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Abstract

In this paper, we develop a density evolution (DE) framework for analyzing the iterative joint decoding (JD) for

non-orthogonal multiple access (NOMA) systems, where the ordered-statistics decoding (OSD) is applied to decode

short block codes. We first investigate the density-transform feature of the soft-output OSD (SOSD), by deriving the

density of the extrinsic log-likelihood ratio (LLR) with known densities of the priori LLR. Then, we represent the

OSD-based JD by bipartite graphs (BGs), and develop the DE framework by characterizing the density-transform

features of nodes over the BG. Numerical examples show that the proposed DE framework accurately tracks the

evolution of LLRs during the iterative decoding, especially at moderate-to-high SNRs. Based on the DE framework,

we further analyze the BER performance of the OSD-based JD, and the convergence points of the two-user and

equal-power systems.

Index Terms
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I. INTRODUCTION

Ultra-reliable and low-latency communications (URLLC) has attracted particular attention in 5G and

the upcoming 6G for mission-critical services [1]–[3]. The key performance requirements of URLLC are

the hundreds-of-microsecond time-to-transmit latency, block error rate (BLER) of 10−5, and the bit-level

granularity of the codeword size and code rate. These ultra-low latency requirements necessitate a high

processing speed in the physic layer [4], and mandate the use of short block-length codes (≤ 150 bits)
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[1]. The mission-critical services in URLLC also raise the challenge of achieving scalable and reliable

connectivity to accommodate massive users and devices with limited channel spectrum resources [5]. Non-

orthogonal multiple access (NOMA) has recently gained increased attention as a promising technique for

achieving superior spectral efficiency [6]–[8], which has been considered as a promising technique for 5G

and beyond. It enables users to transmit signals non-orthogonally in the frequency, time, or code domains.

In the asymptotic large block-length scenario, NOMA can achieve certain corner points of the multiple

access channel (MAC) capacity region using successive interference cancellation (SIC) [9], and can achieve

arbitrary points on the boundary of the MAC capacity region with rate splitting and joint decoding (JD)

techniques [10], [11]. However, in URLLC applications, SIC is inferior due to its sequential nature; the

decoding order will critically affect the transmission latency and reliability of users accommodated. For

instance, the last decoded user will experience the largest latency, while the early decoded users will be

subject to severe multiple-access interference (MAI). Therefore, when providing URLLC services, NOMA

should avoid using SIC and instead, use efficient JD schemes with short block-length codes.

The design of low-complexity JD schemes with near-optimal performance is challenging due to MAI

[12]. For uncoded NOMA systems, the maximum-likelihood (ML) detection of superposed signals is an

NP-hard problem with the complexity of O(|S|nu) [13], where |S| is the cardinality of symbol set, nu is

the number of users, and O(·) is the big-O operand. In coded systems, the ML JD has the complexity

as high as O(|S|nu2k), where k is the information block length of the coding scheme applied. In the

asymptotically large block-length scenario, many JD schemes have been devised for NOMA [9], [13]–

[21]. They typically combines a multi-user detector (MUD) with a-posterior probability (APP) decoder to

perform iterative decoding. The MUD can be configured to use either the parallel interference cancellation

(PIC) [22] or the (linear) minimum mean square error (MMSE) [23] technique [9], [13]–[15], [17], [19]. It

has been proved that this structure with MUD and APP decoder can approach the boundary of the MAC

capacity region in asymptotically large block-length scenarios [14], [19], [24]. In relation to the APP

decoder, low density parity check (LDPC) codes were analyzed and optimized in [9], [20], [21]. Owning

to their bipartite graph (BG) representation, LDPC codes were intelligently constructed to match with

the MUD by using the extrinsic-information-transform (EXIT) chart analysis [9], [25], [26]. Moreover,

moderate-to-long polar codes and successive cancellation list decoding (SCL) were also investigated in

[15], [27] to be concatenated with MUD. Apart from the large block-length scenario, [28] studied the

optimal rate and power allocation for short-packet NOMA. In [29], the short-packet transmission latency

was studied with imperfect channel state information (CSI). Nevertheless, designing an efficient JD for

NOMA in the short block-length regime is rarely attempted.
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Recently, an efficient JD scheme based on ordered-statistics decoding (OSD) was proposed for the short-

block NOMA system towards URLLC applications [30]. This OSD-based JD was designed by considering

the decoding complexity and error-correction capability of short block codes. Specifically, only short codes

that approach the Normal Approximation (NA) bound (Polyanskiy et. al. [31]) were presumed. Generally,

codes approaching NA have large minimum Hamming distances and high-density generator matrices,

e.g., Bose-Chaudhuri-Hocquenghem (BCH) codes [1], [32]; however, their near-ML decoding is always

challenging. As a universal decoder for block codes, OSD [33] has rekindled the interests and been

applied in decoding NA-approaching short codes recently [34]–[37]. For a linear block code C(n, k) with

minimum distance dH, it has been proved that an OSD with the order of m = ddH/4−1e is asymptotically

approaching the ML decoding performance [33]. In OSD, a higher decoding order indicates improved

BLER performance at the expense of increased decoding complexity.

The OSD-based JD [30] iteratively performs PIC and the soft-output OSD (SOSD). PIC conducts

interference cancellation and outputs the estimated log-likelihood ratios (LLR) of symbols per user, which

serves as the priori information fed to SOSD. Then SOSD outputs the extrinsic LLR, which will be the

input of PIC for the next decoding iteration. Two novel techniques, decoding switch (DS) and decoding

combiner (DC), are further used to accelerate the convergence speed [30]. DS controls the engagement

of SOSD; when DS is turned off, the SOSD decoding is skipped. Moreover, DC adaptively combines the

priori LLR and the extrinsic LLR according to a parameter representing the decoding quality. Even simple

DS and DC strategies were shown to significantly reduce the number of iterations required to to reach

convergence [30]. For instance, when SOSD is simply skipped for nu iterations before the engagement,

the OSD-based JD requires a fewer number of decoding iterations than that of SIC [30], indicating a

significant reduction in overall JD complexity.

Despite that the OSD-based JD is efficient for the NOMA system with short block codes, it lacks

appropriate analysis, hindering further optimization. Specifically, if the distribution (i.e., density) of the

LLRs propagated between PIC and SOSD can be characterized, then optimized strategies of DS and

DC can be designed. In addition, if the relationship among the convergence point of JD, the coding

schemes, and the decoding order of OSD can be determined, one can carefully select the optimal decoding

order of OSD per iteration to further reduce the JD complexity. In previous work, many techniques

have been developed for analyzing the iterative receiver for multiple-input-multiple-output (MIMO) and

NOMA systems, including the variance-transform or signal-interference-to-noise-ratio-transform (SINR-

transform) chart [13], [38], [39], and the EXIT-chart analysis [13], [40]; they are, however, insufficient

for analyzing the OSD-based JD. Precisely, these chart-based analytical approaches generally assume
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Gaussian MAI, which is achieved either through applying multiple receiving antennas (MIMO-NOMA)

or by accommodating a large number of users with similar or identical receiving power. As a result, they

fall short of analyzing power-domain NOMA systems with limited numbers of users, for which MAI

normally does not follow a Gaussian distribution. On the other hand, the EXIT-chart analysis can readily

utilize the mutual-information-transform feature well developed for LDPC codes; nevertheless, for other

codes, Monte Carlo method is usually applied.

To provide tools for further optimizing the OSD-based JD for short-block NOMA, we develop an

analytical framework based on density evolution (DE) in this paper, which allows us to track the evolution

of the densities of LLRs propagated in the iterative JD at each iteration. The main contributions of this

work are summarized below.

• We analyze the density-transform feature of SOSD; that is, we derive the distribution of the extrinsic

LLRs output by SOSD with given priori LLRs, by introducing a variant algorithm, Dual-OSD,

to simplify the analysis. Dual-OSD has two phases of decoding process, namely the phase-0 and

phase-1 reprocessing. It is shown that by carefully selecting the parameters in the phase-0 and

phase-1 reprocessing, Dual-OSD can approach the density-transform feature of SOSD or its variants.

Numerical results and simulation results for short extended BCH (eBCH) codes validate the derived

density transform feature.

• Based on the density-transform feature of SOSD, we develop the DE framework for the OSD-based

JD. We propose a numerical approach for determining the density of LLRs output by PIC, when

DS is turned off (SOSD is skipped). On the other hand, when DS is turned on, we develop the DE

technique by examining the density-transform feature of the PIC and the SOSD decoder separately.

Numerical results for two-user and three-user systems verify that the proposed DE can accurately

describe the evolution of the priori and extrinsic LLRs during the JD process.

• We further provide some analytical examples based on the DE framework, including the bit error

rate (BER) and the convergence point of the considered JD. First, it is demonstrated that the DE

framework can be used to theoretically determine the BER performance of JD per iteration and user.

Furthermore, the convergence condition and the converged LLR densities of the two-user system and

the equal-power system are discussed. Numerical results show that the converged LLR densities can

be directly determined by the proposed DE technique. Finally, we outline some future works based

on the proposed analytical framework.

