)
t (τ

(j)
t V (j), θ

(j)
1,t )‖2

]

=

∫

‖V (j)‖>
θ
(j)
1,t

τ
(j)
t

(

‖τ (j)t V (j)‖ − θ
(j)
1,t

)2
p‖V (j)‖d‖V (j)‖

=
(θ

(j)
1,t )

2Γ
(

M, (
θ
(j)
1,t

τ
(j)
t

)2
)

− 2θ
(j)
1,t τ

(j)
t Γ

(

M + 1
2
, (

θ
(j)
1,t

τ
(j)
t

)2
)

+ (τ
(j)
t )2Γ

(

M + 1, (
θ
(j)
1,t

τ
(j)
t

)2
)

Γ(M)
, ∀j, t. (46)

Next, consider the event that δ(j) = 1 and δ̂(j−1) = 1. It can be shown that the probability of

the above event is

Pr(δ(j) = 1, δ̂(j−1) = 1) = β(1− λ)
Γ
(

M, (l(j−1))2(τ
(j−1)
∞ )−2

)

Γ(M)
+ αλ, ∀j. (47)

Moreover, the channel estimation MSE is

E[‖g(j)t (h(j) + τ (j)V (j), θ
(j)
1,t )− h(j)‖2] = E

h(j)∼µ̂∗

n,M

R
(j)
t (‖h(j)‖, θ(j)1,t )
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=

M
∑

m=1

E
v
(j)
m

[

‖τ (j)t v
(j)
m − θ

(j)
1,t√
M

‖2
]

= (τ
(j)
t )2M + (θ

(j)
1,t )

2, ∀j, t. (48)

Third, consider the event that δ(j) = 0 and δ̂(j−1) = 0. It can be shown that the probability of

the above event is

Pr(δ(j) = 0, δ̂(j−1) = 0) = (1− β)(1− λ)(1− Γ
(

M, (l(j−1))2(τ
(j−1)
∞ )−2

)

Γ(M)
), ∀j. (49)

Moreover, the channel estimation MSE E
[

‖g(j)t (τ
(j)
t V (j), θ

(j)
2,t )‖2

]

has the same form as (46) but

with θ
(j)
1,t replaced by θ

(j)
2,t , ∀j, t.

Last, consider the event that δ(j) = 1 and δ̂(j−1) = 0. It can be shown that the probability of

the above event and the channel estimation MSE are respectively expressed as

Pr(δ(j) = 1, δ̂(j−1) = 0) = β(1− λ)(1− Γ
(

M, (l(j−1))2(τ
(j−1)
∞ )−2

)

Γ(M)
), ∀j, (50)

E
[

‖g(j)t (h(j) + τ
(j)
t V (j), θ

(j)
2,t )− h(j)‖2

]

= (τ
(j)
t )2M+(θ

(j)
2,t )

2, ∀j, t. (51)

Thus, by plugging (43), (46)-(51) into (18), Theorem 1 is proved.

APPENDIX B

PROOF OF THEOREM 2

In this proof, we omit the subscripts t and n in all the notations for simplicity. The first

derivative of the upper incomplete gamma function Γ(M,x) with respect to x is given as

∂Γ(M,x)
∂x

= −xM−1e−x. Then, the first derivatives of MSE
(j)
i (θ

(j)
i , µ̂∗) with respect to θ

(j)
i , i = 1, 2,

are given as

∂MSE
(j)
i (θ

(j)
i , µ̂∗)

∂(θ
(j)
i )

= 2fi(θ
(j)
i ), i = 1, 2, ∀j, (52)

where f1(θ
(j)
1 ) and f2(θ

(j)
2 ) are given in (30) and (31), respectively. Moreover, the second

derivatives of MSE
(j)
i (θ

(j)
i , µ̂∗) with respect to θ

(j)
i , i = 1, 2, are given as

∂2MSE
(j)
1 (θ

(j)
1 , µ̂∗)

∂(θ
(j)
1 )2

= 2f
′

1(θ
(j)
1 ) = 2[(1− β)(1− λ)ς(j−1)

∞ + (1− α)λ]
Γ
(

M, (
θ
(j)
1

τ (j)
)2
)

Γ (M)

+ 2[β(1− λ)ς(j−1)
∞ + αλ] > 0, ∀j, (53)

∂2MSE
(j)
2 (θ

(j)
2 , µ̂∗)

∂(θ
(j)
2 )2

= 2f
′

2(θ
(j)
2 ) = 2(1− β)(1− λ)(1− ς(j−1)

∞ )
Γ
(

M, (
θ
(j)
2

τ (j)
)2
)

Γ (M)

+ 2β(1− λ)(1− ς(j−1)
∞ ) > 0, ∀j, (54)



27

where ς
(j−1)
∞ is given in (25). Thus, MSE

(j)
i (θ

(j)
i , µ̂∗) is convex with respect to θ

(j)
i , i = 1, 2, ∀j.

