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Abstract—Massive multiple-input multiple-output (MaMIMO)
has become an integral part of the fifth-generation (5G) standard,
and is envisioned to be further developed in beyond 5G (B5G)
networks. With a massive number of antennas at the base station
(BS), MaMIMO is best equipped to cater prominent use cases
of B5G networks such as enhanced mobile broadband (eMBB),
ultra-reliable low-latency communications (URLLC) and massive
machine-type communications (mMTC) or combinations thereof.
However, one of the critical challenges to this pursuit is the
sporadic access behaviour of a massive number of devices in
practical networks that inevitably leads to the conspicuous pilot
contamination problem. Conventional linearly precoded physical
layer strategies employed for downlink transmission in time divi-
sion duplex (TDD) MaMIMO would incur a noticeable spectral
efficiency (SE) loss in the presence of this pilot contamination.
In this paper, we aim to integrate a robust multiple access and
interference management strategy named rate-splitting multiple
access (RSMA) with TDD MaMIMO for downlink transmission
and investigate its SE performance. We propose a novel downlink
transmission framework of RSMA in TDD MaMIMO, devise a
precoder design strategy and power allocation schemes to maxi-
mize different network utility functions. Numerical results reveal
that RSMA is significantly more robust to pilot contamination
and always achieves a SE performance that is equal to or better
than the conventional linearly precoded MaMIMO transmission
strategy.

Index Terms—Rate-splitting multiple access (RSMA), massive
multiple-input multiple-output (MIMO), pilot contamination.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MaMIMO)

has been widely regarded as one of the key technolo-

gies in fifth generation (5G) communication [1], [2]. With

a large array of service antennas at the base station (BS),

MaMIMO is capable of enhancing the spectral efficiency (SE),

energy efficiency (EE) and robustness of multi-user multiple-

input multiple-output (MIMO) networks [3]–[5]. A MaMIMO

network can operate in both time-division duplex (TDD) and

frequency-division duplex (FDD) modes. Due to the massive

number of antennas, downlink (DL) channel state information
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(CSI) acquisition in the FDD mode incurs a huge training

overhead, thereby decreasing the SE of the network [6]. In

contrast, by exploiting the reciprocity of the uplink (UL) and

DL physical propagation channels, CSI acquisition is much

simpler in the TDD mode. At the BS, the CSI is acquired

through UL training and then utilized for DL transmission [7].

As a result, the training length is proportional to the number of

user equipments (UEs) rather than the number of BS antennas,

which significantly reduces the CSI overhead. This makes

TDD the preferred mode of operation in MaMIMO networks

[6]. Even with a low CSI overhead, a TDD MaMIMO network

is not without its limitations. In the UL, the CSI acquisition

is preferably done by assigning orthogonal pilots to different

UEs. However, due to the scarcity of orthogonal sequences,

UEs are typically forced to use the same pilot for UL

training, leading to the issue of pilot contamination [7], [8].

With the advent of 5G, and expanded use cases in dense

crowded scenarios and massive machine type communications

(mMTC), the problem of pilot contamination gets further

exacerbated. Within a cell, a massive number of UEs and their

sporadic access behaviour make orthogonal scheduling of all

UEs or allocation of orthogonal pilots to all UEs infeasible

for transmission [9]–[12]. For such scenarios, random access

techniques are typically employed to serve active UEs in the

network, where active UEs randomly select a pilot sequence

from a small pool of orthogonal sequences for UL training.

As a result, it is highly likely that multiple UEs may share the

same pilot for UL training resulting in even severe intra-cell

pilot contamination [10], [12].

The problem of pilot contamination is a major challenge

in TDD MaMIMO and could lead to a significant SE loss.

In fact, with uncorrelated Rayleigh fading channels, pilot

contamination is known to be performance limiting [7]. To

address the challenge, pilot contamination and its mitigation

has been studied by a wide body of existing literature [13]–

[18]. To that end, [1], [2] have proved that with spatially

correlated channels and minimum mean-square error (MMSE)

processing, the capacity of a MaMIMO network is asymp-

totically (with respect to the number of transmit antennas)

unlimited despite pilot contamination. Nevertheless, the SE of

a TDD MaMIMO network is practically limited and with a

finite number of antennas, incurs a considerable performance

loss in the presence of pilot contamination [1]. The undesired

consequence of pilot contamination, i.e., low quality statisti-

cally dependent channel estimates, is well documented in the

literature [7]. Designing precoders based on such low quality

CSI will result in severe multi-user interference in the DL and

the network may become interference limited.

One possible solution to deal with the DL multi-user in-
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terference that stems from the intra-cell pilot contamination

would be to adopt the robust interference management strat-

egy introduced in [19] named rate-splitting multiple access

(RSMA). RSMA has emerged as a robust physical (PHY)-

layer transmission strategy and is considered as a promising

paradigm for multiple access in beyond 5G (B5G) and sixth-

generation (6G) networks [20]–[22]. RSMA has been realized

in different forms for different multi-antenna settings [22].

The simplest form of RSMA is based on 1-layer rate-splitting

(RS)1 which only requires one layer of successive interference

cancellation (SIC) at each UE [23]. At the BS, RS splits

the messages of UEs into two parts, a common part and

a private part. The common parts of UEs’ messages are

combined together and encoded into common streams. The

common streams are meant to be decoded by all UEs but

not necessarily intended to all of them. The private parts are

encoded independently into private streams and are meant to

be decoded by the intended UE only (and treated as noise

at the non-intended UEs). By adjusting the message split

and power allocated to the common and private streams,

RSMA allows to partially decode the interference and partially

treat the interference as noise. From an information theoretic

perspective, RSMA has been studied in-depth [23]–[28] and

was shown to achieve the optimal degree of freedom (DoF)

in multiple-input single-output (MISO) and MIMO broadcast

channels (BC) with imperfect CSI [26], [27]. Motivated by

the DoF optimality, communication theoretic performance of

RSMA was investigated in [19], [24], [27], [29]–[31], and

was shown to outperform the conventional multi-user MIMO

strategy with linear precoders (also known as linearly precoded

space division multiple access–SDMA) and power-domain

non-orthogonal multiple access (PD-NOMA) in terms of SE

and EE with imperfect CSI at the transmitter (CSIT) [19], [24],

[29]. Interestingly, RSMA has been investigated to deal with

the deleterious effects of mobility in MaMIMO [32], multi-

user interference in FDD MaMIMO [33] and TDD cell-free

MaMIMO [12], and to mitigate residual transceiver hardware

impairments in TDD MaMIMO [34]. To the best of our

knowledge, employing RSMA to address the issue of pilot

contamination in TDD MaMIMO has not been investigated

yet.

In this paper, motivated by the access behaviour of UEs in

5G, in turn, the need to address the challenge of pilot contam-

ination and the merits of RSMA in the presence of imperfect

CSI, we propose a general2 DL transmission framework of

RSMA in a single-cell TDD MaMIMO and investigate its

performance as a PHY-layer strategy. Our main objective is

to answer a simple question: Can RSMA help mitigate the

deleterious effects of pilot contamination in TDD MaMIMO?

A. Contributions

To investigate the efficacy of RSMA in TDD MaMIMO, we

first analyze the DL performance of RSMA in TDD MaMIMO

1Henceforth, 1-layer RS will be referred to as ‘RS’ for brevity.
2The framework is general in the sense that it is valid for any channel

estimation and precoder design technique. The use of generalized RS from
[19] instead of 1-layer RS is left for future work.

Figure 1: Illustration of massive access in a single-cell MaMIMO
network for 5G and beyond.

with no pilot contamination, i.e., all UEs using orthogonal pilot

sequences for UL training. Next, to assess the performance

in the presence of pilot contamination, we assume that all

UEs use the same pilot sequence for UL training.3 The aim is

to consider the best case (orthogonal pilots) and the worst

case (same pilot) scenario in random access to determine

the SE performance of RSMA and compare it with that of

a conventional linearly precoded strategy. In this paper, we

consider a single-cell MaMIMO network and therefore assume

no inter-cell pilot contamination. The main contributions of

this paper are summarized as follows:

• We propose a novel system model employing RS in

a TDD single-cell MaMIMO network. Based on the

proposed system model, we derive the achievable SE ex-

pressions of RS and then obtain the capacity lower bound

based on channel hardening (also known as hardening

bound in [7]) for both the common and private streams.

The derived hardening bounds are generalized for any UL

channel estimation scheme and DL precoder design.

• To achieve a good SE performance with RS while keeping

the computational complexity of precoder design low, we

design the precoder for the common stream (common

precoder) by maximizing the SE of the common stream,

and precoders for the private streams by employing

maximum ratio (MR) transmission. The design of the

common precoder solely depends on the channel statistics

and therefore can be used for many coherence intervals.