The rest of this paper is organized as follows. Section II describes the preliminaries and reviews the

OSD-based JD. Section III studies the density-transform feature of SOSD. The DE framework is developed
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in Section IV. Section V provides analytical examples regarding BER and convergence conditions. Finally,

Section VI concludes the paper.

Notation: In this paper, we use Pr(·) to denote the probability of an event. A bold letter, e.g., A,

represents a matrix, and a lowercase bold letter, e.g., a, denotes a row vector. We also use [a]vu to denote a

row vector containing element a` for u ≤ ` ≤ v, i.e., [a]vu = [au, . . . , av]. We use a calligraphic uppercase

letter to denote a set, e.g., S, or the density of a random variable, also known as the probability density

function (pdf). For example, V(x) is the density of the random variable V . Furthermore, V(x;Y ) denote

the density of V parameterized by a variable Y , and V(x|Y = y) is the density conditioning on {Y = y}.

In particular, we simply denote the Gaussian density as f(x) = N (µ, σ2)(x) with the mean µ and variance

σ2. Other notations will be specifically stated.

II. PRELIMINARIES

A. System Model

We consider a binary phase shift keying (BPSK) signal transmission in the uplink power-domain NOMA

with nu simultaneous users, where the channel remains constant for the duration of one code block and

changes independently between blocks. Given the block code C(n, k), all users share the identical codebook

represented by the generator matrix G. The information block of user u, b(u) = [b(u)]k1, is encoded to its

codeword, c(u) = [c(u)]n1 , with c(u) = b(u)G, where k and n denote the information block and codeword

lengths, respectively. The codeword c(u) is interleaved by an interleaver Πu, which is randomly selected for

each user. All users simultaneously transmit the modulated symbol to the base station non-orthogonally.

At the base station, the superposed signal r is received with a single antenna, i.e.,

r = hX + w, (1)

where h = [h(1), . . . , h(nu)] is a 1 × nu channel coefficient vector. For the simplicity of analysis, we

consider the additive-white-Gaussian-noise (AWGN) channel in this paper. Specifically, coefficient h(u) ∈

R, 1 ≤ u ≤ nu, and thus (h(u))2 represents the strength of receiving power of user u. One can extend

the results in this paper to fading channels by taking known distributions of complex h into account.

X = [x(1);x(2); . . . ;x(nu)] is a nu × n matrix of modulated symbols, where x(u) is the symbol vector of

c(u), i.e., x(u)
i = 1 − 2c

(u)
i for 1 ≤ i ≤ n. w = [w]n1 is the vector of AWGN variables, where each entry

wi ∼ N (0, σ2) with σ2 being the noise power. At the receiver, we assume that the channel coefficients

are known a priori, and define the multi-user SNR as SNR =
∑nu

u=1
1
σ2 (h(u))2.

B. OSD Algorithm

We briefly introduce the OSD algorithm and its soft-output variant [33]. When decoding, a sequence

of LLR ` = [`]n1 of a transmitted codeword c = [c]n1 is input to OSD, defined as `i , log Pr(ci=1|x̄i)
Pr(ci=0|x̄i)
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conditioning on an observation x̄i of ci. The observation x̄i can be obtained from the channel or fed by

the MUD. Then, OSD outputs the codeword estimate cop of c by decoding `.

At the beginning of the OSD, the bit-wise hard decision vector y = [y]n1 is obtained according to the

following rule: yi = 1 for `i < 0, and yi = 0 for `i ≥ 0. We define the magnitude of LLR `i as the

reliability of yi, denoted by αi, i.e., αi = |`i|, where | · | is the absolute operation.

Then, a permutation π1 is performed to sort the LLR ` and corresponding columns of G in descending

order of reliabilities α, which obtains π1(α) and π1(G). Next, OSD performs Gaussian elimination (GE)

over π1(G) to derive the systematic matrix G̃ = [Ik P̃], where Ik is a k × k identity matrix and P̃ is

the parity sub-matrix. A permutation π2 may be performed during GE to ensure that the first k columns

of G̃ are linearly independent. Finally, vectors y, `, and α are respectively permuted to ỹ = π2(π1(y)),˜̀= π2(π1(`)), and α̃ = π2(π1(α)), corresponding to the columns of G̃. As shown by [33, Eq. (59)], π2

is usually negligible and can be omitted, i.e., taking a = π2(a) for an arbitrary length-n vector a.

After the above permutations, the first k positions of ỹ, denoted by ỹB = [ỹ]k1, are referred to as

the most reliable basis (MRB) [33]. A test error pattern (TEP) e = [e]k1 is added to ỹB to obtain a

codeword estimate by re-encoding, i.e., c̃e = (ỹB ⊕ e) G̃ where c̃e is the codeword estimate with respect

to TEP e. In OSD, a number of TEPs are re-encoded, which is referred to as reprocessing [33]. A general

reprocessing strategy is starting from TEPs with zero Hamming weight, and increasing the weight until

the maximum allowed weight is reached [33]. The maximum Hamming weight is known as the decoding

order of OSD. It is proved that an OSD with order m = ddH/4−1e is asymptotically approaching the ML

decoding performance for a code with the minimum Hamming distance dH [33]. Because of the overhead

of multiplications in each re-encoding, the overall complexity of OSD is dominated by the number of

TEPs.

With BPSK modulation, OSD finds the best ordered codeword estimation c̃op by minimizing the

weighted Hamming distance (WHD) between each estimate c̃e and ỹ, which is defined as [41]

d(c̃e, ỹ) ,
∑

1≤i≤n
c̃e,i 6=ỹi

α̃i. (2)

Finally, the estimate cop of c is output by performing inverse permutations over c̃op, i.e. cop = π−1
1 (π−1

2 (c̃op)).

Throughout this paper, we imply the following relationships ã = π2(π1(a)) and a = π−1
1 (π−1

2 (ã)) for an

arbitrary length-n vector a.

OSD was modified to output soft information in [42], known as SOSD. Given the input LLR sequence

` = [`]n1 , the extrinsic LLR of the i-th input LLR, `i, is derived by SOSD as

δi =

n∑
j=1

`j
(
cj(i :0)− cj(i :1)

)
− `i, (3)
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Fig. 1: The structure of the transmitter and receiver

where c(i :0) = [c(i :0)]n1 and c(i :1) = [c(i :1)]n1 are codeword estimates generated by OSD whose i-th bit

is 0 and 1, respectively, with the lowest WHD to y. It is shown that SOSD [42] with order m = ddH/4e

almost always delivers the same soft outputs as the Max-Log-MAP algorithm [43].

C. NOMA Joint Decoding with SOSD

The signal r given by (1) is decoded by an iterative JD receiver based on SOSD [30], as shown in

Fig. 1. For clarity of notation, we do not differentiate variables before and after interleavers. We note that

inteleavers are effective in reducing the correlation between the signals of different users [9], [19]. The JD

receiver has two major phases in relation to the decoding switch (DS): 1) the DS-off phase and 2) the DS-

on phase. At the beginning of JD, DS is turned off (DS-off phase). PIC finds the LLRs, `(u)(t) = [`(u)(t)]n1 ,

of each user at iteration t. Then, ε(u)(t)← `(u)(t) is directly fedback to PIC, serving as the priori LLRs

for the next iteration. After a few iterations, DS is turned on (DS-on phase). In the DS-on phase, `(u)(t)

is input to the SOSD decoder to output the extrinsic LLRs δ(u)(t). Finally, ε(u)(t)← δ(u)(t) is fedback to

PIC for the next iteration. In each iteration, the SOSD decoding is performed in parallel for all users. The

process of JD is terminated when the maximum iteration tmax is achieved, or when the decoding results

converge.

1) Parallel interference cancellation: PIC [13], [44] is applied to perform MUD in the proposed OSD-

based JD. Taking the procedure for user u as an example, the priori information ε(u)(t − 1) is fed to

PIC at the beginning of iteration t, t > 1. We initialize ε(u)(0) = 0 for the first iteration. For the i-th

transmitted symbol of user u, x(u)
i , PIC estimates its mean and variance, respectively, as [44]

µ
(u)
i (t) = tanh

(
ε
(u)
i (t− 1)

2

)
and υ

(u)
i (t) = 1−

(
µ
(u)
i (t)

)2
. (4)

Next, PIC performs the interference cancellation and estimates the LLR of symbol x(u)
i as [9], [44]

`
(u)
i (t) = 2

1

h(u)

(
ri −

∑
j 6=u h

(j)µ
(j)
i (t)

)
∑
j 6=u

(
h(j)

h(u)

)2
υ
(j)
i (t) +

(
1

h(u)

)2
σ2
. (5)

A decision statistics combiner (DSC) can be implemented with PIC to smooth the convergence behavior

[22], [44]. DSC generally combines `(u)
i (t) of adjacent iterations with a parameter β (0 ≤ β ≤ 1) according
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to tanh(`
(u)
i (t))←β tanh(`

(u)
i (t)) + (1− β) tanh(`

(u)
i (t− 1)).

