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Abstract

Millimeter-wave (mmWave) communications have been one of the promising technologies for future

wireless networks that integrate a wide range of data-demanding applications. To compensate for the

large channel attenuation in mmWave band and avoid high hardware cost, a lens-based beamspace

massive multiple-input multiple-output (MIMO) system is considered. However, the beam squint effect

in wideband mmWave systems makes channel estimation very challenging, especially when the receiver

is equipped with a limited number of radio-frequency (RF) chains. Furthermore, the real channel data

cannot be obtained before the mmWave system is used in a new environment, which makes it impossible

to train a deep learning (DL)-based channel estimator using real data set beforehand. To solve the

problem, we propose a model-driven unsupervised learning network, named learned denoising-based

generalized expectation consistent (LDGEC) signal recovery network. By utilizing the Stein’s unbiased

risk estimator loss, the LDGEC network can be trained only with limited measurements corresponding

to the pilot symbols, instead of the real channel data. Even if designed for unsupervised learning, the

LDGEC network can be supervisingly trained with the real channel via the denoiser-by-denoiser way.

The numerical results demonstrate that the LDGEC-based channel estimator significantly outperforms

state-of-the-art compressive sensing-based algorithms when the receiver is equipped with a small number

of RF chains and low-resolution ADCs.
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Index Terms
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I. INTRODUCTION

MmWave communications have been considered as a promising technology to support the very

high data rate in future wireless communications since it can provide a tenfold increase in the

bandwidth [1]–[3]. However, as the carrier frequency increases, the mmWave signals suffer from

much more severe attenuation, which becomes a vital issue in mmWave communications. Lever-

aging the large antenna arrays employed at the transmitter and receiver, massive multiple-input

multiple-output (MIMO) can perform directional beamforming to achieve a high beamforming

gain, which helps overcome large pathloss of mmWave signals and guarantees sufficient received

signal-to-noise ratio (SNR). However, the hardware cost and power consumption both increase

with the number of RF chains, which is sometimes unaffordable if a dedicated RF chain is used

for each of a huge number of antennas. To reduce the number of required RF chains, we can resort

to beamspace massive MIMO with a discrete lens array (DLA), which has been first proposed

in [4] and successfully employed in millimeter-wave (mmWave) communications. However, the

number of RF chains is much smaller than that of antennas, and we cannot directly observe

the complete channel in the baseband [5], thus incurring challenges for beamspace channel

estimation.

A. Related Work

For beamspace channel estimation, several works utilize compressive sensing (CS) techniques

[5]–[9] in mmWave band. The training-based scheme in [8] first scans all the beams and retains

only a few strong ones. Then, the least-square (LS) algorithm is employed for estimating the

reduced-dimensional beamspace channel. In [9], a modified version of [8] reduces the overhead

of beam training by simultaneously scanning several beams with the help of power splitters

at the BS. However, the aforementioned algorithms are not optimized for lens-based mmWave

systems because the lens antenna array has energy-focusing capability, and the received signal

matrix from the lens antenna array is characterized by sparsity and concentration. The support

detection based scheme in [6] further reduces the pilot overhead, which directly estimates the

channel support by exploiting the sparsity of the beamspace channel. In [7], the channel matrix
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is regarded as a 2-dimensional (2D) natural image and is then estimated by the cosparse analysis

approximate message passing (SCAMPI) algorithm derived from the image recovery field. The

SCAMPI algorithm models the channel as a sparse generic L-term Gaussian mixture (GM)

probability distribution and uses the expectation-maximization (EM) algorithm to learn the GM

parameters from the current estimated data.

Previous works only address narrowband mmWave systems. For wideband mmWave massive

MIMO systems, the physical propagation delays of electromagnetic waves traveling across the

whole array will become large and comparable to the time-domain sample period. In such a

case, different antenna elements will receive different time-domain symbols, which is known as

the spatial-wideband effect [30] and causes beam squint in the frequency domain. As a result,

the AoAs (AoDs) will become frequency-dependent; thereby, channel estimation becomes very

challenging, especially in mmWave band. The successive support detection (SSD) technique

proposed in [31] applies successive interference cancelation to estimate the channel. The main

idea is that each sparse path component has frequency-dependent support determined by its spatial

direction and is estimated using beamspace windows. However, some important characteristics

of mmWave channels, such as sparsity and channel correlation between adjacent antennas and

subcarriers, are not considered. These characteristics are significant for performance improvement

in channel estimation, but are difficult to be characterized by traditional model-based method.

Recently, deep learning (DL) has been applied to physical layer communications [10]–[12],

[14]–[18], such as channel state information (CSI) feedback [12], signal detection [13], [14],

channel estimation [15]–[17], precoder design [18], traffic analysis [19]–[21], and end-to-end

transceiver design [22], [23]. DL-based physical layer communications may be data-driven and

model-driven [11]. By incorporating domain knowledge into network design, model-driven DL

can reduce the demand for computing resources and training time, which is more attractive for

wireless communications [15]. As a promising model-driven DL approach, deep unfolding has

been first proposed in [24] and applied to sparse signal recovery [25] and image processing

[26]. The main idea is unfolding the iterative algorithm into a deep neural network and adding

learnable parameters, which has been successfully applied to physical layer communications

[11], [15], [27]. For example, the deep unfolding-based channel estimator has been successfully

applied for narrowband beamspace mmWave massive MIMO systems in [15]. It outperforms

state-of-the-art CS-based algorithms and can achieve excellent performance even with a small

number of RF chains. However, the existing DL-based channel estimator utilizes a supervised
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way [15]–[17], thereby a large number of real channel data are required to train the network,

which defeats the point of channel estimation in the first place. This is because we cannot

obtain the true channel data for training the network when the system is equipped in a practical

environment. Therefore, how to train the DL-based channel estimator without the true channel

data is significantly important.

