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Optimization of Mobile Robotic Relay

Operation for Minimal Average Wait Time
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Abstract

This paper considers trajectory planning for a mobile robot which persistently relays data between

pairs of far-away communication nodes. Data accumulates stochastically at each source, and the robot

must move to appropriate positions to enable data offload to the corresponding destination. The robot

needs to minimize the average time that data waits at a source before being serviced. We are interested

in finding optimal robotic routing policies consisting of 1) locations where the robot stops to relay (relay

positions) and 2) conditional transition probabilities that determine the sequence in which the pairs are

serviced. We first pose this problem as a non-convex problem that optimizes over both relay positions and

transition probabilities. To find approximate solutions, we propose a novel algorithm which alternately

optimizes relay positions and transition probabilities. For the former, we find efficient convex partitions

of the non-convex relay regions, then formulate a mixed-integer second-order cone problem. For the

latter, we find optimal transition probabilities via sequential least squares programming. We extensively

analyze the proposed approach and mathematically characterize important system properties related to

the robot’s long-term energy consumption and service rate. Finally, through extensive simulation with

real channel parameters, we verify the efficacy of our approach.

Index Terms

Autonomous robots, Unmanned Aerial Vehicle (UAV), relay systems, communication-aware robotics,

UAV-assisted communication, polling systems

I. INTRODUCTION

Significant advances in robotics over the past several years have created new possibilities in

the design of communication systems. For example, unmanned vehicles (ground or unmanned

aerial vehicles) may enable, extend, or improve networks via data muling [1–3], relaying [4–

7], or beamforming [8, 9]. Design of these mobility-enabled communication systems must
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Fig. 1. At each source, data accumulates in a queue which must be offloaded to the corresponding destination while minimizing

the average wait time. The relay operation is performed by a mobile robot, which needs to move to an optimum position within

each feasible relay region to service the corresponding queue. After servicing queue 𝑖, the robot moves to service queue 𝑗 with

probability 𝑝𝑖, 𝑗 , which is found based on optimizing a stochastic robotic routing policy. See the color pdf for better viewing.

account for both the motion and communication aspects of operation. This field is referred

to as communication-aware robotics [10–13]. Muralidharan and Mostofi [13] provide a recent

review of this area.

In this paper, we consider the operation of a mobile robot which is tasked with persistently

servicing several disparate communication links each consisting of a source and destination

pair, as shown in Fig. 1. Data arrives stochastically at each source and must be sent to its

corresponding destination, which is too far away for direct communication. The mobile robot

enables data transfer between each source-destination pair by creating a two-hop link between

them. Examples of such systems include sensor networks [14] and ad hoc networks deployed

for search and rescue or after a natural disaster.

To effectively operate, the robot must identify regions, labeled Relay Regions in Fig. 1, for

each source-destination pair where the link qualities from (to) the source (destination) are good

enough to permit the robot to relay data from the source to the destination. Then, the robot must

plan a trajectory which repeatedly visits these regions, allowing for persistent data transfer.

Several factors make this problem interesting and complex. First, in general, full channel

information is not known to the robot. Therefore, the robot must accurately predict the relay

regions with limited information. Doing so requires realistic modeling of highly non-convex

spatial variations of communication channels, based only on sparse prior samples, as simplified

models, e.g., disc models, may result in performance degradation. Second, as the real-world

communication channels which determine the relay regions are irregular, the regions become
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non-convex and disjoint, making path planning through them challenging. Third, the robot may

need to service some pairs more frequently than others due to potential heterogeneous data

accumulation rates and asymmetry in spatial locations. Fourth, the path planning needs to be

co-optimized with transitional routing probabilities. Finally, persistent operation calls for infinite

horizon planning, requiring careful trajectory parameterization and resource constraint definitions.

To account for these factors, we employ a realistic, probabilistic channel estimation framework

and consider stochastic trajectories parameterized by a set of relay positions (one per relay region)

and transition probabilities, as shown in Fig. 1. These stochastic robotic path planning policies

allow for arbitrary, non-homogeneous service frequencies [15] and provide security benefits in

adversarial settings [16]. Alternatively, they may be used as a basis for the construction of

deterministic policies [17], which may be difficult to directly optimize.

Utilizing mobile robots to relay data has received considerable attention in recent years [1, 2,

18–23]. In these problems, trajectory optimization considers paths which either move the robot

from node to node (data muling) [1, 2] or move the robot to locations where the wireless channel

quality permits reliable communication [9, 20–23]. Closely related are persistent monitoring

problems, in which a robot senses various locations in a workspace and transfers the sensed data

to a remote station [24–28], and communication-aware variations of the vehicle routing problem

(VRP) [29, 30].