2) Decoding Switch: DS was proposed in our previous work [30] to determine the engagement of

SOSD in JD iterations. Specifically, when PIC fails to cancel the MAI properly and produces low-quality

LLRs, the DS is set to “off”. When the quality of outputs of PIC improves after a few iterations of the DS-

off phase, the DS is turned “on” and decoding begins. In [30], a “simple DS” strategy was introduced: the

receiver performs nu iterations without decoding, and then turns on DS for subsequent iterations. In other

words, the DS-off phase has nu iterations. It has been shown that this simple strategy can significantly

reduce the number of JD iterations required to achieve convergence.

3) SOSD Decoders: If the original SOSD is employed, the output of decoder, δ(u)(t), is obtained

according to (3). Alternatively, the original SOSD can be replaced by a low-complexity SOSD (LC-SOSD)

devised in [30]. In a nutshell, LC-SOSD determines δ(u)(t) in a reduced space of codewords compared

to the original SOSD, which applies a stopping condition that terminates the decoding process early. It

was validated that LC-SOSD has a very similar mutual information transform property to the original

SOSD with a significantly reduced complexity. We refer interested readers to [30] for details. Moreover,

[30] showed that the input and output of SOSD can be adaptively combined according to a predefined

decoding quality γ to accelerate the convergence, known as decoding combiner (DC). Specifically, at the

output of the decoder, we have tanh(δ
(u)
i (t))←γ tanh(δ

(u)
i (t)) + (1− γ) tanh(`

(u)
i (t)).

4) Outputs of the Joint Decoding: At iteration t, the decoding result of user u, denoted by ĉ(u)(t), is

given by the hard decision over the posterior LLR, i.e., ĉ(u)
i (t) = 0 for δ(u)

i (t)+`
(u)
i (t) ≥ 0, and ĉ(u)

i (t) = 1,

for δ(u)
i (t) + `

(u)
i (t) < 0. The decoding iteration is stopped when ĉ(u)(t) = ĉ(u)(t− 1) holds for all users

u, 1 ≤ u ≤ nu.

Aiming at developing a general analytical framework for the OSD-based JD, we consider the JD without

DSC and DC. Nonetheless, with known parameters β and γ, one can easily characterize the effect of DSC

and DC based on the framework introduced in this paper.

III. DENSITY-TRANSFORM FEATURE OF SOSD

In this section, we characterize the LLR density-transform feature of SOSD. That is, we theoretically

determine the density (i.e., pdf) of δi in (3), when the density of input LLR `i, the decoding order m,

and the codebook C(n, k) are known in priori. The density-transform feature of SOSD will be used to

develop the DE framework for the iterative JD in Section IV.

We assume that C(n, k) is a random code in the analysis of this section for simplicity. Specifically, G is

a randomly constructed binary matrix and the weight spectrum of C(n, k) follows a binomial distribution

B(n, 1
2
). A number of widely used high-density codes, e.g., BCH codes and Primitive Rateless (PR)
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ത𝐆 𝑘−1 ×(𝑛−1)

𝑧
𝐆 → 𝐆′

𝐠1
′

Fig. 2: Obtain Ḡ of Dual-OSD from G.

codes [45], etc., have near binomial weight spectrum [46]. The random code assumption can significantly

simplify the analysis. Henceforth, we regard LLRs (e.g., `i and δi) as random variables without introducing

extra notations. To start, we have the following assumption.

Assumption 1. The inputs of SOSD, denoted by ` = [`]n1 , within the same block are identically and

independently distributed (i.i.d.) variables.

Assumption 1 naturally holds for the single-user transmissions over a memoryless channel. In the case

of the iterative JD, ` is given by the output of PIC, which can also be regarded as i.i.d. variables because

of the deep and random iterleavers applied between PIC and SOSD (also refer to Assumption 3). Similar

assumptions were widely used in the analyses of iterative MIMO receivers [9], [13], turbo decoders [47],

[48] and the concatenated decoding [49]. Under Assumption 1, we introduce a variant of SOSD, namely

Dual-OSD, that enables further analysis of the density-transform feature.

A. Dual-OSD

Based on the input sequence of LLR ` = [`]n1 , Dual-OSD first preprocesses the generator matrix G as

follows. Let gi denote the i-th column of G, 1 ≤ i ≤ n. For a given i, we first swap the column gi and

the first column of G, and the rest of columns of G are permuted in the descending order of reliabilities

α′ = [α1, . . . , αi−1, αi+1, . . . , αn]. We denote the permuted generator matrix as Gi. Then, similar to OSD,

GE is performed over Gi to obtain the systematic generator matrix G′. We denote the column index

permutation between G′ and Gi as π′. Next, we punctured the first column, g′1, of G′ and obtain a matrix

G∗. Finally, we denote the first row of G∗ as a length-(n−1) vector z, and we define a matrix Ḡ obtained

by puncturing z from G∗. We demonstrate the relationship between Ḡ and G in Fig. 2. We note that

although G′, G∗, and Ḡ are constructed relevantly to i, we omit their subscription i.

Since G′ is a systematic matrix, Ḡ is also a systematic matrix and defines a punctured code C(n −

1, k − 1). Let ¯̀ be the sequence of LLRs corresponding to the columns of Ḡ, which is obtained by

ordering `′ = [`1, . . . , `i−1, `i+1, . . . , `n] in the descending order of α′. Also, let ȳ be the hard-decision

vector obtained from ¯̀. Using the terminology of OSD, [ȳ]k−1
1 is the MRB with respect to Dual-OSD,

denoted by ȳB.
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Next, we consider two phases of reprocessing over Ḡ, namely the phase-0 and phase-1 reprocessings.

The phase-0 reprocessing re-encodes TEPs from a given TEP set Ē (0) with cardinality |Ē (0)| = N0, while

the phase-1 reprocessing re-encodes TEPs from set Ē (1) with |Ē (1)| = N1. In both reprocessings, each

length-(k − 1) TEP e is re-encoded to obtain a codeword as c̄e = (ȳB ⊕ e) Ḡ. Codewords generated by

the phase-0 and phase-1 reprocessings are respectively included in sets C̄(0)
i and C̄(1)

i . We assume that

TEPs are sequentially processed in a manner similar to the original OSD (i.e., increasing the Hamming

weight from 0) in both reprocessings; thus, the difference of these two reprocessing is that they re-encodes

different numbers of TEPs. Particularly, we have C̄(0)
i = C̄(1)

i when N0 = N1.

Despite that C̄(0)
i and C̄(1)

i have duplicate elements (unnecessary for practical implementation), Dual-

OSD can be used to conveniently find the density-transform feature of SOSD. Later, we will show that

Dual-OSD with a proper selection of N1 and N0 is equivalent to SOSD (see Proposition 2 and 3).

B. Outputs of Dual-OSD

Let a random variable V0 represent the minimum WHD from ȳ to codeword estimates in C̄(0)
i , and a

random variable V1 represent the minimum WHD from ȳ ⊕ z to codeword estimates in C̄(0)
i . Then, we

have the following Lemma.

Lemma 1. Let a length-n sequence of i.i.d. LLRs be decoded by a Dual-OSD with N0 and N1. Then the

i-th extrinsic LLR δi is given by

δi = V0 − V1. (6)

Proof: We can rewrite the output extrinsic LLR δi of the i-th codeword bit, as

δi = log

(
Pr(`|c(i : 0) = c)

Pr(`|c(i : 1) = c)

)
− `i = log

(∏
cj(i:0)=yj

exp(|`j |)∏
cj(i:1)=yj

exp(|`j |)

)
− `i

=
∑

cj(i:1)6=yj

|`j | −
∑

cj(i:0)6=yj

|`j | − `i =
∑
j 6=i

cj(i:1)6=yj

|`j | −
∑
j 6=i

cj(i:0)6=yj

|`j |.
(7)

Let C(0)
i and C(1)

i denote the sets of codewords C(n, k) whose i-th bit is 0 and 1, respectively. Matrix G′

represents a codebook permuted from C(n, k) by π′. Thus, we can conclude that the 2k−1 codewords in

C̄(0)
i are obtained by puncturing the i-th bit of the 2k−1 codewords in C(0)

i and performing the permutation

π′. In this way, V0 is exactly a random variable representing
∑

j 6=i
cj(i:0)6=yj

|`j|.

Similarly, we can find that 2k−1 codewords in C̄(1)
i are are obtained by puncturing the i-th bit of the

2k−1 codewords in C(1)
i , performing the permutation π′, and XORing the vector z. Specifically, let c̄(i : 1)

denote the codeword from C̄(1)
i which have the minimum WHD to y′⊕z. Then, [1 z⊕ c̄(i : 1)] is exactly
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the codeword c(i : 1) permuted by π′, i.e., [1 z⊕ c̄(i : 1)] = π′(c(i : 1)). Consequently, V1 is exactly a

random variable representing
∑

j 6=i
cj(i:1) 6=yj

|`j|. Therefore, (6) is equivalent to (7).

According to Lemma 1, when N0 = N1 = 2k−1, Dual-OSD can output the ML extrinsic LLR obtained

by exhausting the whole codebook of C(n, k). This is because [0 C̄(0)
i ] and [1 z⊕ C̄(0)

i ] cover all the 2k

codewords in C(n, k). Furthermore, we have the following Proposition.

Proposition 1. For an arbitrary i (1 ≤ i ≤ n), the output of Dual-OSD, δi, follows the same distribution.