B. Contributions

In this study, we develop a DL-based channel estimator for lens-based mmWave massive

MIMO systems. Instead of considering supervised learning for narrowband beamspace channel

estimation [15], we investigate unsupervised learning for a wideband system and take the beam

squint effect into consideration. To the best of our knowledge, this paper is the first study

applies model-driven unsupervised DL network into wideband mmWave beamspace massive

MIMO systems and considers the beam squint effect. The main contributions are summarized

as follows.

• We first formulate the wideband beamspace channel estimation problem as a compressed

image recovery problem. By incorporating an advanced denoising convolutional neural

network (DnCNN) into the generalized expectation consistent signal recovery (GEC-SR)

algorithm [32], [33], we develop a model-driven DL network, named the learned denoising-

based GEC (LDGEC) network. The LDGEC network uses the Steins unbiased risk estimator

(SURE) as the loss function; thereby, it can be trained only with the received signals not

the real channel data. By utilizing layer-by-layer training, the LDGEC-based estimator can

significantly outperform state-of-the-art CS algorithms even without the real channel data.

• Even if designed for unsupervised learning, the LDGEC network can also be supervisingly

trained with the real channel data, thereby further improve channel estimation performance

with available channel data. In this case, we can train the DnCNN denoiser in the denoiser-

by-denoiser way, where the DnCNN denoiser is trained independently without including

the whole GEC algorithm, thereby reducing the training complexity significantly.

• To further reduce the cost and power consumption, we investigate the LDGEC-based chan-

nel estimator for systems with hardware-friendly low-resolution ADCs. Numerical results

demonstrate that little performance loss is caused for LDGEC-based channel estimator when

the mmWave beamspace system is with low-resolution ADCs and reduced number of RF

chains.
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Fig. 1. The architecture of lens-based wideband beamspace mmWave MIMO-OFDM system.

Notations—For any matrix A, AT and tr(A) denote the transpose and the trace of A,

respectively. In addition, Diag(v) is the diagonal matrix with v on the diagonal, and d(Q) is

the diagonalization operator, which returns a constant vector containing the average diagonal

elements of Q. Furthermore, E{·} represents the expectation operator. A circular complex

Gaussian with mean µ and covariance Ω can be described by the probability density function:

NC(z;µ,Ω) =
1

det(πΩ)
e−(z−µ)HΩ−1(z−µ).

We use Dz to denote the real Gaussian integration measure

Dz = φ(z)dz, φ(z) ,
1√
2π
e−

z2

2 ,

Dzc = e−|z|
2

π
dz to denote the complex Gaussian integration measure, Φ(x) ,

∫ x
−∞Dz to denote

the cumulative Gaussian distribution function.

The remaining part of this paper is organized as follows. Section II formulates the wideband

beamspace channel estimation as a compressed image recovery problem. Next, a model-driven

DL network is provided for beamspace channel estimation using SURE loss in Section III.

Furthermore, the network can also be trained with the real channel data in Section IV. Then,

numerical results are presented in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the lens-based mmWave MIMO-OFDM systems. After intro-

ducing the beam squint effect, we formulate the wideband beamspace channel estimation as a

compressed image recovery problem.
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A. Beamspace channel model

As illustrated in Fig.1, we consider an uplink wideband bemspace mmWave MIMO-OFDM

system, where the BS employs an N -element lens antenna array and NRF RF chains to simul-

taneously serve K single-antenna users. Applying the classical Saleh-Valenzuela channel model

[34], the spatial channel hm ∈ CN×1 at sub-carrier m is given by

hm =

√
N

L

L∑
l=1

αle
−j2πτlfma(φl,m), (1)

for m = 1, 2, . . . ,M where L is the number of resolvable paths, αl and τl are the complex

gain and the time delay of the l-th path, respectively. Furthermore, a(φl,m) is the array response

vector and φl,m is the spatial direction at sub-carrier m defined as

φl,m =
fm
c
d sin θl, (2)

where fm = fc+ fs
m

(m−1− M−1
2

) is the frequency of sub-carrier m with fc and fs representing

the carrier frequency and bandwidth, respectively. Furthermore, c is the speed of light, θl is

the physical direction, and d is the antenna spacing, which is usually designed according to

the carrier frequency as d = c/2fc. Consider a uniform linear lens array in the BS, the array

response vector a(φl,m) is given by,

a(φl,m) =
1√
N

[e−j2πφl,m(−N−1
2

), e−j2πφl,m(−N+1
2

), . . . , (3)

e−j2πφl,m(N−1
2

)]T .

The conventional channel in the spatial domain in (1) can be transformed to the beamspace

domain by employing a carefully designed lens antenna array, as shown in Fig. 1. Specifically,

this lens antenna array plays the role of an N -element spatial discrete Fourier transform (DFT)

matrix F, which contains the array response vectors of N orthogonal directions (beams) covering

the entire space as

F = [a(φ̄1), a(φ̄2), . . . , a(φ̄N)], (4)

where φ̄n = 1
N

(n − N+1
2

) for n = 1, 2, . . . , N are the spatial directions pre-defined by the

lens antenna array. Accordingly, the wideband beamspace channel h̃m at sub-carrier m can be

expressed as

h̃m = FHhm =

√
N

L

L∑
l=1

αle
−j2πτlfm c̃l,m, (5)
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Fig. 2. An illustration of a beam-frequency channel, where L = 3, M = 128, N = 32, fc = 28

GHz, fs = 4 GHz.

where c̃l,m denotes the l-th path component at sub-carrier m in the beamspace, and c̃l,m is

determined by φl,m as

c̃l,m = FHa(φl,m) (6)

= [Ξ(φl,m − φ̄1),Ξ(φl,m − φ̄2), . . . ,Ξ(φl,m − φ̄N)]T ,

where Ξ(x) = sinN2πx
sinπx

is the Dirichlet sinc function.