However, servicing a number of source-destination pairs with heterogeneous traffic, and in

real-world channel environments, through visit location optimization and persistent path planning

differentiates this work from the literature. In much of existing work that addresses the robotic

path planning component, either simplified channel models, e.g., disc models, are used [6, 21,

24, 29], or the robot visits a number of sites directly, i.e., without any communication component

[1, 2].1 This greatly simplifies optimization of visiting locations. Other work focuses on planning

tours which visit each site exactly once [20, 26] rather than considering non-homogeneous visit

frequencies. On the other hand, in most work that consider real communication issues, either

path optimization from point A to point B is considered and/or only a single source-destination

is assumed with a given starting point [31, 21–23, 9, 22]. Optimizing both the stop locations and

the stochastic routing policy in realistic channel environments that result in highly non-convex

1Note that the term "relaying" in these papers refers to data muling (physically picking data up from one location and dropping

it off at another) and differs from what relaying means in this paper.
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relay regions, and while addressing multiple heterogeneous, persistent sources introduces exciting

new challenges, which motivates the proposed mathematical framework of this paper.

Our system of interest is also related to polling systems, in which a single server services

multiple queues. In fact, we use seminal results which characterize average wait times for

Markovian polling systems [32]. In fact, we show that polling system optimization becomes

a special case of our problem of interest, and when appropriate, we draw analogies with polling

system problems.

However, such work is not in the context of robotics, so issues related to location optimization

and realistic communication environments are not relevant. Even without our robotic-related

issues, a survey of polling systems literature shows that finding general optimal operating policies

is an open problem [33–38]. The additional considerations of location optimization and realistic

communication environments adds further complexity to our problem.

We next summarize our contributions.

1) For the highly non-convex and intractable persistent relaying problem described above, we

introduce approximately-optimal robotic relay policies (AORP’s) and bring a foundational

understanding to this problem. Specifically, we propose a novel approach that iteratively

minimizes the average wait time over both relay positions and the stochastic Markovian

routing policy (i.e., robot transition probabilities from one service location to the next). These

stochastic policies may be used as a basis for the construction of deterministic policies, as

we shall also show.

2) When optimizing the service locations, we show how each relay region can be predicted

and efficiently partitioned into a set of convex regions. We then show how the optimum

robot service locations can be found via an efficient mixed-integer second-order cone pro-

gram (MISOCP) that minimizes the average wait time. We further show how the optimum

Markovian robotic routing policy can be found via sequential least squares programming

(SLSQP).

3) Using a polling system model of the robot’s operation, we mathematically characterize the

robot’s service time percentage, average power, and average service rate. As we shall see,

our findings reveal interesting characteristics of the system in the long-term as well as the

per stage context.

4) We extensively test the proposed approach in realistic channel environments (channel param-

eters from real data) and show the impact of several different parameters on the performance
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of the system. We further compare with the state-of-the-art and also validate our theoretical

results.

The rest of the paper proceeds as follows: Section II introduces models for communication,

channel prediction, data accumulation and offloading, and robot motion, along with a Markov

process model of the system. Section III formalizes the minimal average wait time problem, and

in Section IV, we propose a novel algorithm to find approximately-optimal solutions. Section V

provides analytical results on long-term energy consumption and service rate of the system.

Section VI includes results from extensive simulated experiments which illustrate the efficacy

of our approach, and we conclude in Section VII.

II. SYSTEM MODELING

Consider a single robot in an environment with 𝑛 communication subsystems, each consisting

of a pair of source-destination nodes, as shown in Fig. 1. Data arrives at each source node

in a stochastic manner and needs to be communicated to its corresponding destination with a

minimum delay. However, the source-destination pairs are located such that direct communication

between them is not possible, possibly due to a large distance or blockage from objects in the

environment. Thus, a mobile robot is tasked with acting as a relay, constantly planning its path

in the area in order to transfer the information from each source to its corresponding destination

while minimizing the overall delay. In this section, we present the models for communication,

channel prediction, data transfer, and motion used in this paper, as well as a Markov chain model

useful for analyzing long-term properties of the system.