Proof. Since G is a linear block code, column g1 can be swapped with an arbitrary column of G,

corresponding to an arbitrary entry of the input LLR [`]n1 , which does not change the distributions of V0

and V1.

From Proposition 1, we can see that although Dual-OSD only outputs the i-th extrinsic LLR for a given

i, it is sufficient for us to characterize the overall density-transform feature of the decoder.

In practice, SOSD employs a predetermined decoding order to limit the number of TEPs (generated

codeword estimates). In other words, SOSD with a decoding order less than k searches the decoding result

within a reduced codebook of C(n, k). Accordingly, we can bound N0 and N1 of Dual-OSD to analyze

the density-transform feature of SOSD, which is summarized in the following Propositions.

Proposition 2. Consider the i-th input LLR `i ∈ [`]n1 to an order-m SOSD (m ≥ 1). If `i is the LLR

of an MRB position, its corresponding extrinsic LLR, δi, is equivalently obtained by a Dual-OSD with

N0 =
∑m

j=0

(
k−1
j

)
and N1 =

∑m
j=1

(
k−1
j−1

)
, i.e., with an order-m phase-0 reprocessing and an order-(m−1)

phase-1 reprocessing.

Proof. Assume that the hard-decision bit yi corresponding to `i is an MRB bit. Then, an order-m SOSD

generates
∑m

j=0

(
k
j

)
codeword estimates. Among them, there are N1 =

∑m
j=1

(
k−1
j−1

)
estimates in total

whose i-th bit is opposite to ỹi, while there are N0 =
∑m

j=0

(
k−1
j

)
estimates in total whose i-th bit is the

same as yi. It is easy to obtain
∑m

j=0

(
k
j

)
= N0 +N1 with the recursive relationship

(
k
j

)
=
(
k−1
j−1

)
+
(
k−1
j

)
.

Furthermore, it can be seen that Ḡ and G̃ share the same MRB because `i is an MRB LLR. Therefore,

the SOSD and Dual-OSD finds the same c(i : 0) and c(i : 1) in (3).

Proposition 3. If `i is not the LLR of an MRB position, its corresponding extrinsic LLR, δi, approximately

follows the distribution of the output of a Dual-OSD with N0 = N1 = d1
2

∑m
j=0

(
k
j

)
e.

Proof. For arbitrary hard-decision bit ỹi, k < i ≤ n outside MRB, it will not be flipped by TEPs in

the reprocessing of SOSD. Under the random code assumption, among the
∑m

j=0

(
k
j

)
estimates generated

by the order-m SOSD, on average 1
2

∑m
j=0

(
k
j

)
of them have the i-th bit same as ỹi, or opposite to ỹi.
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Therefore, the extrinsic LLR δi can be approximated by a Dual-OSD with N0 = N1 = d1
2

∑m
j=0

(
k
j

)
e,

where rounding 1
2

∑m
j=0

(
k
j

)
introduces the approximation.

Remark 1. In Proposition 3, N0 = N1 holds only when C(n, k) has a binomial weight spectrum (under

the random code assumption). When C(n, k) is an arbitrary code with a given generator matrix G, instead

we should have N0 = p
∑m

j=0

(
k
j

)
and N1 = (1− p)

∑m
j=0

(
k
j

)
. Here p is the probability that an arbitrary

parity bit of a codeword is zero, where the codeword is encoded by an information block with a given

Hamming weight related to the TEP. In general, p is determined by the structure of C(n, k), which was

characterized in [50, Lemma 4, Lemma 5].

Lemma 1 and Proposition 2 and 3 indicate that we can analyze Dual-OSD to characterize the density

transform of SOSD or any other variants of SOSD, by properly bounding the value of N0 and N1.

C. Density-Transform Feature

In this subsection, we analyze the density-transform feature of Dual-OSD. For simplicity, we consider

an order-(m0,m1) Dual-OSD in this section, which has an order-m0 phase-0 reprocessing and an order-

m1 phase-1 reprocessing, i.e., N0 =
∑m0

i=0

(
k
i

)
and N1 =

∑m1

i=0

(
k
i

)
. In Section III-D, we will show via

simulations and numerical examples that the order-(m0,m1) Dual-OSD and the order-m SOSD have very

similar output density, when m0 = m1 = m. Nevertheless, a more accurate density-transform feature of

SOSD can be obtained by selecting N0 and N1 exactly according to Proposition 2 and 3 (see Remark 2).

To find the pdf of the extrinsic LLR δi, pdfs of V0 and V1 are required. According to Lemma 1, V0

represents the minimum WHD from ȳ to codewords in C̄(0)
i , which is equivalent to the minimum WHD

within an order-m0 original OSD decoding with the code C(n−1, k−1). Therefore, V0 can be characterized

by utilizing the results of the distributions of the minimum WHD introduced in our previous work [50].

Let V0(`) denote the pdf of V0 resulted from an order-m0 phase-0 reprocessing. Then, according to [50,

Theorem 4], we can approximately derive V0(`) as

V0(`) ≈
m0∑
j=0

p
Ek−1

1
(j)·

(
fe(`)

∫ ∞
`
fm (u,N0 − 1) du+ fm (`,N0 − 1)

∫ ∞
`
fe(u)du

)
+

1−
m0∑
j=0

p
Ek−1

1
(j)

 fm (`,N0) , (8)

where

fm (`, b) =

∫ ∞
−∞

(√
1− ρ σ̄2

)−1
· fφ

(
(`− µ̄2)/σ̄2 +

√
ρz

√
1− ρ

, b

)
φ(z) dz, (9)

fφ(`, b) = b φ(`)

(
1−

∫ `

−∞
φ(u)du

)b−1
. (10)

Furthermore, fe(`) is the pdf of the Gaussian distribution N (µ̄1, σ̄
2
1), which represents the distribution of

the WHD between the transmitted codeword and ȳ, where µ̄1 and σ̄2
1 are respectively given by [50, Eq.
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(123)] and [50, Eq. (124)]. φ(`) is the pdf of standard Gaussian distribution N (0, 1), and pEk−1
1

(j) is given

in [50, Lemma 1], which represents the probability that some TEP with Hamming weight j can eliminate

the errors in MRB. fm (`, b) represents the pdf of V0 when the decoder does not find the transmitted

codeword, in which µ̄2 and σ̄2
2 are respectively given by [50, Eq. (126)] and [50, Eq. (127)]. Finally, ρ

is a correlation coefficient given by [50, Eq. (100)]. We note that (8) is an approximation rather than

an explicit expression, because fe(`) and fm (`, b) regard the WHDs from codewords to ȳ as Gaussian

variables. According to the definition (2) of WHD and Central Limit Theorem, WHDs tend to be Gaussian

variables, when the code length n is not small. We further note that pEk−1
1

(j), fe(`), and fm (`, b) are fully

determined by the pdf of the input LLR `. In other words, (8) is a function of the pdf of the input LLRs.

Remark 2. More generally, when
∑m0−1

i=0

(
k
i

)
< N0 <

∑m0

i=0

(
k
i

)
, i.e., only a part of TEPs with Hamming

weight m0 are re-encoded, V0(`) can be obtained by replacing
∑m0

j=0 pEk−1
1

(j) in (8) by Pe. Here, Pe

is the probability that the errors over MRB is eliminated by one of the re-encoded TEPs {e1, . . . , eN0},

which is derived as Pe =
∑N1

j=1 Pe(ej), where Pe(ej) was given by [50, Eq. (131)].

The random variable V1 should be determined differently from V0. Random variable V1 can be regarded

as the minimum WHD from estimates to the vector ȳ⊕z in an order-m1 OSD decoding of C(n−1, k−1).

Let d̄e = c̄e ⊕ ȳB ⊕ z denote the difference pattern between the codeword c̄e and ȳB ⊕ z. Then, when e

can eliminate the hard-decision errors on ȳB, we have

d̄e =
(
(ȳB ⊕ e)Ḡ

)
⊕ (ȳ ⊕ z) = [e ēP ⊕ zP], (11)

where ēP is the hard-decision error over [ȳ]n−1
k and zP = [z]n−1

k . On the other hand, let us check d̄e when

e cannot eliminate the hard-decision errors over ȳB, and we have

d̄e =
(
(ȳB ⊕ e)Ḡ

)
⊕ ȳ =

(
(ēB ⊕ e)Ḡ

)
⊕ ē⊕ z = [e ēP ⊕ zP ⊕ c̄′P], (12)

where c̄′P is the parity part of a codeword c̄′ = (ēB⊕ e)Ḡ from C(n− 1, k− 1). Moreover, c̄′P is also the

parity part of a codeword [0 (ēB⊕e)Ḡ] from C(n, k). Furthermore, it can be seen from Fig. 2 that [1 z]

is a codeword from C(n, k), and thus zP ⊕ c̄′P is the parity part of a codeword [1 (ēB ⊕ e)Ḡ⊕ z] from

C(n, k). Comparing (11) and (12), the difference pattern d̄e follows the same distribution (in terms of the

distribution of nonzero elements) regardless of whether the TEP e can eliminate errors over MRB. This

indicates that V1 is given by the minimum variable among N1 identical but dependent random variables

representing WHDs, which can be characterized by the dependent ordered statistics [51]. Therefore, by

leveraging and modifying [50, Theorem 4], we can obtain the pdf of V1 as

V1(`) ≈ fm (`,N1) , (13)
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Fig. 3: The value of nc = |(c̄(i : 0)⊕ ȳ) ∧ (c̄(i : 1)⊕ ȳ ⊕ z)| in decoding various codes

where fm (`, b) is given by (9). We omit the detailed derivation of (8) and (13) due to space limits and

refer interested readers to [50].

