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Abstract—In this paper, we introduce the Age of Incorrect In-
formation (AoII) as an enabler for semantics-empowered commu-
nication, a newly advocated communication paradigm centered
around data’s role and its usefulness to the communication’s
goal. First, we shed light on how the traditional communication
paradigm, with its role-blind approach to data, is vulnerable to
performance bottlenecks. Next, we highlight the shortcomings
of several proposed performance measures destined to deal with
the traditional communication paradigm’s limitations, namely the
Age of Information (AoI) and the error-based metrics. We also
show how the AoII addresses these shortcomings and captures
more meaningfully the purpose of data. Afterward, we consider
the problem of minimizing the average AoII in a transmitter-
receiver pair scenario. We prove that the optimal transmission
strategy is a randomized threshold policy, and we propose an
algorithm that finds the optimal parameters. Furthermore, we
provide a theoretical comparison between the AoII framework
and the standard error-based metrics counterpart. Interestingly,
we show that the AoII-optimal policy is also error-optimal
for the adopted information source model. Concurrently, the
converse is not necessarily true. Finally, we implement our
policy in various applications, and we showcase its performance
advantages compared to both the error-optimal and the AoI-
optimal policies.

I. INTRODUCTION

In the last decade, communication systems have witnessed
astronomical growth in both traffic demand and widespread
deployment. Thanks to the technological advances in battery
productions and the cheap cost of radio-enabled devices,
communication systems are no longer constrained to the tra-
ditional data and voice exchange frameworks. Today, wireless
devices provide essential services and play a vital role in
various disciplines. For example, the Internet of Things (IoT)
revolution is reshaping modern healthcare systems by incor-
porating technological, economic, and social prospects. This
was witnessed lately amid the global COVID-19 pandemic,
where wireless devices for tracking and collecting patient data
were prevalent. This example barely scratches the surface as
IoT systems are gaining massive momentum in many other
domains. Given that we are just witnessing the tip of the
iceberg, a natural question arises: are current communication
paradigms suitable to deal with such demand? Furthermore,

A preliminary version of this work has been presented at the 2022 IEEE
International Conference on Communications [1].

are we extracting the best possible performance from the
communication networks?

Like any system, these networks’ performance is contingent
on the performance measure’s choice that we set our goal
to optimize. Traditionally, metrics like throughput, delay, and
packet loss were adopted. Note that these metrics do not con-
sider the packets’ content and the amount of information they
bring to the destination. Therefore, we can see that traditional
communication paradigms follow a blind approach to data
packets’ content at both the physical and data link layers.
In other words, at these layers, packets are treated equally
regardless of the amount of information they will potentially
bring to the destination. Given the anticipated astronomical
growth in traffic demand and the potential interconnections
between these systems, this content-blind approach to network
optimization can lead to performance bottlenecks. Accord-
ingly, researchers have been trying to push the boundaries
of this traditional paradigm and establish more elaborate
frameworks for network optimization. Perhaps one of the
most recent successful efforts was the introduction of the Age
of Information (AoI) [2]. The AoI quantifies the notion of
information freshness by measuring the information time lag
at the destination. By incorporating this metric in the network’s
optimization, we give another dimension to the data packets
as they will no longer be treated equally at these layers.
For example, a packet is given more importance when its
destination has not been updated for a while. Following its
introduction, a surge in the number of papers on the AoI can
be seen (we refer the readers to [3], [4] for a literature review).
This surge is due to the expected performance improvement
this added dimension will have in various applications (e.g.,
[5]–[11]).

Although the AoI was shown to provide significant im-
provements to data freshness in various applications, it ex-
hibits some critical shortcomings. Precisely, the AoI infers
the importance of packets through their timestamps only and
does not consider their content. Due to this property, recent
works showed that age-optimal sampling policies are incapable
of minimizing the prediction/mean squared error in remote
estimation applications [12]. Given this shortcoming of the
AoI, researchers have proposed data acquisition and schedul-
ing schemes based on error minimization and the notion of
the value of information in control theory (e.g., [12]–[14]).
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The adoption of error-based metrics in data acquisition and
transmission decisions at the PHY/MAC layers allows us to
abolish the separation principle prevalent in the traditional
communication frameworks. Even though this is a step forward
in the right direction, error-based metrics come short in
capturing a crucial aspect of the communication: its goal. In
fact, these metrics do not consider what the packets are used
for, but rather their optimization aims solely to reduce the
mismatch between the physical process and its estimate at the
destination. Given that the communication’s goal is neglected,
adopting these metrics could hinder achieving the desired goal.

To address these shortcomings, the present authors and sev-
eral other researchers have been recently advocating for a new
communication paradigm based on the notion of “Semantics
of Data” [15]–[17]. The framework of semantics has been
previously proposed in [18] for the case of language communi-
cation. In this framework proposed in 1949, which is suitable
for voice/text/images-related applications, the importance of
a message consists of its contribution to the meaning that
wants to be conveyed to the distant receiver. For other types
of applications, such as real-time monitoring and Machine-
to-Machine applications, semantics of data is evaluated with
respect to goal oriented metrics that capture the receiver’s
utility for information. In other words, semantics of data is
employed here to express the data significance and usefulness
to the communication’s goal. To understand this concept, let
us consider an example of a communication network involving
various temperature sensors and a central controller. In these
settings, the goal is not to always have timely packets delivered
about the sensors’ temperature processes nor to minimize
the mismatch between the temperature processes and their
estimates at the controller. On the contrary, the sole goal is
to make sure the controller reacts swiftly to any abnormal
temperature rise. Therefore, to extract the best performance
out of the network, our system’s design must undoubtedly
include the purpose of the data involved. In this case, when
sampling or transmitting packets, we look at the bigger picture
of how vital these packets are to achieve our prescribed goal.
Using the notion of data semantics, the objective is to establish
a network optimization framework that is adaptable to any
communication goal by merely changing a set of parameters
of a general performance metric. This brings us to the new
notion of Age of Incorrect Information (AoII), proposed by
the present authors in [15] that can be considered as a step
toward that ultimate goal.

The AoII was introduced to address the shortcomings of
both the AoI and the error-based metrics by incorporating the
semantics of data more meaningfully. Specifically, the AoII is
a proposed performance measure that captures the significance
of a packet within a specific general communication goal
through two aspects 1) an information-penalty aspect and 2) a
time-aspect function. As will be seen in the remainder of the
paper, by definition, the AoII considers the content of packets,
the information knowledge at the destination, and the effect
of the mismatch between the physical process and its estimate
on the overall communication’s goal. Interestingly, we will

show that many real-life applications’ communication goals
are merely variants of the AoII obtained by tweaking specific
parameters. To that end, we summarize in the following the
key contributions of this paper:

• We consider the problem of minimizing the average AoII
in a transmitter-receiver pair scenario where packets are
sent over an unreliable channel subject to a transmission
rate constraint. Compared to our previous work on the AoII
[15] where a linear version of the AoII was studied, we
consider a more general version of the AoII where any
non-decreasing dissatisfaction function f(·) can be adopted.
This generalization leads to numerous technical challenges
that we address in this paper. Particularly, in this paper, we
adopt a different approach where 1) We provide structural
results on the problem at hand for both unbounded and
asymptotically bounded functions f(·), 2) In both cases, we
derive an expression of the value function and the update
rate for any threshold policy, 3) We leverage fundamental
properties of the AoII to show that an optimal policy can be
constructed through randomization, 4) Finally, we provide
pseudocode of the optimal transmission policies and prove
their logarithmic complexity.

• Afterward, we provide a thorough comparison between
the AoII framework and the standard error-based metrics
counterpart. Since the seminal work of Sun et al. [12], a
large part of the work on the AoI aimed to find connections
between the AoI minimization framework and the standard
MMSE (minimum mean squared error) and prediction error
minimization frameworks (e.g., [19]). Our work on the
AoII provides a framework where we go beyond the AoI
and the standard error metrics and focus directly on the
communication goal, thus enabling semantics-empowered
communications. One key question to answer is how such a
framework compares with the traditional error frameworks.
Kam et al., in one of their recent works [20], showcased
numerically that the minimization of the AoII led to a
minimization of the prediction error, hence increasing the
importance to answer such a question. One key consequence
of the generalization done in this paper was that we could
answer that question within a theoretical framework. Cu-
riously, our comparison leads to an interesting conclusion:
for the adopted information source model, the AoII-optimal
policy is also error-optimal. At the same time, the converse
is not necessarily true.

• Lastly, we provide several real-life applications where the
communication’s goal can be formulated as an AoII min-
imization problem by adequately choosing f(·). Such ap-
plications allow us to frame the AoII as an enabler of
semantics-empowered communication, which is a radical
new communication paradigm that has been receiving signif-
icant attention recently for 6G networks (e.g., [21]). For the
applications mentioned above, we show how our approach
achieves a significant performance advantage compared to
the AoI and the standard error metrics frameworks.

The rest of the paper is organized as follows: Section II
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(a) Age penalty function. (b) Error penalty function. (c) AoII penalty function.

Fig. 1: Illustrations of the different penalty functions.

is dedicated to the motivation behind the AoII. The system
model, along with the dynamics of the AoII, are presented
in Section III. Section IV presents our optimization approach
to the problem at hand, along with the main results of the
paper. In Section V, we theoretically compare the AoII-optimal
transmission policy to the error framework and provide a key
comparison between them. In Section VI, we provide real-life
applications that fall within our framework and showcase the
advantages of the AoII compared to both the AoI and error-
based approaches. Lastly, we conclude our paper in Section
VII.