• We propose three power allocation algorithms maximiz-

ing different network utilities for RS, namely, maximizing

the sum-SE (MaxSum-SE), maximizing the product of

signal to interference plus noise ratios (SINRs) (MaxS-

INR), and maximizing the minimum SE (MaxMin). For

the MaxSum-SE problem, we propose a low-complexity

heuristic algorithm for RS that aims to maximize the sum

3The use of single pilot for UL transmission is not unprecedented in the
literature of MaMIMO networks. [35] considers the case where all UEs utilize
a single pilot and investigates the UL performance of a conventional strategy
in a distributed MaMIMO network.
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of SE of all UEs. For the MaxSINR problem, to maximize

the product of SINRs of the common and private streams,

we equivalently transform it into a geometric program-

ming (GP) problem and solve it optimally. Finally, the

MaxMin problem is formulated to maximize the worst-

case SE among UEs. The MaxMin problem of RS is

non-convex and is solved using the proposed successive

convex approximation (SCA)-based algorithm.

• We compare the SE performance of RS and NoRS4

strategies for different pilot sharing scenarios, spatial

correlation settings, and network topologies via extensive

simulations. Numerical results illustrate the superiority of

RS over NoRS in mitigating the harmful effects of pilot

contamination, i.e., degraded CSIT quality and statisti-

cally dependent channel estimates, on DL transmission.

Since RSMA is more robust to imperfect CSIT and is

a better interference management strategy in the DL,

numerical results show that with pilot contamination it

achieves better SE performance than NoRS in terms of

both sum-SE and SE per UE. This is the first work that

proposes a general DL transmission framework of RSMA

in TDD MaMIMO and investigates its efficacy as a pilot

contamination mitigation strategy.

B. Organization

The rest of the paper is organized as follows. In Section II,

the system model is introduced. In Section III, SE expressions

for the common and private streams are derived, and precoder

design is proposed. Section IV discusses the power allocation

problems formulated for the three aforementioned network

utility functions and describes their respective optimization

methodologies in detail. Numerical results are illustrated and

discussed in Section V, while Section VI concludes the paper.

C. Notations

Matrices are denoted by boldface uppercase letters, column

vectors are denoted by boldface lowercase letters and scalars

are denoted by standard letters. Trace and determinant of

matrix A are denoted by tr(A) and det(A), respectively.

diag(A) denotes the diagonal entries of the matrix. AT and

AH denote the Transpose and Hermitian operators on matrix

A, respectively. Euclidean norm of vector a is denoted as

‖a‖. ⊗ denotes the Kronecker product and vec(A) denotes

vectorization of matrix A. EX{Y } is expectation of Y with

respect to random variable X . CM×N and RM×N denote

the sets of all M × N dimensional matrices with complex-

valued and real-valued entries, respectively. A real Gaussian

distribution with mean µ and variance σ2 is denoted as

N (µ, σ2), whereas a circularly symmetric complex Gaussian

(CSCG) distribution with mean µ and variance σ2 is denoted

as CN (µ, σ2).

4Henceforth, a conventional MaMIMO transmission strategy implemented
using multi-user linear precoding (also known as linearly precoded space
division multiple access–SDMA) will be referred to as ‘NoRS’ [34].

II. SYSTEM MODEL

We consider a single-cell MaMIMO network operating in

the TDD mode with a BS equipped with M transmit antennas

simultaneously serving K single-antenna UEs in the same

time-frequency resource block such that M ≫ 1 and M/K >
1 [1]. The UEs are indexed by the set K = {1, . . . ,K}. We

use the standard block fading model, and in each block, the

channel between UE k and the BS, gk ∈ CM , is independently

drawn from a block fading distribution as [7]

gk =
√
βkhk ∼ CN (0,Rk), (1)

where Rk ∈ CM×M denotes the spatial correlation matrix.

Gaussian distribution is used to model the small-scale fading

variations hk, while Rk describes the large scale fading

property which accounts for the path loss and shadowing

effects. The normalized trace βk = 1
M
tr(Rk) denotes the

average channel gain between the BS and UE k. Since UEs

operate under the standard cellular MaMIMO TDD protocol,

each coherence block consists of τ channel uses, whereof τp
are used for UL pilot transmission, τu for UL data transmission

and τd for DL data transmission such that τ = τp + τu + τd
[7, Sec 2.1]. In this paper, we only consider UL pilot and DL

data transmission and thus we set τu = 0.

We assume that all UEs use a deterministic pilot sequence

of length τp. The pilot sequence of UE k is denoted as {φk ∈
Cτp | ∀k ∈ K}. We assume that each element in the pilot

sequence has a magnitude 1/
√
τp to obtain constant power

levels and therefore ‖φk‖2 = 1, ∀k ∈ K. We assume and

denote ρul as the average UL transmit power available at each

UE.5 Following, the MMSE estimate of UE k at the BS when

a single pilot sequence is employed by all UEs is computed

as [7, Sec 3.2]

ĝk = RkQ
−1
( K∑

i=1

gi +
1√
ρul

nt,k

)
∼ CN (0,Φk), (2)

where nt,k ∼ CN (0, σ2
ulIM ), Φk = RkQ

−1Rk, and Q =∑
i∈K Ri +

σ2

ul

ρul

IM . The channel estimate ĝk and the channel

estimation error g̃k = gk − ĝk are independent random

variables with distributions CN (0,Φk) and CN (0,Rk−Φk),
respectively. Since all UEs use the same pilot sequence, they

contaminate each others’ channel estimates, which makes their

channel estimates statistically dependent. Assuming Ri to be

invertible, it follows that the channel estimate of UE k at the

BS can be written as [7, eq (3.16)],

ĝk = RkR
−1
i ĝi, i ∈ K, (3)

and therefore, E{ĝiĝ
H
k } = RiQ

−1Rk [7], [36].

Similarly, if UEs are assigned orthogonal pilots for UL

training, the channel estimate of UE k is computed as

ĝk = RkQ
−1
k

(
gk +

1√
ρul

nt,k

)
∼ CN (0,Φk), (4)

5The assumptions ensure that the channel estimation quality is not depen-
dent on the pilot length τp, and the difference in the channel estimation quality
of two UEs solely depends on their respective β values [7]. Such assumptions
allow us to capture the impact of network topologies on pilot contamination,
and in turn, analyze the SE performance of different transmission strategies
with pilot contamination in different network settings.
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where Φk = RkQ
−1
k Rk and Q−1

k = Rk +
σ2

ul

ρul

IM . Since the

pilots are orthogonal to each other, channel estimate of one

UE is not contaminated by the channel of other UE, and thus

the estimates are not statistically dependent.

III. RATE-SPLITTING IN DL TRANSMISSION

For DL transmission, we use the RS strategy described in

[19], [23] where the message of UE k, ∀ k ∈ K denoted by Wk

is split into two parts, a common part Wc,k and a private part

Wp,k. The common parts of all UEs, {Wc,1, . . . ,Wc,K}, are

combined together to form a single common message denoted

as Wc and then encoded into a single common stream sc ∈
C using a common codebook such that E{|sc|2} = 1. The

common stream is meant to be decoded by all UEs (but not

necessarily intended to all of them). The private part of the

message of UE k is encoded independently into the private

stream sk ∈ C such that E{|sk|2} = 1, ∀k ∈ K, and is

meant to be decoded by the corresponding UE only. The DL

transmission framework of the RS strategy with K UEs is

illustrated in Fig. 2. The resulting transmitted signal is written

as

x =
√
ρcwcsc +

K∑

k=1

√
ρkwksk, (5)

where wc ∈ CM is the precoder of the common stream such

that E{‖wc‖2} = 1. wk ∈ CM is the precoder for the private

stream of UE k such that E{‖wk‖2} = 1, ∀k ∈ K and

it determines the spatial directivity of UE k. Note that the

precoder normalization for both common and private precoders

is taken as such for analytical tractability [7, Sec 4.3]. The

powers allocated to the common and private streams are

denoted by ρc and ρk, ∀k ∈ K, respectively. We define the

DL transmit power constraint as

ρc +

K∑

k=1

ρk ≤ ρdL, (6)

where ρdL is the total transmit power available at the BS for

DL transmission. At the UE side, the received signal yk ∈ C

at UE k is given by

yk =
√
ρc g

H
k wcsc +

K∑

i=1

√
ρi g

H
k wisi + nk, (7)

where nk ∈ CN (0, σ2
n,k) is the noise at UE k. Without loss

of generality, we assume noise variances across UEs to be

σ2
n,k = σ2

n, ∀k ∈ K. At UE k, first the common stream is

decoded into Ŵc by treating the interference from all private

streams as noise. After decoding and successfully removing

the common stream using SIC, UE k decodes its own private

stream into Ŵp,k by treating the private streams of other UEs

as noise. UE k reconstructs its message by extracting Ŵc,k

from Ŵc, and combining it with Ŵp,k to form Ŵk.

