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Regularized Zero-Forcing Aided Hybrid
Beamforming for Millimeter-Wave Multi-user

MIMO Systems
H. Yu1,2, H. D. Tuan2, E. Dutkiewicz2, H. V. Poor3, and L. Hanzo4

Abstract—This paper considers hybrid beamforming consisting
of analog beamforming (ABF) coupled with digital baseband
beamforming (DBF) which is designed for multi-user (MU) mul-
tiple input multiple output (MIMO) millimeter-wave (mmWave)
communications. ABF uses a limited number of radio frequency
(RF) chains and finite-resolution phase-shifters to alleviate the
power consumption at the base station (BS), while DBF us-
es either zero-forcing beamforming (ZFB) or regularized zero
forcing beamforming (RZFB) to restrain MU interference. The
joint design of ABF and DBF constitutes a computationally
challenging mixed discrete continuous optimization problem. The
paper develops efficient algorithms for its solution, which iterate
scalable-complex expressions. Furthermore, we conceive a new
class of MU RZFB for attaining higher rates. Simulations are
provided to demonstrate the viability of the proposed algorithms
and the advantages of the conceived RZFB.

Index Terms—Multi-user multiple-input-multiple-output
millimeter-wave communications, hybrid beamforming, analog
beamforming with b-bit resolution, zero-forcing beamforming,
regularized zero-forcing beamforming, Brunn-Minkowski
geometry, mixed discrete continuous optimization, scalable
complexity

I. INTRODUCTION

Millimeter-wave (mmWave) communication relies on the
frequency range spanning from 30 GHz to 300 GHz to deliver
gigabit/s rates [1]–[4]. Since the path-loss at these frequencies
tends to be high [5], [6], mitigating the power consumption
becomes a critical issue for mmWave communication [7]–[9].
Hybrid beamforming (HBF) consisting of analog beamforming
(ABF) using a limited number of radio frequency (RF) chains
coupled with digital baseband beamfoming (DBF) has been
proposed for addressing this issue [10], [11]. However, the
design of HBF is challenging, not only because the entries
of the ABF matrix are subject to the unit modulus constraint
but also because the matrix is also of a large scale, which
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imposes high-dimensional nonlinear constraints on the joint
ABF and DBF matrix optimization. In single-user mmWave
systems, the HBF design tends to rely on the product of ABF
and DBF matrices to approximate a fully digital beamforming
matrix [12]–[16].

As a further development, multi-user (MU) mmWave HBF
has been considered in [17]–[24], for example. More par-
ticularly, the problem of sum-rate (SR) maximization was
addressed both in [23] and [24] by invoking computationally
tractable iterative processes, which avoid convex solvers. The
MU interference was not considered in [20] in the alternat-
ing optimization of the ABF matrix. To elaborate a little
further, SR maximization has the weakness that it assigns
high rates/powers to a few selected users having the best
channel conditions and thus leaving other users with near-
to-zero rates. Unfortunately, this impediment cannot be elimi-
nated by imposing a specific minimum user-rate constraint for
ensuring fair rate distributions, because this potentially makes
the optimization problems computationally intractable.

Both zero forcing beamforming (ZFB) and regularized
zero forcing beamforming (RZFB) are suitable for orthogonal
or quasi-orthogonal massive multiple input multiple output
(MIMO) systems [25]–[27]. MmWave communication also
benefits from massive antenna-array, but having a limited
number of RF chains for ABF destroys the orthogonality.1

Hence the design of ZFB and RZFB in HBF is much more
challenging than its spatial multiplexing based massive MIMO
counterpart hence requiring more research [28]–[31]. As the
effective mmWave channels are dependent on the ABF matri-
ces, the works [29]–[31] aim for designing the ABF and DBF
separately. The ABF design of [29], [30] aims for maximizing
the so-called sum signal-to-leakage-plus-noise-ratio (SLNR)
based on the channel covariance under identical fixed-power
transmission, which is not directly related to the users’ rate.
Moreover, this problem is quite complex and is thus simplified
by setting equal SLNRs. The ABF design of [31], which
matches the ABF to the phase of the channel, results in RZFB
that approaches the performance of the optimal fully digital
ZFB in terms of the user’s worst (minimal) rate as long as the
number of RF chains is not lower than the number of users.
All results in [28]–[31] are applicable to single-antenna users
only, who are served by single information streams.

Against the above background, this paper offers the follow-

1Given a limited number of RFs chains, the dimension of the effective
channel vectors of the links spanning from the BS to the users is small.
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ing contributions:
• The joint design of finite resolution ABF and MIMO ZFB

to improve the users’ rates via maximizing their geomet-
ric mean (GM-rate) is proposed. The users are equipped
with multiple antennas to receive multiple information
streams. In contrast to conventional SR maximization,
GM-rate maximization is capable of improving the users’
rate-fairness without explicitly imposing rate constraints.2

The design problem of maximizing the users’ worst rate
is also addressed;

• Based on the Brunn-Minkowski geometry of positive
definite matrices, the joint design of finite resolution ABF
and MIMO RZFB to improve the GM-rate is also devel-
oped. A new MIMO RZFB is proposed for improving the
GM-rate and thus the users’ rates;

• Computationally efficient algorithms, which iterate
scalable-complex expressions, are developed for solving
the resultant problems of mixed discrete continuous op-
timization. The discrete constraints imposed on finite-
resolution ABF are also efficiently dealt with.

In a nutshell, we boldly contrast our novel contributions to the
related literature in Table I.

The paper is organized as follows. Section II is devoted
to the joint design of ABF and MIMO ZFB, while Section
III is dedicated to the joint design of ABF and MIMO
RZFB. Section IV proposes a new MIMO RZFB solution for
improving all users’ rates. The performance of the proposed
designs is evaluated by simulations in Section V, while Section
VI concludes the paper.

Notation. Only the optimization variables are boldfaced.
The inner product between vectors x and y is defined as
〈x, y〉 = xHy. Analogously, 〈X,Y 〉 = trace(XHY ) for
matrices X and Y . We also use 〈X〉 for the trace of X
when X is a square matrix. ||X|| is the Frobenius norm
of the matrix X , which is defined by

√
trace(XHX). [X]2

stands for XXH so ||X||2 = 〈[X]2〉. X � 0 (X � 0, resp.)
means that X is Hermitian symmetric (XH = X) and positive
semi-definite (definite, resp.). Denote by λmax its maximal
eigenvalue. Accordingly, X � Y (X � Y , resp.) means
X − Y � 0 (X − Y � 0, resp.). diag[Ak]k∈K is the diagonal
matrix with the matrices Ak, k ∈ K on its diagonal. In is
the identity matrix of size n × n. For a complex number x,
we denote the argument by ∠x. CNN (0) is the set of proper
(circular) Gaussian variables in CN having zero means. Note
that E(ssT ) = 0 ∀s ∈ CNN (0).

The following matrix inequalities [34], [35], which hold for
all matrices V ∈ Cn×m, V̄ ∈ Cn×m, and positive definite
matrices Y ∈ Cn×n and Ȳ ∈ Cn×n, are frequently used in
the paper:

VHY−1V � V̄ H Ȳ −1V + VH Ȳ −1V̄ − V̄ H Ȳ −1YȲ −1V̄ ,
(1)

and

ln |In + [V]2Y−1| ≥ ln |In + [V̄ ]2Ȳ −1| − 〈[V̄ ]2Ȳ −1〉
+2<{〈V̄ H Ȳ −1V〉}−〈Ȳ −1−

(
[V̄ ]2+Ȳ

)−1
, [V]2+Y〉.(2)

2The GM-rate based fairness has also been interpreted as a manifestation
of proportional fairness (see e.g. [32], [33] and references therein).

One can see that the left hand side (LHS) of the matrix
inequality (1) is a nonlinear form of (V,Y) while the right
hand side (RHS) is a linear form of (V,Y), and they match
at (V̄ , Ȳ ). The LHS of (2) is a log-determinant function of
(V,Y) while the RHS of (2) is a concave quadratic function
of (V,Y), and they match at (V̄ , Ȳ ). Thus, according to [36]
the RHS of (2) provides a tight concave quadratic minorant
for the LHS of (2).