II. WHY THE AGE OF INCORRECT INFORMATION?

To understand the notion of AoII, it is best to consider
a basic transmitter-receiver system where a process Xt is
observed by the transmitter. For example, Xt can be a ma-
chine’s temperature, a vehicle’s velocity, or merely the state
of a wireless channel. To that end, Xt is subject to possible
changes at any time instant t, and these changes have to be
reported to the monitor (receiver) through the transmission
of status updates packets. Using these packets, the monitor
creates an estimate of Xt at each time t, denoted by X̂t.
The monitor uses these estimates to complete tasks, make
decisions, or carry out commands. Therefore, it is easy to
see that the system’s performance is contingent on a proper
estimation of Xt at each time t. Ideally, we would like to
have a perfect estimation where X̂t = Xt at any time instant
t. However, given many limiting factors, such as the delay in
wireless channels, this is not feasible in practice. Accordingly,
one must adopt a particular penalty/utility function for which
its minimization/maximization helps us achieve the system’s
best possible performance.

Traditionally, wireless networks have been looked at as
a content-agnostic data pipe. In other words, the content
of the data packets and the role they play in the broader
scope of an application at the receiver have been overlooked
from a network optimization perspective. To that end, the
conventional goal in the communication paradigms has been to
merely optimize network-based metrics such as throughput or
delay through a smart allocation of the available resources.
However, this approach strips away the context from the
data. Therefore, packets are treated as equally important,

regardless of the amount of information they bring to the
monitor. Given the astronomical growth in data demand,
the ubiquitous wireless connectivity, and the abundance of
remote monitoring applications, a more effective approach
to network optimization has to be adopted. Accordingly, the
research community has been intensively trying to propose
new network optimization frameworks to achieve this efficacy.
To this date, the proposed frameworks generally fall into one
of the two following groups:

1) Age-based metrics framework
2) Error-based metrics framework

First, let us discuss the age-based metrics framework. The AoI,
or simply the age, is defined as [2]

∆age(t) = t− Ut, (1)

where Ut is the timestamp of the last successfully received
packet by the monitor at time t. Essentially, the AoI captures
the information time-lag at the monitor. To that end, the
minimization of age-based metrics like the time-average age
has been widely regarded as a means to achieve freshness
in communication [2]. This approach’s idea is that with a
guarantee of fresh data at the monitor, one would expect an
overall better system performance. As one can see, contrary
to the throughput and delay frameworks, adopting the AoI
as a network performance metric avoids the equal treatment
of packets. In fact, in this framework, data packets have the
highest value when they are fresh. Consequently, the AoI lets
us infer the importance of a packet using its generation time.
Although the AoI is a step forward in the right direction,
we can witness its fundamental flaw in many applications. To
put this flaw into perspective, let us consider a time interval
[t1, t2] in which Xt = X̂t. In other words, during this interval,
the monitor has a perfect estimate of the information process
Xt. As seen from the age definition (1) and Fig. 1a, the
system is still penalized even in this time-interval. Due to
this unnecessary penalization of the system, we can expect
a waste of vital resources on useless status updates. This flaw
is inherent in the AoI definition as it does not consider the
current value of the information process and its estimate at
the monitor. For this reason, age-optimal sampling policies
were found to be sub-optimal in many remote estimation
applications (e.g., [12]). This leads us to the next class of
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proposed optimization frameworks: the error-based metrics
framework.

Remark 1. It is worth mentioning that several time-based
metrics have been proposed in the literature to address various
shortcomings of the AoI. For example, the Age of Synchro-
nization (AoS), which measures the time-elapsed since a new
update was generated, was introduced for caching systems
[22]. Although they address several shortcomings of the AoI,
these metrics remain time-based and do not depend on the
mismatch between Xt and X̂t, which limits their usage in
remote estimation applications.

The error-based metrics framework consists of taking as a
network performance measure a quantitative representation of
the difference between X̂t and Xt. The hope is, by incorporat-
ing the information on Xt and X̂t in the performance metric,
we can better utilize the available resources to let X̂t be close
to Xt. Among the most common error-based metrics, we have

∆err(Xt, X̂t) = 1{X̂t 6= Xt}, (2)

∆sq(Xt, X̂t) = (Xt − X̂t)
2, (3)

where 1{·} is the indicator function. By minimizing the time-
average of the metrics found in (2) and (3), we obtain the
celebrated Minimum Prediction Error (MPE) and the Mini-
mum Mean Squared Error (MMSE) policies respectively [12],
[23], [24]. It is clear that this framework does not have the
AoI’s fundamental shortcomings. For example, as illustrated
in Fig. 1b, the penalty of the system is equal to 0 in the time-
interval [t1, t2] in which Xt = X̂t. Additionally, one can notice
that, similarly to the AoI framework, adopting an error-based
metric as a network performance measure avoids the equal
treatment of data packets. Interestingly, in this framework, data
packets have the highest value when the difference between
the information they carry and X̂t is large. Although the
error-based metrics add a sense of meaning to the packets
compared to throughput and delay, they also have underlying
flaws. As seen in (2)-(3), the error-based metrics only consider
the difference between Xt and X̂t to infer the importance
of the packets. Given that a perfect match Xt = X̂t for all
t is not feasible in realistic scenarios, we can see that this
approach fails to capture the effect their mismatch has on the
overall communication’s goal. To see this more clearly, let
us consider that the information process Xt ∈ {0, 1} tracks
the temperature of a machine. Let us suppose that Xt = 0
indicates that the machine is operating at a normal temperature
at time t while Xt = 1 indicates that it is overheating. We
consider that the estimate X̂t is used by the monitor to react
to any sudden temperature spike in the machine. Now, let
us assume that a spike occurs in the time interval [0, t1].
As illustrated in Fig. 1b, the error-based metrics will lead to
a constant penalization of the system. However, it is well-
known from the physical characteristics of materials that an
abnormal temperature rise’s repercussions become more severe
the longer that spike is prolonged. In the same spirit, this
flaw is highlighted when we consider the phenomena of error

bursts. As seen in Fig. 2, the system’s error penalty due to two
bursts of errors of one timeslot is equivalent to that resulting
from a single error of two timeslots. However, it is well-known
that in a large variety of applications, the repercussions of a
long burst of error are far more severe (e.g., video streaming
[25]).

Fig. 2: Illustration of the burst errors situation.
Therefore, a better performance measure takes into account,

not just the mismatch between Xt and X̂t, but also how
long that mismatch has been prevailing. By adopting such a
metric, we capture more the context of data and their pur-
pose. Accordingly, we can then enable semantics-empowered
communication in the network, which is more elaborate than
the AoI and the error-based frameworks. This leads us to our
proposed metric: the AoII. We define the AoII as

∆AoII(Xt, X̂t, t) = f(t)× g(Xt, X̂t), (4)

where f : [0,+∞) 7→ [0,+∞) is a non-decreasing function
and g(Xt, X̂t) : D×D 7→ [0,+∞) where D is the state space
of Xt. The AoII is therefore a combination of two elements:

1) A function g(·, ·) that reflects the gap between Xt and
X̂t.

2) A function f(·) that plays the role of increasingly penal-
izing the system the more prolonged a mismatch between
Xt and X̂t is.

To better understand the metric, let us go back to the machine
temperature example. As seen in Fig. 1c, the AoII is 0 in
the time-interval [t1, t2] in which no mismatch exists. In the
interval [0, t1], we can see that, unlike the error-based metrics,
we are penalizing the system more the longer the mismatch
lasts. As we have previously explained, this allows us to
capture the purpose of the data being transmitted more mean-
ingfully. Given that the performance of a network designed to
take into account the purpose of data will always outperform
any semantic-blind network, we delve into more details in
the proposed AoII metric. The proposed AoII metric is quite
general and presents itself as an umbrella for a large variety
of performance measures depending on the selected functions
f(·) and g(·, ·). For example, we can adopt for the function
g(·, ·) any of the standard error-based metrics such as

• The indicator error function:

gind(Xt, X̂t) = 1{Xt 6= X̂t}. (5)

We can choose this function when any mismatch between
Xt and X̂t, regardless of how big it is, equally harms the
system’s performance.
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• The squared error function:

gsq(Xt, X̂t) = (Xt − X̂t)
2. (6)

Choosing this function implies that the larger the gap
between Xt and X̂t is, the more significant its impact on
the system’s performance is.

• The threshold error function:

gthreshold(Xt, X̂t) = 1{|Xt − X̂t| ≥ c}, (7)

where c > 0 is a predefined threshold. This is an adequate
choice when the system’s performance is immune to small
mismatches between Xt and X̂t.

Next, to provide examples of the function f(·), we first define
Vt as the last time instant where g(Xt, X̂t) was equal to 0.
Specifically, Vt is the last time instant where the monitor
had sufficiently accurate information about the process Xt.
With this notion in mind, we provide in the following a few
examples of f(·).
• The linear time-dissatisfaction function:

flinear(t) = t− Vt. (8)

This can be used when the performance degrades uniformly
with time when a mismatch occurs.

• The time-threshold dissatisfaction function:

fthreshold(t) = 1{t− Vt ≥ ζ}, (9)

where ζ > 0. We can choose this function when the system’s
performance can tolerate the mismatch between Xt and
X̂t for a certain duration ζ > 0. Afterward, a penalty is
incurred.

Depending on the application at hand, we can adopt an
appropriate choice of f(·) and g(·, ·) to capture the data’s
purpose. In simple applications, one may be able to derive
explicitly these functions f(·) and g(·, ·) that capture the time
and information facets playing a role in data significance as
will be seen in later sections. However, in more complicated
scenarios, one would need to fit the functions f(·) and g(·, ·)
using gathered or generated data on the application of interest.