B. Beam Squint

Before formulating the wideband beamspace channel estimation problem, we introduce the

beam squint effect [30]. Based on the power-focusing capability of Ξ(x), we know that most

of the power of c̃l,m is focused on only small number of elements. Additionally, due to the

limited scattering in the mmWave systems, the number of resolvable paths, L, is generally

small. However, the beam power distribution of the l-th path component will be different at

different sub-carriers, i.e., c̃l,m1 6= c̃l,m2 for m1 6= m2, since φl,m is frequency-dependent in

wideband mmWave systems (i.e., fm 6= fc). This effect is termed as beam squint [30], which is

a key difference between wideband and narrowband systems.

To show the beam squint effect, we present the energy diagram of the beam-frequency channel

matrix in narrowband and wideband systems. We consider a beamspace system with L = 3, M =
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128, N = 32, fc = 28 GHz. Furthermore, we set fs = 4 GHz in a wideband system and fs = 20

MHz in the narrowband system. As illustrated in Fig. 2, the beam power distribution of the l-th

path component is almost similar at different sub-carriers in the narrowband system. Therefore,

the beamspace channel support (the index of non-zero elements) at different frequencies can be

assumed to be the same.

Owing to the beam squint effect, the beam power distribution in wideband systems varies

significantly over frequency. We denote the beam channel vector corresponding to the l-th path

and the m-th frequency as h̃l,m. As shown is in Fig. 2, the index of the strongest element in h̃3,0

(i.e., the yellow bar at the bottom of the Fig. 2) is 24, while the index of the strongest element

in h̃3,256 is 26. Thus, the beamspace channel supports at different frequencies are different.

The characteristic of the beam-frequency matrix will bring a significant challenge for wideband

beamspace channel estimation. Furthermore, the channel correlation between adjacent antennas

and subcarriers is subtle, which is difficult to be characterized by the traditional approaches.

Conversely, DL has the powerful capability to learn the correlation from the data, which is more

promising for wideband channel estimation involved in the beam squint effect.

C. Problem Formulation

In uplink channel estimation, the user devices transmit pilot sequences to the BS, and the chan-

nel is assumed to remain unchanged during this period. We use the orthogonal pilot sequence for

different users. Therefore, the channel estimation can be performed for each user independently.

Considering a specific user, the pilot at sub-carrier m in instant q, sm,q, is transmitted. The

received signal vector ym,q ∈ CN×1 at the BS is given by

ym,q = Wqh̃msm,q + Wqnm,q, (7)

for m = 1, 2, . . . ,M and q = 1, 2, . . . , Q, where nm,q ∼ NC(0, σ2
nI) represents a Gaussian noise

vector. Wq ∈ CNRF×N is the adaptive selection network but fixed for different sub-carriers. We

set sm,q = 1 for convenience as the pilot signal is known at the receiver side. Thus, the received

signal ȳm in Q instants is given by

ȳm = [yTm,1, . . . ,y
T
m,Q]T = W̄h̃m + Wnm, (8)

where W̄ = [WT
1 ,W

T
2 , . . . ,W

T
Q]T ∈ CQNRF×N and neq

m = [nTm,1, . . . ,n
T
n,Q]T . In this paper,

low-cost one-bit phase shifters are utilized in the adaptive selection network Wq. Therefore, the

elements of W̄ are randomly selected from the set 1√
QNRF

{−1,+1} with equal probability.
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From Fig. 2 and Section II-A, the beamspace channel vectors at different subcarriers, even

if different due to beam squint, are correlated through antenna array response vector a(φl,m),

which is highly similar to a 2D natural image. By stacking M beamspace channel vectors into

a matrix, we have the following signal recovery model,

[ȳ1, ȳ2, . . . , ȳM ] = W̄[h̃1, h̃2, . . . , h̃M ] + [neq
1 ,n

eq
2 , . . . ,n

eq
M ]. (9)

If we regard beam-frequency matrix [h̃1, h̃2, . . . , h̃M ] as a 2D natural image, many compressed

image recovery method can be borrowed here for beamspace channel estimation, which enables

us to develop a model-driven-DL-based channel estimation network.

Before introducing the DL-based channel estimation network, we first obtain a linear trans-

formation model by stacking the ym, h̃m and neq
m into

y = Ah + n, (10)

where y = [ȳT1 , ȳ
T
2 , . . . , ȳ

T
M ], h = [h̃T1 , h̃

T
2 , . . . , h̃

T
M ]T , n = [(neq

1 )T , (neq
2 )T , . . . , (neq

M)T ]T , and

A = (I⊗ W̄). We denote ⊗ as the matrix Kronecker product. The linear transformation model

(10) will be utilized in the subsequent discussion.

III. UNSUPERVISED LEARNING FOR BEAMSPACE CHANNEL ESTIMATION

In this section, we propose a model-driven unsupervised DL network for wideband beamspace

channel estimation, named LDGEC-based channel estimator. As in [11], the network is specially

designed by unfolding an iterative algorithm, GEC algorithm, with the DL-based denoiser. After

introducing the network architecture and DnCNN denoiser, we elaborate the SURE loss and

the layer-by-layer training approach, which are critical to implementing LDGEC network with

unsupervised learning.

A. LDGEC-based channel estimator

As illustrated in Fig. 3, the input of the LDGEC network is the received signal vector, ỹ,

and the linear transform matrix, A, while the final output is ĥout, the estimated channel vector.

The LDGEC network consists of T layers connected in cascade. We replace the posterior mean

estimator in the GEC algorithm with the DnCNN denoiser and deep unfold the GEC algorithm

into neural network. Each iteration of the GEC algorithm can be interpreted as each layer of

the LDGEC network. As each layer of LDGEC has the same structure except the learnable

parameters in DnCNN denoiser, we omit the layer index t in Fig. 3 and Algorithm 1.
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Fig. 3. The network structure of LDGEC-based channel estimator.