Next, according to Lemma 1, the pdf of δi can be characterized by pdfs of V0 and V1. We shall, however,

exercise caution with the correlation between V0 and V1. Precisely, we assume that the codeword c̄(i : 0)

has the minimum WHD V0 to ȳ, and the codeword c̄(i : 1) has the minimum WHD V1 to ȳ ⊕ z,

respectively, found by the Dual-OSD. Then, c̄(i : 0) ⊕ ȳ and c̄(i : 1) ⊕ ȳ ⊕ z may share the common

non-zero bits, which introduce the correlation between V0 and V1. Nevertheless, from the simulation, we

can find that the impact of this correlation is marginal. Let nc denote the number of common nonzero-bits

of c̄(i : 0)⊕ ȳ and c̄(i : 1)⊕ ȳ⊕ z, i.e., nc = |(c̄(i : 0)⊕ ȳ)∧ (c̄(i : 1)⊕ ȳ⊕ z)|, where ∧ is the bit-wise

AND operator. The average values of nc in decoding various eBCH codes are depicted in Fig. 3. It shows

that values of nc are nearly negligible compared to code lengths at moderate-to-high SNRs, indicating

that V0 and V1 only have a very small correlation. Therefore, we have the following assumption for the

simplicity of analysis.

Assumption 2. V0 and V1 are independent random variables.

Under Assumption 2, the pdf of δi is summarized in the following Theorem.

Theorem 1. Let Di(`) denote the pdf of the extrinsic LLR δi output by an order-(m0,m1) Dual-OSD.

Then Di(δ) is given by

Di(`) =
(
V0 ⊗ V

(−)
1

)
(`), (14)

where f ⊗ g is the convolution of f(`) and g(`), i.e., (f ⊗ g)(`) =
∫∞
−∞ f(τ)g(`− τ)dτ , and V(−)

1 is the

symmetric function of V1, i.e., V(−)
1 (`) = V1(−`). V0(`) and V1(`) are respectively given by (8) and (13),

which are determined by the pdf, Lj(`), of input LLRs `j , 1 ≤ j ≤ n and j 6= i.

Proof: Theorem 1 is directly proved from Lemma 1 under Assumption 2.

We refer Di(`) and Li(`) to as the extrinsic density and priori density of the i-th position, respectively.

Then, the pdf of the posterior LLR, i.e., the posterior density, is summarized in the following Corollary.
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Corollary 1. Let Pi(`) denote the pdf of the i-th posterior LLR, i.e., δi + `i, output by an order-(m0,m1)

Dual-OSD. Then Pi(`) is given by

Pi(`) =
(
Li ⊗ V0 ⊗ V

(−)
1

)
(`). (15)

Proof: Eq. (15) is directly obtained by observing from (7) that `i is independent with V0 and V1.

To reduce the correlation between the input and the output of the decoder, the extrinsic LLR rather

than the posterior LLR, is usually used in iterative decoders [30], [48]. Since the input LLRs [`]n1 and the

output LLRs [δ]n1 are respectively identically distributed, we omit the subscripts i and j of Di and Lj ,

and simply represent (14) as

D(`) = ∆(L(`)), (16)

where ∆(·) is referred to as the density-transform feature of SOSD.

D. Numerical Examples

In this subsection, we demonstrate the extrinsic densities with various priori densities given. We assume

the all-zero transmission, i.e., the transmitted codeword c is an all-zero codeword and it is transmitted

with all positive BPSK symbols. This assumption will not lost generality, when each codeword in the

codebook is equally likely to be transmitted over a symmetric channel. Under the all-zero transmission,

we denote the pdf of `i as L̇i(`) = Li(`|ci = 0), which is referred to as the single-side priori density.

Accordingly, we denote the single-side density of δi as Ḋi(`) = Di(`|ci = 0). By omitting the subscript,

we directly have the following relationships.

L(`) =
1

2
L̇(`) +

1

2
L̇(−`), and D(`) =

1

2
Ḋ(`) +

1

2
Ḋ(−`). (17)

Example 1. We consider the single-user all-zero transmission over an AWGN channel, where the SNR

is defined as SNR = 1
σ2 . Thus, the input LLRs follow the distribution N ( 2

σ2 .
4
σ2 ). The (64, 30, 14) eBCH

code is decoded by an order-3 SOSD. We depict and compare Ḋ(`) and L̇(`) at various SNRs in Fig. 4a,

where the numerical results for Ḋ(`) is obtained from (14) with m1 = m0 = 3.

As shown, although the simulation results of Ḋ(`) are obtained by performing the order-3 SOSD, it

is still well approximated by (14) with m1 = m0 = 3. Nevertheless, as discussed in Remark 2, more

accurate results can be obtained by selecting N1 and N0 more carefully. We further note that there is a

gap between (14) and the simulation results at SNR = 0 dB because of the relatively high correlation

between V0 and V1 at low SNRs.

Example 2. We consider the input LLR with the density of L̇ ∼ 0.5N (1, 0.631) + 0.5N (3, 1.262), where

the (64, 30, 14) eBCH code is decoded by an order-3 SOSD. We depict and compare Ḋ(`), L̇(`), and
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Fig. 4: The extrinsic density with various priori densities. Simulation results are shown by using dashed lines.

Ṗ(`) = P(`|ci = 0) in Fig. 4b. The density of the input LLR analogizes the input signal suffering from

the interference from another user in the multi-user transmission. As demonstrated, while the input LLR

does not follow a Gaussian distribution, the extrinsic and posterior LLRs approximately do.

IV. DENSITY EVOLUTION FRAMEWORK

Richardson et al. [47] first proposed the DE method as a tool for performing asymptotic analysis on

LDPC codes. To be more precise, when codeword lengths approach infinity, the BG of LDPC codes

tends to be cycle-free. After that, during the message-passing decoding, the messages propagated between

check nodes and variable nodes are independent between nodes and iterations, and their densities can be

theoretically determined. Using DE, the decoder and the code design of LDPC codes have been thoroughly

studied [47], [52], [53]. In this section, we develop the DE framework for the iterative OSD-based JD.

A. Bipartite Graph Representation

We first assume that for one specific user u, the outputs of PIC , i.e., `(u)(t) = [`(u)(t)]n1 , are i.i.d.

variables in a single transmitted block, which is summarized in the following assumption.

Assumption 3. In a single transmitted block, elements of the output of PIC for user u, i.e., [`(u)(t)]n1 , are

i.i.d. variables.

In the DS-off phase, Assumption 3 naturally holds because w = [w]n1 are i.i.d. AWGN variables,

h is fixed in one transmitted block, and (4) and (5) are identical for each bit position i. In the DS-

on phase, Assumption 3 also holds because of Proposition 1, i.e., the output of SOSD follows the

identical distribution, which is fedback to PIC. Furthermore, the independence between elements [`(u)(t)]n1

is guaranteed by deep interleavers between SOSD and PIC. Under Assumption 3, once again, Assumption

1 is also validated to be true.
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Fig. 5: The BG representation of the iterative JD.

We denote the i-th received superposed symbol in one received block as ri, 1 ≤ 1 ≤ n. Under

Assumption 3, we next omit the subscript i and simply denote ri as

r = hx + w, (18)

where x = [x(1), x(2), . . . , x(Nu)]> is the symbols transmitted by all users in the time slot with respect to

r, and w is the AWGN variable. Accordingly, we omit i in (5) and rewrite it as

`(u)(t) = 2h(u)
r −

∑
j 6=u h

(j)µ(j)(t)∑
j 6=u(h(j))2(1− (µ(j)(t))2) + σ2

, (19)

where

µ(j)(t) = tanh

(
1

2
ε(j)(t− 1)

)
. (20)

Based on (19) and (20), we represent the process of DS-off phase by a BG depicted in Fig. 5a. Over

the BG, the DS-off phase is summarized by the following two steps.

• Step 1: (At iteration t) Cancellation node CN(u) computes `(u)(t) by (19). ε(u)(t)← `(u)(t) is passed

to its neighbour estimation node EN(j) with j = u.

• Step 2: Estimation node EN(j) computes µ(j)(t) by (20), which is passed to its neighbour CNs, i.e.,

CN(u) with u 6= j.

On the other hand, the BG of the DS-on phase is shown in Fig. 5b. The SOSD decoder of user u,

represented by the decoding node DN(u), further processes the outputs of CN(u) before passing it to EN(u).

As shown in Proposition 1, we regard that SOSD outputs n variables [δ(u)(t)]n1 following the identical

distribution. Thus, we omit the subscript of [δ(u)(t)]n1 and let δ(u)(t) denote the output of DN(u). Then,

the DS-on process over BG can be summarized by the following three steps.