II. JOINT DESIGN OF ABF AND ZFB

Consider a mmWave communication network of a single
base station (BS) serving K downlink users (UEs) having
indices as k ∈ K , {1, . . . ,K}, KN UEs are located near
the BS with indices kN ∈ KN , {1, . . . ,KN}, and the
remaining UEs are located far from the BS with indices kF ,
kF ∈ KF , {KN + 1, . . . ,K}. The BS is equipped with a
massive N -antenna array and NRF RF chains. As such

N � NRF . (3)

Each UE k is equipped with a moderate NR-antenna array.
Let Hk ∈ CNR×N be the channel’s impulse response (CIR)
spanning from the BS to UE k, which is modelled by [12],
[37]

Hk = τ
√

10−ρk/10
Nc∑
c=1

Nsc∑
`=1

αk,c,`ar
(
φrk,c,`

)
aHt
(
φtk,c,`, θ

t
k,c,`

)
,

(4)

where τ =
√

NNR
NcNsc

, Nc and Nsc respectively are the number
of scattering clusters and that of scatterers within each cluster.
Furthermore, αk,c,` is the complex gain of the `th path in the
cth cluster between the BS and UE k, φtk,c,` and θtk,c,` are
the azimuth angle and elevation angle of departure for the
`th path in the cth cluster arriving from the BS at the UE k,
respectively, φrk,c,` is the azimuth angle of arrival for the `th
path in the cth cluster from the BS to UE k, and ρk is the path-
loss (in dB) experienced by UE k. Under a uniform planar
array antenna configuration having half wavelength antenna
spacing with N1 and N2 elements in horizon and vertical,
respectively, the normalized transmit and receive antenna array
response vectors at

(
φtk,c,`, θ

t
k,c,`

)
and ar

(
φrk,c,`

)
are defined

as [12]

at
(
φtk,c,`, θ

t
k,c,`

)
=

1√
N

[
1, ejπ(x sin(φtk,c,`) sin(θ

t
k,c,`)+y cos(θ

t
k,c,`)), . . . ,

ejπ((N1−1) sin(φtk,c,`) sin(θ
t
k,c,`)+(N2−1) cos(θtk,c,`))

]T
,(5)

and

ar
(
φrk,c,`

)
=

1√
NR

[
1, ejπ sin(φrk,c,`),. . ., ej(NR−1)π sin(φrk,c,`)

]T
,

(6)
where we have 0 ≤ x ≤ (N1 − 1) and 0 ≤ y ≤ (N2 − 1).
Similar to the HBF design of [14], [15], [38], in this paper,
it is assumed that perfect channel state information (CSI) is
available at both the transmitter and receiver and that there
is perfect synchronization between them. The CIR can be
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TABLE I: Contrasting our novel contributions to the related literature.

Contents
Literature This work [20], [23], [24] [28] [29], [30] [31]

MIMO mmWave
√

finite resolution ABF
√ √

digital ZFB
√ √ √

digital RZFB
√ √

SR maximization
√ √ √

max-min rate optimization
√

GM-rate maximization
√

zero rate issue
√ √

computational tractability in finite resolution ABF
√

computational tractability for massive antenna-arrays
√ √ √

readily estimated by exploiting the sparsity of the channel in
the angular domain [39]–[41]. Its knowledge is assumed in the
paper.

For N , {1, . . . , N} and NRF , {1, . . . , NRF }, θθθ ,
[θθθn,j ](n,j)∈N×NRF ∈ [0, 2π)N×NRF , let

ΘΘΘ , [eθθθn,j ](n,j)∈N×NRF ∈ CN×NRF

represent the phase shift based ABF matrix. Since having an
infinite resolution for θθθn,j is not practical for the implementa-
tion of mmWave communications [42], we focus our attention
on finite resolution, 3which is represented by the constraint:

θθθn,j ∈ B , {ι2π
2b
, ι = 0, 1, . . . , 2b − 1}, n ∈ N ; j ∈ NRF .

(7)
In what follows, for x ∈ [0, 2π), its projection into B denoted
by bxcb is termed as its b-bit rounded value, i.e. we have:

bxcb = ιx
2π

2b
(8)

in conjunction with

ιx , arg min
ι=0,1,...,2b−1

∣∣∣∣ι2π2b − x
∣∣∣∣ , (9)

which can be readily found as ιx ∈ {ι, ι+1} for x ∈ [ι 2π
2b
, (ι+

1) 2π
2b

]. For b =∞, we have

x = bxc∞. (10)

Upon denoting the baseband signal by x ∈ CNRF , the received
signal of at UE k becomes

yk = HkΘΘΘx+ νk, (11)

where νk is noise having the covariance of σ, which incorpo-
rates both the background noise and other uncertainties, such
as the channel estimation error. The development of robust
designs that rely on imperfect channel state estimation is an
interesting topic for future research.

Let sk ∈ CNNR(0) with E([sk]2) = INR be the infor-
mation intended for UE k, which is processed by a MIMO
beamformer VB

k ∈ CNRF×NR before the BS’s transmission.
For s , (sT1 , . . . , s

T
K)T and

VB =
[
VB

1 . . . VB
K

]
∈ CNRF×(KNR), (12)

3The following comment of an anonymous reviewer is gratefully acknowl-
edged: The phase shifter’s power consumption is determined by that of the
input voltage biasing network as well as by the bandwidth over which the
phase shift is desired.

which is termed as the baseband beamformer, the baseband
signal x in (11) becomes x = VBs. Based on (11), the
corresponding MIMO equation becomes:

y = HΘΘΘVBs+ ν, (13)

where we have:

y ,

 y1. . .
yK

 ∈ CKNR , H ,

H1

. . .
HK

 ∈ C(KNR)×N ,

ν ,

 ν1. . .
νK

 ∈ CKNR .

This section deals with the scenario of NRF > KNR, under
which ZFB exists:

VB = ΘΘΘHHH([HΘΘΘ]2)−1diag[Pk]k∈K,Pk ∈ CNR×NR ,
(14)

leading from (13) to

y = diag[Pksk]k∈K + ν. (15)

For P , diag[Pk]k∈K, the rate of UE k is

rk(Pk) , ln

∣∣∣∣INR +
1

σ
[Pk]2

∣∣∣∣ , (16)

while the transmit power is

π(θθθ,P) , ||ΘΘΘVB ||2 (17)

= 〈HΘΘΘΘΘΘHΘΘΘΘΘΘHHH
[
([HΘΘΘ]2)−1diag[Pk]k∈K

]2〉. (18)

Given the power budget P , the power constraint is

π(θθθ,P) ≤ P. (19)

We consider the following problems:

max
P,θθθ

rGM (P) ,

(∏
k∈K

rk(Pk)

)1/K

s.t. (7), (19), (20)

and

max
P,θθθ

rMM (P) , min
k∈K

rk(Pk) s.t. (7), (19), (21)

where (20) is a geometric mean rate (GM-rate) optimization
problem having an objective function given by the GM of user-
s’ rates, while (21) is a max-min rate optimization problem.
Our recent result [43] shows that GM-rate optimization helps
to improve all users’ rates in a very fair manner. This feature of
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GM-rate maximization will be underlined in the simulations in
Section V. Both (20) and (21) are computationally challenging
optimization problems of mixed discrete continuous nature
[36].

The next two subsections are devoted to the computational
solution of the GM-rate maximization problem (20), while
the last subsection dedicated to that of the max-min rate
optimization problem (21).

A. ABF design by joint optimization

To address the problem (20), we first approximate the
function π(θθθ,p) in (17) as follows:

π(θθθ,P) ≈ N〈HΘΘΘΘΘΘHHH
[
([HΘΘΘ]2)−1diag[Pk]k∈K

]2〉(22)

= N〈([HΘΘΘ]2)−1, diag
[
[Pk]2

]
k∈K〉, (23)

where for the approximation (22) we used [12] ΘΘΘHΘΘΘ ≈
NINRF . The power constraint (19) is thus approximated by
the following constraint

〈([HΘΘΘ]2)−1, diag
[
[Pk]2

]
k∈K〉 ≤ P/N. (24)

We thus consider the following approximation problem for
(21):

max
P,θθθ

rGM (P) s.t. (7), (24). (25)

To minimize the nonlinearity of the objective function in
(25) as the GM of nonlinear functions, we use the following
equivalent formulation of the max-min optimization4

max
P,θθθ

min∏
k∈K γγγk=1,γγγk>0

[
∑
k∈K

γγγkrk(Pk)] s.t. (7), (24). (26)

In what follows, for nonnegative integer κ we use the notations
θ(κ) , [θ

(κ)
n,j ](n,j)∈N×NRF , Θ(κ) , [eθ

(κ)
n,j ](n,j)∈N×NRF , and

P (κ) = diag[P
(κ)
k ]k∈K.

After initialization by (P (0), θ(0)), for κ = 0, 1, . . . , we
optimize γγγ to have

γ
(κ)
k =

maxk′∈K rk′(P
(κ)
k′ )

rk(P
(κ)
k )

, k ∈ K. (27)

We then iterate (P (κ+1), θ(κ+1)) at the κ-th round by solving
the following problem

max
P,θθθ

r
(κ)
GM (P) ,

∑
k∈K

γ
(κ)
k rk(Pk) s.t. (7), (24). (28)

1) Alternating optimization in P: We will seek P (κ+1)

such that
r
(κ)
GM (P (κ+1)) > r

(κ)
GM (P (κ)). (29)

Applying the inequality (2) yields

rk(Pk) ≥ r
(κ)
k (Pk) (30)

, a
(κ)
k + 2<{〈A(κ)

k Pk〉} − 〈B(κ)
k , [Pk]2〉,(31)

4 1
K

[
∑

k∈K γγγkrk(Pk)] ≥ [
∏

k∈K γγγkrk(Pk)]1/K =

[
∏

k∈K rk(Pk)]1/K with the equality sign at γγγ1r1(Pk) = · · · =
γγγKrK(PK) according to Cauchy’s inequality.

for

a
(κ)
k , rk(P

(κ)
k )− ||P

(κ)
k ||2

σ − σ〈B(κ)
k 〉, A

(κ)
k , 1

σ (P
(κ)
k )H ,

B
(κ)
k , 1

σ INR −
(

[P
(κ)
k ]2 + σINR

)−1
.