A. Communication and Channel Prediction Model

Communication from a source to its destination involves data transfer across two channels:

the link from the source to the robot and the link from the robot to destination. When the

source (robot) transmits with power Γ𝑇 , the received Signal-to-Noise Ratio (SNR) at the robot

(destination) is given by 𝑆𝑁𝑅rec = Γ𝑇 × Υ, where Υ is the Channel-to-Noise Ratio (CNR). The

effects of path loss, shadowing, and multipath fading result in a spatially-varying CNR.

A minimum Bit Error Rate (BER) or other Quality of Service (QoS) requirement induces a

minimum received SNR requirement for reliable communication, 𝑆𝑁𝑅th. If 𝑆𝑁𝑅 ≥ 𝑆𝑁𝑅th, the

source (robot) can communicate with the robot (destination). Since the robot and the sources

are assumed to have a fixed transmission power, the SNR threshold translates to a minimum

required CNR threshold Υth, and the spatially-varying channels dictate the connectivity regions.
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In order for the robot to constantly plan its path and relay the information between the source-

destination pairs, it needs to assess the connected region for each communication link, i.e., the

connected regions for communication from each source node to itself as well as the connected

regions for transmission from itself to each destination. This, however, requires the robot to

predict the channel quality at unvisited locations over the workspace. In this paper, we utilize

our past work on stochastic channel prediction [39] to enable the robot to predict its connectivity

regions. This approach uses a spatial stochastic process model that accounts for the effects of

path loss, shadowing, and multipath fading. More specifically, the channel is characterized by

path loss parameters 𝜃, shadowing power 𝛼2, shadowing decorrelation distance 𝛽, and multipath

fading power 𝜎2. Given a very small number of prior channel measurements, the CNR (in dB)

at an unvisited location 𝑥, ΥdB(𝑥), can then be best modeled by a Gaussian random variable

with its mean and variance given as follows:

E[ΥdB (𝑥)] = 𝐻𝑥𝜃 +Ψ𝑇 (𝑥)Φ−1 (𝑌𝑚 − 𝐻𝑚𝜃),

Σ(𝑥) = 𝛼̂2 + 𝜎̂2 −Ψ𝑇 (𝑥)Φ−1Ψ(𝑥),
(1)

where 𝑌𝑚 = [𝑦1, ..., 𝑦𝑚]𝑇 are the 𝑚 priorly-collected CNR measurements (in dB), 𝑋msr =

[𝑥msr
1 , ..., 𝑥msr

𝑚 ] are the measurement locations, 𝜃, 𝛼̂, 𝛽, and 𝜎̂ are the estimated channel pa-

rameters (using 𝑌𝑚), 𝐻𝑥 = [1 − 10log10(‖𝑥 − 𝑥𝑏‖)] with 𝑥𝑏 denoting either the location of

the source in the source-to-robot channel or destination in the robot-to-destination channel,

𝐻𝑚 = [𝐻𝑇
𝑥msr

1
, ..., 𝐻𝑇

𝑥msr
𝑚
]𝑇 , Ψ(𝑥) = [𝛼̂2exp(−‖𝑥 − 𝑥msr

1 ‖/𝛽), ..., 𝛼̂2exp(−‖𝑥 − 𝑥msr
𝑚 ‖/𝛽)]𝑇 , and

Φ = Ω + 𝜎̂2𝐼𝑚 with [Ω]𝑖, 𝑗 = 𝛼̂2exp(−‖𝑥msr
𝑖

− 𝑥msr
𝑗

‖/𝛽), ∀𝑖, 𝑗 ∈ {1, ..., 𝑚} and 𝐼𝑚 denoting the

𝑚 × 𝑚 identity matrix.

This Gaussian process model allows for the calculation of the probability that the CNR exceeds

the minimum CNR imposed by the QoS requirement. Specifically, at point 𝑥: P(ΥdB(𝑥) ≥
Υth, dB) = Q((Υth, dB − E[ΥdB(𝑥)])/

√︁
Σ(𝑥)), where Q(·) represents the complementary cumula-

tive distribution function of the standard normal distribution. The prior channel measurements

required to make this prediction can be provided by static sensors in the field, gathered in

previous operations or at the beginning of the operation, and/or obtained via crowdsourcing.2

The robot can only service the sources from locations where the CNR for both the source-to-

robot and robot-to-destination channels exceed the threshold Υth,dB. We call this the true relay

2The prior channel measurements that the robot can obtain are based on the downlink channel. When it needs to predict the

uplink channel, the prior measurements can be collected by the remote sensor which can then send the needed parameters back

to the robot for uplink channel prediction.
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region: 𝑅true
𝑖

= {𝑥 ∈ R2 |Υtrue
𝑖,𝑠,dB(𝑥) ≥ Υth,dB, Υ

true
𝑖,𝑑,dB(𝑥) ≥ Υth,dB}, where Υtrue

𝑖,𝑠,dB(𝑥) and Υtrue
𝑖,𝑑,dB(𝑥)

are the true CNR in dB at location 𝑥 of, respectively, the source-to-robot and robot-to-destination

channels for the 𝑖th source-destination pair.