To minimize the convex functions MSE
(j)
i (θ

(j)
i , µ̂∗), i = 1, 2, ∀j, in the following, we show that

there always exist a positive solution θ̂
(j),∗
1 to the equation f1(θ

(j)
1 ) = 0 and a positive solution

θ̂
(j),∗
2 to the equation f2(θ

(j)
2 ) = 0. First, it can be shown that

f1(0) = −[(1 − β)(1− λ)ς(j−1)
∞ + (1− α)λ]

τ (j)Γ(M + 1
2
)

Γ(M)
< 0, ∀j. (55)

Next, it can be shown that

f1(∞)=[(1−β)(1−λ)ς(j−1)
∞ +(1−α)λ] lim

θ
(j)
1 →∞

ξ(j)(θ
(j)
1 )+[β(1−λ)ς(j−1)

∞ + αλ] lim
θ
(j)
1 →∞

θ
(j)
1

=[(1−β)(1−λ)ς(j−1)
∞ +(1−α)λ] lim

θ
(j)
1 →∞

θ
(j)
1 Γ
(

M, (
θ
(j)
1

τ
(j)
t

)2
)

Γ(M)
+[β(1−λ)ς(j−1)

∞ + αλ] lim
θ
(j)
1 →∞

θ
(j)
1

(c)
> 0, ∀j, (56)

where (c) holds because lim
θ
(j)
1 →∞

θ
(j)
1 Γ
(

M,(
θ
(j)
1

τ
(j)
t

)2
)

Γ(M)
is no smaller than 0. Since f1(θ

(j)
1 ) is an

increasing function over θ
(j)
1 , (55) and (56) indicate that there is a positive solution θ̂

(j),∗
1 such

that f1(θ̂
(j),∗
1 ) = 0. Similarly, it can be shown that there is a positive solution θ̂

(j),∗
2 such that

f2(θ̂
(j),∗
2 ) = 0. Theorem 2 is thus proved.

APPENDIX C

PROOF OF LEMMA 2

In this proof, for simplicity, we omit the subscripts t and n in the all the notations. In the

MMSE denoiser (33), the conditional expectation can be given by

E[X
(j) | x̃(j), x̃(j−1)

∞ ]
(d)
= E[X

(j) | x̃(j), x̃(j−1)
∞ , Case 1]p(Case 1 | x̃(j), x̃(j−1)

∞ )

+ E[X
(j) | x̃(j), x̃(j−1)

∞ , Case 3]p(Case 3 | x̃(j), x̃(j−1)
∞ ), ∀j, (57)

where (d) holds because X(j) = 0 for Case 2 and Case 4 according to Section II. In the

following, we focus on Case 1 and Case 3 to characterize (57).

Case 1: According to Section II, under Case 1, it follows that x(j−1) = h(j−1) and x(j) =

h(j). Based on (9) and (11), we have x̃(j) = h(j) + (Σ(j))
1
2V , x̃(j−1)

∞ = h(j−1) + (Σ(j−1)
∞ )

1
2V .

Moreover, due to the independence among variables h(j), h(j−1), and (Σ(j−1)
∞ )

1
2V , E[X

(j) |
x̃(j), x̃(j−1)

∞ , Case 1] in (57) can be given by

E[X
(j) | x̃(j), x̃(j−1)

∞ , Case 1] = E[h
(j) | x̃(j) = h(j) + (Σ(j))

1
2V ], ∀j. (58)
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Next, p(Case 1 | x̃(j), x̃(j−1)
∞ ) in (57) is calculated as

p(Case 1 | x̃(j), x̃(j−1)
∞ ) =

P (Case1)p(x̃(j), x̃(j−1)
∞ | Case 1)

p(x̃(j), x̃(j−1)
∞ )

=
αλψγI+Σ

(j)(x̃(j))ψ
γI+Σ

(j−1)
∞

(x̃(j−1)
∞ )

p(x̃(j), x̃(j−1)
∞ )

, ∀j, (59)

where ψσ2I(x) = 1
π|(σ2I)|

exp(−xH(σ2I)−1x) is the PDF of multivariate complex Gaussian

distribution. We will derive the joint probability, i.e., p(x̃(j), x̃(j−1)
∞ ) later.