As illustrated in the figure, each layer of the LDGEC network has three modules. Specifically,

Module A computes the posterior mean and variance of z = Ah, module B performs denoising

from the noisy signal, r1h, by using the advanced DnCNN denoiser, and module C provides the

framework that constrains the estimation problem into the linear space z = Ah. Modules A, B,

and C are executed iteratively, as in the figure. In addition, each module uses the turbo principle

as in iterative decoding; that is, each module passes the extrinsic messages to its next module.

The three modules are executed iteratively until convergence or terminated by fixed number of

layers.

Before introducing the principle of the LDGEC network, we define two auxiliary variables,

Ph = 1 andPz = Ph · tr(AHA)/MNRFQ, (11)

which are interpreted as the powers of hn and zn, respectively. hn and zn denote the n-th element

in h and z, respectively. The Ph and Pz are important for network initialization. The algorithm

for the LDGEC-based channel estimator is listed in Algorithm 1.

To better understand the LDGEC network, we provide detailed explanations. Lines 1–2 com-

pute the posterior mean and variance of zn from quantized measurements ỹn, and the expectation
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Algorithm 1: LDGEC-based channel estimator
Input: Received signals ỹ, linear transform matrix A, likelihood P(ỹ|z)

Output: Recovered signal ĥout.

Initialize: t← 1, r1z ← 0, r2h ← 0, v1z ← Pz1, and v2h ← Ph1.

for t = 1, · · · , T do
Module A:

(1) Compute the posterior mean and covariance of z

1 ẑ1 = E {z|r1z,v1z} ,

2 vpost
1z = Var {z|r1z,v1z} .

(2) Compute the extrinsic information of z

3 v2z = 1�
(
1� vpost

1z − 1� v1z

)
,

4 r2z = v2z �
(
ẑ1 � vpost

1z − r1z � v1z

)
.

Module C:

(3) Compute the mean and covariance of h from the linear space

5 Q2h =
(
Diag(1� v2h) +AHDiag(1� v2z)A

)−1
,

6 ĥ2 = Q2h

(
r2h � v2h +AHr2z � v2z

)
.

(4) Compute the extrinsic information of h

7 v1h = 1� (1� d(Q2h)− 1� v2h) ,

8 r1h = v1h �
(
ĥ2 � d(Q2h)− r2h � v2h

)
.

Module B:

(5) Compute the mean and covariance of h

9 ĥ1 = Dσ̂(r1h,v1h)

10 vpost
1h = 1

MN divDσ̂(r1h)avg(v1h)

(6) Compute the extrinsic information of h

11 v2h = 1�
(
1� vpost

1h − 1� v1h

)
,

12 r2h = v2h �
(
ĥ1 � vpost

1h − r1h � v1h

)
.

Module C:

(7) Compute the mean and covariance of z from the linear space

13 Q2h =
(
Diag(1� v2h) +AHDiag(1� v2z)A

)−1
,

14 ĥ2 = Q2h

(
r2h � v2h +AHr2z � v2z

)
,

15 Q2z = AQ2hA
H ,

16 ẑ2 = Aĥ2.

(8) Compute the extrinsic information of z

17 v1z = 1� (1� d(Q2z)− 1� v2z),

18 r1z = v1z � (ẑ2 � d(Q2z)− r2z � v2z).
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w.r.t. the posterior

PZ(zn|ỹn) =
Pout(ỹn|zn)PZ(zn)∫
Pout(ỹn|zn)PZ(zn)dzn

, (12)

where PZ(zn) is assumed to be NC(zn; r1z,n, v1z,n). To clearly understand Lines 1 and 2 in

Algorithm 1, we take the quantized and unquantized channels as two examples.

Unquantized channel: If with infinite-resolution ADCs, the received signal at the BS, ỹ = y

and the posterior probability Pout(ỹn|zn) is given by

Pout(ỹn|zn) =
1

πσ2
n

e|ỹn−zn|/σ
2
n . (13)

Thus, the explicit expressions of the posterior mean and variance will be

ẑ1 = r1z +
v1z

v1z + σ2
n

(ỹ − r1z), (14)

vpost
1z = v1z −

v2
1z

v1z + σ2
n

, (15)

Quantized channel: If the low-resolution ADCs are used in the BS, the received signal

ỹ = Qc(y), where Qc is the complex-valued quantizer. Then, the explicit expressions of the

posterior mean and variance can be derived similar to [35, Appendix A] as

ẑ1 = r1z +
sign(ỹ)v1z√
2(σ2

n + v1z)

(
φ(η1)− φ(η2)

Φ(η1)− Φ(η2)

)
, (16)

vpost
1z =

v1z

2
− (v1z)

2

2(σ2
n + v1z)

×(
η1φ(η1)− η2φ(η2)

Φ(η1)− Φ(η2)
+

(
φ(η1)− φ(η2)

Φ(η1)− Φ(η2)

)2
)
, (17)

where

η1 =
sign(ỹ)r1z −min{|rlow|, |rup|}√

(σ2
n + v1z)/2

, (18a)

η2 =
sign(ỹ)r1z −max{|rlow|, |rup|}√

(σ2
n + v1z)/2

, (18b)

where rlow and rup are the lower and upper thresholds associated with ỹn, respectively. For

notational convenience, we omit index n and have

rlow =

 ỹ − ∆
2
, for ỹ ≥ −

(
2κ

2
− 1
)
∆,

−∞, otherwise,
(19a)
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and

rup =

 ỹ + ∆
2
, for ỹ ≤

(
2κ

2
− 1
)
∆,

∞, otherwise.
(19b)

In this paper, we mainly focus on a typical uniform midrise quantizer with quantization step

size ∆. It maps a real-valued input into the nearest value in

Rκ ,

{(
−1

2
+ b
)

∆; b = −2κ

2
+ 1, · · · , 2κ

2

}
, (20)

where κ is the quantization bits.