The robot, however, will not know 𝑅true
𝑖

and must predict the relay regions with the above

channel prediction framework. Assuming independent channels, the probability of a successful

communication between the 𝑖th source-destination pair with the robot at position 𝑥 is

𝑝i,sd(𝑥) = P(Υ𝑖,𝑠,dB(𝑥) ≥ Υth,dB) × P(Υ𝑖,𝑑,dB(𝑥) ≥ Υth,dB), (2)

where Υ𝑖,𝑠,dB(𝑥) and Υ𝑖,𝑑,dB are the predicted CNR in dB at location 𝑥 of, respectively, the

source-to-robot and robot-to-destination channels for the 𝑖th source-destination pair. By applying

a threshold to the probability of successful end-to-end communication, 𝑝th, we then have a

predicted relay region: 𝑅𝑖 = {𝑥 ∈ R2 |𝑝𝑖,sd(𝑥) ≥ 𝑝th}. Due to the irregular spatial variations of

real-world communication channels, these regions will be highly non-convex.

All links are assumed to be of bandwidth 𝐵Hz, and both the source and robot transmit with

a fixed spectral efficiency of 𝜉 bps/Hz, e.g., they transmit with a fixed M-QAM constellation. As

a result, when servicing, the robot offloads data from the source at a rate of 𝜉 × 𝐵 bps.

B. Data Accumulation and Offloading

Let {𝑞1, ... 𝑞𝑛} represent infinite-capacity queues at the sources. We assume that the data arrive

at 𝑞𝑖 according to a Poisson process with average rate 𝜆𝑖 bps. The traffic for a single queue is

denoted by 𝜌𝑖 = 𝜆𝑖𝜁 . For the entire system, we have 𝜆𝑠 =
∑𝑛
𝑖=1 𝜆𝑖 and 𝜌𝑠 =

∑𝑛
𝑖=1 𝜌𝑖.

The average wait time, 𝑊̄ , is the average duration of time between the moment a bit arrives

in the queue and the moment it begins to be sent, and the service time, 𝜁 = 1/(𝜉𝐵), is the time

required to transfer a single bit from source to the robot, assuming a successful transmission,

which will be part of the optimization framework. Thus, the average total time between the

moment a bit enters a queue and the moment it arrives at the destination is 𝑊̄ + 2𝜁 . The service

discipline describes how many bits to service during a single visit to a source-destination pair.

We consider the exhaustive service policy, in which the robot continues service until the queue is

empty. For any robotic routing policy, this service discipline minimizes average wait time [35].

C. Motion Model

We assume that when in motion, the robot travels at a constant velocity, and we model

the motion power as a linear function of speed. Specifically, we use a model derived from

experimental studies which holds for a large class of robots (e.g., Pioneer robots) [40]: Γ𝑚 (𝑣) =
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𝜅1𝑣+𝜅2 for 𝑣 > 0 and Γ𝑚 (𝑣) = 0 for 𝑣 = 0, where 𝑣 is the robot’s speed, and 𝜅1 and 𝜅2 are positive

constants determined by the robot’s load and mechanical system. We consider trajectories where,

for each pair, the robot chooses a single relay position, 𝑟𝑖 ∈ 𝑅𝑖, at which the robot stops to relay,

so that when traveling between two relay positions 𝑟𝑖 and 𝑟 𝑗 , the motion energy consumed is

given by E𝑚 = (𝜅1 + 𝜅2/𝑣) | |𝑟𝑖 − 𝑟 𝑗 | |.
The robotic routing policy determines the sequence in which the pairs are serviced. As

discussed in Section I, we are interested in stochastic robotic routing policies characterized

by an irreducible Markov chain, Q, with a transition matrix 𝑃, where 𝑝𝑖, 𝑗 is the probability of

servicing the 𝑗 th source-destination pair next, given the robot is currently servicing the 𝑖th pair.