(32)
Therefore, we have:

r
(κ)
GM (P) ≥ r̃

(κ)
GM (P) (33)

,
∑
k∈K

γ
(κ)
k r

(κ)
k (Pk)

= a(κ) + 2
∑
k∈K

γ
(κ)
k <{〈A

(κ)
k Pk〉}

−
∑
k∈K

〈γ(κ)k B
(κ)
k , [Pk]2〉, (34)

with a(κ) ,
∑
k∈K γ

(κ)
k a

(κ)
k . Note that we have r(κ)GM (P (κ)) =

r̃
(κ)
GM (P (κ)), so r̃(κ)GM (P) provides a tight minorant for r(κ)GM (P)

[36].
We solve the following convex problem of minorant maxi-

mization to generate P (κ+1):

max
P

r̃
(κ)
GM (P) s.t. 〈([HΘ(κ)]2)−1, [P]2〉 ≤ P/N. (35)

Assuming that R(κ)
k are diagonal blocks of size NR ×NR of

the positive definite matrix ([HΘ(κ)]2)−1, which are positive
definite too [44]. Then (35) admits the following closed-form
solution

P
(κ+1)
k =


(B

(κ)
k )−1(A

(κ)
k )H

if
∑
k∈K ||(R

(κ)
k )1/2(B

(κ)
k )−1(A

(κ)
k )H ||2 ≤ P/N,(

γ
(κ)
k B

(κ)
k + µR(κ)

k

)−1
γ
(κ)
k (A

(κ)
k )Hotherwise,

where µ > 0 is found by bisection such that∑
k∈K ||(R

(κ)
k )1/2

(
γ
(κ)
k B

(κ)
k + µR(κ)

k

)−1
γ
(κ)
k (A

(κ)
k )H ||2 =

P/N .
It follows from (33) that r(κ)GM (P (κ+1)) ≥ r̃

(κ)
GM (P (κ+1))

and then r̃(κ)GM (P (κ+1)) > r̃
(κ)
GM (P (κ)) = r

(κ)
GM (P (κ)) because

P (κ+1) and P (κ) are the optimal solution and a feasible point
for the problem (35). Therefore, (29) is verified, provided that
r
(κ)
GM (P (κ+1)) 6= r

(κ)
GM (P (κ)).

2) Alternating optimization in θθθ: Note that the objective
function in (28) is independent of θθθ, hence the alternating
optimization in θθθ aims for minimizing the power consumption
defined by the right hand side (RHS) of the power constraint
(24):

min
θθθ
〈[P (κ+1)]2, ([HΘΘΘ]2)−1〉 s.t. (7), (36)

which is a complex problem of discrete optimization. We
elaborate further as follows:

〈[P (κ+1)]2, ([HΘΘΘ]2)−1〉
= α〈[ΘΘΘ]2〉 −

(
α〈[ΘΘΘ]2〉 − 〈[P (κ+1)]2, ([HΘΘΘ]2)−1〉

)
= αNNRF − ϕ(θθθ),

where α > 0 is chosen for ensuring that the function ϕ(θθθ) ,
α〈[ΘΘΘ]2〉 − 〈[P (κ+1)]2, ([HΘΘΘ]2)−1〉 is convex in ΘΘΘ [36, Prop.
4.2]. The problem (36) is equivalent to the following problem

max
θθθ

ϕ(θθθ) s.t. (7). (37)
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We now derive a closed-form for the Frank-and-Wolf iteration
(FWI) for concave programming [45]–[47]. In Appendix A,
we show that

ϕ(θθθ) ≥ 2
∑

(n,j)∈N×NRF

ϕ
(κ)
n,j(θθθn,j)− a

(κ) (38)

, ϕ(κ)(θθθ), (39)

for

a(κ) , αNNRF + 3〈[P (κ+1)]2, ([HΘ(κ)]2)−1〉,
B(κ) , (Θ(κ))HHH([HΘ(κ)]2)−1[P (κ+1)]2([HΘ(κ)]2)−1H

B(κ) ∈ CNRF×N ,
(40)

and

ϕ
(κ)
n,j(θθθn,j) , cos

(
∠
(
αe−θ

(κ)
n,j +B(κ)(j, n)

)
+ θθθn,j

)
∣∣∣αe−θ(κ)n,j +B(κ)(j, n)

∣∣∣ ,∈ N ×NRF .
Moreover, ϕ(κ) is a tight minorant [36] of ϕ because
ϕ(θ(κ)) = ϕ(κ)(θ(κ)).

The FWI generates θ(κ+1) by solving the following problem
of discrete optimization

max
θθθ

ϕ(κ)(θθθ) s.t. (7), (41)

which is losslessly decomposed into NNRF independent
subproblems

max
θθθn,j

ϕ
(κ)
n,j(θθθn,j) s.t. (7), (42)

Each subproblem (42) admits the following closed-form solu-
tion

θ
(κ+1)
n,j =[2π−b∠

(
αe−θ

(κ)
n,j+B(κ)(j, n)

)
cb], (n, j)∈N×NRF .

(43)
For θ(κ+1) , [θ

(κ+1)
n,j ](n,j)∈N×NRF , it follows from (39) that

ϕ(θ(κ+1)) ≥ ϕ(κ)(θ(κ+1)) and moreover ϕ(κ)(θ(κ+1)) >
ϕ(κ)(θ(κ)) = ϕ(κ)(θ(κ)), because the former and the latter
are the optimal value and a feasible value for (41). We thus
have

ϕ(θ(κ+1)) > ϕ(θ(κ)), (44)

whenever ϕ(θ(κ+1)) 6= ϕ(θ(κ)), i.e. θ(κ+1) is a better feasible
point than θ(κ) for the problem (37). As such, Algorithm 1
generates a sequence {θ(κ)} of improved feasible points for the
discrete set defined by (7) and converges after a finite number
of iterations. As the computational complexity of (36) and
(43) increases linearly with K and NRF , Algorithm 1 provides
scalable-complex iterations for the computational solution of
(25).

Algorithm 1 Scalable-complex iterations for AFB

1: Initialization: Initialize a feasible (P (0), θ(0)). Set κ = 0.
2: Repeat until convergence of θ(κ): Generate P (κ+1) by

(36) and θ(κ+1) by FWI (43). Reset κ := κ+ 1.
3: Output θopt = θ(κ) and P (κ).

B. MIMO ZFB design for GM-rate maximization

As stated above, the problem (25) is only an approximation
of the problem (20), where the power constraint (19) in (20)
is approximated by the constraint (24). Of course, we can
scale the DBF solution of (25) to satisfy the constraint (19).
Following [48], we can achieve a much better GM-rate by
solving the following optimal baseband beamformers problem

max
P

rGM (P) s.t.
∑
k∈K

〈Rk, [Pk]2〉 ≤ P, (45)

where θopt is found from Algorithm 1, while Rk
are diagonal blocks of size NR of the matrix[
([HΘopt]2)−1HΘopt(Θopt)H

]2
. It should be noted that

unlike (24), which is an approximated power constraint, (45)
provides the exact power constraint.

Let P (κ) be a feasible point for (45) that is found from the
(κ−1)-st iteration and then r(κ)k (Pk) and r̃(κ)GM (P) are defined
from (31) and (33). We solve the following convex problem
to generate P (κ+1):

max
P

r̃
(κ)
GM (P) s.t.

∑
k∈K

〈Rk, [Pk]2〉 ≤ P, (46)

which admits the closed-form solution of

P
(κ+1)
k =


(B

(κ)
k )−1(A

(κ)
k )H

if
∑
k∈K ||(Rk)1/2(B

(κ)
k )−1(A

(κ)
k )H ||2 ≤ P,(

γ
(κ)
k B

(κ)
k + µRk

)−1
γ
(κ)
k (A

(κ)
k )Hotherwise,

where µ > 0 is found by bisection such that∑
k∈K ||(Rk)1/2

(
γ
(κ)
k B

(κ)
k + µRk

)−1
γ
(κ)
k (A

(κ)
k )H ||2 = P .

The computational complexity of (47) is linear in K. More-
over, it can be readily shown that (29) holds, so Algorithm 2
below provides scalable-complex iterations for designing ZFB
by maximizing the GM-rate.

Algorithm 2 Scalable-complex iterations for MIMO ZFB for
maximizing the GM-rate.

1: Initialization: Scale P (κ) found by Algorithm 1 to satisfy
the power constraint in (45) and reset it as the initial point
P (0). Set κ = 0.

2: Repeat until convergence of P (κ): Generate P (κ+1) by
(47). Reset κ := κ+ 1.

3: Output P opt = P (κ).

In summary, the joint design of ABF and DBF to maximize
the GM-rate in (20) consists of two steps:
• Step 1: implement Algorithm 1 for solving the approx-

imation problem (25) to decide the optimal ABF. Also
use its optimal ZFB to generate an initial point for Step
2.

• Step 2: implement Algorithm 2 for solving the problem
(45) to decide the optimal ZFB.