A. Spectral Efficiency

Assuming channel reciprocity within a coherence block, the

BS then uses the estimates of UL channels to compute the
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Figure 2: K–UE DL transmission framework of RS [19].

precoders for DL data transmission. Since the UE is unaware6

of its exact channel, we assume that UE k has knowledge

of the ergodic effective precoded channels E{gH
k wc} and

E{gH
k wk} [7]. Under this assumption, only the part of the

signal received over the ergodic effective precoded channel is

treated as the true desired signal, and therefore the received

signal at UE k can be expressed as

yc,k =
√
ρc E{gH

k wc}sc +
√
ρc (g

H
k wc − E{gH

k wc})sc

+
K∑

i=1

√
ρi g

H
k wisi + nk,

(8)

where the first term in (8) is the desired signal (for the common

stream) over the known ergodic precoded channel E{gH
k wc},

the second term is the desired signal over the unknown channel

and the remaining terms are the interference from private

streams of all UEs plus noise [7]. After SIC7 of the common

stream, the received signal at UE k becomes

yp,k =
√
ρk E{gH

k wk}sk +
√
ρk (g

H
k wk − E{gH

k wk})sk

+
√
ρc (g

H
k wc − E{gH

k wc})sc +
K∑

i6=k

√
ρi g

H
k wisi + nk.

(9)

The limited knowledge of the channel at UE makes it hard

to characterize the DL SE for both the common and private

stream. Therefore, we compute the lower bound of the ergodic

capacity, known as the hardening bound, and obtain

SEc,k =
τd
τ

log(1 + γc,k), (10)

SEp,k =
τd
τ

log(1 + γp,k), (11)

6In TDD MaMIMO, due to asymptotic channel hardening, instantaneous
CSI is not needed at the receiver and knowledge of statistical properties can be
used to find good estimate of the channel [37] (and references there in). This
assumption significantly reduces the resource (power and training duration)
overhead and therefore is a widely used assumption in the literature of TDD
MaMIMO [7], [37].

7Since the UE does not have perfect knowledge of the CSI, SIC of the
common stream is not perfect. As a result, residual interference from the
common stream still remains after SIC and is reflected in equation (9).
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γc,k =
ρc|E{gH

k wc}|2∑K
i=1 ρiE{|gH

k wi|2}+ ρc(E{|gH
k wc|2} − |E{gH

k wc}|2) + σ2
n

, (14)

γp,k =
ρk|E{gH

k wk}|2∑K

i=1 ρiE{|gH
k wi|2} − ρk|E{gH

k wk}|2 + ρc(E{|gH
k wc|2} − |E{gH

k wc}|2) + σ2
n

, (15)

where γc,k and γp,k are the effective DL SINR lower bounds8

of the common and private streams at UE k, respectively. With

the expectations computed over channel realizations, γc,k and

γp,k are given by (14) and (15), respectively. The expectations

of the effective precoded channels are with respect to the

channel realizations and can be calculated using Monte Carlo

simulations. As the common stream is decoded by all UEs,

the achievable SE for the common stream (common SE) is

defined as

SEc =
τd
τ

log(1 + γc), (12)

where γc = mink∈K γc,k. Note that the hardening bounds

hold for any choice of channel estimator and precoder design.

Moreover, since the common message has common parts of

the UEs’ messages, we have SEc =
∑K

k=1 Ck , where Ck is

the share of the common SE intended for UE k. Therefore,

the total SE of UE k is calculated as [19]

SEk = SEp,k + Ck, ∀k ∈ K. (13)

B. Precoder Design

The SE expressions in (11) and (12) are general and can be

utilized for any choice of common and private precoders. Due

to the massive number of transmit antennas at the BS, high

dimensional optimization of common and private precoders

is infeasible in MaMIMO. Instead, low-complexity precoder

design is desired for both common and private streams.

Therefore, for private streams, we choose MR transmission

precoders as they have low-complexity, achieve good SE

performance with a high number of transmit antennas, and

allow closed-form computation of the expectations in the SINR

expressions [7], [36]. The MR precoder for the private stream

of UE k is defined as

wk =
ĝk√

E{‖ĝk‖2}
=

ĝk√
tr(Φk)

. (16)

With MR precoders, the closed-form expectations

E{|gH
k wi|2} and |E{gH

k wk}|2, ∀i, k ∈ K are calculated as

|E{gH
k wk}|2 = tr(Φk), (17)

E{|gH
k wi|2} =

tr(RkΦi) + |tr(RkQ
−1Ri)|2

tr(Φi)
. (18)

Note that only large scale fading coefficients are needed

to calculate the closed-form expectations and, in turn, the

hardening bounds.

8Using Corollary 1.3, Theorem 4.6 (and its proof in Appendix C.3.6) of [7]
derives the lower bound of the DL ergodic channel capacity of a UE for the
NoRS transmission strategy. The proof can be directly extended for RS by
utilizing the effective SINR expressions (14) and (15) of common and private
streams derived here and equation (1.9) of [7].

Next we look at the design of the common precoder. Since

the common stream is to be decoded by all UEs, considering

equation (12), an ideal precoder for the common stream would

be the one that maximizes the common SE. Consequently, the

common precoder design problem can be formulated as

max
wc

min
k

γc,k, (19a)

s.t. E{‖wc‖2} = 1. (19b)

Unfortunately, obtaining the optimal solution to problem (19)

is computationally demanding because of the beamforming

gain uncertainty term in the denominator of the SINR expres-

sions of the common stream, ρc(E{|gH
k wc|2}−|E{gH

k wc}|2),
which makes problem (19) intractable to solve. Moreover, such

optimization will undesirably increase the time required for

computing the common precoder. For ease of computation,

a sub-optimal solution to problem (19) can be obtained by

assuming that the difference (E{|gH
k wc|2} − |E{gH

k wc}|2)
is very small and can be neglected to make the problem

tractable.9 Following this assumption, problem (19) can be

formulated as

max
wc

min
k

πk |E{gH
k wc}|2

s.t. E{‖wc‖2} = 1,
(20)

where

πk = ρc

(
K∑

i=1

ρiE{|gH
k wi|2}+ σ2

n

)−1

. (21)

We consider a weighted MR approach and design the common

precoder in the span of subspace of the estimated channel

vectors {ĝi | ∀i ∈ K} at the BS as

wc = Ω

K∑

i=1

aiĝi, (22)

where ai is the weight assigned to the estimate of UE i, i ∈ K
and Ω is the scaling factor required to satisfy the constraint

9The sole objective of assuming beamforming gain uncertainty
(E{|gH

k
wc|2} − |E{gH

k
wc}|2) of the common stream at UE k to

be negligible is to make problem (19) tractable to solve. Although such
an assumption will result in sub-optimal common precoder design, the
design complexity is much reduced. Note that the assumption of considering
beamforming gain uncertainty negligible is only restricted to the common
precoder design at the BS. The assumption is not a part of the system model,
or SE calculations at the BS, or SE calculations at the UEs.
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E{‖wc‖2} = 1.10 By substituting (22) into E{gH
k wc}, we

rewrite (20) as

max
{ak|∀k∈K}

min
k

Ω2 πk

∣∣∣∣∣
K∑

i=1

aiU(i, k)

∣∣∣∣∣

2

, (23a)

s.t. E{‖wc‖2} = 1, (23b)

where

U(i, k) = E{ĝH
k ĝi}, ∀i, k ∈ K. (24)

For simplicity, we ignore Ω2πk in (23). By introducing an

auxiliary variable t, we obtain the convex form of the objective

and constraints of problem (23) and equivalently transform it

into the following convex optimization problem:

max
a, t>0

t, (25a)

s.t. aTU(:, k) ≥ t, ∀k ∈ K, (25b)

where a = [a1, . . . , aK ]T . Problem (25) is equivalent to (23)

as it optimizes the weights, a, with the aim of maximizing the

minimum achievable SE of the common stream at each UE,

t, which corresponds to the objective of (23). Consequently,

we solve problem (25) to obtain a∗ which is then used to

compute the optimal common precoder w∗
c . For the scenario

of every UE using the same pilot for UL channel estimation,

we have U(i, k) = tr(RiQ
−1Rk) and the common precoder

is computed as

w∗
c =

∑K
i=1 a

∗
i ĝi√∑K

i=1

∑K

j=1 a
∗
i a

∗
j tr(RiQ−1Rj)

. (26)

Using (26), we compute the closed-form expressions of the

expectations E{gH
k w∗

c} and E{|gH
k w∗

c |2} which are solely

dependent on the channel statistics. Appendix A specifies the

derivation of these expectations.