We denote with 𝜋 = [𝜋1, ..., 𝜋𝑛] the stationary distribution of Q.

The switching time is the duration of time between the moment the robot completes service for

one pair and begins service at the next. Let 𝑆 denote the symmetric matrix of switching times,

with 𝑠𝑖, 𝑗 denoting the switching time between 𝑞𝑖 and 𝑞 𝑗 . The switching times are determined

by the relay positions and the robot’s speed: 𝑠𝑖, 𝑗 = | |𝑟𝑖 − 𝑟 𝑗 | |/𝑣. We write 𝑆(𝑋𝑟) to convey the

dependency of 𝑆 on 𝑋𝑟 := {𝑟1, ..., 𝑟𝑛}.

D. Markov Chain Model for Persistent Operation

The instant the robot begins to service a queue is referred to as a polling instant, and the

duration of the robot’s operation may be decomposed into a sequence of stages, with the 𝑘 th

stage beginning and ending at the 𝑘 th and (𝑘 + 1)th polling instants, respectively. Let 𝐿𝑘 =

[𝐿1,𝑘 , ..., 𝐿𝑛,𝑘 ]𝑇 and 𝑄𝑘 ∈ {𝑞1, ..., 𝑞𝑛} denote the queue length at each source and the source

being polled, respectively, at the 𝑘 th polling instant. The sequence of random variables L :=

{(𝐿𝑘 , 𝑄𝑘 )}𝑘≥0 forms a Markov chain, and for the robotic routing policy and service discipline

discussed above, the chain is stable, i.e., positive recurrent, under the mild assumption that 𝜌𝑠 < 1

and Q is irreducible [41]. Thus, empirical time averages of system properties converge to the

expected values indicated by the unique stationary distribution.

Analyzing the system via the properties of the Markov chain’s stationary regime assumes that

robotic operation is of sufficient duration for system metrics to approach the values predicted

by an asymptotic analysis. In practice, this time is typically short.

The average wait time in the stationary regime is a function of the average arrival rates, service

time, switching times, and transition probabilities. Specifically, we have the following lemma:
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Lemma 1. The average wait time 𝑊̄ in a polling system under the exhaustive service policy

and a Markovian routing policy is given by:

𝑊̄ (𝜆, 𝜁 , 𝑆, 𝑃) = 𝜌𝑠𝜁

2(1 − 𝜌𝑠)︸      ︷︷      ︸
M/G/1 wait time

+ 1
2𝑠

𝑛∑︁
𝑖=1

𝜋𝑖

𝑛∑︁
𝑙=1

𝑝𝑖 𝑗 𝑠
2
𝑖, 𝑗 +

1
𝑠𝜌𝑠

𝑛∑︁
𝑖=1

𝜋𝑖

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗 𝑠𝑖, 𝑗

∑︁
𝑘≠𝑖

𝜌𝑘𝑇𝑘𝑖︸                                                                ︷︷                                                                ︸
additional wait time due to non-zero switching times

(3)

with 𝑠 =
∑𝑁
𝑖=1 𝜋𝑖

∑𝑁
𝑗=1 𝑝𝑖 𝑗 𝑠𝑖, 𝑗 denoting the average switching time and 𝑇𝑘𝑖 denoting the expected

time between any departure from 𝑞𝑖 and the most recent previous departure from 𝑞𝑘 . Note that

𝑇𝑘𝑖 is a function of 𝑃 and can be found by solving a system of 𝑛2 equations.

Proof. The proof proceeds by first decomposing total wait time into the wait time of an equivalent

𝑀/𝐺/1 queue and additional wait time incurred due to switching. This is then followed by a

long derivation. See Boxma and Weststrate for details [37]. [32],

In the context of our relay system, 𝜁 is fixed and given by the spectral efficiency and

communication bandwidth. Switching times, 𝑆(𝑋𝑟), are determined by the robot’s velocity, 𝑣,

and the choice of relay positions, 𝑋𝑟 . The relay positions are chosen from the relay regions, 𝑅𝑖,

which are in turn determined by the spatially-varying channel qualities, the QoS requirements,

and the transmission power Γt. The transition probabilities 𝑃 are precisely the robotic routing

policy, while the arrival rates 𝜆𝑖 are exogenous. Thus, given the spectral efficiency, 𝜉, channel

bandwidth, 𝐵, the robot’s velocity 𝑣, and the robotic relay policy(𝑋𝑟 , 𝑃), we can calculate average

wait time in the stationary regime as 𝑊̄ (𝜆, 1/(𝜉𝐵), 𝑆(𝑋𝑟), 𝑃) using Lemma 1.