• Step 1: (At iteration t) CN(u) computes `(u)(t) by (19), which is passed to its decoding node DN(u).

• Step 2: DN(u) obtains δ(u)(t) from `(u)(t) by SOSD. ε(u)(t)← δ(u)(t) is passed to EN(j) with j = u.

• Step 3: EN(j) computes µ(j)(t) by (20), which is passed to its neighbour CNs, i.e., CN(u) with u 6= j.

We are particularly interested in the density of `(u)(t) and δ(u)(t), i.e., the priori and extrinsic density.
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B. Density Evolution of the DS-off Phase

When DS is off, the densities of `(u)(t) cannot be characterized by individually examining the density-

transform features of cancellation nodes and estimation nodes, due to the correlation. Specifically, `(u)(t)

and `(j)(t) can be correlated for u 6= j with t > 1, and `(u)(t1) and `(u)(t2) are also correlated for t1 6= t2.

By this regard, we introduce a numerical approach determining the density of `(u)(t). We first rewrite

(19) as

`(u)(t) = 2
φ(u) (x,µ(t)) + w

ψ(u) (x,µ(t))
, (21)

where µ(t) = [µ(1)(t), µ(2)(t), . . . , µ(nu)(t)]. Also, φ(u) (x,µ(t)) and ψ(u) (x,µ(t)) are respectively given

by

φ(u) (x,µ(t)) = h(u)x(u) −
∑
j 6=u

h(j)

h(u)

(
x(j) − µ(j)(t)

)
(22)

and

ψ(u) (x,µ(t)) =
∑
j 6=u

(h(j))2

h(u)

(
1−

(
µ(j)(t)

)2)
+

σ2

h(u)
. (23)

Then, we have the following recursive relationship regarding µ(t)

µ(t) = tanh

(
φ(u) (x,µ(t− 1)) + w

ψ(u) (x,µ(t− 1))

)
, (24)

which implies that µ(t) is a deterministic function of w when x is given. Thus, `(u)(t) is also a deterministic

function of w. Therefore, we represent `(u)(t) as a function Λ
(u)
t (w;x) of w parameterized by x, i.e.,

`(u)(t) = Λ
(u)
t (w; x) (25)

where Λ
(u)
t (w;x) is recursively obtained by

Λ
(u)
t (w; x) = 2

φ(u)
(
x, tanh

(
1
2Λ

(u)
t−1(w; x)

))
+ w

ψ(u)
(
x, tanh

(
1
2Λ

(u)
t−1(w; x)

)) , (26)

with Λ
(u)
1 (w;x) = 2φ

(u)(x,0)+w

ψ(u)(x,0)
.

We denote the pdf of w as fW (w), which follows N (0, σ2). Then, the density of `(u)(t) parameterized

by x, denoted by L(u)
t (`;x), is determined as

L(u)t (`; x) =
∑
j

∣∣∣∣∣ ∂wj

∂Λ
(u)
t (wj ; x)

∣∣∣∣∣ · fW (wj), (27)

where wj is the j-th real solution of Λ
(u)
t (w;x) = ` (considering that Λ

(u)
t (w;x) may not be monotonic).

Finally, the single-side density of `(u)(t) is obtained by deparameterizing x, i.e.,

L(u)t (`;x(u)) =
1

|S|(nu−1)
∑

x\x(u)∈{S}nu−1

L(u)t (`; x). (28)

where S = {−1, 1} is the set of constellations of symbols transmitted, and |S| is its cardinality. We

take L̇(u)
t (`) = L(u)

t (`|x(u) = 1) and the full density of `(u)(t) is directly given by L(u)
t (`) = 1

2
L̇(u)
t (`) +

1
2
L̇(u)
t (−`).
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Fig. 6: Demonstration of the density L̇(u)t at different iteration t.

Example 3. Consider a two-user NOMA system with h(1) = 1.225, h(2) = 0.707, and the multi-user SNR

is 10 dB, i.e., σ2 = 0.2. We depict the single-side density L̇(u)
t (`) at different iterations of the DS-off phase

in Fig. 6. As shown, (28) precisely describes the density of LLR `(u)(t) in the DS-off phase. When t = 1,

the density L̇(u)
1 , u = 1, 2, follows a mixture of Gaussian densities due to the inter-user interference. As the

number of iteration increases, the quality of LLR `(u)(t) is improved, showing a lower BER (represented

by the proportion of negative values of LLR). Thus, the DS-off phase can be performed before the DS-on

phase to improve the quality of the decoder input. We note that the density L̇u1 is no more Gaussian for

t > 1 because of the correlations regarding `(u)(t).

C. Density Evolution of the DS-on Phase

When DS is on and the BG in Fig. 5b is considered, the correlation of `(u)(t) can be removed by

the decoding nodes and interleavers between PIC and SOSD, which is summarized in the following

assumption.

Assumption 4. In the DS-on phase, `(u)(t) is independent between different users u and iterations t.

Similar assumptions were widely used in the analyses of iterative receivers [9], [13], [38], [54] and

the iterative turbo decoding [48], [49]. In the considered JD receiver, Assumption 4 holds because the

extrinsic density D(`) output by SOSD is independent to its corresponding priori density L(`). In other

words, SOSD blocks the propagation of correlations between random variables. Under Assumption 4, the

density-transform feature of cancellation nodes and estimation nodes can be individually characterized.

1) Cancellation Nodes: Recall (21) and we obtain that

`(u)(t) ∼ N

(
2φ(u) (x,µ(t))

ψ(u) (x,µ(t))
,

(
2σ

ψ(u) (x,µ(t))

)2
)
, (29)

which indicate that `(u)(t) follows a Gaussian distribution parameterized by x and µ(t). We denote the

Gaussian density of (29) as L(u)(`;x,µ(t)), parameterized by x and µ(t)). Thus, µ(t) uniquely determines



20

L(u)(`;x,µ(t)) at different iteration t.

Assume that the density of µ(u)(t) is known as J (u)
t (µ;x(u)) parameterized by x(u). Thus, we can obtain

L(u)
t (`;x) by deparameterizing µ(t) from L(u)(`;x,µ(t)) as follows.

L(u)t (`; x) =

∫ 1

−1
· · ·
∫ 1

−1︸ ︷︷ ︸
nu

L(u) (`; x,µ)

 nu∏
j=1

J (j)
t (µj ;x

(j))

 nu∏
j=1

dµj , (30)

where µ = [µ1, . . . , µnu ]. Finally, deparameterizing x, we obtain

L(u)t

(
`;x(u)

)
=

1

|S|(nu−1)
∑

x\x(u)∈{S}nu−1

∫ 1

−1
· · ·
∫ 1

−1︸ ︷︷ ︸
nu

L(u) (`; x,µ)

 nu∏
j=1

J (j)
t (µj ;xj)

 nu∏
j=1

dµj . (31)

Let J t(µ;x) =
[
J (1)
t

(
µ;x(1)

)
, . . . ,J (nu)

t

(
µ;x(nu)

)]
, and we simply denote (31) as

L(u)t

(
`;x(u)

)
= Γu (J t(µ; x)) , (32)

where Γu(·) is referred to as the density-transform feature of the cancellation node CNu.

2) Decoding Nodes: The LLR `(u)(t) is passed to the decoding node DNu to produce δ(u)(t). Let

D(u)
t (`) denote the density of δ(u)(t), and then D(u)

t (`) can be determined by taking L(`) = L(u)
t (`) in

(16), i.e.,

D(u)
t

(
`;x(u)

)
= ∆

(
L(u)t

(
`;x(u)

))
, (33)

where ∆(·) is the density-transform feature of the decoding nodes.

3) Estimation Nodes: When estimation node ENj receives the message output by DNj , e.g., δ(j)(t), it

computes µ(j)(t+ 1) = tanh
(

1
2
δ(j)(t)

)
. Thus, we directly obtain that

J (j)
t+1

(
µ;x(u)

)
=2 cosh

(
2 tanh−1(µ)

)
· D(j)

t

(
2 tanh−1(µ);x(j)

)
= Θ

(
D(j)
t

(
µ;x(j)

))
, (34)

where Θ(·) is referred to as the density-transform feature of the estimation nodes.

We note that Θ(·) and ∆(·) are respectively identical for each estimation node and each decoding node,

while Γu are specified for cancellation node CNu.

4) Density Evolution: For CNu, 1 ≤ u ≤ nu, we simply denote

Lt (`; x) = Γ (J t(µ; x)) = [Γ1 (J t(µ; x)) ,Γ2 (J t(µ; x)) , . . . ,Γnu (J t(µ; x))] , (35)

where Lt (`;x) = [L(1)
t (`;x(u)), . . . ,L(nu)

t (`;x(nu))]. Combining (32), (33), and (34), we have the following

recursive relationship.

Lt (`; x) = Γ (Θ (∆ (Lt−1 (`; x)))) . (36)

Let (f ◦ g) (·) denote the function composition f(g(·)), and f t(·) = (f ◦ f t−1)(·) for an integer t > 1.