III. MODEL AND FORMULATION

A. System Model

We consider in our work a transmitter-receiver system where
time is assumed to be slotted and normalized to the slot
duration (i.e., the slot duration is taken as 1). The transmitter
observes an information process, denoted by

(
Xt

)
t∈N, that can

change values with time and the transmitter’s goal is to send
status updates to keep the receiver up-to-date on the process’
values. To understand how this system works, let us suppose
that the transmitter decides to transmit a packet at time t.
Therefore, a sample of Xt is generated, and the transmission
stage immediately begins. The packet is transmitted over an
unreliable channel where transmission errors may occur. We
suppose that the channel realizations are independent and
identically distributed over the timeslots and follow a Bernoulli
distribution. In particular, the channel realization ht is equal

to 1 if the packet is successfully decoded by the receiver
side and is 0 otherwise. Given the Bernoulli assumption, we
define the transmission success and failure probabilities as
Pr(ht = 1) = ps and Pr(ht = 0) = pf = 1− ps respectively.
This model is motivated by short-packets transmission in block
fading wireless channels where a target rate Rtarget is required
(we refer the readers to [26, Section II]). If the transmission
is successful, the status update is delivered at time t+ 1, and
the transmitter receives an instantaneous Acknowledgement
(ACK) packet. The quick delivery and reliability of the ACK
packets is a widely used assumption as these packets are
typically small. Accordingly, their transmission time can be
considered negligible [5], [11]. Note that if an ACK is not
received at t + 1, the transmitter discards the old packet and
generates a new update if it opts for a new transmission. By
leveraging this mechanism, the transmitter can have perfect
knowledge of the packets that arrive at the receiver. It is worth
noting that the violation of the negligible ACK latency or
its reliability dictates their consideration in the design of any
optimization framework.

Using the information found in the received updates, the
receiver can only construct an estimate of the information
process, denoted by

(
X̂t

)
t∈N. Let us now focus on the model

of Xt that we will adopt in the sequel. Similar to [12], we
consider that the receiver’s estimate of the information source
is

X̂t = XUt , (10)

where Ut is the timestamp of the last successfully received
packet by the receiver at time t. In other words, the receiver
takes the last successfully received update as an estimate
of the information source. Let us now define

(
dt
)
t∈N =

1{|Xt−X̂t| ≥ c}, where c > 0 is a predefined threshold. The
threshold c can be thought to be a barrier between two regimes:
1) a GOOD regime where the mismatches between Xt and X̂t

does not affect the performance, and 2) a BAD regime where
the contrary takes place. Large values of c suggest that the
system can tolerate to a certain extent mismatches between
Xt and X̂t, while small values of c suggest its sensitivity to
these mismatches. An illustration of this distinction of regimes
can be found in Fig. 3.

Fig. 3: Illustration of the regimes of the process dt.
We focus in the sequel on the process

(
dt
)
t∈N due to its

analytical advantage. In fact, tracking the exact continuous
process’ evolution, especially when adding a timing aspect as
the AoII does, makes the theoretical analysis very challenging.
This model accurately captures all the information about Xt

when Xt typically experience either big changes or small
changes but may come at a cost when we consider any general
continuous process Xt. However, for tractability, we consider
the former case in our paper. Next, we tackle the modeling of
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dt. Specifically, we consider that if no packets are delivered
to the receiver,

(
dt
)
t∈N evolves as a 2 states discrete Markov

chain depicted in Fig. 4 with parameters α and β. Note that
these parameters will change based on the choice of c.

Fig. 4: Illustration of the process model.
Although simple, this model encompasses a variety of real-life
settings and have been adopted in numerous research works
(e.g., [13]). For instance, suppose that the observed process
Xt is a certain channel state and X̂t is its estimate at the
transmitter. By adopting a Markovian channel model, it can
be shown that without any training using pilot symbols, dt
can be modeled using a Markov chain similar to Fig. 4. Note
that Markovian channels are a typical assumption for fading
channels, and their usefulness is supported by experimental
results (we refer the readers to [27]). On another note, Markov
chains are also widely used to discretize and approximate
continuous-valued processes (e.g., diffusion processes [28],
continuous-valued autoregression processes [29]). This puts
in perspective the applicability of the adopted Markov chain
model in various settings despite its simplicity. In addition,
the simplicity of the model enables a better understanding of
the dynamics and merits of the new performance measure.

Lastly, as is the case in realistic scenarios, we consider that
the transmitter cannot send status updates at each timeslot.
Precisely, due to battery limitations, for example, an average
transmission frequency δ cannot be surpassed. Given the
constraint on the transmission frequency and the random
nature of the channel, the transmission policy’s choice has an
immense effect on the system’s performance. As motivated in
the previous subsection, we adopt the AoII as a performance
measure of the system. To fully understand the evolution of
the AoII, we provide details on its dynamics in the next
subsection.

B. System Dynamics

In this paper, we focus on the class of AoII measures having
the function g(·, ·) as gthreshold(Xt, X̂t) = dt. To that end, let
us define the system’s state St at time t as

St = (t− Vt)dt. (11)

Given that t ∈ N, we have St ∈ N. Next, as seen in the AoII
examples given in (8)-(9), the function f(·) is generally written
in function of t − Vt. To that end, we consider in the sequel
the class of non-decreasing dissatisfaction functions f(·) that
can be written in terms of t−Vt. In this case, the AoII can be
rewritten as ∆(Xt, X̂t, t) = dtf(t − Vt). With that in mind,
we can rewrite the AoII as

∆AoII(Xt, X̂t, t) = f(St). (12)

Therefore, to characterize the AoII’s evolution, it is sufficient
to report the evolution of the system’s state St. To that end,

let ψt denote the action taken at time t, where ψt = 1 if a
transmission is initiated and 0 otherwise. Given the available
actions that the transmitter can take and the possible transitions
of the process

(
dt
)
t∈N, it is essential to characterize the

relationship between St+1 and St. To that end, we distinguish
between two cases:
• Case 1 - St = 0: In this case, dt = 0. Let us now assume
that the transmitter decides to remain idle for the duration of
the timeslot t. At the next timeslot t+ 1, we could end up in
one of the following situations: 1) either Xt+1 will jump in
value and dt+1 becomes equal to 1, or 2) dt+1 remains equal
to 0. As per our adopted Markovian model for dt, these two
events happen with a probability 1−α and α respectively. To
that end, we obtain

Pr
(
St+1 = 0|St = 0, ψt = 0

)
= α,

Pr
(
St+1 = 1|St = 0, ψt = 0

)
= 1− α. (13)

Let us now consider that the transmitter proceeds with a
transmission at time t. This transmission will have no effect
on dt, as dt is already equal to 0. In other words, we will still
remain in the GOOD regime zone as was reported in Fig. 3.
Now, given that the transitions of the process (dt)t∈N does not
depend on the exact difference |Xt − X̂t|, we can conclude
that regardless of the channel realization, we have

Pr
(
St+1 = 0|St = 0, ψt = 1

)
= α,

Pr
(
St+1 = 1|St = 0, ψt = 1

)
= 1− α. (14)

• Case 2 - St 6= 0: In this case, we have dt = 1. Let us now
consider that the transmitter opted out from any transmission at
time t. At the next timeslot t+1, we may end up in one of the
following situations: 1) either dt+1 will remain equal to 1, or
2) Xt+1 jumps in value and we go back to the GOOD regime
reported in Fig. 3. As per our adopted Markovian model for
dt, these two events happen with a probability β and 1 − β
respectively. To that end, we obtain

Pr
(
St+1 = St + 1|St 6= 0, ψt = 0

)
= β,

Pr
(
St+1 = 0|St 6= 0, ψt = 0

)
= 1− β. (15)

Let us now consider that the transmitter decides to transmit a
status update to the monitor at time t. By taking into account
the possible channel realizations, we distinguish between two
cases:

• ht = 0: In this case, the packet is not successfully delivered
to the monitor. Accordingly, from the monitor’s perspective,
this is similar to the case where no transmission is initiated.
Therefore, the evolution of St follows the transitions re-
ported in (15).

• ht = 1: We recall that during the transmission time, the
value of the information process may change. To that end,
with probability 1− β, Xt would have jumped values, and
the transmitted information became obsolete. In fact, in this
case, by the time the receiver gets the information, the
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information has already changed and the error continues.
Consequently, we have

Pr
(
St+1 = St + 1|St 6= 0, ψt = 1, ht = 1

)
= 1− β,

Pr
(
St+1 = 0|St 6= 0, ψt = 1, ht = 1

)
= β. (16)

By taking into account the independence between the transi-
tions of the process

(
dt
)
t∈N and the channel realizations, we

can summarize the transitions of St as follows

Pr
(
St+1 = St + 1|St 6= 0, ψt = 1

)
= pfβ + (1− β)ps , a,

Pr
(
St+1 = 0|St 6= 0, ψt = 1

)
= pf (1− β) + psβ = 1− a.

(17)

Given the above system’s dynamics, one can notice a necessity
to impose some restrictions on the parameters and functions
involved. Effectively, for packet transmission to be useful to
the system’s performance, we need to have

Pr
(
St+1 = 0|St 6= 0, ψt = 1

)
> Pr

(
St+1 = 0|St 6= 0, ψt = 0

)
.

(18)
If this condition is violated, then transmitting a packet does
not improve the system’s overall performance. Specifically,
this means that the information process changes drastically at
each timeslot to the point that if we transmit a packet, the
packet becomes obsolete by the time it arrives at the receiver.
From (18), we can conclude that the condition is equivalent to
having a < β. Next, let us consider that a packet is transmitted
at each timeslot. Given the dynamics of the system, we have
Pr
(
St+1 = St + 1|St 6= 0, ψt = 1

)
= a. In other words,

even if a packet is transmitted at every timeslot, there is still
a chance for the system’s penalty to grow. To prevent the
situation where even a transmission at each timeslot will still
lead to an unbounded penalty, it is necessary to impose the
following condition

+∞∑
k=0

f(k)ak < +∞. (19)

Note that, for similar reasons, analogous conditions have been
previously adopted in the AoI framework for communication
over unreliable channels [19]. With the system’s evolution
clarified, we can now formulate our problem and find its
optimal solution.

C. Problem Formulation

Let π represents a transmission policy that determines the
packets being sent over time. The transmission policy π is
defined as a sequence of actions π = (ψπ0 , ψ

π
1 , . . .). Let Π

denotes the set of all causal scheduling policies, i.e., where
the decisions are taken without any knowledge of the future.
Our optimization problem can be formulated as follows

minimize
π∈Π

Jπ(S0) , lim sup
T→+∞

1

T
Eπ
( T−1∑
t=0

f(Sπt )|S0

)
,

subject to Cπ(S0) , lim sup
T→+∞

1

T
Eπ
( T−1∑
t=0

ψπt |S0

)
≤ δ,

(20)

where f : [0,+∞) 7→ [0,+∞) is a non-decreasing function
of Sπt , and 0 < δ ≤ 1 is the highest update rate allowed. The
above problem belongs to the family of Constrained Markov
Decision Process (CMDP), which are known to be generally
challenging to solve optimally. To address these challenges, we
proceed in the sequel with a Lagrange approach and provide
a step-by-step analysis to solve problem (20) optimally.