With orthogonal pilots, we have {U(i, k) = tr(Φi) | i = k}
and {U(i, k) = 0 | ∀k 6= i}. To avoid redundancy, we do not

elaborate on the common precoder calculation for orthogonal

pilots. Similarly, the common precoder design problem in (20)

can be solved for any pilot sharing scenario by calculating

the corresponding value of U using (24). The computation

of common precoder coefficients a, solely depends on the

large scale fading coefficients. Therefore, a only needs to be

calculated once. Consequently, the common precoder can be

calculated using a and (22) for many coherence intervals, until

the channel statistics change. Such precoder design keeps the

overall time and computational burden very low.

IV. POWER ALLOCATION

In this section, we aim to obtain the power allocation

coefficients ρ = {ρc, ρ1, . . . , ρK} for the common and private

streams of RS by considering different utility functions as

10Reference [33] also adopts the weighted MR approach for common
precoder design of RSMA in FDD MaMIMO. In [33], the closed-form compu-
tation of the coefficients ai, ∀i ∈ K is done based on the instantaneous SINR
expressions. Moreover, DL training allows the UE to have the knowledge of
the effective precoded channel. In contrast, we consider no DL training at
the UE, and calculate common precoder coefficients utilizing the hardening
bounds of the common and private SINRs.

optimization objectives. We consider utility functions that

capture the aggregate SE performance of the network, fairness

in the SE performance of UEs, and strike a balance between

aggregate SE performance and fairness. We define a network

utility function as U(SE1, . . . , SEK) which takes SE of UEs

as input, and returns a scalar that measures the utility as the

output. To that end, following equations (11)-(13), the utility

functions for RS can be written as

U(SE1, . . . , SEK) :





SEc +

K∑

k=1

SEp,k, Sum-SE

(
K∏

k=1

γp,k

)
γc, Product of SINRs

min
k∈K

SEp,k + Ck, Minimum SE,

(27)

where γc and γp,k, ∀k ∈ K are effective SINRs of the common

and private streams SEs, respectively. We formulate and solve

power allocation problems of RS to maximize the three

different utility functions in (27), i.e., 1) maximizing sum-SE

(MaxSum-SE), 2) maximizing product of SINRs (MaxSINR)

and 3) maximizing the minimum SE (MaxMin). All power

allocation schemes designed in this paper will hold for any

channel estimation and precoder design method. Moreover,

each power allocation scheme is solely dependent on the chan-

nel statistics and therefore can be used for many coherence

intervals. We define the utility function maximization problem

as

max
ρ

U(SE1, . . . , SEK),

s.t. ρc +

K∑

i=1

ρi ≤ ρdL.
(28)

For simplicity, we first rewrite equations (14) and (15) as

γc,k =
ρcac,k∑K

i=1 ρib
c
ki + ρcIc,k + σ2

n

, (29)

γp,k =
ρkap,k∑K

i=1 ρib
p
ki + ρcIc,k + σ2

n

, (30)

respectively, where

ac,k = |E{gH
k wc}|2, ∀k ∈ K,

ap,k = |E{gH
k wk}|2, ∀k ∈ K,

(31)

bcki = E{|gH
k wi|2}, ∀k ∈ K,

bpki =

{
E{|gH

k wi|2}, i 6= k, ∀ i, k ∈ K,
E{|gH

k wk|2} − |E{gH
k wk}|2, i = k, ∀ i, k ∈ K,

(32)

and

Ic,k = E{|gH
k wc|2} − |E{gH

k wc}|2, ∀k ∈ K. (33)

Note that, while the channel estimates and the closed-form

expressions of the expectations depend on whether UEs are

using the same pilot or orthogonal pilots, the power allocation

algorithms are not affected by the choice of pilot sequences
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or precoder design11. As aforementioned, only large scale

fading characteristics are used to design the power allocation

algorithms of RS in TDD MaMIMO. Therefore, similar to the

NoRS strategy, the advantage of being able to design complex

yet feasible power allocation schemes which can be used for

multiple coherence blocks is retained for RS as well with

our proposed transmission framework. In the following, we

formulate the three power allocation problems of RS in TDD

MaMIMO and specify the algorithms proposed to solve the

corresponding problems.

A. Maximizing sum-SE (MaxSum-SE)

For any given channel estimation technique, precoding

scheme and values of ac,k, ap,k, b
c
ki, b

p
ki and Ic,k, the sum-SE

with the RS transmission strategy can be written as

SE = SEc +

K∑

k=1

SEp,k, (34)

where SEc and SEp,k are defined in (12) and (11), respectively.

The MaxSum-SE problem can therefore be formulated as

max
ρ

SEc(ρ) +

K∑

k=1

SEp,k(ρ), (35a)

s.t. ρc +

K∑

i=1

ρi ≤ ρdL. (35b)

We consider a heuristic low-complexity power allocation strat-

egy to maximize the sum-SE where power allocated to the

common stream is ρc = (1−ζ)ρdL, and the power allocated to

each private stream is ρk = ζρdL/K, ∀k ∈ K, where ζ ∈ [0, 1]
is a scalar. An exhaustive search for ζ is then considered to

obtain the power allocation between the common and private

streams for which the sum-SE is maximum. Such an approach

does not require optimization techniques and maintains a

low complexity, which is desirable to many potential use

cases of future wireless networks. Algorithm 1 outlines the

MaxSum-SE power allocation algorithm of RS that gives the

power allocation between the common stream and private

streams, and ultimately obtains the sum-SE. To be thorough,

the power allocation coefficients in (35) are also obtained

using an optimization technique detailed in Appendix B, and a

comparison with Algorithm 1 is provided in terms of sum-SE

and complexity.

Algorithm 1 MaxSum-SE

1: Initialize n← 0, ζ ← 0, ∆← 0.05, SE[n]

2: Iterate

3: n← n+ 1;

Obtain ρc ← (1− ζ)ρdL and ρk ← ζρdL

K
, ∀k ∈ K;

Calculate SE[n] using (29), (30) and (34);
4: Update SE[n] ← max(SE[n], SE[n−1]), ζ ← ζ +∆
5: Until ζ = 1

11While the power allocation algorithms themselves are unaffected by the
choice of pilots or precoders, the power allocation between the common and
private streams will be influenced by both.

Complexity: From Algorithm 1, we can discern that the

computational complexity of the algorithm depends on ∆ and

is of the order of O(∆−1).

B. Maximizing product of SINRs (MaxSINR)

We next consider MaxSINR12 power allocation which aims

to strike a balance between maximizing the sum-SE and

maintaining fairness in the network. For any given channel

estimation, precoding scheme and values of ac,k, ap,k, b
c
ki, b

p
ki

and Ic,k, MaxSINR utility function maximization problem of

RS can be written as

max
γc,ρ

(
K∏

i=1

γp,i

)
γc (36a)

s.t. γc ≤ γc,k, ∀k ∈ K, (36b)

ρc +

K∑

i=1

ρi ≤ ρdL, (36c)

where γc,k and γp,k are defined in (29) and (30), respectively.

Constraint (36b) ensures that the common stream is decodable

at all UEs. Since problem (36) is non-convex, we transform it

into an equivalent GP form by introducing auxiliary variables

oc and op = [op,1, . . . , op,K ] to respectively represent the

common SINR and the private SINR vector such that

op,k
( K∑

i=1

ρib
p
ki + ρcIc,k + σ2

n

)
≤ ρkap,k, ∀k ∈ K, (37a)

oc
( K∑

i=1

ρib
c
ki + ρcIc,k + σ2

n

)
≤ ρcac,k, ∀k ∈ K. (37b)

Using (37a) and (37b), we transform problem (36) equivalently

into a GP problem given by

max
ρ,op,oc

(

K∏

i=1

op,i)oc (38a)

s.t. op,k

(∑K

i=1 ρib
p
ki + ρcIc,k + σ2

n

)

ρkap,k
≤ 1, ∀k ∈ K,

(38b)

oc

(∑K
i=1 ρib

c
ki + ρcIc,k + σ2

n

)

ρcac,k
≤ 1, ∀k ∈ K,

(38c)

ρc +

K∑

i=1

ρi ≤ ρdL. (38d)

The objective function and the constraints in problem (38) are

posynomials making it a GP problem [38]. We use CVX, a

tool used to solve disciplined convex programs in Matlab for

finding the solution of the above GP problem and obtaining

the optimal power allocation ρ∗ that maximizes the product of

12Maximizing product of SINRs aims to maximize the sum-SE where “1+”
term is neglected in every SE expression. While ignoring “1+” term has a
minuscule affect on UEs with high SINRs, UEs with lower SINRs have their
SEs underestimated [7]. As a result, the objective of maximizing the product
of SINRs will lead to higher SE for weaker UEs. Moreover, owing to the
objective function, each UE is guaranteed a non-zero SE thereby providing
more fairness compared to the MaxSum-SE power allocation scheme.
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SINRs utility function for RS in TDD MaMIMO. Algorithm

2 outlines the MaxSINR power allocation algorithm of RS.