The real and imaginary parts are quantized separately, and each complex-valued channel can

be decoupled into two real-valued channels. Expressions (16) and (17) are the estimators only

for the real part of ẑ1. To facilitate notation, we have abused ỹ and ẑ1 in (16) and (17) to denote

Re(ỹ) and Re(ẑ1), respectively, and we omit index n in the aforementioned expression. The

estimator for the imaginary part Im(ẑ1) can be obtained similarly as (16) and (17) while ỹ and

b should be replaced by Im(ỹ) and b′, respectively.

Lines 3–4 compute the extrinsic information of z using the turbo principle. Lines 5–6 perform

the linear minimum mean-squared error (LMMSE) estimate of h under the following assumption,

r2z = z2 + w2z, (21)

where w2z ∼ NC(0,Diag(v2z)), z2 = Ah2, and h2 ∼ NC(h2; r2h,Diag(v2h)). Lines 7–8

compute the extrinsic information of h and pass it to module B as a prior information. Lines

9–10 estimate the mean, ĥ1, and variance, vpost
1h by considering the true prior P(h), which is

assumed to estimate h from several AWGN observations, that is,

r1h = h + w1h, (22)

where w1h ∼ NC(0,Diag(v1h)). As channel h can be regarded as a 2D natural image, we utilize

the advanced DnCNN denoiser [36] in Lines 9–10 to recover channel h from equivalent noisy

observations r1h. Lines 11–12 compute the extrinsic information of h using the turbo principle,

and lines 13–16 constrain the estimated problem into a linear space z = Ah which performs

the same procedure as Lines 5–6. Lines 17–18 compute the extrinsic information of z and pass

to module A as the prior information.
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Posterior variance vpost
1h is determined by divDσ̂t(r1h)avg(v1h), where the divergence divDσ̂t(r1h)

is simply the sum of the partial derivates with respect to each element of r1h. It can be expressed

by

divDσ̂t(r1h) =
n∑
i=1

∂Dσ̂t(r1h)

∂r1h,i

, (23)

where r1h,i is the i-th element of r1h. Although simple denoisers often yield a closed form for

their divergence, high-performance denoisers are often data-dependent; making it very difficult

to characterize their input-output relationship explicitly for most DL-based denoisers. Therefore,

we calculate a good approximation for the divergence.

We use the following Monte-Carlo approximation to compute divergence divDσ̂t(·). Using an

independent and identically distributed (i.i.d.) random vector b ∼ N (0, I), we can estimate the

divergence with

divDσ̂t=lim
ε→0

Eb

{
bT
(
Dσ̂t(r1h + εb)−Dσ̂t(r1h)

ε

)}
(24)

≈1

ε
bT (Dσ̂t(r1h + εb)−Dσ̂t(r1h)), (25)

where ε = ‖r1h‖∞/1000 is an arbitrary small number. Equation (24) is originated from the

law of large numbers. The expectation can be approximated with Monte Carlo sampling and a

single sample can well approximate the expectation.

To improve robustness, we use an auto-regressive filter to smooth the update of (v1z, r1z) by

vt+1
1z = β · 1�

(
1� d(Qt+1

2z )− 1� vt+1
2z

)
+ (1− β)vt1z, (26)

rt+1
1z = β · vt+1

1z �
(
1� d(Qt+1

2z )− 1� vt+1
2z

)
+ (1− β)rt1z, (27)

where a small β is the damping factor. Furthermore, a small constant threshold ε1 = 5×e−7 should

be set to restrict the minimum variance allowed per iteration and avoid numerical instabilities,

that is, v1z = max(ε1, v1z) and vpost
1h =max(ε1, vpost

1h ).

B. DnCNN denoiser

The denoiser used in the LDGEC network plays a key role in channel estimation. We consider

the state-of-the-art DnCNN denoiser1. The DnCNN is first proposed in [36] to handle the

1Although several new denoisers have been proposed for image denoising problem recently [37], they have similar performance

with DnCNN denoiser.
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Fig. 4. Network architecture of the DnCNN denoiser.

Gaussian denoising problem with an unknown noise level, which is more accurate and faster

than competing techniques. Fig. 4 illustrates the network architecture of the DnCNN denoiser.

It consists of 20 convolutional layers. The first convolutional layer uses 64 different 3 × 3 × 1

filters and is followed by a rectified linear unit (ReLU). Each of the succeeding 18 convolutional

layers uses 64 different 3 × 3 × 64 filters, each followed by batch-normalization and a ReLU.

The final convolutional layer uses one separate 3×3×64 filters to reconstruct the signal. Instead

of learning a mapping directly from a noisy image to a denoised image, learning the residual

noise is beneficial.

We plot three pseudo-color images of noisy channel, residual noise, and estimated channel in

Fig. 4. The network is given the noisy observation h + σ̂w as an input, where w is the AWGN

and noise variance σ̂ is uniformly generated from a specific interval. The network produces

residual noise ẑ, rather than an estimated channel ĥ, as an output. This method, known as

residual learning [38], renders the network to remove the highly structured natural image rather

than the unstructured noise. Consequently, residual learning improves both the training times

and accuracy of a network. Furthermore, the DnCNN adopts the method of batch normalization,

can speed up the training process, and boost the denoising performance [36].

C. Stein’s unbiased risk estimator

Recently, many DL-based channel estimators have been proposed for different communication

scenarios [15]. A common limitation of these works is the extensive real channel data should be

obtained before training the network because the MSE function MSE = E‖ĥ−h‖ involves in the
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real channel data h. These requirements bring significant challenges when the real data cannot

be obtained, e.g., the DL-based channel estimator is equipped in a new channel environment

and only received signal ỹ is obtained at the BS. Furthermore, the existing DL-based channel

estimator utilizes supervised way and requires a large number of real channel data, which defeats

the point of channel estimation. In this circumstance, how to train the network without the real

channel data and only with measurements corresponding to the pilot symbols is significantly

important. To solve the problem, we introduce the SURE loss function [39], which is a classical

approach for learning images from noisy observations and has been extended to linear noisy

measurements. It has been applied in medical imaging, microscopy, and astronomy, where the

ground truth data is rarely available [40]. The SURE loss is an unbiased estimator of

MSE = Ew[
1

P
‖h− f(yw)‖2], (28)

where yw = h+w and f(·) is an estimator of h from yw. Therefore, it can be used for training

a DL-based denoiser to replace the MSE loss.