III. PROBLEM FORMULATION

Consider our problem of a robot tasked with relaying data between 𝑛 source-destination pairs.

As mentioned earlier, an important performance metric of such a robotic relay system is the

average wait time. Therefore, our objective is to minimize the system-wide average wait time3

as given in Eq. (3). Our problem is formally stated as:

min
𝑋𝑟 , 𝑃

𝑊̄ (𝜆, 𝜁 , 𝑆(𝑋𝑟), 𝑃)

s.t. 𝑃 ∈ P, 𝑋𝑟 ∈
𝑛∏
𝑖=1

𝑅𝑖

(4)

where P is the set of transition matrices describing irreducible Markov chains.

3We note that minimizing the maximum wait time can be another objective of interest, depending on the scenario [42, 43].
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𝑛 Number of source-destination subsystems 𝑊̄ Average wait time of the system

𝑞𝑖 Queue at the source of the 𝑖th subsystem 𝑅𝑖 Predicted relay region of the 𝑖th subsystem

𝑟𝑖 Relay position of the 𝑖th subsystem 𝑠 Average switching time

𝑆(𝑋𝑟 ) Matrix of switching times between the relay posi-

tions

𝜁 Service time, i.e., time to transmit a single bit from

source to destination

𝜆𝑖 Data arrival rate in bits per second for the 𝑖th

subsystem

𝜆𝑠 System-wide data arrival rate

𝜌𝑖 Traffic of the 𝑖th subsystem 𝜌𝑠 System-wide traffic

𝑃 Probability transition matrix for queue visits 𝜋 Queue visit frequencies

Γ𝑚 (𝑣) Motion power for velocity 𝑣 Γ𝑡 Transmit power

Q Markov chain describing the sequence of queues

serviced

L Markov chain with L𝑘 = (𝐿𝑘 , 𝑄𝑘 ) giving the queue

lengths and queue serviced at the 𝑘 th polling instant,

respectively.

TABLE I. List of Key Variables

Remark 1. In Section V, we prove that long-term energy consumption (i.e., stationary values)

does not depend on the robotic relay policy. On the other hand, as we shall see, per stage

energy consumption is a function of the robotic relay policy. Sections IV-A and V-B show how

our proposed approach implicitly minimizes average energy per stage.

This problem, however, is challenging to analyze and solve due to the coupling of robotic

path planning and data servicing. In fact, simpler versions of this problem, without the robotic

component, are still difficult to analyze and have been the subject of extensive studies in both

polling systems and queuing theory. We next present special cases of Problem (4) which motivate

the rest of this paper and further put this optimization problem in the context of existing work.

A. Special Case: No Robotic Position Optimization

In this section, we briefly consider two special cases in which the robotic operation facet

of our problem becomes irrelevant, so that (4) reduces to problems which have been studied

extensively in queuing theory and polling systems. First, if the robot need not move at all, the

solution to (4) may be found using results on M/G/1 queues, as stated in the following theorem:

Theorem 1 (M/G/1 equivalence for the case of no motion). If I :=
⋂𝑛
𝑖=1 𝑅𝑖 ≠ ∅, then the

{(𝑋∗
𝑟 , 𝑃

∗) |𝑟∗
𝑖
= 𝑟∗

𝑗
∈ I, ∀𝑖, 𝑗 ; 𝑃 ∈ P} is the solution set of (4), and 𝑊̄∗ = (𝜌𝑠𝜁)/(2(1− 𝜌𝑠) is the

optimal value.
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Proof. If I :=
⋂𝑛
𝑖=1 𝑅𝑖 ≠ ∅, then all the predicted connected regions are overlapping. As such,

the robot can stay in one location to service all source-destination pairs, i.e., there is effectively

no need for an unmanned vehicle. In this special case, all switching times become zero. As

shown in [32], the polling system’s wait time is minimized when all switching times are zero.

We are thus left with an equivalent M/G/1 queuing system whose average wait time is given in

the theorem, regardless of the transition probabilities.

Second, if each region 𝑅𝑖 consists of only a single point, then optimization over relay positions

becomes trivial. From the angle of minimizing average wait time, the relay system becomes

mathematically equivalent to the polling system studied in [32]. No exact algorithm is known

for this problem, and minimal wait times are found only through approximations [17, 44].