It should be highlighted that in a GP, there is an implicit

constraint that the optimization variables are positive, i.e., here

ρi > 0, ∀i ∈ K and ρc > 0 [38]. This non zero power

allocation to all the streams assures a non zero SE to each

UE thereby ensuring fairness in the network.

Algorithm 2 MaxSINR: GP Algorithm

1: Declare oc, op

Transform (36) into GP problem (38)
using (37a) and (37b);

2: Solve (38) using CVX to obtain ρ

3: Calculate SEc and SEp,k

Complexity: Since problem (38) has 2(K + 1) variables

and 2K + 1 constraints, based on [38], the computational

complexity of solving problem (38) is of the order of

O
(
max

{
8 (K + 1)3 , F1

})
, (39)

where F1 is the cost of evaluating the first and second

derivatives of the objective and constraint functions in (38).

C. Maximizing the minimum SE (MaxMin)

MaxSINR optimization, as aforementioned, aims to strike a

balance between maximizing the sum-SE and fairness among

UEs. We next consider MaxMin optimization problem whose

objective is to achieve the maximum user fairness. The

MaxMin problem of RS for any given channel estimation,

precoding scheme and values of ac,k, ap,k, b
c
ki, b

p
ki and Ic,k

can be expressed as

max
ρ,c

min
k

SEp,k + Ck, (40a)

s.t. C1 + . . .+ CK ≤ SEc,k, ∀k ∈ K, (40b)

ρc +
K∑

i=1

ρi ≤ ρdL, (40c)

c ≥ 0, (40d)

where c = [C1, . . . , CK ] is the common SE vector with Ck

being the share of the common SE allocated to UE k such that

SEc =
∑K

i=1 Ci. Constraint (40b) ensures that the common

stream is decoded at all UEs. Our aim is to jointly optimize

the power allocated to the common stream ρc, private streams

ρi, ∀i ∈ K, and the common SE vector c.

The MaxMin problem (40) described above is a non-convex

problem due to the presence of logarithmic and fractional SE

expressions SEp,k and SEc,k. Motivated by the SCA algorithm

adopted in [29], [39]13, we propose a SCA-based power

allocation algorithm to solve problem (40). To achieve the

best possible performance, we introduce auxiliary variables

to transform the MaxMin problem into its equivalent form

and approximate the transformed problem into convex sub-

problems, which are solved iteratively until convergence. Next,

13Both [29], [39] formulate the SCA algorithm for precoder design in multi-
user MISO networks with perfect CSIT.

we delineate the transformation, approximations, and proce-

dure to solve the transformed problem.

We introduce an auxiliary variable t, vectors αc =
[αc,1, . . . , αc,K ], and αp = [αp,1, . . . , αp,K ] representing

the minimum SE, SE of the common stream at UEs and

private SEs of UEs, respectively. Similarly, we introduce

rc = [rc,1, . . . , rc,K ] and rp = [rp,1, . . . , rp,K ] representing

1 plus SINR values of the common and private streams of

UEs, respectively. As a result, problem (40) is equivalently

transformed as

max
ρ,c,αp,αc,

rp,rc,t

t (41a)

s.t. αp,k + Ck ≥ t, ∀k ∈ K, (41b)

αc,k ≥
∑

k∈K

Ck, ∀k ∈ K, (41c)

rp,k − 2
τ
τd

αp,k ≥ 0 ∀k ∈ K, (41d)

rc,k − 2
τ
τd

αc,k ≥ 0 ∀k ∈ K, (41e)
ρcac,k∑K

i=1 ρib
c
ki + ρcIc,k + σ2

n

≥ rc,k − 1, ∀k ∈ K,

(41f)
ρkap,k∑K

i=1 ρib
p
ki + ρcIc,k + σ2

n

≥ rp,k − 1, ∀k ∈ K,

(41g)

c ≥ 0, (41h)

ρc +
K∑

i=1

ρi ≤ ρdL. (41i)

Here, (41) aims to maximize the lower bound of the objective

function (40a) under the constraints (40b)-(40d). The equiva-

lence between (40) and (41) is established based on the fact

that at optimum, equality holds for constraints (41b)–(41g)

and (41i). Next, we deal with the non-convex constraints (41f)

and (41g) by further introducing auxiliary variables χc =
{χc,1, . . . , χc,K} and χp = {χp,1, . . . , χp,K} representing the

noise plus interference experienced by the common stream at

UE sides and private streams, respectively. In addition, we

introduce a variable vector ν = {νc, ν1, . . . , νK} such that

ν2c = ρc and ν2k = ρk, ∀k ∈ K. Consequently, constraint (41f)

can be equivalently written as

ν2c ac,k
χc,k

≥ rc,k − 1, ∀k ∈ K, (42a)

χc,k ≥
K∑

i=1

ν2i b
c
ki + ν2c Ic,k + σ2

n, ∀k ∈ K. (42b)

Similarly, for the private streams, constraint (41g) can be

equivalently written as

ν2kap,k
χp,k

≥ rp,k − 1, ∀k ∈ K, (43a)

χp,k ≥
K∑

i=1

ν2i b
p
ki + ν2c Ic,k + σ2

n, ∀k ∈ K. (43b)

The transmit power constraint, i.e., (41i) can be written as

ν2c +

K∑

i=1

ν2i ≤ ρdL. (44)
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Therefore, problem (40) is equivalently transformed into

max
ν,c,αp,αc,

rp,rc,χp,χc,t

t

s.t. (41b), (41c), (41d), (41e), (41h),

(42a), (42b), (43a), (43b), (44).

(45)

The constraints of the transformed problem (45) are convex,

with the exception of (42a) and (43a). To deal with these non-

convex constraints, we use the first-order Taylor expansion to

linearly approximate the non-convex parts of these constraints.

Linear approximation of the left side of constraint (42a) around

the point (ν
[n]
c , χ

[n]
c,k) is given by

ν2c ac,k
χc,k

≥ ac,k

(2ν[n]c

χ
[n]
c,k

νc −
(ν

[n]
c )2

(χ
[n]
c,k)

2
χc,k

)
, Ψ

[n]
c,k(νc, χc,k),

(46)

where (ν
[n]
c , χ

[n]
c,k) are the values of variables (νc, χc,k) in

the nth iteration. Similarly, the non-convex part of constraint

(43a), i.e., the left-hand side is linearly approximated around

the point (ν
[n]
k , χ

[n]
p,k), and the approximation is given by

ν2kap,k
χp,k

≥ ap,k

(2ν[n]k

χ
[n]
p,k

νk −
(ν

[n]
k )2

(χ
[n]
p,k)

2
χp,k

)
, Ψ

[n]
p,k(νk, χp,k).

(47)

Based on the approximations in (46) and (47), at iteration n
problem (40) is approximated as,

max
ν,c,αp,αc,

rp,rc,χp,χc,t

t

s.t. Ψ
[n]
c,k(νc, χc,k) ≥ rc,k − 1, ∀k ∈ K,

Ψ
[n]
p,k(νk, χp,k) ≥ rp,k − 1, ∀k ∈ K,

(41b), (41c), (41d), (41e), (41h),

(42b), (43b), (44).

(48)

Problem (48) is convex [38], which can be solved using

standard convex optimization algorithms, e.g., interior-point

methods. In the numerical results section, we make use of the

CVX toolbox in Matlab to solve problem (48). Algorithm 3

outlines the SCA-based MaxMin power allocation algorithm of

RS. In any iteration n, using the values ν [n−1],χ
[n−1]
p ,χ

[n−1]
c

from the output of iteration n− 1, problem (48) is solved and

t[n], ν [n],χ
[n]
p ,χ

[n]
c are updated using the respective optimized

values. The iterations continue till convergence is reached with

a tolerance value ǫ.

Algorithm 3 MaxMin: SCA Algorithm

1: Initialize n← 0, t[n] ← 0,ν[n],χ
[n]
p ,χ

[n]
c

2: Iterate

3: n← n+ 1;
4: Solve (48) using

ν [n−1],χ
[n−1]
p ,χ

[n−1]
c and denote optimal values of t,

ν, χp, χc as t∗, ν∗, χ∗
p, χ

∗
c .