The goal of channel estimation is to reconstruct a channel h from noisy linear observations

y = Ah + n with the known linear transform matrix A. We are given training measurements

y1, y2, . . . , yD but not the real channel h1, h2, . . . , hD. Without access to h1, h2,. . . , hD, the

ground truth data, we cannot train the DnCNN denoiser by minimizing the traditional MSE loss

function. Fortunately, we can use the SURE loss instead. SURE is a model selection technique

first proposed by its namesake in [39]. It provides an unbiased estimate of the MSE for an

estimator of the mean of a Gaussian distributed random vector with an unknown mean. Let

x denote a vector we would like to estimate from noisy observations r1h = h + w1h where

w1h ∼ NC(0,Diag(w1h)). We assume the DnCNN function fθ() is a weakly differentiable

function parameterized by θ, which receives noisy observations r1h as input and provides an

estimate of h as output. Then, according to [39], [40], we can express the expectation of the

MSE of the real channel h and equivalent noisy observations r1h with respect to the random

variable w1h as follows,

MSE = Ew1h
[
1

P
‖h− fθ(r1h)‖2]. (29)

Then, the MSE loss can be computed as follows,

Ew1h
[
1

P
‖h− fθ(r1h)‖2] = Ew1h

[
1

P
‖r1h − fθ(r1h)‖2]− v2

1h (30)

+
2v2

1h

P
div(fθ(r1h)),
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where P = MN and div(·) stands for divergence defined as (23). Note that two terms within the

SURE loss depend on parameter θ. The first term, Ew1h
[ 1
P
‖r1h − fθ(r1h)‖2], indicates the dif-

ference between estimate fθ(r1h) and observation r1h (bias). The second term, 2v21h
P

div(fθ(r1h)),

penalizes the denoiser for varying as the input is changed. Thus, SURE is a natural way to

control the trade-off between the bias and variance of a recovery algorithm.

The critical challenge for using SURE in practice is to compute divergence div(fθ(r1h)). For

the advanced DnCNN denoiser, the divergence is hard or even impossible to express analytically.

Therefore, we cannot obtain a closed form for the divergence. Similar to (24), we can use a

Montel Carlo method to estimate the divergence div(fθ(r1h)). Combining the SURE loss in

(30) and the estimate of divergence div(fθ(r1h)), we can minimize the MSE loss function

of a denoising problem without ground truth data. Note that minimizing SURE loss requires

propagating gradients with respect to the Monte Carlo estimate of divergence (23). Although the

gradients are challenging to compute by hand, we can resort to TensorFlow’s auto-differentiation

capabilities to propagate it.

D. Layer-by-layer training

A significant reason for the LDGEC-based channel estimator trained with SURE loss is

layer-by-layer training. From (30), the computational process of the SURE loss requires noisy

observations r1h and equivalent noise variance v1h. This method takes advantage of the fact that

each layer of the LDGEC-based channel estimator is to solve a denoising problem with known

variance v1h and noisy observations r1h. As the LDGEC network can decouple the linear model

in (10) into several equivalent AWGN models (22) in each layer and v1h computed in line 7

in Algorithm 1 is accurate enough to describe the variance of w1h. Therefore, we can train the

t-th layer LDGEC network with the SURE loss, estimated variance vt1h and noisy observations

rt1h through layer-by-layer training.

In the t-th round of the layer-by-layer training, the loss function is given by

LtSURE(θt) = arg min
θt

D∑
d=1

[
1

P
‖rt,d1h − fθ(rt,d1h)‖2]− v2

1h (31)

+
2v2

1h

P
div(fθ(rt,d1h)),

where D is the number of mini-batches in the t-th round and rt,d1h is the corresponding noisy

observations for sample hd in the l-th LDGEC network. θt is the required learnable variables in
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TABLE I Complexity of different channel estimators

Estimators LDGEC SSD BEACHES OMP

Complexity O(MN3) O(MNRFQL
2Ω2) O(MNlog(N)) O(NMNRFQLΩ)

the t-th layer. After training the first to t-th layers, a new t+ 1 layer is appended to the LDGEC

network and the entire network is trained again for D mini-batches. Although the objective

function is changed, the values of the variables θ0, . . . , θt−1 of the previous round are taken as

the initial ones in the optimization process for the new round. In summary, the layer-by-layer

training updates variables θt in a sequential manner from the first layer to the last layer.

E. Complexity analysis

The computational complexity required for the LDGEC network in each layer is dominant

by matrix inverse in lines 5 and 13 in Algorithm 1. Generally, the computational complexity of

matrix inverse is O((MN)3), which cannot be acceptable. As the matrix A is a block diagonal

matrix and can be expressed as

A = (I⊗ W̄) =


W̄

. . .

W̄

 . (32)

Therefore, the matrix inverse in lines 5 and 13 in algorithm 1 can be computed by matrix

inverse with respect to matrix W̄. By inversion of the partitioned matrix, the total complex-

ity can be reduced from O((MN)3) to O(MN3). We compare the complexity of LDGEC

network with other CS-based algorithms. As shown in Table I, the computational complex-

ity of LDGEC is O(MN3), while SSD and BEACHES algorithms have the complexity of

O(MNRFQL
2Ω2) and O(MNlog(N)), respectively. Furthermore, the computational complexity

of OMP is O(MNRFQL
2Ω2). Generally, Ω is the beamspace windows and assumed as Ω = 4

when N = 256 [31], and is much smaller than N . Although LDGEC network has higher

computational complexity than CS-based algorithms but can achieve better performance in

simulation results.
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Fig. 5. The LDGEC-based channel estimator with denoiser-by-denoiser training.