B. Coupled Path Planning and Communication Problem

While the results in Section III-A help root our work in existing literature, relay position

optimization in those special cases is trivial. We now focus on the more realistic instances of

Problem (4) in which relay positions must be optimized along with transition probabilities.

Among the many difficulties presented by this problem is the complex relationship between 𝑇𝑘𝑖

and 𝑃. To better focus on the new dimension of path planning and avoid repeatedly solving the

system of 𝑛2 equations that relate 𝑇𝑘𝑖 and 𝑃, we follow a common approach in polling systems

literature [17] and restrict transition probabilities so that 𝑝𝑖, 𝑗 = 𝑝𝑘, 𝑗 = 𝜋 𝑗 , ∀𝑖, 𝑗 , 𝑘 ∈ {1, ..., 𝑛},
which we term a stochastic robotic routing policy. This permits a closed-form expression for

𝑇𝑘𝑖, as we characterize next:

Theorem 2. For a polling system with stochastic routing, the expected time between any depar-

ture from 𝑞𝑖 and the most recent previous departure from 𝑞𝑘 is given by

𝑇𝑘𝑖 =
𝜌𝑖𝑡

𝜋𝑖
+ 𝑠𝑖 +

(𝜌𝑠 − 𝜌𝑘 )𝑡
𝜋𝑘

+ 1 − 𝜋𝑘
𝜋𝑘

𝑛∑︁
ℎ=1

𝜋ℎ

∑︁
𝑙≠𝑘

𝜋𝑙𝑠ℎ,𝑙 , (5)

where 𝑡 is the average stage duration (mathematically characterized in Lemma 3 of Section V),

and 𝑠𝑖 is the first moments of the switching time from any relay position to 𝑟𝑖.

Proof. See Appendix for the proof.

Stochastic robotic routing policies still allow for arbitrary visit frequency and security benefits

while reducing the complexity of the design space. Robotic relay policies thus consist of the

tuple (𝑋𝑟 , 𝜋), and (4) can be restated as:
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min
𝑋𝑟 , 𝜋

𝑊̄ (𝜆, 𝜁 , 𝑆(𝑋𝑟), 𝑃(𝜋))

s.t.
𝑛∑︁
𝑖=1

𝜋𝑖 = 1, 𝜋𝑖 > 0 ,∀𝑖, 𝑋𝑟 ∈
𝑛∏
𝑖=1

𝑅𝑖 .

(6)

where 𝑃(𝜋) indicates the dependence of 𝑃 on 𝜋.

We refer to 𝜋𝑖 as the visit frequency of 𝑞𝑖. We are then interested in finding the visit frequencies

and relay positions that minimize average wait time, which is simpler than the original problem

in (4). This problem, however, is still quite challenging and lacks structure that would make it

easily solvable. In the next section, we then show how to find approximately-optimal solutions.

IV. APPROXIMATELY-OPTIMAL ROBOTIC RELAY POLICIES

The optimization problem in (6) is intractable due to the highly non-convex nature of the relay

regions 𝑅𝑖 and the strong coupling between 𝑋𝑟 and 𝜋. Thus, it is necessary to find approximately-

optimal robotic relay policies (AORP’s). To reduce complexity, we propose an iterative approach

which minimizes the average switching time over 𝑋𝑟 with 𝜋 fixed, then minimizes 𝑊̄ over 𝜋

with 𝑋𝑟 fixed. This may be repeated until convergence. Algorithm 1 outlines the approach. We

denote the variables associated with the solution to Algorithm 1 with the AORP superscript, so

the visit frequencies, robotic relay positions, and average wait time corresponding to the AORP

are given by 𝜋AORP, 𝑋AORP
𝑟 , and 𝑊̄AORP, respectively. We next discuss the two stages of this

approach in detail.

Algorithm 1: Approximately-Optimal Robotic Relay Policy (AORP)
Result: 𝜋AORP, 𝑋AORP

𝑟

For each source-destination pair:

Step 1: Find the predicted relay regions (𝑅𝑖), using the channel prediction model of

Section II-A.

Step 2: Find 𝑎𝑖, the 𝛼-shape of 𝑅𝑖.

Step 3: Simplify 𝑎𝑖 using Ramer-Douglas-Peucker algorithm.

Step 4: Find convex partition of 𝑎𝑖 using Hertel-Mehlhorn algorithm.

Initialize 𝜋AORP with Eq. 12. Then iteratively optimize 𝜋AORP and 𝑋AORP
𝑟 :

Step 5: Solve Problem 10 to update 𝑋AORP
𝑟 .