C. Max-min rate MIMO ZFB

The two previous subsections have addressed the problem
(20) of GM-rate maximization. By contrast, this subsection
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addresses the problem (21) of max-min rate optimization.
It is plausible that the objective function in (21) is max-
imized at Pk ≡ p0INR , k ∈ K so all users’ rates are
NR ln(1 + p2

0/σ). The approximated power constraint (24)
becomes p2

0〈([HΘΘΘ]2)−1〉 ≤ P/N . The users’ rates are all
equal, which are explicitly expressed as

NR ln(1 +
P

Nσ〈([HΘΘΘ]2)−1〉
). (47)

Maximizing (47) is losslessly reduced to

min
θθθ
〈([HΘΘΘ]2)−1〉 s.t. (7), (48)

which is a particular case of (36) for P (κ+1) ≡ IKNR , and it
is equivalent to

max
θθθ

ϕMM (θθθ) , α〈[ΘΘΘ]2〉 − 〈([HΘΘΘ]2)−1〉 s.t. (7), (49)

where α > 0 is chosen such that ϕMM (θθθ) is convex. Similar
to (39), we have:

ϕMM (θθθ) ≥ ϕ
(κ)
MM (θθθ)

, 2<{〈ΘΘΘ(Θ(κ))H〉}−a(κ)+2<{〈B(κ)ΘΘΘ〉}(50)

for
a(κ) , αNNRF + 3〈([HΘ(κ)]2)−1〉,

B(κ) , (Θ(κ))HHH([HΘ(κ)]2)−2H ∈ CNRF×N . (51)

Initialized by θ(0) feasible for (7), the FWI at the κ-th iteration
for κ = 0, 1, . . . , generates θ(κ+1) by solving the following
problem of discrete optimization:

max
θθθ

ϕ
(κ)
MM (θθθ) s.t. (7), (52)

which like (41) admits the closed-form solution

θ(κ+1) = [2π − b∠
(
αe−θ

(κ)
n,j +B(κ)(j, n)

)
cb](n,j)∈N×NRF .

(53)
Similarly to (44), it can be shown that ϕMM (θ(κ+1)) >
ϕMM (θ(κ)) as far as ϕMM (θ(κ+1)) 6= ϕMM (θ(κ)), so Al-
gorithm 3 provides scalable-complex ascent iterations for
maximizing the users’ rate defined by (47).

Algorithm 3 Max-min rate MIMO ZFB scalable algorithm

1: Initialization: Initialize θ(0). Set κ = 0.
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by

FWI (53). Reset κ := κ+ 1.
3: Output θopt = θ(κ) and poptk ≡√

P/〈[HΘ(κ)(Θopt)H ]2 [([HΘopt]2)−1]
2〉, k ∈ K,

verifying the power constraint (19).

III. THE BRUNN-MINKOWSKI GEOMETRY FOR THE JOINT
DESIGN OF ABF AND MIMO RZFB

When KNR ≥ NRF the matrix [HΘΘΘ]2 is singular, so the
ZFB defined by (14) does not exist. We thus use the RZFB 5

formulated as

VB = ΘΘΘHHH
(
[HΘΘΘ]2 + αIKNR

)−1
diag[Pk]k∈K,

5In many existing contributions such as [49] ZFB was used for KNR =
NRF , but that is not correct because in fact [HΘΘΘ]2 is often singular.

Pk ∈ CNR×NR , (54)

in (12), for α = NRFσ/P , leading the MIMO equation (13)
to

y = HΘΘΘΘΘΘHHH
(
[HΘΘΘ]2+αIKNR

)−1 ∑
k∈K

Pksk+n(55)

= Ψ(θθθ)
∑
k∈K

Pksk + n, (56)

for
Ψ(θθθ) , IKNR − α

(
[HΘΘΘ]2 + αIKNR

)−1
. (57)

It is important to observe that [HΘΘΘ]2+αIKNR � αIKNR � 0,
so
(
[HΘΘΘ]2 + αIKNR

)−1 � 0 [44], and consequently

Ψ(θθθ) ≺ IKNR . (58)

The performance of RZFB is thus critically dependent on the
matrix Ψ(θθθ) in (56): the closer and sparser Ψ(θθθ) approaches
to the identity matrix IKNR , the more efficiently RZFB
regularizes the multi-user interference. Moreover, Ψ(θθθ) � 0
and Φ(θθθ) , IKNR −Ψ(θθθ) � 0, so we can explore the Brunn-
Minkowski geometry [50] of positive definite matrices for
gauging the closeness of Ψ(θθθ) to IKNR and its sparseness via
the closeness of Φ(θθθ) to the zero matrix and its sparseness.
Thanks to the matrix inequality (58), both the `1-distance and
the Bures-Wasserstein distance [51] between Ψ(θθθ) and IKNR
is the `1-norm of Φ(θθθ), which is simply denoted by 〈Φ(θθθ)〉.
Accordingly, we consider either the problem of minimizing
the `1-distance/Bures-Wasserstein distance between Ψ(θθθ) and
IKNR :

min
θθθ
〈Φ(θθθ)〉 ⇔ min

θθθ
f(θθθ) , 〈

(
[HΘΘΘ]2 + αIKNR

)−1〉, (59)

or the problem of minimizing the volume of Φ(θθθ) [50]:

min
θθθ
|Φ(θθθ)| ⇔ max

θθθ
f(θθθ) , ln

∣∣∣∣IKNR +
1

α
[HΘΘΘ]2

∣∣∣∣ , (60)

subject to the constraint (7) of b-bit resolution, both of which
also automatically promote the sparseness of Φ(θθθ) (and Ψ(θθθ)).

The next two subsections are devoted to the computation of
(59) and (60).

A. Inverse matrix trace minimization based ABF design

Let us now aim for computing (59) subject to (7), which is
equivalent to

max
θθθ

ft(θθθ) , t〈[ΘΘΘ]2〉 − 〈([HΘΘΘ]2 + αIKNR)−1〉 s.t. (7),

(61)
where t > 0 is chosen such that ft(θθθ) is convex. Similar to
(39):

ft(θθθ) ≥ f
(κ)
t (θθθ)

, 2t<{〈ΘΘΘ(Θ(κ))H〉} − a(κ) + 2<{〈B(κ)ΘΘΘ〉}(62)

for
A(κ) , [HΘ(κ)]2 + αIKNR)−1,

a(κ) , tNNRF + 3〈A(κ)〉 − 2α〈[A(κ)]2〉,
B(κ) , (Θ(κ))H [HHA(κ)]2 ∈ CNRF×N .

(63)
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Initialized by θ(0) feasible for (7), the FWI generates θ(κ+1)

by solving the following problem of discrete optimization

max
θθθ

f
(κ)
t (θθθ) s.t. (7), (64)

which like (41) admits the closed form solution

θ(κ+1) = [2π − b∠
(
te−θ

(κ)
n,j +B(κ)(j, n)

)
cb](n,j)∈N×NRF .

(65)
The computational complexity of (65) is on the order of
O(NNRF ), i.e. it is linearly scalable in NNRF . Like (44),
it can be shown that

f(θ(κ+1)) < f(θ(κ)), (66)

as far as f(θ(κ+1)) 6= f(θ(κ)). Algorithm 4 provides scalable-
complex iterations for computing (59).

Algorithm 4 Inverse matrix trace minimization scalable-
complex FWI

1: Initialization: Initialize a feasible θ(0) for (7). Set κ = 0.
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by

FWI (65). Reset κ := κ+ 1.
3: Output θopt = θ(κ).

B. Log determinant maximization based ABF design

Let us now aim for computing (60) subject to (7). In
Appendix B, we show that

f(θθθ) ≥ a(κ) +
1

α

[
2<{〈A(κ)ΘΘΘ〉}+ 2<{〈C(κ)ΘΘΘ〉}

]
(67)

, f (κ)(θθθ), (68)

for

ã(κ) , f(θ(κ))− 1
α 〈[HΘ(κ)]2〉 − 〈

(
1
α [HΘ(κ)]2 + INRK

)−1〉,
A(κ) , (Θ(κ))HHHH ∈ CNRF×N ,

B(κ) , HH
[
INRK −

(
1
α [HΘ(κ)]2 + INRK

)−1]
H,

(69)
and

a(κ) , ã(κ) − 1
α (2λmax(B(κ))NNRF − 〈B(κ), [Θ(κ)]2〉,

C(κ) , (Θ(κ))H
(
λmax(B(κ))IN −B(κ)

)
.

(70)
The FWI generates θ(κ+1) by solving the following problem
of discrete optimization

max
θθθ

f (κ)(θθθ) s.t. (7), (71)

which like (41) admits the following closed-form solution

θ(κ+1) = [2π−b∠
(
A(κ)(j, n) + C(κ)(j, n)

)
cb](n,j)∈N×NRF .

(72)
The computational complexity of (72) is O(NNRF ), i.e. it
is also linearly scalable in NNRF . Similarly to (44), we can
show (66) as far as f(θ(κ+1)) 6= f(θ(κ)). Algorithm 5 provides
scalable-complex iterations for computing (60) subject to (7).

Algorithm 5 Log determinant maximization scalable-complex
FWI

1: Initialization: Initialize a feasible θ(0) for (7). Set κ = 0.
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by

FWI (72). Reset κ := κ+ 1.
3: Output θopt = θ(κ).

Initial θ(0) for Algorithms 4 and 5 when NR = 1 and K =
NRF is chosen according to [31], [52] extended to b-bit as

θ0 = [2π − b∠Hj(n)cb](n,j)∈N×NRF , (73)

where Hj is the channel defined from (4) and Hj(n) is its n-th
entry. The rationale of this choice is to maximize |HjΘΘΘ:,j |.