IV. PROBLEM OPTIMIZATION

A. Lagrange Approach

The Lagrange approach consists of transforming the con-
strained problem (20) to an unconstrained one by incorporating
the constraint in the objective function. Specifically, let us
introduce the Lagrange multiplier λ ∈ R+. We define the
Lagrangian function as

L (λ, π) = lim sup
T→+∞

1

T
Eπ
( T−1∑
t=0

f(Sπt )+λψπt |S0

)
−λδ. (21)

Given that λ ≥ 0, it can be regarded as a penalty that is
paid for a packet transmission. Ideally, we would like to find
a certain λ∗ for which minimizing the function (21) across
all policies Π allows us to derive the optimal policy of the
constrained problem (20). To proceed in that direction, let us
consider the following optimization problem

min
π∈Π

L (λ, π), (22)

for any fixed λ ∈ R+. Knowing that λδ is independent of the
chosen policy π, the above minimization problem is equivalent
to the following

min
π∈Π

h(λ, π) = min
π∈Π

lim sup
T→+∞

1

T
Eπ
( T−1∑
t=0

f(Sπt ) + λψπt |S0

)
.

(23)
Therefore, we focus on the optimization problem (23). Based
on the system’s dynamics previously detailed in Section III-B,
the above problem can be cast into an infinite horizon average
cost Markov Decision Process (MDP) as follows
• States: The state of the system St coincides with that

reported in Section III-B. Accordingly, the state space of
interest S is the space of natural numbers N.

• Actions: At any time t, the possible actions that can be taken
by the transmitter are to either initiate a new transmission
(ψt = 1) or to stay idle (ψt = 0).

• Transitions probabilities: The transitions probabilities be-
tween the different states correspond to those previously
reported in Section III-B.

• Cost: Given the objective function of the problem, the
instantaneous cost is set to C(St, ψt) = f(St) + λψt.

To obtain the optimal policy of an infinite horizon average
cost MDP, if it exists, it is well-known that it is sufficient to
solve the following Bellman equation [30]

θ+V (S) = min
ψ∈{0,1}

{
f(S)+λψ+

∑
S′∈S

Pr(S → S′|ψ)V (S′)
}
,

(24)



8

where Pr(S → S′|ψ) is the transition probability from state
S to S′ given the action ψ, θ is the optimal value of (23), and
V (S) is the differential cost-to-go function. However, this is
notoriously known to be a challenging task [30]. We leverage
our system’s particularity to circumvent these challenges and
provide key structural results on the value function V (·). Using
these results, we proceed to solve the Bellman equation, as will
be seen in the sequel.

B. Structural Results

As previously explained, we start by studying the particular-
ity of the value function. Before doing so, we first distinguish
between two types of functions f(S) based on their behavior
for large S. To that end, we define
• Unbounded f(·): In this case, the function f(·) grows

indefinitely with the system’s state

lim
S→+∞

f(S) = +∞. (25)

The list of such functions includes the linear function
reported in (8).

• Bounded f(·): In this case, the penalty of the system
saturates and reaches a fixed limit

lim
S→+∞

f(S) = L > 0. (26)

An example that belongs to this family of functions is the
time-threshold function reported in (9).

To analyze the bounded function case, we will proceed with
a truncation of the state space S = N. Specifically, from the
limit definition, we have

∀ε > 0, ∃Sthresh : ∀S ≥ Sthresh, |f(S)− L| < ε. (27)

Accordingly, we can choose an arbitrarily small ε such that
f(S) ≈ f(Sthresh), ∀S ≥ Sthresh. To that end, we let S =
{0, 1, . . . , Sthresh} ⊆ N. Although this truncation will have a
negligible effect on the performance for a small ε, it will prove
to have analytical benefits in deriving the optimal transmission
policy. With this distinction in mind, we lay out the following
lemma.

Lemma 1 (Non-decreasing Property of V (·)). For both func-
tion classes, the differential cost-to-go function V (S) is a non-
decreasing function of S.

Proof. The proof is in Appendix A.

Next, we leverage the above lemma to establish the funda-
mental proposition below.

Proposition 1 (Structure of the Optimal policy). For any λ ∈
R+, and for both function classes, the transmission policy that
optimally solves problem (23) is a threshold policy.

Proof. The proof is in Appendix B.

The above proposition allows us to have a road-map to solve
the Bellman equation. Knowing that a threshold policy is
optimal, we restrict our attention to this class of policies to

simplify and solve the Bellman equation. Consequently, we
lay out the following theorem.

Theorem 1 (Optimal Policy). The optimal transmission policy
π∗λ can be summarized as follows
• Unbounded f(·): π∗λ is a threshold policy such that a

transmission is initiated when St ≥ n∗λ where

n∗λ = inf{n ∈ N∗ : H(n) > 0} − 1, (28)

and H(n) and θn are equal to

H(n) =
−θn(β − a) + λ(β − 1)

(1− a)(β − a)
+

+∞∑
k=n

f(k)ak−n, (29)

θn =

f(0)
1−α +

n−1∑
k=1

f(n− k)βn−k−1 + βn−1
+∞∑
k=n

f(k)ak−n + λβn−1

1−a

1
1−α + 1−βn−1

1−β + βn−1

1−a

.

(30)
• Bounded f(·): π∗λ is a threshold policy if

λ <
(β − a)(f(Sthresh)− θSthresh)

1− β
, (31)

and the optimal threshold n∗λ is equal to

n∗λ = inf{n ∈ S \ {0} : H ′(n) > 0} − 1, (32)

where H ′(n) and θ′n are reported in Table I. Otherwise, the
optimal transmission policy π∗λ is to never transmit, and we
set n∗λ = Sthresh + 1.

Proof. The proof is in Appendix C.

The next step consists of deriving a closed-form expression of
Cπ∗λ for any λ ∈ R+. Finding this expression will allow us to
propose an iterative algorithm later on that finds the optimal
transmission policy, as will be seen in Section IV-D. To that
end, we provide the following proposition.

Proposition 2 (Update Rate). The average update rate of the
transmission policy π∗λ is
• Unbounded f(.):

Cπ∗λ =


(1−α)βn

∗
λ−1

(1−a)(1+
(1−α)(1−βn

∗
λ )

1−β +
(1−α)aβ

n∗
λ
−1

1−a )

, if n∗λ ∈ N∗,

1, if n∗λ = 0.
(33)

• Bounded f(.): it coincides with the unbounded case expres-
sion for any n∗λ ∈ S, and is equal to 0 if n∗λ = Sthresh + 1.

Proof. The proof is in Appendix D.

C. Optimal Policy

Thus far, we have focused on finding the optimal transmis-
sion policy π∗λ that solves problem (23), which it turns solves
(22). However, our primary goal remains to optimally solve
the original constrained problem reported in (20). It turns out,
we can relate the optimal policy for the constrained problem to
that of (22) if certain conditions are satisfied. To that end, let
us first define λ∗ , inf{λ ∈ R+ : Cπ∗

λ∗
≤ δ} and ϑ = 1−α

2−α−a .
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H′(n) =
−θ′n(β − a) + λ(β − 1)

(1− a)(β − a)
+

Sthresh−1∑
k=n

f(k)ak−n +
aSthresh−Sf(Sthresh)

1− a

θ′n =

f(0)
1−α +

n−1∑
k=1

f(n− k)βn−k−1 + βn−1
Sthresh−1∑
k=n

f(k)ak−n + λβn−1

1−a + βn−1 a
Sthresh−Sf(Sthresh)

1−a

1
1−α + 1−βn−1

1−β + βn−1

1−a

TABLE I: Expressions of H ′(n) and θ′n in the bounded function case.

With these definitions in mind, we summarize our findings in
the following theorem.

Theorem 2 (Optimal Policy of the Constrained Problem).
The optimal transmission policy of problem (20) can be
summarized as follows
• Unbounded f(·): the optimal transmission policy is a ran-

domized threshold policy with parameter µ∗ such that
– The thresholds n∗λ∗ − 1 and n∗λ∗ are adopted with prob-

ability µ∗ and 1− µ∗ respectively.
– µ∗ is chosen to ensure that the randomized policy has an

average update rate equal to δ. In other words,

µ∗ =
δ − Cπ∗

λ∗,2

Cπ∗
λ∗,1
− Cπ∗

λ∗,2

, (34)

where Cπ∗
λ∗,1

and Cπ∗
λ∗,2

are the average update rate
when the thresholds n∗λ∗−1 and n∗λ∗ are used respectively.

• Bounded f(·): the optimal transmission policy coincides
with the unbounded function case if δ < ϑ. Otherwise, an
optimal transmission policy is to transmit a packet in every
timeslot t where St 6= 0.

Proof. The proof is in Appendix E.

D. Algorithm Implementation

To obtain the optimal policy, we implement a specific low-
complexity algorithm, as explained below. The first step in
our algorithm implementation consists of finding the optimal
threshold for any fixed λ ∈ R+. To that end, we recall
from our analysis in the proof of Theorem 1, the functions
H(n) and H ′(n) are both non-decreasing with n. Accordingly,
we can use the binary search algorithm [31] to find the
optimal threshold for any λ. Specifically, starting from an
initial interval I = [1, 2], we exponentially enlarge this interval
as long as n∗λ 6∈ I . When the interval is large enough to
contain n∗λ, a binary search algorithm is adopted to find it.
Interestingly, this whole procedure is computationally efficient
as it requires at most O(log n∗λ) iterations.