5: Update t[n] ← t∗, ν[n] ← ν∗, χ
[n]
p ← χ∗

p, χ
[n]
c ← χ∗

c

6: Until |t[n] − t[n−1]| < ǫ

Initialization: Since the variable ν and auxiliary variables

χc and χp all depend on ρ, we begin with describing the

initialization of ρ. The initial power allocation is done by

finding a feasible point ρ[0] satisfying the transmit power

constraint in (40c). With ζ ∈ [0, 1] denoting the fraction

of total power allocated to the common stream, we have

ρc = ζρdL. Furthermore, ρk = (1 − ζ)ρdL/K, ∀k ∈ K is the

initial power allocated to each private stream. Consequently,

ν
[0]
c and ν

[0]
k are respectively initialized as ν

[0]
c =

√
ρ
[0]
c and

ν
[0]
k =

√
ρ
[0]
k , ∀k ∈ K, satisfying the transmit power constraint

in (44). We initialize χc and χp by replacing the inequalities

with equalities in (42b) and (43b), respectively.

Convergence: Since the constraints (42a) and (43a) are

relaxed by the first-order lower bounds (46) and (47), re-

spectively, a feasible solution of problem (48) at iteration

n is also a feasible solution at iteration n + 1. Therefore,

the optimized value of t is always non-decreasing with n.

As t is bounded by the transmit power constraint in (44),

Algorithm 3 is guaranteed to converge. However, due to linear

approximations (46) and (47), the algorithm is not guaranteed

to converge to the global optimum. Initialization plays an

important role in determining the optimized value of t and

therefore, solving problem (48) for different values of ζ and

selecting the optimal power allocation that maximizes t helps

us achieve significantly better performance.

Complexity: Algorithm 3 involves optimization of 8K +2
variables and 9K + 1 constraints and therefore has the com-

putational complexity of the order of [38]

O
(
Nomax

{
4 (4K + 1)

2
(9K + 1) , F2

})
, (49)

where F2 is the cost of evaluating the first and second deriva-

tives of the objective and constraint functions in (48). No is the

number of iterations required for Algorithm 3 to converge to

an optimal (local or global) point. Note that although the joint

optimization of ρ, c and t noticeably increases the complexity

of each iteration in Algorithm 3 as the number of UEs increase,

careful initialization of power allocation coefficients can help

in hastening the convergence of the SCA algorithm to a few

iterations.

Remark. We would like to highlight that the SCA method is

opted for MaxMin because of the joint optimization of power

allocation coefficients and share of the common SE allocated

to each UE in order to maximize the minimum SE. MaxSum-

SE and MaxSINR power allocation problems can also be

formulated and solved using the SCA method. However, we

choose and illustrate Algorithm 1 for MaxSum-SE because

different from MaxMin, MaxSum-SE only optimizes power

allocation coefficients without the optimization of coupled

common SE allocation. It is therefore possible to develop a

power allocation strategy with a lower complexity and still

achieve good SE performance. Since Algorithm 1 has a low

time-complexity and builds on the popular uniform power

allocation scheme of NoRS in practical networks, we choose

Algorithm 1 to maximize the sum-SE of RS. For MaxSINR, we

opt for Algorithm 2 because it provides the optimal solution to

problem (36), as opposed to SCA, which gives a sub-optimal
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solution. Nevertheless, Appendix B demonstrates the use of

SCA algorithm to solve MaxSum-SE and MaxSINR problems

of RS, and their comparison with Algorithm 1 and Algorithm

2, respectively.

V. NUMERICAL RESULTS

To quantitatively compute the SE achieved by RS in TDD

MaMIMO, we consider different topologies to capture differ-

ent use cases and obtain the SE performance of RS and NoRS

transmission strategies. For each topology, the SE results

are obtained by averaging the SE over 100 setups. In each

setup, the lower bound of the SE performance is calculated

considering 200 coherence intervals. The two topologies con-

sidered in this paper are: 1) a rectangular topology where

UEs are randomly distributed within a rectangular area of size

250×250m2, illustrated in Fig. 3(a); and 2) a circular topology

where UEs are randomly distributed around a circle of radius

r = 125m, illustrated in Fig. 3(b). Here, both topologies are

considered to appropriately capture use cases like conventional

cellular use case, ultra-reliable low-latency communications

(URLLC), mMTC, and crowded scenarios.

At the transmitter side, the BS antennas are placed in a

uniform linear array with half-wavelength antenna spacing.

The large scale fading parameter path loss βk for UE k is

modelled in dB as [7, eq (2.3)]

βk = Γ− 10η log10(
dk
1km

) + Sk, (50)

where dk is the distance between the BS and UE k in

km, the pathloss exponent η determines how fast the signal

power decays and Γ is the channel gain at a distance 1 km.

Sk ∈ N (0, σ2
s ) is the shadow fading coefficient. Subsequently,

the corresponding channel correlation matrix for each UE is

generated by assuming that each channel consists of S = 10
clusters following the Gaussian scattering model in [7, Sec

2.6]. Hence, the (m1,m2)th element of correlation matrix of

UE k is given by

[Rk]m1,m2
= βk ×

1

S
×

S∑

s=1

eiπ(m1−m2) sin(ϕk,s)e−
σ2
ϕ
2

(
π(m1−m2) cos(ϕk,s)

)
2

.

(51)

Let ϕk be the geographical angle to UE k from the BS. Cluster

s is characterized by a randomly generated nominal angle-of-

arrival ϕk,s ∼ U{ϕk − 40°, ϕk + 40°} and multipath compo-

nents have their angles distributed around the corresponding

nominal angle with variance σϕ = 15°. For uncorrelated

Rayleigh fading, the spatial correlation matrix simply boils

down to Rk = βkIM [1]. The simulation parameters are

reported in Table I.

We consider NoRS (a conventional SDMA-based MaMIMO

strategy) as the baseline strategy to compare the SE per-

Table I: Simulation parameters

Parameter Value

Path Loss coefficients Γ = −148.1, η = 3.76, σ2
s = 16

TDD parameters (samples) τ = 200, τp = 20, τd = 190
Total transmit powers ρul = 10 dBm, ρdL = 20 dBm

Noise powers σ2

ul
= σ2

n = −94 dBm

formance of RS.14 For a fair SE performance comparison,

we choose MR precoding for UEs and calculate the SE

performance of NoRS for all three different power allocation

schemes as following,

• MaxSum-SE: For MaxSum-SE, baseline NoRS results

are obtained by switching off the common stream, i.e.,

by computing the sum-SE performance for ζ = 1 in

Algorithm 1.

• MaxSINR: MaxSINR problem of NoRS is formulated

following equation (7.8) in [7]. MaxSINR problem with

NoRS is also a GP problem and is solved using CVX.

• MaxMin: We opt for two MaxMin algorithms to obtain

the SE performance of the NoRS strategy. In the first

method, the common stream is switched off by allocating

zero power, i.e., forcing ρc = 0, and then solving problem

(48) using the SCA method. The second method is

solving the MaxMin fairness problem (7.7) formulated

in [7], which gives a globally optimal solution for a

NoRS strategy by employing the Bisection algorithm.

The first method (SCA) is considered to ensure fair-

ness in MaxMin SE performance comparison of the

RS and NoRS strategies, whereas the second method

allows us to compare a sub-optimal SCA-based power

allocation scheme of NoRS with the globally optimal

algorithm of NoRS based on Bisection. The power al-

location coefficients are initialized as ρc = 0.1ρdL and

ρk = 0.9ρdL/K, ∀k ∈ K for the MaxMin scheme of RS,

whereas the initialization is ρk = ρdL/K, ∀k ∈ K for

SCA-based MaxMin scheme of NoRS.

A. MaxMin

For RS, the SE per UE performance is obtained by em-

ploying Algorithm 3 delineated in Section IV.C, whereas

the MaxMin power allocation scheme for the baseline NoRS

strategy is discussed in Section V (SCA and Bisection both).

1) No Pilot Contamination: To appreciate the role of RS

in mitigating the deleterious effect of pilot contamination, we

first analyze the SE per UE performance of both RS and NoRS

transmission strategies when there is no pilot contamination,

i.e., when all UEs use mutually orthogonal pilot sequences

for UL training. Fig. 4 illustrates the average SE per UE

performance of both RS and NoRS strategies in the rectangular

14We do not consider PD-NOMA for SE performance comparison as it
is unable to fully exploit the spatial domain in multi-antenna settings [40].
RSMA has been shown to outperform PD-NOMA in both DoF and SE
performance in multi-user MIMO networks [40]. Moreover, DL training is
required for PD-NOMA. To that end, [41] compares NoRS with a PD-NOMA
strategy in TDD MaMIMO and showed that NoRS significantly outperforms
PD-NOMA in terms of SE performance, even with DL training utilized for
UEs in PD-NOMA. Therefore, in this paper, we restrict the SE performance
comparison of RS with the NoRS strategy only.
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Figure 3: Network topologies.
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Figure 4: Average SE per UE, M = 100, K = 8, orthogonal pilots.

topology and spatially correlated UE channels. We observe

that since there is no pilot contamination, i.e., the CSIT

quality is “good”, both transmission strategies achieve high

SE performance. Moreover, RS has no gain over NoRS. Note

that since RS encapsulates a conventional linearly precoded

multi-user MIMO strategy, under perfect CSIT conditions, RS

will always achieve a SE that is better than or equal to NoRS

for the same optimization technique [40]. As a result, with no

pilot contamination, RS achieves the same SE performance

as NoRS strategy, i.e., no power is allocated to the common

streams, and all the transmit power is allocated to the private

streams. The SE per UE result is similar for the circular topol-

ogy and therefore is not illustrated for brevity. Furthermore, the

SE per UE performance with spatially uncorrelated channels

is consistent with the result of spatially correlated channels in

the sense that RS and NoRS achieve the same performance,

and therefore is not shown to avoid redundancy.