C. MIMO RZFB design

Based on the ABF designed in the previous subsections, this
subsection addresses the design of RZFB. Having obtained
θopt by Algorithm 4 or Algorithm 5, for βk , ||HkΘopt||2,
and then HB

k , HkΘopt/
√
βk ∈ CNR×NRF , k ∈ K, and

HB =

H1
B

. . .
HK
B

 ∈ C(NRK)×NRF ,

we re-write (13) as

y = diag[
√
βkINR ]k∈KHBV

Bs+ ν. (74)

We use the equality HH
B

(
[HB ]2 + αIKNR

)−1
=(

[HH
B ]2 + αINRF

)−1
HH
B , and employ the RZF beamformers

formulated as:

VB
k ,

(
[HH

B ]2 + αINRF
)−1

(Hi
B)HPk, k ∈ K, (75)

to write equation (55) of the signal received at UE k in the
form of:

yk =
√
βk
∑
`∈K

Ξk,`P`s` + νk, (76)

for

Ξk,` , Hi
B

(
[HH

B ]2 + αINRF
)−1

(H`
B)H ∈ CNR×NR . (77)

The rate of UE k is formulated as:

rk(P) = ln
∣∣INR + [Ξk,kPk]2Γ−1k (P)

∣∣ , (78)

where we have

Γk(P) ,
∑

`∈K\{k}

[Ξk,`P`]
2 + (σ/βk)INR . (79)

The transmit power E(||
∑
k∈KΘoptVB

k sk||2) is expressed as∑
k∈K

||ΘoptVB
k ||2 =

∑
k∈K

〈Rk, [Pk]2〉, (80)

with

Rk , [Hi
B

(
[HH

B ]2 + αINRF
)−1

V HRF (θopt)]2 � 0, k ∈ K.
(81)
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The problem of designing RZFB to maximize the GM-rate
subject to transmit power constraints is formulated as

max
P

fGM (P) ,

(∏
k∈K

rk(P)

)1/K

(82a)

s.t.
∑
k∈K

〈Rk, [Pk]2〉 ≤ P. (82b)

Similarly to (28), a specific initialized by P (0) which is
feasible for (82), for κ = 0, 1, . . . , we iterate P (κ+1) by
solving the optimization problem

max
P

f (κ)(P) ,
∑
k∈K

γ
(κ)
k rk(P) s.t. (82b), (83)

associated with

γ
(κ)
k =

maxk′∈K rk′(P
(κ))

rk(P (κ))
, k ∈ K. (84)

Upon exploiting using the inequality (2), we arrive at:

rk(P) ≥ ã
(κ)
k + 2<{〈A(κ)

k Pk〉}

−〈B(κ)
k

(∑
`∈K

[Ξk,`P`]
2 + (σ/βk)INR

)
〉(85)

= a(κ) + 2<{〈A(κ)
k Pk〉}

−
∑
`∈K

〈ΞHk,`B
(κ)
k Ξk,`, [P`]

2〉

, r
(κ)
k (P), (86)

with

ã
(κ)
k , rk(P (κ))− 〈[Ξk,kP (κ)

k ]2Γ−1k (P (κ))〉,
A

(κ)
k , (P

(κ)
k )HΞHk,kΓ−1k (P (κ))Ξk,k,

B
(κ)
k , Γ−1k (P (κ))−

(
Γk(P (κ)) + [Ξk,kP

(κ)
k ]2

)−1
,

a
(κ)
k , ã

(κ)
k − (σ/βk)〈B(κ)

k 〉.

(87)

Therefore,

f (κ)(P) ≥ f̃ (κ)(P)

,
∑
k∈K

γ
(κ)
k r

(κ)
k (P)

= a(κ) + 2
∑
k∈K

<{〈γ(κ)k A
(κ)
k Pk〉}

−
∑
k∈K

γ
(κ)
k

∑
`∈K

〈ΞHk,`B
(κ)
k Ξk,`, [P`]

2〉

= a(κ) + 2
∑
k∈K

<{〈γ(κ)k A
(κ)
k Pk〉}

−
∑
k∈K

〈Q(κ)
k , [Pk]2〉 (88)

for

a(κ) ,
∑
k∈K

a
(κ)
k ,Q(κ)

k ,
∑
`∈K

γ
(κ)
` ΞH`,kB

(κ)
` Ξ`,k. (89)

We solve the following problem of minorant maximization to
generate P (κ+1)

max
P

f̃ (κ)(P) , s.t. (82b), (90)

which admits the following closed-form solution

P
(κ+1)
k =


γ
(κ)
k (Q(κ)

k )−1(A
(κ)
k )H

if
∑
k∈K

||R1/2
k (Q(κ)

k )−1γ
(κ)
k (A

(κ)
k )H ||2 ≤ P(

Q(κ)
k + µRk

)−1
γ
(κ)
k (A

(κ)
k )Hotherwise,

(91)
where µ > 0 is chosen for ensuring that

∑
k∈K

||R1/2
k (Q(κ)

k +

µRk)−1γ
(κ)
k (A

(κ)
k )H ||2 = P .

Similarly to (29), we can show that f (κ)(P (κ+1)) >
f (κ)(P (κ)), provided that f (κ)(P (κ+1)) 6= f (κ)(P (κ)). Algo-
rithm 6 provides scalable-complex iterations for solving the
optimization the problem (82).

Algorithm 6 GM-rate maximization based MIMO RZFB
scalable algorithm

1: Initialization: Initialize a feasible P (κ)
k for the constraint

(82b). Set κ = 0.
2: Repeat until convergence of the objective function

given by (82a): Define γ(κ)k according to (84) and then
generate P (κ+1)

k by (91). Reset κ := κ+ 1.
3: Output P optk = P

(κ+1)
k .

IV. NEW STRUCTURED MIMO RZFB
Under using the RZFB solution of (75), the transmit signal

x =
∑
k∈KΘoptVB

k sk is proper Gaussian, since we have
E(xxT ) = 0. In this section, we propose the following new
RZFB solution:(

[HH
B ]2 + αINRF

)−1
(Hi

B)H (Pk,1sk + Pk,2s
∗
k) , (92)

with Pk,1 ∈ CNR×NR and Pk,2 ∈ CNR×NR , k ∈ K. As a
result, the transmit signal

x =
∑
k∈K

Θopt
(
[HH

B ]2 + αINRF
)−1

(Hi
B)H (Pk,1sk + Pk,2s

∗
k)

(93)
is improper Gaussian, because we have E(xxT ) 6= 0 [53].
The reader is referred e.g. to [43], [54]–[57] and references
therein for characterizing the efficiency of improper Gaussian
signaling in interference-limited networks.

Instead of (76), the signal received at UE k now becomes:

yk =
√
βk
∑
`∈K

Ξk,` (P`,1s` + P`,2s
∗
` ) + νk, (94)

where Ξk,` is defined in (77).
For

ȳk ,

[
<{yk}
={yk}

]
, s̄k ,

[
<{sk}
={sk}

]
, ν̄k ,

[
<{νk}
={νk}

]
,

Ξ̄k,` ,

[
<{Ξk,`} −={Ξk,`}
={Ξk,`} <{Ξk,`}

]
,

the equivalent real composite form of (94) becomes (95). By
making the variable change (96), we can represent (95) by

ȳk =
√
βk
∑
`∈K

Ξ̄k,`X`s̄` + ν̄k. (97)



9

ȳk = ν̄k +
√
βk
∑
`∈K

Ξ̄k,`

[
<{P`,1}+ <{P`,2} −={P`,1}+ ={P`,2}
={P`,1}+ ={P`,2} <{P`,1} − <{P`,2}

]
s̄`. (95)

Xk =

[
X11
k X12

k

X21
k X22

k

]
=

[
<{Pk,1}+ <{Pk,2} −={Pk,1}+ ={Pk,2}
={Pk,1}+ ={Pk,2} <{Pk,1} − <{Pk,2}

]
∈ R(2NR)×(2NR), k ∈ K, (96)

For X , {Xk, k ∈ K}, the UE k’s rate is 0.5ρk(X) [58] in
conjunction with

ρk(X) , ln
∣∣I2NR + [Ξ̄k,kXk]2Γ̄−1k (X)

∣∣ , (98)

where Γ̄k ,
∑
`∈K\{k}[Ξ̄k,`X`]

2 + (σ/βk)I2NR .
Under the variable change (96), the real composite form

of the transmit signal x defined in (93) becomes (99). By
noting that E(s̄ks̄

T
k ) = 0.5I2NR , we have E(||s̄k||2) =

0.5〈(RTkRk), [Xk]2〉 and so the power constraint is formulated
as:∑
k∈K

E(||xk||2) ≤ P ⇔
∑
k∈K

〈(RTkRk), [Xk]2〉 ≤ 2P. (101)

The problem of GM-rate maximization under RZFB (92) can
be formulated by6

max
X

f̄GM (X) ,

(∏
k∈K

ρk(X)

)1/K

s.t. (101). (102)

Similarly to (28), starting from a specific X(0) which is
feasible for (101), for κ = 0, 1, . . . , we iterate X(κ+1) by
addressing the problem

max
X

f (κ)(X) ,
∑
k∈K

γ
(κ)
k ρk(X) s.t. (101), (103)

for

γ
(κ)
k ,

maxk′∈K ρk′(X
(κ))

ρk(X(κ))
, k ∈ K. (104)

Upon exploiting the inequality (2), we arrive at:

ρk(X) ≥ ã
(κ)
k + 2<{〈A(κ)

k Xk〉}

−〈B(κ)
k

(∑
`∈K

[Ξ̄k,`X`]
2 + (σ/βk)I2NR

)
〉

= a(κ) + 2<{〈A(κ)
k Xk〉}

−
∑
`∈K

〈Ξ̄Tk,`B
(κ)
k Ξ̄k,`, [X`]

2〉

, ρ
(κ)
k (X), (105)

with

ã
(κ)
k , ρk(X(κ))− 〈[Ξ̄k,kX(κ)

k ]2Γ̄−1k (X(κ))〉,
A

(κ)
k , (X

(κ)
k )T Ξ̄Tk,kΓ̄−1k (X(κ))Ξ̄k,k,

B
(κ)
k , Γ̄−1k (X(κ))−

(
Γ̄k(X(κ)) + [Ξ̄k,kX

(κ)
k ]2

)−1
,

a
(κ)
k , ã

(κ)
k − (σ/βk)〈B(κ)

k 〉.
(106)

6The result must be divided by 2.