Remark 2 (Implementation Considerations). The evaluation
of H(n) requires the calculation of an infinite sum series.
However, given the assumption in (19), we have

∀ε > 0, ∃M : ∀m ≥M, |
m∑
k=n

f(k)ak−n−
+∞∑
k=n

f(k)ak−n| < ε.

(35)
Accordingly, we can always consider a finite sum satisfying a
predefined precision criterion.

Next, we derive a scheme to find the optimal Lagrange
multiplier λ∗. To that end, we note that the average update
rate Cπ∗λ is non-increasing with λ [32], [33] and that Cπ∗0 = 1.
Accordingly, we employ a bisection search method to find λ∗

[31], which also has low complexity. Specifically, as it was
done for the binary search algorithm, we start with an initial
interval I0 = [λ0

min, λ
0
max] where λ0

min = 0 and λ0
max = 1. As

long as Cπ∗
λtmax

> δ, we set λt+1
min = λtmax and λt+1

max = 2λtmax.

We do so until we end up with an interval It∗ = [λt
∗

min, λ
t∗

max]
such that Cπ∗

λt
∗

min

> δ and Cπ∗
λt
∗

max

≤ δ for some t∗ ≥ 0.

This interval expansion finishes in at most O(log λ∗) steps.
Given that at each step of the expansion an optimal threshold
needs to be found, the overall complexity of this step is hence
O(log(λ∗)× [ max

0≤t≤log(λ∗)
log2(n∗λtmax

)]). The next step consists

of evaluating the middle point of the interval ξt =
λtmin+λ

t
max

2 . If
Cπ∗ξt

> δ, then we set It+1 to [ξt, λ
t
max]. Otherwise, we set it

to [λtmin, ξt]. We keep doing this until a convergence criterion
is satisfied and the algorithm outputs ξ∞. The complexity of

this step is O(log(
λt
∗

max − λt
∗

min

ε
)× [ max

t≤log(
λt
∗

max−λ
t∗
min

ε )

log(n∗ξt)]),

where ε is the convergence tolerance. Consequently, to get
the optimal transmission policy, it is sufficient to set n∗λ∗ of
Theorem 2 to n∗ξ∞ . Finally, the randomization parameter µ∗

can be easily concluded using the resulting n∗λ∗ that we adopt.
A pseudo-code of the algorithm is reported in Appendix F.

V. COMPARISON WITH THE ERROR FRAMEWORK

Given that the proposed AoII framework incorporates both
an information aspect (through the function g(·, ·)) and a time-
aspect (through the function f(·)), an interesting question is
how such a framework compares to the standard error-based
measure approach?. This section answers this question by
comparing the performance of both the error-optimal policy
and the AoII-optimal policies. Interestingly, we can obtain the
error-optimal transmission policy π∗e by adopting the following
function ferror(St) = 1 if St 6= 0 and f(0) = 0, and applying
Theorem 2. By doing so, we minimize the long-term average
of the error measure dt depicted in Section III. Let us now
consider a simple setting where the communication goal can
be written as f1(St) = St, and let π∗a denote the corresponding
AoII-optimal policy. Moreover, suppose that α = 0.2, β = 0.9
and ps = 0.8. We compare the two policies in terms of
average AoII (i.e., communication goal utility) and average
error below. We also report the optimal thresholds for each
policy.
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δ AoIIπ∗a AoIIπ∗e Errorπ∗a Errorπ∗e n∗π∗a n∗π∗e
0.05 4.5 8.1 0.85 0.85 13 1
0.1 3.1 7.4 0.8 0.8 8 1
0.4 1 2.5 0.6 0.6 2 1

TABLE II: Performance comparison between π∗a and π∗e .

Interestingly, the AoII-optimal policy achieves the same error
performance as the error-optimal policy (i.e., the AoII-optimal
policy is also error-optimal). On the other hand, the error-
optimal approach is not AoII-optimal, as seen by the two
policies’ performance gap. This was first observed numerically
in the work of Clement et al. [20] and our work here provides
a rigorous understanding of this phenomena. To see this more
clearly, we recall that ferror(·) is bounded. With this in mind,
we distinguish between two cases
• δ > ϑ = 1−α

2−α−a : In this case, the error-optimal policy is
to send an update whenever St 6= 0 (Theorem 2). In other
words, the update rate is not restrictive, and one can send
an update whenever St 6= 0 without violating it. It is easy
to see that the error-optimal and AoII-optimal policies will
coincide in this case.

• δ < ϑ = 1−α
2−α−a : In this more interesting case, we can see

that the error-optimal policy consists in sending a packet
whenever St 6= 0 with a probability 1 − µ∗. By doing so,
the update rate constrained is satisfied with equality. On the
other hand, the AoII-optimal policy is more elaborate than
this. In fact, the AoII-optimal policy will depend on the
instantaneous value of St, not on just whether or not it is
equal to 0 or 1. Specifically, as seen in Theorem 2, the AoII-
optimal policy will alternate between two thresholds n∗λ∗−1
and n∗λ∗ in a way to satisfy the update rate with equality.
Given that the AoII-optimal policy will only send packets
when St 6= 0 while satisfying the update rate constraint with
equality, we can conclude that it is also error-optimal.

Therefore, one can see that the AoII-optimal policy is more
elaborate and that it is error-optimal. With that in mind, we
can lay out the following conclusion.

Conclusion 1. Adopting AoII-optimal policies minimizes the
average error while also helping achieve the communication’s
goal. On the contrary, the converse is not necessarily true.

VI. NUMERICAL RESULTS

In this section, we provide real-life applications of the AoII
and compare the performance between the AoII-optimal, the
AoI-optimal [34], and the error-optimal schemes.

A. Video Streaming

We consider a transmitter-receiver pair where real-time
video stream packets encoded using the standard MPEG-4
AVC (Advanced Video Coding) scheme are sent from one
end to the other . Time is slotted and normalized to the slot
duration (i.e., the slot duration is taken as 1). The video stream
comprises frames, each of which is a 1-D vector of length M
in line-scan order. The stream’s total duration is T timeslots.

At each timeslot, a frame of the video stream is sent by the
transmitter side. We suppose that the channel at timeslot t
is Xt, and its estimate at the transmitter’s side is X̂t. The
transmitter can send pilot signals and learn the channel at the
beginning of each timeslot. However, this training succeeds
with a probability 0 < ps < 1 and incurs a cost, knowing that
an average cost budget δ cannot be surpassed. As explained
in Section III, by adopting a Markovian channel model, it
can be shown that without channel learning, the process dt
can be modeled using a Markov chain. We suppose that this
chain’s parameters are α and β as previously depicted in earlier
sections. We assume that the receiver successfully decodes
packets if dt = 0 and a transmission error occurs otherwise.
At the receiver, we assume a simple loss concealment scheme
where the lost frame due to a transmission error is replaced by
the previous frame. The error propagation process is modeled
with a geometric attenuation factor resulting from spatial
filtering. Let us assume that each error introduces an initial
error power γ, and the cross-correlation factor between each
successive error is ρ. By following the derivations in [25],
we can show that the video distortion model provided in [25]
is a special case of the AoII where f(0) = 0 and for any
St = S > 0, we have

f(S) = γS(α0 + (S − 1)(τ + ρ(S − 1) + cρ(S − 2))), (36)

where τ = 1 +α0ρ+ c, and (α0, c) are two parameters of the
video stream. It is important to note that the channel training
goal is to minimize the total average distortion of the receiver’s
video signal. We are not interested in having fresh estimates
of Xt (AoI metric) or minimizing the channel prediction
error (standard error metric). Therefore, we can see how by
tweaking the function f(.), the AoII allows us to capture
the channel training’s goal. To highlight our AoII approach’s
benefits, we compare it to the AoI and the standard error-
based frameworks for this particular scenario. Specifically, we
evaluate the average video distortion resulting from adopting
the optimal policies for these different metrics. We consider
α = 0.5, β = 0.8, ps = 0.8, T = 106, ρ = 0.8, c = 2,
γ = 1, and α0 = 4. As seen in Fig. 5a, the AoII-optimal
policy outperforms the two other policies for any δ.

B. Machine Overheating

In this scenario, we assume that a transmitter informs a
remote monitor about whether or not the monitored electrical
machine is overheating. An abnormal increase in temperature
in electrical devices creates thermal stress on the machine,
leading to the breakdown of the electrical insulation (e.g.,
motor winding insulation). This itself will lead to an even-
tual malfunction of the machine. Therefore, the transmitter
needs to inform the monitor of the temperature’s status and
solicit instructions to minimize the probability of the machine
malfunction. We suppose that the transmitter is limited on
how often it can update the monitor. The average update rate
allowed is δ. We consider that dt = 1 when the machine
is overheating at time t and dt = 0 otherwise. We also
assume that dt evolves as a Markov chain, and its parameters
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(c) Fire monitoring.
Fig. 5: Illustrations of different simulations.

are α and β. Following the study in [35], the probability of
an insulation breakdown under temperature stress follows a
Weibull distribution. Precisely,

Pr(Breakdown time < t) = 1− exp(−(t/γ)ρ), (37)

where γ and ρ are parameters that depend on the ma-
chine’s characteristics. When there is no temperature stress,
the breakdown probability is negligible. The communication
goal is to choose the update times such that the probability
of a breakdown since the stress was applied is minimized.
We can see that this probability is a special case of the
AoII where f(0) = 0, and for any St = S > 0, we
have f(S) = 1 − exp(−(S/γ)ρ). We evaluate the average
breakdown probability that results from adopting the optimal
policies for the standard three metrics. We consider α = 0.2,
β = 0.9, ps = 0.8, ρ = 1, and γ = 1. As seen in Fig. 5b,
the AoII-optimal policy outperforms the two other policies for
any δ.