2) Severe pilot contamination: Next, we move to the other

extreme and illustrate the SE per UE of both transmission

strategies under severe pilot contamination for different topolo-

gies and channel propagation environments. Fig. 5 illustrates

the SE per UE performance of RS and NoRS strategies in

the rectangular topology. From Fig. 5(a), we observe that the

RS strategy can better manage the interference and achieves a

better SE per UE performance than the NoRS strategy. More-

over, the gain of RS over NoRS is larger when the channel
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Figure 5: Average SE per UE in rectangular topology.

fading is uncorrelated. The reason for a larger SE gain in the

case of uncorrelated fading is that the channel estimates of two

UEs utilizing the same pilot sequence become parallel vectors

that only differ in scaling, i.e., ĝk = (βk/βi)ĝi, ∀i, k ∈ K.

As a result, the BS is unable to separate UE channels that

are identically distributed (up to a scaling factor), resulting

in extremely poor quality and correlated channel estimates,

which ultimately leads to a decrease in the SE performance of

both the RS and NoRS strategy [3], [7]. However, due to the

robustness of RS under imperfect CSIT, the performance loss

in RS is significantly less severe compared to NoRS. Fig. 5(b)

shows the average SE per UE versus the number of UEs for

the same network layout. For K = 4, the relative SE gain15

of RS over NoRS is 28.6% for correlated fading channels and

58.7% for uncorrelated fading channel. As the number of UE

increases, both RS and NoRS show a sharp SE loss which can

be attributed to multiple reasons. First, since all UEs are using

the same pilot, the effect of pilot contamination becomes more

severe as the number of UEs increases. Second, maximizing

the minimum SE becomes more difficult as the number of

UEs increases. For RS, the sharp decline also stems from the

additional constraint of maximizing the common SE as the

common stream is to be decoded by all UEs. Therefore, the

SE gain of RS over NoRS decreases as the number of UEs

increases.16

Next, we look at the performance of the transmission strate-

gies in the circular topology. From Fig. 6, we observe that the

gain of RS over NoRS is more explicit in the circular topology

compared to the rectangular topology. This accentuated gain

is due to the ease of the constraint of maximizing the common

SE as UEs experience similar path loss. In this scenario, for

K = 4, the gain of RS over NoRS is 30% for correlated

fading channels and 62% for uncorrelated fading channels.

Similarly, as observed in Fig. 6(b), the decline in average SE

per UE is relatively less sharp in circular topology because

equal path loss aids in maximizing both the common SE and

minimum total SE of a UE. As a result, the SE performance

of RS is significantly higher than NoRS, even for a higher

15Relative SE gain is calculated as SERS
−SENoRS

SERS .
16As the number of UEs increases, more advanced RSMA schemes could

be used in MaMIMO to improve the SE performance [19], [33].
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Figure 6: Average SE per UE in circular topology.

number of UEs. This is particularly beneficial for fixed mMTC

scenarios where multiple active UEs (devices) have a high

probability of sharing a pilot sequence and typically have low

SE requirements in both UL and DL.

It should be highlighted that with spatially correlated chan-

nels, the relatively low gains of RS over NoRS for a higher

number of UEs is not indicative of the true performance of RS.

Since the UEs are randomly distributed within an area in the

rectangular topology, and along the circumference in circular

topology, the channels of UEs are highly distinguishable in

the spatial domain. In such a scenario, the MMSE estimation

is better placed to separate the channel estimates in the spatial

domain and, even with a single pilot used for UL estimation,

can better mitigate the effect of pilot contamination. However,

if the UEs are packed within a sector, e.g. crowded scenarios,

the efficacy of MMSE estimation in mitigating pilot contam-

ination will suffer a SE loss. To elaborate, we compare the

average SE per UE of RS and NoRS for the following two

network layouts: 1) first, when the network layout is the same

as Fig. 3, i.e., UEs are randomly distributed in the whole area

of consideration (θ = 2π) and 2) when UEs are randomly

distributed within a confined sector (θ = π/4), as illustrated in

Fig. 7. It can be observed in Fig. 8(a) that though the achieved

SE per UE decreases for both RS and NoRS as θ decreases

to π/4 due to reduced CSIT quality, the relative SE gain of

RS over NoRS in rectangular topology increases from 15% to

23.5%. Similarly, the relative SE gain of RS over NoRS in

circular topology illustrated in Fig. 8(b) increases from 18.6%
to 35.33%. These results further attest to the superiority of

RS over NoRS strategy in different use cases by robustly

managing interference and achieving high SE performance.

B. MaxSum-SE and MaxSINR

In this subsection, we illustrate the sum-SE performance

of both RS and NoRS strategies with low-complexity power

allocation schemes, which are more beneficial for use cases

like mMTC and URLLC. Similar to the MaxMin power allo-

cation scheme, RS and NoRS transmission strategies achieve

the same SE performance in the absence of pilot contami-

nation, with both MaxSum-SE and MaxSINR. Therefore, for

brevity, we do not illustrate the SE performance with no pilot
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Figure 7: Network topologies with UEs confined within a sector.
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Figure 8: Average SE per UE with spatially correlated channels for
different network layouts, M = 100 and K = 8.

contamination. Moreover, taking note of the inferences from

MaxMin results, we begin by focusing on the network layout

with significant gains for RS, i.e., circular topology with UEs

confined within a sector of θ = π/4. From Fig. 9(a) and

Fig. 9(b), we observe that the SE performance of RS and

NoRS for both power allocation schemes is consistent with the

MaxMin power allocation scheme. While RS always achieves

a higher sum-SE than NoRS, the gap is lower with spatially

correlated channels. For K = 8, the SE gain of RS over NoRS

with MaxSum-SE when UE channels are spatially correlated

and uncorrelated is 20.9% and 42%, respectively. Both RS and

NoRS achieve a lower sum-SE with MaxSINR compared to

MaxSum-SE as the number of UEs increases. The lower sum-

SE performance is because implicitly MaxSINR is designed

to strike a balance between maximizing sum-SE and fairness.

As a result, MaxSINR always allocates a non-zero power to

each UE, resulting in sum-SE performance loss. As observed

with the MaxMin scheme, the gain of RS over NoRS will

decrease when the UEs are not confined to a sector and instead

are randomly distributed over the entire circle. Similarly, the

gap between the sum-SE of RS and NoRS will decrease in

rectangular topology, i.e., when UEs experience different path

loss. Nonetheless, despite low-complexity power allocation

schemes, RS is robust to imperfect CSIT and achieves a better

SE performance than NoRS.
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Figure 9: Sum-SE performance of the two low-complexity power
allocation schemes in circular topology, M = 100.
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Figure 10: Sum-SE performance versus M , K = 8.

C. Impact of number of transmit antennas

For analysis, we continue with MaxSum-SE power alloca-

tion scheme and keep the network layout the same as Fig. 7(b).

Fig. 10(a) illustrates the sum-SE as a function of the number

of transmit antennas, M , with the number of UEs K = 8.

We observe that RS mitigates the effect of pilot contamination

even with a finite number of antennas, and as M increases, the

sum-SE gain of RS over NoRS increases. Since the effective

propagation channel between the BS and UE k provides

asymptotic channel hardening as M → ∞, it aids in the

SIC of the common stream. Therefore, as channel hardening

increases, the performance gain of RS over NoRS increases

due to better management of interference at the UE side. Note

that the increase in the performance gain is more explicit with

spatially uncorrelated channels than correlated channels. This

behaviour can be attributed to the fact that spatial correlation

undermines channel hardening in MaMIMO [42], thereby

disallowing both RS and NoRS to exploit the full potential of

MaMIMO. Nonetheless, we observe from Fig. 10(b) that the

contribution of common SE to the total sum-SE with spatially

correlated channels increases from approximately 6% to 45%
when M increases from 20 to 100. Therefore, the SE gain of

RS over NoRS increases with M .