Therefore, we have:

f (κ)(X) ≥ f̃ (κ)(X)

,
∑
k∈K

γ
(κ)
k ρ

(κ)
k (X)

= a(κ) + 2
∑
k∈K

<{〈γ(κ)k A
(κ)
k Xk〉}

−
∑
k∈K

γ
(κ)
k

∑
`∈K

〈Ξ̄Tk,`B
(κ)
k Ξ̄k,`, [X`]

2〉

= a(κ) + 2
∑
k∈K

<{〈γ(κ)k A
(κ)
k Xk〉}

−
∑
k∈K

〈Q̄(κ)
k , [Xk]2〉, (107)

for

a(κ) ,
∑
k∈K

a
(κ)
k , Q̄(κ)

k ,
∑
`∈K

γ
(κ)
` Ξ̄T`,kB

(κ)
` Ξ̄`,k. (108)

We thus solve the following problem of minorant maximiza-
tion for (103) to generate X(κ+1)

max
X

f̃ (κ)(X) s.t. (101), (109)

which admits the following closed-form solution

X
(κ+1)
k =


γ
(κ)
k (Q̄(κ)

k )−1(A
(κ)
k )T

if
∑
k∈K

||Rk(Q̄(κ)
k )−1γ

(κ)
k (A

(κ)
k )T ||2 ≤ 2P(

Q̄(κ)
k + µRTkRk

)−1
γ
(κ)
k (A

(κ)
k )T otherwise,

(110)
where µ > 0 is chosen for ensuring that

∑
k∈K ||Rk(Q̄(κ)

k +

µRTkRk)−1γ
(κ)
k (A

(κ)
k )T ||2 = 2P .

Similarly to (29), we can show that f (κ)(X(κ+1)) >
f (κ)(X(κ)) provided that f (κ)(X(κ+1)) 6= f (κ)(X(κ)). Algo-
rithm 7 provides scalable-complex iterations for computing the
problem (102). Then the optimal matrices P optk,1 and P optk,2 used
for determing the RZFB (92) are recovered from the optimal

solution Xopt
k =

[
X11,opt
k X12,opt

k

X21,opt
k X22,opt

k

]
of (102) as (111).

V. NUMERICAL RESULTS

This section evaluates the numerical efficiency of the pro-
posed algorithms. With the KN users randomly located within
the cell radius of 50 meters, where the links between the BS
and UEs are assumed to be LOS channels, the path-loss of
UE kN , kN ∈ KN , {1, . . . ,KN} experienced at a distance
dkN from the BS is set to ρkN = 44.84 + 21 log 10(dKN ) dB,
which takes into account a 16.5 dB gain due to beamforming-
aided mmWave transmission [3], [6], [59], and the complex
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x̄ ,

[
<{x}
={x}

]
=
∑
k∈K

RkXks̄k, (99)

for

Rk ,

[
<{Θopt

(
[HH

B ]2 + αINRF
)−1

(Hk
B)H} −={Θopt

(
[HH

B ]2 + αINRF
)−1

(Hk
B)H}

={Θopt
(
[HH

B ]2 + αINRF
)−1

(Hk
B)H} <{Θopt

(
[HH

B ]2 + αINRF
)−1

(Hk
B)H}

]
. (100)

[
<{P optk,1 } ={P

opt
k,1 }

<{P optk,2 } ={P
opt
k,2 }

]
=

1

2

[
X11,opt
k +X22,opt

k X21,opt
k −X12,opt

k

X11,opt
k −X22,opt

k X21,opt
k +X12,opt

k

]
, k ∈ K. (111)

Algorithm 7 New structured MIMO RZFB optimization al-
gorithm

1: Initialization: Initialize a feasible X(κ)
k for the constraint

(101). Set κ = 0.
2: Repeat until convergence of the objective function

given by (102): Define γ(κ)k according to (84) and then
generate X(κ+1)

k by (110). Reset κ := κ+ 1.
3: Output Xopt

k = X
(κ+1)
k , k ∈ K.

gain αkN ,c,` follows the Ricean distribution with a K-factor of
10dB [60], [61]. Similarity, with KF users randomly located
between 50 and 200 meters radius having NLOS environment,
the path-loss of UE kF , kF ∈ KF , {KN + 1, . . . ,K}
is set to ρKF = 36.72 + 35.3 log 10(dKF ) dB, and the
complex gain αkF ,c,` follows Rayleigh fading. The azimuth
angle of departure (arrival, resp.) φtk,c,` (φrk,c,`, resp.) and the
elevation angle of departure θtk,c,` are generated according to
the Laplacian distribution in conjunction with random mean
cluster angles in the interval [0, 2π) and with spreads of 10
degrees within each cluster, while Nc = 2 and Nsc = 3 [59].
The carrier frequency is set to 28 GHz, the noise power density
is set to −174 dBm/Hz, while the bandwidth is set to B = 100
MHz.

Unless otherwise stated, we have K = 8, KN = 3, NRF =
8, N = 64 (N1 = 8, N2 = 8), P = 20 dBm, and b = 3. The
results are multiplied by log2 e to convert the unit nats/sec into
the unit bps/Hz. The convergence threshold of the proposed
algorithms is set to 10−3.

Below, we use the following legends to specify the proposed
implementations:

• ”ZF GM” and ”3-bit ZF GM” refer to the performance of
the alternating optimization Algorithm 1 and Algorithm
2 for b =∞ and b = 3, respectively;

• ”ZF MM” and ”3-bit ZF MM” refer to the performance
of Algorithm 3 employed for for b = ∞ and b = 3,
respectively;

• ”Sohrabi-Yu”/”Sohrabi-Yu MM” and ”3-bit Sohrabi-
Yu”/”3-bit Sohrabi-Yu MM” refer to the performance of
generating P (κ+1) by (36)/P (κ+1) ≡ IK , but generating
θ(κ+1) according to [28] by addressing (36) by alternating
optimization in each θθθn,j with other θθθn′,j held fixed,
which needs the exhaustive search over B for b = 3. The
final P (κ) must be scaled to satisfy the power constraint

in (45);
• ”Trace-Max” and ”3-bit Trace-Max” refer to the results of

the trace maximization based Algorithm 4 for for b =∞
and b = 3, respectively, and then implementing the RZFB
Algorithm 6;

• ”Log-det-Max” and ”3-bit Log-det-Max” refer to the per-
formance of the log-det maximization based Algorithm 5
for b = ∞ and b = 3, respectively, and then harnessing
the RZFB Algorithm 6;

• ”Nasir et al.” and ”3-bit Nasir et al.” refer to the results
based on (73) for b = ∞ and b = 3, respectively, and
then implementing the RZFB Algorithm 6;

• ”IGS Trace-Max” and ”3-bit IGS Trace-Max” refer to the
results of the trace maximization based Algorithm 4 for
b = ∞ and b = 3, respectively, and then implementing
the new structured RZFB optimization Algorithm 7;

• ”IGS Log-det-Max” and ”3-bit IGS Log-det-Max” refer
to the results of the trace maximization based Algorithm
5 for b =∞ and b = 3, respectively, and then implement-
ing the new structured RZFB optimization Algorithm 7.

Fig. 1 plots the achievable GM rate and max-min rate
versus the number NRF in the ZFB based maximization,
which shows that all the ZFB based algorithms outperfor-
m their 3-bit resolution counterpart. As expected, the ZFB
maximization based algorithms achieve better GM rates, while
ZFB max-min rate based algorithms achieve better max-min
rates. Increasing the number of RF chains does not lead to a
significant improvement, which is not unexpected for multi-
user communications. Furthermore, all the algorithms benefit
from the improved spatial diversity due to increasing the
number of receive antennas.