Thus, we have

Lt (`; x) = (Γ ◦Θ ◦∆)t (L0(`; x)) and Lt (`; x) = (Γ ◦Θ ◦∆)t−t1 (Lt1(`; x)) , (37)
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for integers t and t1 with t > t1 > 0, where L0(`;x) is an initialized density. For the u-th entry,

L(u)
t

(
`;x(u)

)
, of Lt (`;x), we take the single-side density L̇(u)

t (`) = L(u)
t

(
`|x(u) = 1

)
.

D. Density Evolution of the iterative JD

As discussed in Section II, the iterative OSD-based JD is composed of the DS-off and DS-on phases.

In the DS-off phase, the density Lt(`) can be numerically computed by (27), whilst in the DS-on phase,

Lt(`) is determined by (37). Let us consider the iterative JD which has toff iterations for the DS-off phase,

and DS is turned on at iteration toff + 1. In this case, each entry of Lt (`;x) is computed according to

(27) for t ≤ toff + 1. Then, for t > toff + 1, Lt (`;x) is obtained as

Lt (`; x) = (Γ ◦Θ ◦∆)t−toff−1 (Ltoff+1(`; x)
)
. (38)

Next, we give numerical examples of DE of the iterative JD

Example 4. Consider a two-user NOMA transmission with h(1) = 1.225, h(2) = 0.707 and multi-user SNR

= 8 dB, i.e., σ2 = 0.317. The (64, 30, 14) eBCH code is employed and the order-3 SOSD is applied in the

DS-on phase. We perform toff = 2 iterations in the DS-off phase and then turn on DS at the third iteration.

In Fig. 7, we depict densities L̇(u)
t (`) and Ḋ(u)

t (`) for user u = 1 and u = 2 at different iterations. We

demonstrate only the DS-on phase (t ≥ 3) for the sake of clarity.

As shown, the user u = 1, with a higher receiving power, converges at iteration t = 5 in terms of the

density of LLR. Upon the convergence, the extrinsic LLR, δ(1)(5), has the mean value E[δ(1)(5)] = 76. On

the other hand, the user u = 2 rapidly converges at iteration t = 4 with E[δ(2)(4)] = 13. Furthermore,

despite that `(u)(t) follows a non-Gaussian distribution at the beginning of the DS-on phase (as shown

by L̇(1)
3 and L̇(2)

3 in Fig. 7), we can observe that both `(u)(t) and δ(u)(t) tend to be Gaussian after a few

iterations in the DS-on phase. This observation is consistent with the EXIT-analysis of iterative and turbo

decoders for concatenated codes [48], [49], i.e., after a few decoding iterations, the extrinsic information

passed between decoders tends to be Gaussian.

Example 5. Consider a three-user NOMA transmission with h(1) = 1.4411, h(2) = 0.8320, h(3) = 0.4804

and multi-user SNR = 12 dB, i.e., σ2 = 0.1893. Specifically, the (64, 30, 14) eBCH code and the order-3

SOSD are applied, and the DS-off phase has toff = 2 iterations. In Fig. 8, we demonstrate the density Ḋ(u)
t

of different users in the DS-on phase (t ≥ 3). We note that densities Ḋ(3)
3 and Ḋ(3)

4 obtained by DE slightly

deviates from the simulation, because (14) overlooks the correlation between V0 and V1. However, the

correlation between V0 and V1 may not be negligible for user u = 3, who is subjected to the high-power

interference (recall the trend shown in Fig. 3). We also notice that the deviation of Ḋ(3)
3 and Ḋ(3)

4 lead
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4 , Sim. Ḋ(1)
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Fig. 8: The density Ḋ(u)
t of different users in the three-user system.

to the deviation of Ḋ(2)
4 and Ḋ(2)

6 of user u = 2 in the subsequent iterations; nevertheless, DE of user

u = 1 is consistent with the simulation results, because user u = 1 is is less susceptible to interference

from user u = 3.

V. ANALYTICAL EXAMPLES BASED ON THE DENSITY EVOLUTION FRAMEWORK

Using the DE framework introduced in Section IV, one can analyze the BER, convergence behavior,

etc., of the OSD-based JD, and accordingly conduct further optimizations. In this section, we will discuss

some preliminary analytical examples and outline future works based on the DE framework due to the

space limit.

A. Bit Error Rate

Let P
(u)
b (t) denote the BER of the u-th user at iteration t. In the DS-off phase, P

(u)
b (t) is given by

P
(u)
b (t) =

∫ 0

−∞
L̇(u)t (`)d`, (39)

where L̇(u)
t (`) is given by (28). On the other hand, in the DS-on phase, P

(u)
b (t) can be determined as

P
(u)
b (t) =

∫ 0

−∞

(
L̇(u)t ⊗ Ḋ(u)

t

)
(`)d` =

∫ 0

−∞

(
L̇(u)t ⊗∆

(
L̇(u)t

))
(`)d`, (40)
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Fig. 9: The BER performance of the two-user system with h(1) = 1.225, h(2) = 0.707.

where L̇(u)
t is obtained by the DE framework, i.e., (37). We note that (39) and (40) are valid under the

all-zero transmission assumption over symmetric channels without losing generality, which was widely

considered in DE techniques [47].

We compare the BER obtained from simulation and DE for the two-user system described in Example

4. In Fig. 9a, we illustrate BER at different SNRs, when the iteration number is set to t = 2 and t = 5.

Specifically, when t = 2 (t ≤ toff), the BER from DE is obtained by (39), while when t = 5, it is obtained

by (40). As shown, the proposed DE framework can accurately estimate the BER performance of the

iterative JD, particularly at moderate-to-high SNRs. In Fig. 9b, we depict the BER at different iterations

when SNR is 8 dB. It is seen that the BER decreases as the number of iterations increases. It is worth

noting that there is a significant gain in the BER performance after DS is turned on, i.e., after the JD

switches from the DS-off phase to the DS-on phase.

B. Conditions of Convergence

In regard to the condition of convergence, we have the following proposition.

Proposition 4. The decoding results of the JD receiver converge at iteration t∗ in the DS-on phase, when

the following condition is satisfied.

Lt∗(`; x) = (Γ ◦Θ ◦∆) (Lt∗(`; x)) , (41)

or equivalently,

L̇t∗(`) = (Γ ◦Θ ◦∆)
(
L̇t∗(`)

)
. (42)

Proof: Proposition 4 is directly obtained from (37).

Eq. (42) contains nu specific conditions for nu users, i.e., L̇(u)
t∗ (`) = (Γu ◦Θ ◦∆)

(
L̇t∗(`)

)
for 1 ≤

u ≤ nu. According to (31), Γu involves multiple-integral operations, which complicates further analyses.

However, we can simplify (42) by taking the following assumption.
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Fig. 10: Gaussian approximation of the converged density L̇(u)t∗ .

Assumption 5. L̇(u)
t∗ is a Gaussian density, when the JD is converged for user u. Also, its mean and

variance, respectively, denoted by E[L̇(u)
t∗ ] and V[L̇(u)

t∗ ], satisfy 2E[L̇(u)
t∗ ] = V[L̇(u)

t∗ ].

Assumption 5 is obtained from [49, Eq. (8)], which is a common assumption for the EXIT-chart analysis.

It has been argued in [49] that if an L-value (i.e., LLR) follows a Gaussian distribution, then its mean

and variance, denoted by µ and σ2, satisfies 2µ = σ2. This is valid for a symmetric Gaussian distribution.

Also, the priori information input to the decoder tends to be Gaussian as the number of iterations increases

in the iterative decoding of concatenated codes [49]. In the proposed JD receiver, we take Assumption

5 because L̇(u)
t∗ is the priori LLR input to the SOSD decoder. To validate Assumption 5, we compare

the density L̇(u)
t∗ obtained from simulation and its Gaussian approximation N

(
E[L̇(u)

t∗ ], 2E[L̇(u)
t∗ ]
)

, where

E[L̇(u)
t∗ ] is obtained from DE. The two-user and three-user NOMA systems described in Example 4 and

Example 5 are considered. As shown in Fig. 10, the Gaussian distribution N
(
E[L̇(u)

t∗ ], 2E[L̇(u)
t∗ ]
)

well

approximates the corresponding density L̇(u)
t∗ .

Under Assumption 5, we can conclude that L̇(u)
t∗ is the density of the LLR of an observation x̄(u)(t∗) =

x(u) + w(u)(t∗) of symbol x(u), where w(u)(t∗) is the interference-noise variable following a Gaussian

distribution N (0, σ2
u(t
∗)), and σ2

u(t
∗) is the power sum of the noise and interference. Therefore, L̇(u)

t∗

follows N (2/σ2
u(t
∗), 4/σ2

u(t
∗)). With x̄(u)(t∗), it is assumed that the interference over the u-th user is

Gaussian. This assumption was widely used in the analysis of NOMA and MIMO systems, when the

number of users is large and deep interleavers are applied [9], [13], [38], [39]; however, in this paper, we

only consider Gaussian interference under Assumption 5, i.e., upon convergence, which holds even for

small numbers of users.