VI. CONCLUSION

In this paper, we proposed a general DL transmission

framework of RSMA in TDD MaMIMO network. Based on

the proposed framework, lower SE bounds for the common

and private streams were derived that hold true for any choice

of channel estimation and precoder design. Moreover, a low-

complexity precoder design was formulated for the common

stream of RS. We devised power allocation schemes of RS

for three different network utility functions such that the

formulation holds for any choice of UL channel estimator

and DL precoders. Considering both the ideal case when UEs

use orthogonal pilots, and the worst case when multiple UEs

share the same pilot, we analyzed the SE performance of

RS and NoRS. Through numerical simulations, we illustrated

the SE performance of RS and compared it with that of a

NoRS strategy in different network topologies and propagation

environments. Numerical results showed that RSMA is signif-

icantly more robust to pilot contamination than a conventional

SDMA-based MaMIMO transmission strategy.

The scarcity of pilots will be a major concern in B5G

and 6G networks, given their peculiar characteristics and use

cases. Because of the adaptability and robustness of RSMA

under different CSIT regimes, RSMA will potentially play

a significant role in MaMIMO networks. Building on the

work done in this paper, future works can focus on studying

multigroup multicasting in MaMIMO with RSMA and inves-

tigating RSMA as an inter-cell pilot contamination mitigation

strategy. Furthermore, a majority of the literature (including

this paper) studying performance analysis of conventional

TDD MaMIMO network predominantly assumes the avail-

ability of channel statistics at the BS. The assumption allows

for employing sophisticated signal processing algorithms like

MMSE estimation to mitigate the effect of pilot contamination.

However, in the absence of the knowledge of channel statistics,

the difficulty of dealing with pilot contamination would in-

crease significantly. Therefore, it would be interesting to study

the potential benefits of RSMA under such constraints. Future

works of RSMA in TDD MaMIMO could also focus on the

interplay of RSMA with different UE grouping algorithms, UL

performance of RSMA, and performance of RSMA in TDD

MaMIMO with DL training. Finally, beyond the 1-layer RS

architecture utilized here, other RS schemes can be leveraged

to further enhance the SE performance.

APPENDIX A

We obtain the closed-form expression of the entity

E{gH
k w∗

c} as

E{gH
k w∗

c} =
∑K

i=1 a
∗
i tr(RiQ

−1Rk)√∑K

i=1

∑K

j=1 a
∗
i a

∗
j tr(RiQ−1Rj)

. (52)

Similarly, the closed-form expression of E{|gH
k w∗

c |2} is ob-

tained as

E{|gH
k w∗

c |2} =
∑K

i=1

∑K
j=1 a

∗
i a

∗
jE{gH

k ĝiĝ
H
j gk}

∑K
i=1

∑K
j=1 a

∗
i a

∗
j tr(RiQ−1Rj)

. (53)
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Using (3), numerator in equation (53) is reduced to

E{gH
k ĝiĝ

H
j gk} =E{gH

k ĝiĝ
H
i R−1

i Rjgk}
= tr(R−1

i RjE{gH
k ĝiĝ

H
i gk}).

(54)

As gk = ĝk + g̃k, and ĝk and estimation error g̃k are

independent, (54) is further reduced to

E{gH
k ĝiĝ

H
j gk} = tr

(
R−1

i RjE{ĝH
k ĝiĝ

H
i ĝk}

)

+ tr
(
R−1

i RjE{g̃kg̃
H
k }E{ĝiĝ

H
i }
)
.

(55)

Using equation (C.64) and equation (C.65) in [7], we get

E{ĝH
k ĝiĝ

H
i ĝk} = tr(ΦiΦk) + |tr(RiQ

−1Rk)|2,
E{g̃kg̃

H
k }E{ĝiĝ

H
i } = (Rk −Φk)Φi,

(56)

where Rk and Φk are the correlation matrices of the chan-

nel and channel estimate of UE k, respectively. Substituting

equation (56) into (55) and, in turn, substituting (55) into (53),

closed-form expression for E{|gH
k w∗

c |2} is obtained.

APPENDIX B

A. MaxSum-SE: SCA

Similar to the problem (41), we introduce auxiliary variable

αc and vector αp = [αp,1, . . . , αp,K ] representing the com-

mon SE and private SEs of UEs, respectively. We introduce

rc = [rc,1, . . . , rc,K ] and rp = [rp,1, . . . , rp,K ], representing

1 plus SINR value for common and private streams of UEs

respectively and transform problem (35) equivalently as

max
ρ,αp,αc,
rp,rc

αc +

K∑

k=1

αp,k, (57a)

s.t. rp,k − 2
τ
τd

αp,k ≥ 0 ∀k ∈ K, (57b)

rc,k − 2
τ
τd

αc ≥ 0 ∀k ∈ K, (57c)
ρcac,k∑K

i=1 ρib
c
ki + ρcIc,k + σ2

n

≥ rc,k − 1, ∀k ∈ K,

(57d)
ρkap,k∑K

i=1 ρib
p
ki + ρcIc,k + σ2

n

≥ rp,k − 1, ∀k ∈ K,

(57e)

αc ≥ 0, (57f)

ρc +
K∑

i=1

ρi ≤ ρdL. (57g)

We can follow the approach used to solve the MaxMin

problem (41) and obtain the power allocation coefficients

that aims to maximize the sum-SE. To avoid redundancy,

we do repeat the procedure of obtaining the SCA algorithm

for MaxSum-SE. Let us denote the SCA-based MaxSum-

SE power allocation algorithm of RS as “MaxSumSE-SCA”.

With 2(3K + 1) variables and constraints, the computational

complexity of MaxSumSE-SCA will be of the order of

O
(
N1max

{
8 (3K + 1)

3
, F3

})
, (58)

where F3 is the cost of evaluating the first and second

derivatives of the objective and constraint functions of the

MaxSumSE-SCA algorithm. N1 is the number of iterations

required for the algorithm to converge. From (58), we observe

that the complexity of MaxSumSE-SCA is significantly higher

compared to Algorithm 1, even for small values of K and ∆.

For ease of illustration and understanding, Table II compares

the MaxSumSE-SCA method and Algorithm 1 in terms of

the CPU time17 consumed to obtain the sum-SE performance

with a single pilot used by K = 4 UEs for UL training.

We observe that the MaxSumSE-SCA scheme achieves 30.7%
higher sum-SE performance but the time taken increases

approximately 105 fold. Note that the time consumed and

sum-SE performance of MaxSumSE-SCA also depends on the

power allocation initialization. For comparison, in Table II, we

initialize ρ[0] as ρc = 0.1ρdL and ρk = 0.9ρdL/K, ∀k ∈ K.

Table II: MaxSum-SE: Performance Comparison

Algorithm 1 SCA

CPU time (secs) 0.0013 86.94
SE (bps/Hz) 3.47 5.01

B. MaxSINR: SCA

We introduce auxiliary variable αc and auxiliary vector

αp = [αp,1, . . . , αp,K ] representing the log of common

SINR and private SINRs of UEs, respectively. Similarly, we

introduce rc = [rc,1, . . . , rc,K ] and rp = [rp,1, . . . , rp,K ],
representing SINR value for common and private streams of

UEs respectively and transform problem (36) equivalently as

max
ρ,αp,αc,
rp,rc

αc +

K∑

k=1

αp,k,

s.t.
ρcac,k∑K

i=1 ρib
c
ki + ρcIc,k + σ2

n

≥ rc,k, ∀k ∈ K,
ρkap,k∑K

i=1 ρib
p
ki + ρcIc,k + σ2

n

≥ rp,k, ∀k ∈ K,

(57b), (57c), (57f), (57g).

(59)

Let us denote the SCA-based MaxSINR power allocation

algorithm of RS as “MaxSINR-SCA”. The complexity of

MaxSINR-SCA will be the same as of MaxSumSE-SCA and

is delineated in equation (58). Observing (39) and (58), the

complexity of MaxSINR-SCA is higher than that of Algo-

rithm 2 and as K increases, the gap in complexity grows

significantly. From Table III, for K = 4, we observe that

MaxSINR-SCA achieves approximately 20% lower sum-SE

performance and consumes 8 fold more time compared to

Algorithm 2. Low complexity, specific form of the objective

and constraints, and modern solvers allows Algorithm 2 based

on GP to efficiently optimize the power coefficients and find

an optimal solution in significantly less time [43]. As a result,

Algorithm 2 outperforms MaxSINR-SCA in terms of both SE

and time consumed to compute the sum-SE. For MaxSINR-

SCA as well, both the time and sum-SE performance depend

on the initialization of the power coefficients, which are taken

as in Appendix B-A.

17The simulations were performed on a Windows 10 workstation with 3.00
GHz i7 − 9700 CPU and 8 GB of random access memory.
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Table III: MaxSINR: Performance Comparison

Algorithm 2 SCA

CPU time (secs) 4.33 34.10
SE (bps/Hz) 3.24 2.62
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