C. Fire Monitoring

Contrary to the previous cases, we consider an application
outside the scope of traditional communication networks.
Specifically, we consider a scenario where fires happen in-
dependently and fire stations have to respond to them. Ac-
cordingly, this application falls under the decision problems
umbrella. As found by the UK fire research station, the spread
of fire can be represented through an exponential statistical
model [36]. Specifically,

F (t) = min{Fmax;Finit exp(γ(t− tfire))}, (38)

where F (t) is the amount of fire damage at time t since
ignition, Finit is the initial ignite damage, γ is the fire growth
parameter, Fmax is the maximum possible damage, and tfire
is the ignition time. Given the restricted resources, the fire
stations are limited on how often they can respond to fires,
as an average response rate of δ cannot be surpassed. We
consider that dt = 1 when a fire is happening at time t
and dt = 0 otherwise. We also assume that dt evolves as a
Markov chain, and its parameters are α and β such that β = 1.
The goal is to minimize the total average fire damage. Using
(38), we can see that the fire damage is a special case of the
AoII where f(0) = 0, and for any St = S > 0, we have

f(S) = min{Fmax;F0 exp(γS)}. We evaluate the average
fire damage that results from adopting the AoII-optimal and
the error-optimal policies. We consider α = 0.2, ps = 1,
Fmax = 10, γ = 0.1, and Finit = 1. As seen in Fig. 5c,
the AoII-optimal policy outperforms the error approach for
any δ. This example shows that the AoII is not restricted to
communication networks and can be utilized in various other
frameworks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown how the AoII metric enables
semantics-empowered communication, where the communi-
cation’s goal is taken into account. Additionally, we have
developed an optimal transmission policy that minimizes the
AoII, and we showcased its substantial performance advan-
tages. Future research directions include the extension to more
general information source models, examining continuous-
time systems, investigating multi-user scenarios, and providing
even a broader range of real-life applications of the AoII.
Additionally, the implementation of the AoII in real-life envi-
ronments and addressing the challenges that arise in deriving
the optimal sampling policy and the estimation of the penalty
functions f(·) and g(·, ·)) through ML techniques, in this case,
are to be considered. .
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[14] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-
information vs. value-of-information scheduling for cellular networked
control systems,” in Proceedings of the 10th ACM/IEEE ICCPS, 2019.

[15] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of
incorrect information: A new performance metric for status updates,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228,
2020.

[16] X. Zheng, S. Zhou, and Z. Niu, “Beyond age: Urgency of information for
timeliness guarantee in status update systems,” in 2020 2nd 6G Wireless
Summit (6G SUMMIT), 2020, pp. 1–5.

[17] M. Kountouris and N. Pappas, “Semantics-empowered communication
for networked intelligent systems,” IEEE Communications Magazine,
vol. 59, no. 6, pp. 96–102, 2021.

[18] C. E. Shannon and W. Weaver, The Mathematical Theory of Communi-
cation. Urbana and Chicago: University of Illinois Press, 1949.
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APPENDIX A
PROOF OF LEMMA 1

The first step consists of simplifying the Bellman equation.
For the unbounded function class, and given the dynamics
of the system reported in Section III-B, we can rewrite the
Bellman equation as follows

θ + V (0) = min
{
f(0) + αV (0) + (1− α)V (1); f(0) + λ

+ αV (0) + (1− α)V (1)
}
,

θ + V (S) = min
{
f(S) + βV (S + 1) + (1− β)V (0); f(S)

+ λ+ aV (S + 1) + (1− a)V (0)
}
, ∀S ∈ N∗.

(39)

Notice that the upper part of the minimization in (39) is asso-
ciated with choosing ψ = 0, i.e., letting the transmitter idle,
and the lower part with ψ = 1, i.e., initiating a transmission.
To prove the desired results, we leverage the Relative Value
Iteration Algorithm (RVIA) [30]. The RVIA is an iterative
algorithm that calculates the differential cost-to-go function
V (S) of the Bellman equation reported in (24). To that end,
and for any state S ∈ N, let Vt(S) designate the differential
cost-to-go function estimate at iteration t. Also, let us denote
by T (Vt)(S) the mapping obtained by applying the right-hand
side of the Bellman’s equation

T (Vt)(S) = min
ψ∈{0,1}

{
f(S)+λψ+

∑
S′∈N

Pr(S → S′|ψ)Vt(S
′)
}
,

(40)
where Pr(S → S′|ψ) is the transition probability from state
S to S′ given the action ψ. Without loss of generality, we
suppose that V0(S) = 0 for all states S ∈ N and we let S = 0
be the reference point of the algorithm. With that in mind, the
estimate of the differential cost-to-go function is updated as
follows

Vt+1(S) = T (Vt)(S)− T (Vt)(0), ∀S ∈ N. (41)

Note that Vt(0) = 0 holds for all iterations t. As stated in
[30, Proposition 3.1], the above algorithm converges to the
differential cost-to-go function V (S) (i.e., limt→+∞ Vt(S) =
V (S), ∀S ∈ N). Accordingly, if we can show the non-
decreasing property of Vt(S) for any time t ∈ N, then we can
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assert that this property also holds for the differential cost-to-
go function. Therefore, our goal is to show that

Vt(S2) ≥ Vt(S1), ∀t ∈ N,∀S2 ≥ S1 > 0. (42)

Note that we restrict our attention to non-zero states since
Vt(0) = 0 for any t ∈ N. We prove the non-decreasing prop-
erty reported in (42) by induction. First, given that V0(S) = 0
for all states S ∈ N, the above property holds for t = 0. Next,
we suppose that the property holds up till iteration t > 0. By
investigating eq. (39) for S = 0, we can see that the optimal
action is to stay idle. Therefore, we have

T (Vt)(0) = f(0) + (1− α)Vt(1). (43)

Therefore, we can rewrite the update rule of the RVIA as

Vt+1(S) = T (Vt)(S)−f(0)−(1−α)Vt(1), ∀S ∈ N∗. (44)

Next, given the system’s dynamics reported in Section III-B,
we can conclude that

T (Vt)(S1) = min
{
f(S1) + βVt(S1 + 1); f(S1)

+ λ+ aVt(S1 + 1)
}
,

T (Vt)(S2) = min
{
f(S2) + βVt(S2 + 1); f(S2)

+ λ+ aVt(S2 + 1)
}
. (45)

Using the above equations, and by leveraging our assumption
on Vt(·) and the non-decreasing property of f(·), we can
deduce that Vt+1(S2) ≥ Vt+1(S1), ∀t ∈ N,∀S2 ≥ S1 > 0.

Concerning the bounded function case, we first note that
the equations in (39) hold for any S ∈ S\{Sthresh}. Moreover,
we have

θ + V (Sthresh) = min
{
f(Sthresh) + βV (Sthresh) + (1− β)V (0);

f(Sthresh) + λ+ aV (Sthresh) + (1− a)V (0)
}
.

(46)

By following the same analysis as the one done in the
unbounded case, we can prove that V (·) is also non-decreasing
in the bounded function case. This concludes our proof.

APPENDIX B
PROOF OF PROPOSITION 1

Let us first focus on the unbounded function case. To
establish the optimal policy of problem (23), one has to
recourse to solving the Bellman equation. However, without
any knowledge of the optimal policy structure, deriving a
closed-form expression of V (·) can be challenging. To address
these challenges, we recall that the RVIA allows us to find
the differential cost-to-go function iteratively. To that end, let
us define V 1

t+1(S) and V 0
t+1(S) as the differential cost-to-go

function estimate by the RVIA at iteration t+ 1 if the optimal
action is ψ = 1 and ψ = 0 respectively. Given the RVIA
update rule reported in (44), we have

V 1
t+1(S) = f(S)+λ+aVt(S+1)−f(0)−(1−α)Vt(1),∀S ∈ N∗,

(47)
V 0
t+1(S) = f(S)+βVt(S+1)−f(0)−(1−α)Vt(1), ∀S ∈ N∗.

(48)

Next, we let ∆Vt+1(S) = V 1
t+1(S)− V 0

t+1(S). Therefore, we
have

∆Vt+1(S) = λ+ (a− β)Vt(S + 1), ∀S ∈ N∗. (49)

By definition, the sign of ∆Vt+1(S) allows us to conclude the
optimal action that minimizes the Right Hand Side (RHS) of
the update rule reported in (44). For example, if ∆Vt+1(S) ≥
0, then the minimum of the RHS in (44) is achieved for
ψ = 0 and vice-versa. Note that, as we explained previously
in Section III-B, we have a < β. Moreover, we recall the
results of Lemma 1 where we have shown that Vt(S + 1) is
a non-decreasing function of S for all t ∈ N. With these two
things in mind, we can conclude that ∆Vt+1(S) is nothing but
the sum of a non-negative constant λ, and a non-increasing
negative function (a − β)Vt(S + 1). Knowing that the RVIA
converges to the differential cost-to-go function V (·) when
t→ +∞, we can deduce that the optimal action is increasing
with S from ψ = 0 to ψ = 1. In other words, the difference
∆V (S) decreases with S, and at a certain point, it could
change sign and becomes negative. When that happens, the
action of transmitting becomes more beneficial than remaining
idle. Therefore, we can conclude that the optimal transmission
policy is of a threshold nature.

As for the bounded function case, the same analysis holds,
and ∆Vt+1(S) is the sum of a non-negative constant λ and a
non-increasing negative function for any S ∈ S. Accordingly,
the difference ∆V (S) also decreases with S and, at a certain
point, it could change sign and become negative. When that
happens, the action of transmitting becomes more beneficial
than remaining idle. However, the subtle difference with the
unbounded function case is that the sign’s change might not
happen. In this case, the optimal policy is to never transmit a
packet. This is a natural consequence of the finite state space
assumption resulting from the boundedness of the function. In
fact, λ can be significantly high that letting the system evolve
on its own becomes optimal.