According to (5), σ2
u(t
∗) is derived as

σ2u(t∗) =
1(

h(u)
)2
∑
j 6=u

(
h(j)

)2
υ(j)(t∗) + σ2

 , (43)
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where

υ(j)(t∗) =

∫ +∞

−∞

4 exp(`)

(1 + exp(`))2
Ḋ(j)
t∗ (`)d`. (44)

Therefore, we can rewrite condition (42) as

σ2u(t∗) =
1(

h(u)
)2
∑
j 6=u

(
h(j)

)2 ∫ +∞

−∞

4 exp(`)

(1 + exp(`))2
∆

(
N

(
2

σ2j (t∗)
,

4

σ2j (t∗)

)
(`)

)
d`+ σ2

 , (45)

for 1 ≤ u ≤ nu. Eq. (45) is referred to as the condition of convergence for the OSD-based JD. As shown,

the converged interference-noise power σ2
u(t
∗) is determined by the noise power σ2, the receiving power

h, as well as the density-transform feature ∆(·) of the decoder. Moreover, ∆(·) is determined by the

decoding order of SOSD and the structure of C(n, k), as as shown by Theorem 1 and Remark 2.

Next, we provide some preliminary discussions on the convergence behavior for the two-user system

and the equal-power system.

1) Two-User System: We define a function gd(ξ) as

gd(ξ) ,
∫ +∞

−∞

4 exp(`)

(1 + exp(`))2
∆

(
N
(

2

ξ
,

4

ξ

)
(`)

)
d`. (46)

In a two-user system, the condition (45) can be rewritten as
g(−)

(
ξ1, h

(1), h(2)
)

= g(+)

(
ξ1, h

(1), h(2)
)

for user 1,

g(−)

(
ξ2, h

(2), h(1)
)

= g(+)

(
ξ2, h

(2), h(1)
)

for user 2,
(47)

where

g(−) (x, y, z) = g−1d

((y
z

)2
x−

(
1

z

)2

σ2
)
, (48)

and

g(+) (x, y, z) =
(y
z

)2
gd(x) +

(
1

z

)2

σ2. (49)

Therefore, we have σ2
1(t∗) = ξ∗1 and σ2

2(t∗) = ξ∗2 , where ξ∗1 and ξ∗2 are the solutions of (47). Accordingly,

the converged density L̇(1)
t∗ and L̇(2)

t∗ are respectively given by N (2/ξ∗1 , 4/ξ
∗
1) and N (2/ξ∗2 , 4/ξ

∗
2). We

validate the condition (47) in following numerical results.

In Fig. 11a, we depict the convergence point of the two-user system described in Example 4. It is found

that σ2
1(t∗) = 0.213 and σ2

1(t∗) = 0.637. Thus, when converged, we have L̇(1)
t∗ = N (2/0.213, 4/0.213)

and L̇(2)
t∗ = N (2/0.637, 4/0.637), which is consistent with L̇(1)

5 and L̇(2)
4 depicted in Fig. 7.

Furthermore, for given y, z, ξ1 and ξ2, we observe ξ2 = g(−) (ξ1, y, z) and ξ1 = g(+) (ξ2, z, y).

This indicates that the coordinate (ξ∗1 , ξ
∗
2) is exactly the intersection point of g(−)

(
ξ1, h

(1), h(2)
)

and

g(+)

(
ξ1, h

(1), h(2)
)
. In Fig 11b. we illustrate the intersection point (ξ∗1 , ξ

∗
2) with different values of h(1)

and h(2), satisfying (h(1))2 + (h(1))2 = 2 at SNR = 5dB. For comparison, we also include results of the

uncoded system, where gd(ξ) =
∫ +∞
−∞

4 exp(`)
(1+exp(`))2N (2/ξ, 4/ξ) (`)d`, and the decoding-error-free system,
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Fig. 11: The Convergence point of the two-user system.

i.e., gd(ξ) = 0. The error-free decoding can be achieved by asymptotically increasing the code length to

infinity (n→∞), as considered in the Shannon Capacity Theorem [55]. We can observe that finite block-

length codes (e.g., length-32 and length-64 codes demonstrated) will have the JD performance between

that of the error-free and uncoded system.

2) Equal-Power Case: If all users have the equal receiving power (e.g., the equal-power interleave-

division multiple-access (IDMA) system [56]), we further simplify (45) to

σ2u(t∗) = (nu − 1)gd(σ2u(t∗)) + σ2, (50)

by assuming h(u) = 1, for 1 ≤ u ≤ nu. Taking σ2 = nu · SNR−1, we conclude that the converged

interference-noise power, σ2
u(t
∗), is given by the intersection point of functions gd(ξ) and

ge(ξ) =
1

nu − 1

(
ξ − nu · SNR−1

)
. (51)

Therefore, for ξ∗ that makes ge(ξ∗) = gd(ξ
∗), the converged density L̇(u)

t∗ is given by N (2/ξ∗, 4/ξ∗). This

will be elaborated in following numerical results.

Consider an equal-power system with h(u) = 1 for 1 ≤ u ≤ nu, which is decoded by the iterative JD

with the order-3 SOSD. In Fig. 12a, we demonstrate convergence points obtained by ge(ξ∗) = gd(ξ
∗) when

nu = 2 at different SNRs. As shown, for a specific SNR, the (30, 16, 8) eBCH code will give a larger

ξ∗ than that of the (64, 30, 14) eBCH code; accordingly, the converged density L̇(u)
t∗ will have a smaller

mean value (i.e., 2
ξ∗

). This is because the (64, 30, 14) code has a higher minimum Hamming distance and

thus provides a larger coding gain.

In Fig. 12a, we find the values of ξ∗ with applying the (64, 30, 14) eBCH code as ξ∗ = 0.159, ξ∗ = 0.318,

ξ∗ = 0.656, and ξ∗ = 1.452, for SNR = 11 dB, 8 dB, 5 dB, and 3 dB, respectively. In Fig. 12b, we

compare the density L̇(u)
t∗ obtained from simulations and that of N (2/ξ∗, 4/ξ∗). As shown, the Gaussian

density N (2/ξ∗, 4/ξ∗) accurately describes the converged density L̇(u)
t∗ , especially at moderate-to-high
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SNRs.

Furthermore, in Fig. 12c, we illiterate values of ξ∗ at SNR = 8 dB for different numbers of users.

The corresponding densities N (2/ξ∗, 4/ξ∗) with the (64, 30, 14) eBCH code is depicted in Fig. 12d. As

shown, as the number of user increases, the value of ξ∗ increases, indicating that the JD performance is

degraded. Moreover, we notice that ge(ξ) for nu = 3 has multiple intersection points (multiple possible

values of ξ∗) with gd(ξ) when applying the (64, 30, 14) eBCH code. Despite this, JD will converge at the

largest ξ∗, because at the beginning of the JD iterations without any interference cancellation, σ2
u(t) is

initialized to be σ2
u(0) = (nu − 1) + σ2, which is larger than all possible values of ξ∗.

C. Future Works based on the Analytical Framework

Based on the analytical framework introduced in this paper, one can further analyze, improve, and

optimize the OSD-based JD. We outline a few potential directions as follows.

1) Improving the BER Performance: As shown by Fig. 12c, there may exist multiple convergence

points in certain circumstances when using finite block-length codes, where JD may converge to a local

suboptimal convergence point. Therefore, one can investigate the convergence behavior of JD utilizing

the proposed DE framework, and devise the JD strategies that avoid suboptimal convergence points.

2) Speeding up the Convergence: One can devise techniques such as adaptive DS, to reduce the number

of iterations to achieve convergence. This can be done by investigating the density-transform feature of
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SOSD; that is, DS is turned on only when the extrinsic density D(`) exhibits a higher quality than the

priori density L(`). This ensures that the decoding results is always improved towards the convergence

point. Moreover, combining techniques, e.g., DSC and DC, can be thoroughly studied by examining their

impact on the LLR density during the JD process.

3) Reducing the Complexity per Iteration: To reduce the complexity per iteration is to reduce the

complexity of single SOSD decoding. A potential approach is to select relatively low decoding orders

at some early JD iterations, when the low-order decoding can provide sufficient improvement over the

priori LLR. This can be done by examining the density transform feature of SOSD in conjunction with

the JD convergence behavior. However, low-order decoding will inevitably increase the total number of

JD iterations. Therefore, one can optimize the overall complexity to answer the following question: Is it

better to reduce complexity per iteration or to reduce the number of iterations?

VI. CONCLUSION

In this paper, we introduced an analytical framework for the joint decoding (JD) of NOMA systems for

short-packet communications, based on ordered-statistics decoding (OSD). We first introduced a variant

OSD algorithm, namely Dual-OSD. It was shown that by carefully selecting the parameters in Dual-

OSD, it can approach the density-transform feature of SOSD or its variants. The density-transform

feature of SOSD, i.e., computing the density of extrinsic LLR based on the priori LLR, was derived

by analyzing Dual-OSD. Next, we developed the density evolution (DE) framework for the OSD-based

JD by representing it as bipartite graphs (BGs). It was shown that the proposed DE can accurately

describe the evolution of the priori and extrinsic LLRs during the JD process. Finally, we discussed the

BER performance and the convergence point of the OSD-based JD, and analyzed the converged densities

of LLR in the two-user system and equal-power system. The proposed DE framework can be used to

further optimize the OSD-based NOMA JD in future works.
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