Fig. 2 plots GM versus the number of RF chains at the
UE, attained by RZFB based maximization. For NR = 1,
”IGS Trace-Max” is the best performer and ”Trace-Max”
performs better than ”Log-det-Max” does. Furthermore, ”IGS
Log-det-Max” has better performance than ”Log-det-max”,
but the gap becomes smaller with the increasing number of
RF chains. For NR = 2, ”IGS Trace-Max”, ”IGS Log-det-
Max”, ”3 bit IGS Trace-Max” and ”3 bit IGS Log-det-Max”
perform similarly, and their PGS based algorithms also have
similar performance. Moreover, 3-bit resolution algorithms
benefit a greater extend from the increasing number of UEs’
receive antennas than their infinite-bit resolution counterparts.
Fig. 2 also shows that the performance of ”Trace-Max” and
”IGS Trace-Max” degrade upon increasing the number of the



11

10/20 11/21 12/22 13/23 14/24
3

4

5

6

7

8

(a)

10/20 11/21 12/22 13/23 14/24
2

3

4

5

6

(b)

Fig. 1: (a) Achievable GM rate vs the number NRF of RF
chains; (b) Achievable max-min rate vs the number NRF of
RF chains;

receiver antennas at the UEs for NRF ≥ 7, which underlines
that ”Trace-Max” and ”IGS Trace-Max” are poor at processing
multiple information streams. As expected, all the algorithms
benefit from increasing the number of RF chains. However, in
contrast to the ZF based algorithms, RZF trace maximization
based algorithms benefit to a greater extent than their 3-
bit resolution counterparts for NR = 1. Furthermore, all
the IGS based algorithms outperform their proper Gaussian
counterparts, confirming the advantage of employing IGS.

Fig. 3 and Fig. 4 portray the min-rate/max-rate ratio (MMR)
and the rate variance/mean rate (RV) parameterized by NRF .
Fig. 3 shows that IGS trace based maximization algorithms
have best MMR, and that ”IGS Trace-Max” and ”IGS Log-
det-Max” have better MMR than that of their ”Trace-Max” and
”Log-det-Max” counterparts under NR = 2, respectively. Fig.
4 shows that ”3-bit Trace-Max” has the best RV for NR = 1,
while ”IGS Trace-Max” and ”3-bit IGS Trace-Max” have the
best RV for NR = 2. Furthermore, ”IGS Log-det-Max” and
”3-bit IGS Log-det-Max” have better rate distribution with the
increasing number of UEs’ receive antennas.

Fig. 5 plots the sum rates (SRs) achieved by the proposed
algorithms. Observe that the SR achieved follows the GM
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Fig. 2: Achievable GM rate vs the number NRF of RF chains:
(a) NR = 1; (b) NR = 2

rate trend of Fig. 2. Explicitly, ”IGS Trace-Max” achieves the
overall best SR for NR = 1, ”3-bit IGS Log-det-Max” has the
best SR among all the 3-bit resolution algorithms, and all the
algorithms benefit from increasing the number of RF chains.
Fig. 5 also confirms the advantage of employing IGS.

Fig. 6 plots the achievable GM rate versus the number of BS
transmit antennas N . ”IGS Trace-Max” is the overall best per-
former, while the 3-bit resolution log-det based maximization
algorithms have better performance than that of trace based
maximization algorithms. Upon increasing the number of BS
transmit antennas, all the proposed algorithms achieve better
GM rates. Furthermore, trace based maximization algorithms
benefit a greater extent from the spatial diversity attained by
increasing the number of BS transmit antennas.

We also examine the achievable GM rate under varying
power budgets P in Fig. 7. As expected, the achievable GM
rate is monotonically increasing. Fig. 7 also shows that all the
trace maximization based algorithms degrade upon increasing
the number of the receiver antennas at the UEs, confirming that
trace maximization based algorithms are poor at processing
multiple information streams.
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Fig. 3: MMR vs the number NRF of RF chains: (a) NR = 1;
(b) NR = 2

Furthermore, Fig. 8 allows us to compare the performance
achieved by the b-bit solution for different values of b. Observe
that unlike trace maximization base b-bit solution algorithms
can benefit the increasing b, the performance of b-bit solutions
for log-det maximization is similar with their infinite-solution
algorithms.

VI. CONCLUSIONS

A multi-user mmWave network was designed, where a
base station uses hybrid beamforming consisting of finite-
resolution analog beamforming coupled with digital zero-
forcing or regularized zero forcing beamforming. We have
proposed several novel algorithms, which iterate by relying
on scalable-complex expressions for determining the hybrid
beamformer weights maximizing the geometric means of the
users’ rates. Our extensive simulations have showed that our
hybrid beamformers achieve fair user-rate distributions without
unduly eroding the overall sum rates.

4 5 6 7 8
0

1

2

3

4

(a)

4 5 6 7 8
0

2

4

6

8

(b)

Fig. 4: RV vs the number NRF of RF chains: (a) NR = 1;
(b) NR = 2

APPENDICES

Appendix A: the proof for (38)

One has (112) with a(κ) and B(κ) defined from (40), which
is the RHS of (39). Note that the RHS of (112) is the linearized
function at Θ(κ) of the convex function in the LHS so the later
is lower bounded by the former [36].

Appendix B: the proof for (67)

By using the inequality (2), we obtain (113) with ã(κ), A(κ),
and B(κ) defined from (69). Then the RHS of (113) is the same
as the RHS of (67) with a(κ) and C(κ) defined from (69).
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= ã(κ) +

1

α

[
2<{〈A(κ)ΘΘΘ〉} − λmax(B(κ))〈[ΘΘΘ]2〉+ 〈λmax(B(κ))IN −B(κ), [ΘΘΘ]2〉

]
(113)

[3] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE J. Select. Areas Commun., vol. 32,
no. 6, pp. 1164–1179, 2014.

[4] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo,
“Millimeter-wave communications: Physical channel models, design
considerations, antenna constructions, and link-budget,” IEEE Commun.
Surv. Tut., vol. 20, pp. 870–913, Secondquarter 2018.

[5] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wide-
band millimeter-wave propagation measurements and channel models for
future wireless communication system design,” IEEE Trans. Commun.,
vol. 63, pp. 3029–3056, Sept. 2015.

[6] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios,
and J. Zhang, “Overview of millimeter wave communications for fifth-
generation (5G) wireless networks with a focus on propagation models,”
IEEE Trans. Antenn. Propag., vol. 65, no. 12, pp. 6213–6230, 2017.

[7] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and
F. Aryanfar, “Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: Theoretical feasibility and prototype
results,” IEEE Commun. Mag., vol. 52, pp. 106–113, Feb. 2014.

[8] T. S. Rappaport, R. W. Heath, R. C. Daniels, and J. N. Murdock,
Millimeter Wave Wireless Communications. Pearson/Prentice Hall, 2015.

[9] S. Kutty and D. Sen, “Beamforming for millimeter wave communi-
cations: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18,
pp. 949–973, 2nd Quart. 2016.

[10] P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, “Channel
statistics-based RF pre-processing with antenna selection,” IEEE Trans.
Wirel. Commun., vol. 5, no. 12, pp. 3501–3511, 2006.

[11] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based
RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4091–4103, 2005.

[12] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Tran. Wirel. Commun., vol. 13, pp. 1499–1513, Mar. 2014.

[13] R. Rajashekar and L. Hanzo, “Iterative matrix decomposition aided
block diagonalization for mm-wave multiuser MIMO systems,” IEEE
Trans. Wirel. Commun., vol. 16, pp. 1372–1384, Mar. 2017.

[14] W. Ni, X. Dong, and W.-S. Lu, “Near-optimal hybrid processing for
massive MIMO systems via matrix decomposition,” IEEE Trans. Signal
Process., vol. 65, pp. 3922–3933, Aug. 2017.

[15] T. Lin, J. Cong, Y. Zhu, J. Zhang, and K. B. Letaief, “Hybrid beam-
forming for millimeter wave systems using the MMSE criterion,” IEEE
Trans. Commun., vol. 67, pp. 3693–3708, May 2019.

[16] S. Lyu, Z. Wang, Z. Gao, H. He, and L. Hanzo, “Lattice-based mmWave
hybrid beamforming,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4907–
4920, 2021.

[17] V. Raghavan, S. Subramanian, J. Cezanne, A. Sampath, O. H. Koymen,
and J. Li, “Single-user versus multi-user precoding for millimeter wave
MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, p. 13871401,
Jun. 2017.

[18] S. He, J. Wang, Y. Huang, B. Ottersten, and W. Hong, “Codebook-based
hybrid precoding for millimeter wave multiuser systems,” IEEE Trans.
Signal Process., vol. 65, pp. 5289–5303, 2017.

[19] Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint
optimization of hybrid beamforming for multi-user massive MIMO
downlink,” IEEE Trans. Wirel. Commun., vol. 17, pp. 3600–3614, Jun.
2018.

[20] X. Sun, C. Qi, and G. Y. Li, “Beam training and allocation for multiuser
millimeter wave massive MIMO systems,” IEEE Trans. Wirel. Commun.,
vol. 18, pp. 1041–1053, Feb. 2019.

[21] M. Zeng, W. Hao, O. A. Dobre, and H. V. Poor, “Energy-efficient power
allocation in uplink mmwave massive MIMO with NOMA,” IEEE Trans.
Veh. Techn., vol. 68, pp. 3000–3004, Mar. 2019.