APPENDIX C
PROOF OF THEOREM 1

As always, we start by investigating the unbounded function
case. Given that the optimal policy is a threshold policy, we
can affirm that an integer value n ∈ N exists such that the
optimal action is ψ = 1 and ψ = 0 when S ≥ n and S < n
respectively. With that in mind, and by utilizing the RHS of
the Bellman equation in (39), we can conclude that

f(S) + βV (S + 1)+(1− β)V (0) > f(S) + λ

+ aV (S + 1) + (1− a)V (0), ∀S ≥ n.
(50)

Without loss of generality, we suppose in the sequel that
V (0) = 0. To that end, and by rearranging the above terms,
the following condition for activity can be deduced

V (S + 1) >
λ

β − a
. (51)
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V (S) =



0 if S = 0

−θ′n(1−β
n−S)

1−β +
n−S∑
k=1

f(n− k)βn−S−k + βn−SV (n) if 1 ≤ S ≤ n− 1

−θ′n+λ
1−a +

Sthresh−1∑
k=S

f(S)ak−S +
aSthresh−Sf(Sthresh)

1−a if n ≤ S ≤ Sthresh − 1

−θ′n+λ
1−a +

f(Sthresh)
1−a if S = Sthresh

θ′n =

f(0)
1−α +

n−1∑
k=1

f(n− k)βn−k−1 + βn−1
Sthresh−1∑
k=n

f(k)ak−n + λβn−1

1−a + βn−1 a
Sthresh−Sf(Sthresh)

1−a

1
1−α + 1−βn−1

1−β + βn−1

1−a

TABLE III: Expressions of V (S) and θ′n for the bounded function case.

In other words, the optimal action is to transmit whenever
the system is in a state S that verifies the above condition.
Given the threshold property of the optimal policy, the Bellman
equation can be rewritten for any state S ≥ n as follows

V (S) = −θn + λ+ f(S) + aV (S + 1), ∀S ≥ n. (52)

Note that we add the subscript n to θ to indicate that the
average cost θ results from adopting the threshold n. By
following a forward induction, we obtain

V (S) = (−θn+λ)(1+a+a2+. . .)+

+∞∑
k=S

f(k)ak−S , ∀S ≥ n.

(53)
Given that a < 1, we can invoke the geometric series sum
property to end up with

V (S) =
−θn + λ

1− a
+

+∞∑
k=S

f(k)ak−S , ∀S ≥ n. (54)

Given the above equation, we can particularly conclude that

V (n) =
−θn + λ

1− a
+

+∞∑
k=n

f(k)ak−n. (55)

Next, we investigate the case where the system is in a state
S < n. For any state S < n, the optimal action is to remain
idle. Hence, using the the Bellman equation, we obtain

V (S) =

{
−θn + f(S) + βV (S + 1), if 1 ≤ S < n,
−θn+f(0)

1−α + V (1), if S = 0.
(56)

By following a backward induction, we wind up with the
following identity for any 1 ≤ S < n

V (S) =
−θn(1− βn−S)

1− β
+

n−S∑
k=1

f(n−k)βn−S−k+βn−SV (n).

(57)
Knowing that V (0) = 0, and by using eq. (56), we get

V (1) =
θn − f(0)

1− α
. (58)

Using the expression of V (n) in (55), and by replacing S with
1 in eq. (57) and equating it to V (1) in (58), we end up with
the following relationship between θn, λ, and n

θn =

f(0)
1−α +

n−1∑
k=1

f(n− k)βn−k−1 + βn−1
+∞∑
k=n

f(k)ak−n + λβn−1

1−a

1
1−α + 1−βn−1

1−β + βn−1

1−a
(59)

This fundamental relationship will be pivotal to our subsequent
analysis to find the threshold n. The next step revolves around
deriving a criterion that will allow us find n. To that end, we
recall the activity condition reported in (51). Given that n is
the threshold, we can assert that

V (n) ≤ λ

β − a
< V (n+ 1). (60)

Therefore, it is sufficient to find the value n that verifies the
above equation. This is however easier said than done as one
has to prove the existence of such a solution. To proceed in
this direction, we recall the results of Lemma 1 where we
have shown that V (·) is a non-decreasing function. With that in
mind, we recall that the function f(·) is unbounded. Therefore,
by leveraging the limit definition, we have

∀M > 0, ∃S0 : ∀S ≥ S0, f(S) > M. (61)

Using the above property of f(·) and the expression of V (n)
in (55), we can show that

∀M ′ > 0, ∃S′0 : ∀S′ ≥ S′0, V (S′) > M ′. (62)

Therefore, a solution to eq. (60) exists in this case. In
particular, the optimal threshold is

n∗ = sup{n ∈ N : V (n) ≤ λ

β − a
} = sup{n ∈ N :

−θn(β − a) + λ(β − 1)

(1− a)(β − a)
+

+∞∑
k=n

f(k)ak−n ≤ 0}

= inf{n ∈ N∗ : H(n) > 0} − 1, (63)

H(n) =
−θn(β − a) + λ(β − 1)

(1− a)(β − a)
+

+∞∑
k=n

f(k)ak−n. (64)

To understand the intuition behind these results, we recall that
λ can be seen as a penalty paid for transmitting a packet. As
f(·) is unbounded when S → +∞, we can deduce that no
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matter how high λ is, transmitting a packet will eventually
become the optimal action.

Let us now investigate the bounded function case. To that
end, similarly to the previous case, we suppose that the optimal
threshold is equal to n ∈ S. Following the same analysis
above, we end up with the expressions of V (.) and θ′n reported
in Table III. Moreover, from the Bellman equation, we can
conclude that the activity condition is

V (S + 1) >
λ

β − a
, ∀S ∈ S \ {Sthresh},

V (Sthresh) >
λ

β − a
, S = Sthresh. (65)

Given the above condition, we can conclude that if it is optimal
to transmit when S = Sthresh, then it is also optimal to transmit
when S = Sthresh−1. Accordingly, we focus on n being in the
set S\{Sthresh}. With the above activity condition in mind, the
threshold n ∈ S \ {Sthresh} is simply the first state that verifies
V (n+ 1) > λ

β−a . In other words,

n∗ = inf{n ∈ S \ {0} : H ′(n) > 0} − 1, (66)

H ′(n) =
−θ′n(β − a) + λ(β − 1)

(1− a)(β − a)
+

Sthresh−1∑
k=n

f(k)ak−n+

aSthresh−Sf(Sthresh)

1− a
. (67)

Now, unlike the unbounded function case, an interesting
phenomenon can take place here: the activity penalty λ can
be so high that it is optimal to simply not transmit, even if
S is high. In other words, transmitting a packet will cost us
more than letting the system evolve on its own without any
intervention. Our aim becomes to characterize this regime and
derive a condition on λ to know when this phenomenon occurs.
If a threshold exists, it can be found using eq. (66). Therefore,
if H ′(Sthresh) ≤ 0, then the optimal policy is to stay idle. In
other words, if

λ ≥
(β − a)(f(Sthresh)− θ′Sthresh

)

1− β
, (68)

then the optimal policy is to stay idle. On the other hand, if λ
does not verify the above inequality, then the optimal policy
is a threshold policy where the threshold can be found using
eq. (66).

APPENDIX D
PROOF OF PROPOSITION 2

To proceed with our proof, we recall that the optimal
transmission policy π∗λ is a threshold policy with a threshold
n∗λ. Trivially, if n∗λ = 0, a packet transmission is initiated
at each timeslot and Cπ∗λ = 1. In the case where n∗λ > 0,
we note that the system’s state St evolves as a Discrete-Time
Markov Chain (DTMC) reported in Fig. 6. Note that we first
focus on the case of unbounded function f(·). By leveraging

Fig. 6: The states transitions given a fixed threshold.

the general balance equations, we can show that the stationary
distribution of the DTMC is

σ0(n∗λ) =
1

1 + (1−α)(1−βn
∗
λ )

1−β + (1−α)aβn
∗
λ
−1

1−a

,

σk(n∗λ) =

{
(1− α)βk−1σ0(n∗λ), if 1 ≤ k ≤ n∗λ,
(1− α)βn

∗
λ−1ak−n

∗
λσ0(n∗λ), if k ≥ n∗λ + 1.

(69)

Given the above expressions, and knowing that Cπ∗λ =
+∞∑
k=n

σk(n∗λ), we can obtain the results of the proposition. By

following a similar analysis for the bounded function case,
we can show that the stationary distribution has the following
expression

σ0(n∗λ) =
1

1 + (1−α)(1−βn
∗
λ )

1−β + (1−α)aβn
∗
λ
−1

1−a

,

σk(n∗λ) =


(1− α)βk−1σ0(n∗λ), if 1 ≤ k ≤ n∗λ,
(1− α)βn

∗
λ−1ak−n

∗
λσ0(n∗λ),if n∗λ + 1 ≤ k ≤ Sthresh

(1− α)βn
∗
λ−1 aSthresh−n

∗
λ

1−a σ0(n∗λ),if k = Sthresh.

(70)

Next, we demonstrate that the average update rate Cπ∗λ =
Sthresh∑
k=n

σk(n∗λ) has the same expression as the unbounded case

for n∗λ ∈ S. Note that, the average update rate is equal to 0
when n∗λ > Sthresh.

APPENDIX E
PROOF OF THEOREM 2

Let us first study the unbounded function case. To establish
our theorem, we need to show that the constrained problem
reported in (20) verifies key properties listed in the assump-
tions of [32, Theorem 2.5]. To do so, let R(s,G) be the class
of policies such that

Pr(St ∈ G for some t ≥ 0|S0 = s) = 1, (71)

and the expected time msG of a first passage from s to G is
finite. Let R∗(s,G) be the class of policies π ∈ R(s,G) such
that, in addition, the expected AoII and update cost of a first
passage from s to G are finite. We can now prove that our
problem verifies the assumptions.

Assumption 1 - For all r > 0, the set G(r) = {s : there ex-
ists an action ψ such that f(s)+ψ ≤ r} is finite: To prove this
assumption, we note that f(·) is a non-decreasing unbounded
function. Accordingly, given that limS→+∞ f(S) = +∞, we
have

∀M > 0, ∃S′ : ∀S ≥ S′, f(S) > M. (72)
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Given that ψ ∈ {0, 1}, we set M = r to deduce that G(r) ⊆
[0, S′ − 1], which is a finite set.