Case 3: Similar to Case 1, the conditional expectation can be calculated by:

E[X
(j) | x̃(j), x̃(j−1)

∞ , Case 3] = E[h
(j) | x̃(j) = h(j) + (Σ(j))

1
2V ], ∀j. (60)

Moreover, similar to (59),

p(Case3 | x̃(j), x̃(j−1)
∞ ) =

β(1− λ)ψγI+Σ
(j)(x̃(j))ψ

Σ
(j−1)
∞

(x̃(j−1)
∞ )

p(x̃(j), x̃(j−1)
∞ )

, ∀j. (61)

To derive p(Case 1 | x̃(j), x̃(j−1)
∞ ) in (59) and p(Case 3 | x̃(j), x̃(j−1)

∞ ) in (61), the last

step is to characterize p(x̃(j), x̃(j−1)
∞ ). Similar to p(x̃(j), x̃(j−1)

∞ , Case 1) shown in (59) and

p(x̃(j), x̃(j−1)
∞ , Case 3) shown in (61), it can be shown that

p(x̃(j), x̃(j−1)
∞ , Case 2) = (1− α)λψ

Σ
(j)(x̃(j))ψ

γI+Σ
(j−1)
∞

(x̃(j−1)
∞ ), ∀j, (62)

p(x̃(j), x̃(j−1)
∞ , Case 4) = (1− β)(1− λ)ψ

Σ
(j)(x̃(j))ψ

Σ
(j−1)
∞

(x̃(j−1)
∞ ), ∀j. (63)

Thus,

p(x̃(j), x̃(j−1)
∞ ) =

4
∑

i=1

p(x̃(j), x̃(j−1)
∞ , Case i)

=αλψγI+Σ
(j)(x̃(j))ψ

γI+Σ
(j−1)
∞

(x̃(j−1)
∞ ) + (1− α)λψ

Σ
(j)(x̃(j))ψ

γI+Σ
(j−1)
∞

(x̃(j−1)
∞ )

+β(1− λ)ψγI+Σ
(j)(x̃(j))ψ

Σ
(j−1)
∞

(x̃(j−1)
∞ ) + (1− β)(1− λ)ψ

Σ
(j)(x̃(j))ψ

Σ
(j−1)
∞

(x̃(j−1)
∞ ), ∀j,

(64)

Finally,

E[X
(j) | x̃(j), x̃(j−1)

∞ ] =
p(x̃(j), x̃(j−1)

∞ , Case1) + p(x̃(j), x̃(j−1)
∞ , Case3)

p(x̃(j), x̃(j−1)
∞ )

E[h
(j) | x̃(j) = h(j) + (Σ(j))

1
2V ]

(e)
= φ(x̃(j), x̃(j−1)

∞ )γ(γI +Σ
(j))−1x̃(j), ∀j, (65)

where

φ(x̃(j), x̃(j−1)
∞ ) =

p(x̃(j), x̃(j−1)
∞ , Case1) + p(x̃(j), x̃(j−1)

∞ , Case3)

p(x̃(j), x̃(j−1)
∞ )

, ∀j. (66)
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and (e) is by standard estimation theory.

Similarly, using standard estimation theory, it can be shown that

E[X
(j)(X(j))

H | X̃(j)
= x̃(j), X̃

(j−1)

∞ = x̃(j−1)
∞ ]

=φ(x̃(j), x̃(j−1)
∞ )E[h

(j)(h(j))H | x̃(j) = h(j) + (Σ(j))
1
2V ]

=φ(x̃(j), x̃(j−1)
∞ )

(

γI − γ2(γI +Σ
(j))−1

+ γ2(γI +Σ
(j))−1x̃(j)(x̃(j))H(γI +Σ

(j))−1
)

, ∀j. (67)

Lemma 2 is thus proved.
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