IV. SUPERVISED LEARNING FOR BEAMSPACE CHANNEL ESTIMATION

In this section, we investigate the LDGEC-based channel estimator for the mmWave beamspace

MIMO systems with supervised learning. After presenting three training methods for the LDGEC

network, we briefly introduce the denoiser-by-denoiser training.

A. Denoiser-by-denoiser training

The LDGEC-based channel estimator can also be trained with supervised learning. We intro-

duce three supervised training methods for the LDGEC-based channel estimator with supervised

learning as follows,

• End-to-end training: We can train all the weights of the T layer LDGEC network simul-

taneously end-to-end. This is the standard method for training a neural network but with

high training complexity.

• Layer-by-layer training: We can train the LDGEC with layer-by-layer way by utilizing the

MSE loss in (29). The training process is introduced in Section III.

• Denoiser-by-denoiser training: We can decouple the denoisers from the rest of the network

and train the AWGN denoising problems at different noise levels.

The principle of the denoiser-by-denoiser is to train the DnCNN denoiser for the denoising

problem solely instead of including the whole GEC algorithm into network training, thereby

reducing the computational time in the training stage. Note that the DnCNN denoiser in the

LDGEC network is trained for a specific noise level interval. As equivalent noise variance
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σ̂2
t = avg(v1h) is different for each layer in the LDGEC, we need to deploy different DnCNN

denoisers for different layers. To address the issue, we decouple the denoisers from the rest of the

network and train each on an AWGN denoising problem at different noise levels. In particular, we

scale noise level σ̂2 by multiplying 255 as σ̄2 = 255σ̂2 and divide σ̄2 into intervals [0,10), [10,20),

[20,40), [40,60), [60,80), [80,100), [100,150), [150,300), [300,500). For each noise interval, we

generate noise variance σ̄2 uniformly and train a corresponding DnCNN denoiser.

After training the DnCNN denoiser, we deploy the trained DnCNN denoiser into the LDGEC

network to perform channel estimation. As illustrated in Fig. 5, we use a selector to choose the

corresponding DnCNN denoiser according to the equivalent noise variance σ̂t for each layer,

e.g., we use the denoiser for noise standard deviations between 40 and 60, if σ̂2
t ∗ 255 = 55.

B. MMSE optimal performance

In [41], the layer-by-layer and denoiser-by-denoiser training for LDAMP are proven to achieve

MMSE optimal performance under the following three conditions are satisfied,

• The elements of matrix A are i.i.d. Gaussian (or sub-gaussian) with zero mean and standard

deviation 1/M1, where M1 is the number of rows of A.

• The noise, n, is also i.i.d. Gaussian.

• The denoisers, Dσ̂t(·), at each layer are Lipschitz continuous2.

Even if the theoretical results have proved that the denoiser-by-denoiser training is optimal, the

numerical results in [41] show that LDAMP trained with denoiser-by-denoiser performs slightly

worse than the end-to-end and layer-by-layer trained networks due to the discretization of the

noise levels ignored in our theory. This gap can be reduced by using a finer discretization of the

noise levels or by using deeper denoiser networks to handle a range of noise levels. Although

matrix A in system model (10) is a block diagonal matrix, rather than a Gaussian matrix, we try

to use the denoiser-by-denoiser training method for the LDGEC network and show the numerical

results in the following section.

2A denoiser is said to be L-Lipschitz continuous if for every x1 and x2 we have ‖D(x1) −D(x2)‖ ≤ L‖x1 − x2‖22 and

the Lipschitz continuity of the convolutional denoiser can be ensured by using weight clipping and gradient norm penalization

method [43].
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Simulation parameters Value

Number of Paths (L) 3

Number of antennas (N) 32

Number of RF chains (NRF ) 8

Carrier frequency (fc) 28 GHz

Bandwidth (fs) 4 GHz

Number of subcarriers (M) 64, 128

Complex gain (βl) NC(0, 1)

Angle (θl) U(−π/2, π/2)

Maximum Delay (τmax) 20 ns

Delay (τl) U(0, τmax)

TABLE II Simulation parameters

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the performance of the proposed model-

driven DL network for wideband beamspace channel estimation. First, we elaborate on the imple-

mentation details. Then, the performances of the LDGEC-based channel estimator trained with

denoiser-by-denoiser and layer-by-layer are presented. Finally, we investigate the performance

of the LDGEC-based channel estimator with a reduced number of RF chains and low-resolution

ADCs.

A. Implementation details

The simulation parameters are listed in Table II. We use the normalized MSE (NMSE) to

quantify the accuracy of channel estimation for each user, which is defined as

NMSE = E
{
‖ĥout − h‖2

2/‖h‖2
2

}
, (33)

In our simulation, the DL-based channel estimation network is implemented in Tensorflow

by using a PC with GPU NVIDIA GeForce GTX 1080 Ti. The training, validation, and testing

sets contain 19200, 6400, and 12800 samples, respectively, and are obtained from the Saleh-

Valenzuela channel model in (1). The batch size is set to 16, and epoch is equal to 50. We

generate the same adaptive selection network, W, for the channel sample in each batch, which is

generated independently for different batches. The LDGEC network is trained using the stochastic

gradient descent method and the Adam optimizer. The training rate is set to be 0.001 initially
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Fig. 6. Convergence analysis of the LDGEC network.

and then dropped to 0.0001. As existing deep learning APIs are mostly devoted to processing

the real-valued data, we consider equivalent real-valued representation for the system model

in (10). We set damping factor β = 0.8 except addition notes. The code will be available at

https://github.com/hehengtao/LDGEC.