[22] M. A. Almasi, M. Vaezi, and H. Mehrpouyan, “Impact of beam misalign-
ment on hybrid beamforming NOMA for mmwave communications,”
IEEE Trans. Commun., vol. 67, pp. 4505–4518, Jun. 2019.

[23] S. Gong, C. Xing, V. K. N. Lau, S. Chen, and L. Hanzo, “Majorization-
minimization aided hybrid transceivers for MIMO interference channel-
s,” IEEE Trans. Signal Process., vol. 68, pp. 4903–4918, 2020.

[24] H. Ruan, P. Xiao, L. Xiao, and J. R. Kelly, “Joint iterative optimization-
based low-complexity adaptive hybrid beamforming for massive MU-
MIMO systems,” IEEE Trans. Commun., vol. 69, pp. 1707–1722, Mar.
2021.

[25] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals
of Massive MIMO. UK: Cambridge Univ. Press, 2016.

[26] L. D. Nguyen, H. D. Tuan, T. Q. Duong, and H. V. Poor, “Multi-user
regularized zero forcing beamforming,” IEEE Trans. Signal Process.,
vol. 67, pp. 2839–2853, Jun. 2019.

[27] L. D. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and L. Hanzo,
“Energy-efficient multi-cell massive MIMO subject to minimum user-
rate constraints,” IEEE Trans. Commun., vol. 69, pp. 914–928, Feb.
2021.

[28] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design
for large-scale antenna arrays,” IEEE J. Selec. Topics Signal Process.,
vol. 10, pp. 501–513, Mar. 2016.

[29] S. Park, J. Park, A. Yazdan, and R. W. Heath, “Exploiting spatial
channel covariance for hybrid precoding in massive MIMO systems,”
IEEE Trans. Signal Process., vol. 65, pp. 3818–3832, Jul. 2017.

[30] S. Sun, T. S. Rappaport, M. Shafi, and H. Tataria, “Analytical framework
of hybrid beamforming in multi-cell millimeter-wave systems,” IEEE
Trans. Wirel. Commun., vol. 17, pp. 7528–7543, Nov. 2018.

[31] A. A. Nasir, H. D. Tuan, T. Q. Duong, H. V. Poor, and L. Hanzo,



14

4 5 6 7 8
0

10

20

30

40

(a)

4 5 6 7 8
10

15

20

25

30

(b)

Fig. 5: Achieved SR vs the number NRF of RF chains: (a)
NR = 1; (b) NR = 2

“Hybrid beamforming for multi-user millimeter-wave networks,” IEEE
Trans. Veh. Techn., vol. 69, pp. 2943–2956, Mar. 2020.

[32] N. Prasad, K. Li, and X. Wang, “Fair-rate allocation in multiuser ofdm-
sdma networks,” IEEE Trans. Signal Process., vol. 57, pp. 2797–2808,
Jul. 2009.

[33] H. Ma, J. Cheng, and X. Wang, “Proportional fair secrecy beamforming
for MISO heterogeneous cellular networks with wireless information and
power transfer,” IEEE Trans. Commun. vol. 67, no. 8, pp. 5659-5673,
Aug. 2019., vol. 67, pp. 5659–5673, Aug. 2019.

[34] U. Rashid, H. D. Tuan, H. H. Kha, and H. H. Nguyen, “Joint optimiza-
tion of source precoding and relay beamforming in wireless MIMO relay
networks,” IEEE Trans. Commun., vol. 62, pp. 488–499, Feb. 2014.

[35] H. H. M. Tam, H. D. Tuan, and D. T. Ngo, “Successive convex quadratic
programming for quality-of-service management in full-duplex MU-
MIMO multicell networks,” IEEE Trans. Commun., vol. 64, pp. 2340–
2353, June 2016.

[36] H. Tuy, Convex Analysis and Global Optimization (second edition).
Springer International, 2017.

[37] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32,
pp. 1164–1179, June 2014.

[38] Y.-P. Lin, “On the quantization of phase shifters for hybrid precoding
systems,” IEEE Trans. Signal Process., vol. 65, no. 9, pp. 2237–2246,
2017.

[39] C. Huang, L. Liu, and C. Yuen, “Asymptotically optimal estimation
algorithm for the sparse signal with arbitrary distributions,” IEEE Trans.

16 32 48 64 80
0

1

2

3

4

5

(a)

16 32 48 64 80
2

2.2

2.4

2.6

2.8

3

3.2

(b)

Fig. 6: Achievable GM vs the number N of BS antennas: (a)
NR = 1 ; (b) NR = 2

Veh. Technol., vol. 67, pp. 10070–10075, Oct 2018.
[40] C. Huang, L. Liu, C. Yuen, and S. Sun, “Iterative channel estimation

using LSE and sparse message passing for mmwave MIMO systems,”
IEEE Trans. Signal Process., vol. 67, pp. 245–259, Jan 2019.

[41] M. A and A. P. Kannu, “Channel estimation strategies for multi-user mm
wave systems,” IEEE Trans. Wirel. Commun., vol. 66, pp. 5678–5690,
Nov 2018.

[42] J. D. Krieger, C.-P. Yeang, and G. W. Wornell, “Dense delta-sigma
phased arrays,” IEEE Trans. Antenn. Propag., vol. 61, p. 18251837,
Apr. 2013.

[43] H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor, and L. Hanzo, “Maxi-
mizing the geometric mean of user-rates to improve rate-fairness: Proper
vs. improper Gaussian signaling,” IEEE Trans. Wirel. Commun., vol. 21,
no. 1, pp. 295–309, 2021.

[44] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University
Press, 1985.

[45] P. Apkarian and H. D. Tuan, “Robust control via concave minimization
local and global algorithms,” in Proc. of the 37th IEEE Conf. Decision
Control, pp. 3855–3860, 1998.

[46] P. Apkarian and H. D. Tuan, “Concave programming in control theory,”
J. Glob. Opt., vol. 15, pp. 243–270, Apr. 1999.

[47] P. Apkarian and H. D. Tuan, “Robust control via concave optimization:
local and global algorithms,” IEEE Trans. Autom. Control, vol. 45,
pp. 299–305, Feb. 2000.

[48] E. Che, H. D. Tuan, and H. H. Nguyen, “Joint optimization of coop-
erative beamforming and relay assignment in multi-user wireless relay
networks,” IEEE Trans. Wirel. Commun., vol. 13, pp. 5481–5495, Oct.



15

16 18 20 22 24
1

2

3

4

5

6

(a)

16 18 20 22 24
1.5

2

2.5

3

3.5

4

(b)

Fig. 7: Achievable GM vs power budget P : (a) NR = 1 ; (b)
NR = 2

2014.
[49] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid

precoding for multi-user millimeter wave systems,” IEEE Trans. Wirel.
Commun., vol. 14, pp. 6481–6494, Nov. 2015.

[50] R. Schneider, Convex bodies: The Brunn-Minkowski theory,. Cambridge
University Press, Cambridge, 1993.

[51] C. Villani, Optimal Transport: Old and New. Springer Verlag, 2009.
[52] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in

massive multiuser MIMO systems,” IEEE Wirel. Commun. Lett., vol. 3,
pp. 653–656, Dec. 2014.

[53] P. J. Schrerier and L. L. Scharf, Statistical Signal Processing of Complex-
Valued Data: The Theory of Improper and Noncircular Signals. Cam-
bridge University Press, 2010.

[54] S. Lagen, A. Agustin, and J. Vidal, “Coexisting linear and widely linear
transceivers in the MIMO interference channel,” IEEE Trans. Signal
Process., vol. 64, pp. 652–664, Feb 2016.

[55] H. D. Tuan, A. A. Nasir, H. H. Nguyen, T. Q. Duong, and H. V. Poor,
“Non-orthogonal multiple access with improper Gaussian signaling,”
IEEE J. Selec. Topics Signal Process., vol. 13, pp. 496–507, Mar. 2019.

[56] H. Yu, H. D. Tuan, T. Q. Duong, Y. Fang, and L. Hanzo, “Improper
Gaussian signaling for integrated data and energy networking,” IEEE
Trans. Commun., vol. 68, pp. 3922–3934, Jun. 2020.

[57] H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, “Joint
design of reconfigurable intelligent surfaces and transmit beamforming
under proper and improper Gaussian signaling,” IEEE J. Sel. Areas
Commun., vol. 38, pp. 2589–2603, Nov. 2020.

3 4 5 6 Inf
2

2.5

3

3.5

4

4.5

(a)

3 4 5 6 Inf
2.2

2.4

2.6

2.8

3

3.2

(b)

Fig. 8: Achievable GM vs the analog beamforming resolution
b: (a) NR = 1 ; (b) NR = 2

[58] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, pp. 585–595, Nov./Dec. 1999.

[59] “3GPP technical specification group radio access network evolved
universal terrestrial radio access (E-UTRA): Further advancements for
E-UTRA physical layer aspects (release 9),” 2010.

[60] A. K. Gupta, J. G. Andrews, and R. W. Heath, “On the feasibility of
sharing spectrum licenses in mmWave cellular systems,” IEEE Trans.
Commun., vol. 64, no. 9, pp. 3981–3995, 2016.

[61] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, and S. Deng,
“Small-scale, local area, and transitional millimeter wave propagation
for 5G communications,” IEEE Trans. Antenn. Propag., vol. 65, no. 12,
pp. 6474–6490, 2017.