Assumption 2 - There exists a stationary policy π such that
it induces a Markov chain where the state space consists of
a single (nonempty) positive recurrent class R and a set U
of transient states such that π ∈ R∗(i, R), for i ∈ U , and
both the average AoII and update rate are finite: To prove
this assumption, we consider the always update policy πau
that transmits a packet at each timeslot. Given the system’s
dynamics reported in Section III-B, we can conclude that the
state space of the Markov chain induced by this policy consists
of a single recurrent class R = N (the transient set U is
empty). Moreover, we have Cπ = 1 and, given the assumption
on f(·) found in (19), we can deduce that the average AoII
of πau is finite.

Assumption 3 - Given any two states S1 6= S2, there exists
a policy π such that π ∈ R∗(i, j): To prove this assumption,
let us suppose without loss of generality that S2 ≥ S1. By
considering the always update policy, we can see that there
is a non-zero probability to go from state S1 to state S2 and
vice-versa. The expected AoII and update costs of the first
passage from S1 to S2 (or vice-versa) are trivially finite.

Assumption 4 - If a stationary policy π has at least one
positive recurrent state, then it has a single positive recurrent
class R. Moreover, if 0 6∈ R, then π ∈ R∗(0, R): To show
this, we simply note that whatever the transmission policy is,
there is a non-zero probability to go from any state S ∈ N∗
to state 0 and vice-versa. Therefore, any recurrent class must
contain the state 0. Hence, we can conclude that there can
only be one single positive recurrent class.

Assumption 5 - There exists a policy π such that the
average AoII is finite and Cπ < δ: To show this, we can
consider a threshold policy πn0 where the threshold n0 =
inf{n : N : Cπn < δ}. Note that the update rate Cπn is
strictly decreasing with n [32], which ensures the existence of
n0. Given the assumption on f found in (19), we can conclude
that the AoII is finite.

Given the above assumptions, we can leverage the results
of [32] (in particular, Theorem 2.5, Proposition 3.2, Lemma
3.4, and Lemma 3.9). These results affirm that the optimal
transmission policy of the constrained problem is a mixture
of two policies such that

• The two policies coincide with those of the optimal policy
of problem (22) for a certain λ∗ ≥ 0, but differ in at most
a single state.

• λ∗ is defined as λ∗ , inf{λ ∈ R+ : Cπ∗
λ∗
≤ δ}.

• The parameter µ∗ ∈ [0, 1] ensures that the update rate
constraint is verified with equality.

Given the above results, we can conclude the statements of
our theorem.

As for the bounded function case, we first discuss the
validity of Hypothesis 2.2 and Hypothesis 4.1 of [33] for our
problem. To that end, we have:

Hypothesis 2.2. - For any stationary policy, the state 0 is
accessible from any S ∈ S: This hypothesis holds for our

problem as seen in the system’s dynamics reported in Section
III-B.

Hypothesis 4.1. - Let Π̃ denote the set of optimal policies
for the unconstrained version of the problem in eq. (20).
Suppose that Cπ̃ > δ for every π̃ ∈ Π̃ and that there exists
a stationary policy π̂ such that Cπ̂ < δ: First, it is easy to
see that the never transmit policy π̂ has an average update
rate Cπ̂ = 0. Next, a careful investigation of this hypothesis
is needed as there could be cases where Cπ̃ ≤ δ. To see
this more clearly, consider the stationary policy π̃ where a
transmission is initiated only when St 6= 0. By using the
expression provided in Proposition 2, it can be shown that
Cπ̃ = 1−α

2−α−a . Moreover, given the system’s dynamics, the
Bellman equation in state 0 for the unconstrained version of
the problem in eq. (20) can be written as follows

θ′ + V ′(0) = min
{
f(0) + αV ′(0) + (1− α)V ′(1); f(0)

+ αV ′(0) + (1− α)V ′(1)
}
. (73)

In other words, transmitting a packet in state S = 0 does not
have any impact on the performance. Therefore, if δ ≥ 1−α

2−α−a ,
then the constraint becomes redundant and the AoII optimal
policy can be obtained by transmitting whenever S 6= 0.
Now, let us focus on the case where δ < 1−α

2−α−a . In this case,
the two hypotheses hold. Let us define λ∗ , inf{λ ∈ R+ :
Cπ∗

λ∗
≤ δ}. By using Theorem 4.4 [33], we can deduce that

the optimal transmission policy of the constrained problem is
a mixture of two policies such that
• The two policies coincide with those of the optimal policy

of problem (22) for λ∗ ≥ 0, but differ in at most a single
state.

• The parameter µ∗ ∈ [0, 1] ensures that the update rate
constraint is verified with equality.

Given the above results, we can conclude the statements of
the theorem.
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APPENDIX F
ALGORITHMS PSEUDO-CODE

Algorithm 1 AoII Optimal Policy - Unbounded Function

1: Input: the system’s parameters α, β, ps, δ and the convergence tolerance ε
2: if δ = 1 then skip the algorithm and transmit at every timeslot t
3: else
4: Init. λmin ← 0, λmax ← 1
5: n∗λmax

← FindThreshold(α, β, ps, λmax)
6: C ← Cπ∗λmax

using Proposition 2
7: while C > δ do
8: λmin ← λmax, λmax ← 2λmax
9: n∗λmax

← FindThreshold(α, β, ps, λmax)
10: C ← Cπ∗λmax

using Proposition 2
11: end while
12: ξ ← λmin+λmax

2
13: while |ξ − λmax| > ε do
14: n∗ξ ← FindThreshold(α, β, ps, ξ)
15: C ← Cπ∗ξ using Proposition 2
16: if C > δ then λmin ← ξ
17: else λmax ← ξ
18: end if
19: end while
20: λ∗ ← ξ

21: if C > δ then n∗λ∗ ← n∗ + 1, Cπ∗
λ∗,1
← C, Cπ∗

λ∗,2
← (1−α)β

n∗
λ∗−1

(1−a)(1+
(1−α)(1−β

n∗
λ∗ )

1−β +
(1−α)aβ

n∗
λ∗−1

1−a )

22: else n∗λ∗ ← n∗, Cπ∗
λ∗,2
← C

23: if n∗ = 1 then Cπ∗
λ∗,1
← 1

24: else n∗ ← n∗ − 1

25: Cπ∗
λ∗,1
← (1−α)βn

∗−1

(1−a)(1+
(1−α)(1−βn∗ )

1−β +
(1−α)aβn

∗−1

1−a )

26: end if
27: end if
28: µ∗ ←

δ−Cπ∗
λ∗,2

Cπ∗
λ∗,1
−Cπ∗

λ∗,2
29: Output: n∗λ∗ , µ∗
30: end if
31: procedure FINDTHRESHOLD(α, β, ps, λ)
32: Init. NLB ← 1, NUB ← 1
33: while H(NUB) ≤ 0 do
34: NLB ← NUB , NUB ← 2NUB
35: end while
36: n′ ←

⌈
NLB+NUB

2

⌉
37: while n′ < NUB do
38: if H(n′) ≤ 0 then NLB ← n′

39: else NUB ← n′

40: end if
41: n′ ←

⌈
NLB+NUB

2

⌉
42: end while
43: Output: the optimal threshold n∗λ ← n′ − 1
44: end procedure
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Algorithm 2 AoII Optimal Policy - Bounded Function

1: Input: the system’s parameters α, β, ps, δ, Sthresh and the convergence tolerance ε
2: if δ ≥ 1−α

2−α−a then skip the algorithm and transmit at every timeslot t when St 6= 0
3: else
4: Init. λmin ← 0, λmax ← 1
5: n∗λmax

← FindThreshold(α, β, ps, λmax)
6: C ← Cπ∗λmax

using Proposition 2
7: while C > δ do
8: λmin ← λmax, λmax ← 2λmax
9: n∗λmax

← FindThreshold(α, β, ps, λmax), C ← Cπ∗λmax
using Proposition 2

10: end while
11: ξ ← λmin+λmax

2
12: while |ξ − λmax| > ε do
13: n∗ξ ← FindThreshold(α, β, ps, ξ), C ← Cπ∗ξ using Proposition 2
14: if C > δ then λmin ← ξ
15: else λmax ← ξ
16: end if
17: end while
18: λ∗ ← ξ
19: if C > δ then n∗λ∗ ← n∗ + 1, Cπ∗

λ∗,1
← C,

20: if n∗λ∗ = Sthresh + 1 then Cπ∗
λ∗,2
← 0

21: else Cπ∗
λ∗,2
← (1−α)β

n∗
λ∗−1

(1−a)(1+
(1−α)(1−β

n∗
λ∗ )

1−β +
(1−α)aβ

n∗
λ∗−1

1−a )

22: end if
23: else n∗λ∗ ← n∗, Cπ∗

λ∗,2
← C

24: if n∗ = 1 then Cπ∗
λ∗,1
← 1

25: else n∗ ← n∗ − 1

26: Cπ∗
λ∗,1
← (1−α)βn

∗−1

(1−a)(1+
(1−α)(1−βn∗ )

1−β +
(1−α)aβn

∗−1

1−a )

27: end if
28: end if
29: µ∗ ←

δ−Cπ∗
λ∗,2

Cπ∗
λ∗,1
−Cπ∗

λ∗,2
30: Output: n∗λ∗ , µ∗
31: end if
32: procedure FINDTHRESHOLD(α, β, ps, λ)
33: if λ ≥ (β−a)(f(Sthresh)−θSthresh )

1−β then n∗λ ← Sthresh + 1
34: else
35: Init. NLB ← 1, NUB ← 1
36: while H ′(NUB) ≤ 0 do
37: NLB ← NUB , NUB ← min{2NUB , Sthresh}
38: end while
39: n′ ←

⌈
NLB+NUB

2

⌉
40: while n′ < NUB do
41: if H ′(n′) ≤ 0 then NLB ← n′

42: else NUB ← n′

43: end if
44: n′ ←

⌈
NLB+NUB

2

⌉
45: end while
46: end if
47: Output: the optimal threshold n∗λ ← n′ − 1
48: end procedure
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