B. Convergence analysis

1) With real channel data: Fig. 6(a) investigates the convergence of the LDGEC network with

denoiser-by-denoiser training. SNR = 0, 10, and 15 dB are considered. From the figure, the

LDGEC network with denoiser-by-denoiser training converges within 6 layers, and more layers

are required when the SNR is increasing.

2) Without real channel data: Fig. 6(b) demonstrates the convergence of the LDGEC-based

channel estimator with layer-by-layer training. Specifically, the LDGEC-MSE means training

the LDGEC network with MSE loss function while LDGEC-SURE indicates training LDGEC

network with SURE loss. From Fig. 6(b), the NMSE performance of LDGEC-SURE is close to

that of LDGEC-MSE when SNR = 10 dB. On the contrary, the performance gap is approximately

2.5 dB when SNR = 0 dB because the estimate of equivalent noise variance v1h and Monte-

Carlo approximation of divergence (24) are not accurate enough in the low-SNR regime, thereby

degrading the channel estimation performance.
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Fig. 7. NMSEs performance comparisons of the LDGEC network with other channel estimation

algorithms.

C. Performance comparison

Fig. 7 compares the performance of the LDGEC network with other channel estimation algo-

rithms. For LDGEC network with denoiser-by-denoiser, we set the number of layers T = 20

for all SNR. For the LDGEC-SURE and LDGEC-MSE, we set the number of layers T = 20

for SNR ≤ 10 dB while T = 40 for SNR > 10 dB, because the LDGEC with layer-by-

layer training needs more layers to converge in higher SNR. M = 64 and 128 are considered

in the simulation. From the figure, the LDGEC-based channel estimator can outperform the

traditional CS-based algorithms with different training methods, such as OMP [5], SSD [31],

BEACHES [42]. Note that the LDGEC with layer-by-layer training can outperform that with

denoiser-by-denoiser training if the MSE is considered as the loss function because we need

to divide equivalent noise variance σ̂2 into several intervals and train one DnCNN denoiser for

each interval in denoiser-by-denoiser training, respectively. Instead of using the coarse intervals,

the layer-by-layer training employs the accurate equivalent noise variance estimate, v1h, in each

layer, thereby improves the denoising performance.

D. Impact of measurement ratio

In Section II, the measurement ratio, defined by δ = QNRF/N and involved in the number

of RF chains, NRF , and pilot length Q, influences the performance of channel estimation and
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Fig. 8. NMSE performance of LDGEC network with different measurement ratios for wideband

beamspace mmWave MIMO systems.

related to the system overhead. Fig. 8(a) illustrates the performance of the LDGEC network

with denoiser-by-denoiser training versus different measurement ratios. Since SSD algorithm

cannot work when δ ≤ 1, we consider δ = 2. From the figure, the performance of the LDGEC

network improves as the measurement ratio increases. Interestingly, the LDGEC algorithm with

δ = 1 outperforms the SSD algorithm with δ = 2. Furthermore, the performance of the LDGEC

network with δ = 1 is close to that with δ = 2, which demonstrates the strong robustness to the

reduced number of RF chains. As the measurement ratio is determined by NRF and Q, we can

decrease the number of RF chains NRF by increasing the number of pilot length Q, which can

reduce hardware cost and power consumption of the system significantly. Fig. 8(b) illustrates the

performance of the LDGEC network with layer-by-layer training versus different measurement

ratios. From the figure, we have similar conclusions to that of LDGEC with denoiser-by-denoiser

training.

E. Low-resolution ADC

The lens-based beamspace mmWave system can decrease the hardware cost by reducing the

number of RF chains. However, a common limitation of the architectures is that the receiver RF

chains include high-resolution ADCs, which are power-hungry devices, especially when large

bandwidth is involved. The power consumption of a typical ADC roughly scales linearly with

the bandwidth and grows exponentially with the quantization bits [44]. Many researchers have
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studied the mmWave massive MIMO systems with low-resolution ADCs [32], [45], [46]. In

this subsection, we investigate the LDGEC-based wideband beamspace channel estimation with

low-resolution ADCs.
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Fig. 9. NMSE performance of LDGEC network for wideband beamspace mmWave MIMO

systems with low-resolution ADC.

To improve the robustness of LDGEC network in quantized systems, we use the damping

method presented in [33] where damping factor β = 0.1t is exponentially decreased. Fig. 9(a)

compares the performance of the LDGEC channel estimator with low-resolution ADCs. From

the figure, the LDGEC channel estimator with two-bit ADCs outperforms the SSD algorithm

with infinite-bit ADCs when SNR < 10 dB. Therefore, the LDGEC channel estimator can

accurately estimate the channel from the quantized signal, thereby reducing the hardware cost

of the systems.

Fig. 9(b) illustrates the performance of the LDGEC network with SURE loss and layer-by-

layer training. From the figure, we have similar conclusions to that of LDGEC with denoiser-

by-denoiser training. Furthermore, the LDGEC-SURE with two-bit ADCs outperforms the SSD

algorithm with infinite-bit ADCs. Therefore, the LDGEC-SURE is a promising approach to per-

form beamspace channel estimation in mmWave systems with low-resolution ADC architecture

even without real channel data.



26

VI. CONCLUSION

We have developed a novel model-driven unsupervised DL network for wideband mmWave

beamspace channel estimation. This network inherits the superiority of iterative signal recovery

algorithms and the advanced DL-based denoiser, and thus presents excellent performance. The

LDGEC network is easy to train and can be applied to a variety of selection networks. Fur-

thermore, By utilizing the SURE loss, the LDGEC network can be trained without real channel

data, enables the system to apply in a new environment. Simulation results demonstrate that the

LDGEC-based channel estimator significantly outperforms state-of-the-art CS-based algorithms

even for the receiver is equipped with a small number of RF chains and low-resolution ADCs.

For future work, it will be interesting to apply the SURE technology to other DL-based wireless

communication applications, such as CSI feedback and hybrid beamforming problems, to achieve

unsupervised learning.
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