Step 6: Solve Problem 11 to update 𝜋AORP.

Step 7: Repeat steps 5 and 6 until convergence.
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A. Optimization of Robotic Path Planning

In the first part of our iterative approach, we fix 𝜋 and find the optimal robotic relay positions

𝑋𝑟 , simplifying (6) to:
min
𝑋𝑟

𝑊̄ (𝜆, 𝜁 , 𝑆(𝑋𝑟), 𝑃(𝜋))

s.t. 𝑋𝑟 ∈
𝑛∏
𝑖=1

𝑅𝑖 ,

(7)

In general, this problem is non-convex and intractable. In this section, we then show how we

can tackle this problem. We first note that relay positions, 𝑋𝑟 , affect the average wait time, 𝑊̄ ,

through the switching times, 𝑠𝑖, 𝑗 . Specifically, compared to the wait time of the system with no

switching times (i.e., an M/G/1 queue), the average additional wait time due to switching times

is positive everywhere except when the average switching time is zero (𝑠 = 0), as discussed

in the proof to Theorem 1. Therefore, an intuitive heuristic simplification for solving (7) is to

minimize the average switching time instead. Furthermore, minimizing the average switching

time amounts to minimizing the average distance traveled per stage of operation, which is a

common objective in robotics. In fact, as we show in Section V-B, this is equivalent to minimizing

average energy consumed per stage. Thus, rather than solving (7), we find 𝑋𝑟 that minimizes

the average switching time, as follows:

min
𝑋𝑟 , 𝑆

𝑛∑︁
𝑖=1

𝜋𝑖

𝑛∑︁
𝑗=𝑖

𝜋 𝑗 𝑠𝑖, 𝑗 (8a)

s.t. | |𝑟𝑖 − 𝑟 𝑗 | |2 = 𝑣𝑠𝑖, 𝑗 , ∀ 𝑖, 𝑗 (8b)

𝑋𝑟 ∈
𝑛∏
𝑖=1

𝑅𝑖 . (8c)

The objective is linear, and if (8b) is relaxed, i.e., | |𝑟𝑖 − 𝑟 𝑗 | |2 ≤ 𝑣𝑠𝑖, 𝑗 , it becomes a second-order

cone constraint which will be active at the optimal solution. We next show how to partition the

regions 𝑅𝑖 so that (8c) can be stated as a combination of linear and integer constraints, making

the problem a mixed-integer second-order cone program (MISOCP).

1) Relay Region Partitioning: In real channel environments, each relay region and predicted

relay region can be irregular and non-convex in its shape. However, there are many clear

advantages to optimizing over well defined regions in R2. Thus, to solve (8) efficiently, we

next propose a procedure, illustrated in Fig. 2, which converts each set 𝑅𝑖 into a set of convex

polygons 𝐶𝑖 = {𝐶𝑖1, ..., 𝐶
𝑖
𝑚𝑖
} whose union approximates the predicted relay region 𝑅𝑖.4

4As seen in Section VI, each 𝑅𝑖 is not necessarily a joint set.
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Fig. 2. Extraction of a convex partition of the predicted relay region. First, evaluating the probability of connectivity across a

fine grid produces a set of points 𝑅1 at which 𝑝1,sd > 𝑝th. Here 𝑝th = 0.7, and 𝑅1 is shown shaded in grey on top of the

true relay region, shown in red. (Left) Extracting the 𝛼-shape of 𝑅1 produces several non-convex polygons, 5 in this case.

Then the resulting polygons are partitioned into convex regions using the Hertel-Mehlhorn algorithm. (Center) Without RDP

smoothing, this produces 113 convex polygons. (Right) Using RDP to smooth before performing the partition reduces the number

of polygons to 11. See the color pdf for better viewing.

i Convert the points 𝑅𝑖 to a set of (possibly non-convex and non-simple) polygons. This may

be achieved by finding the 𝛼-shape of the points, as originally proposed in [45]. The 𝛼-shape

of a set of points is a set of polygons that best fit the original set, where the value of 𝛼 is

chosen based on the granularity of the grid to make the resulting polygons as tight to the

points as desired.

ii Smooth the non-convex polygons using the Ramer-Douglas-Peucker (RDP) algorithm ([46,

47]). This will reduce the number of convex polygons required for partitioning. Tolerance on

the amount of area lost or added by smoothing is set by the corresponding RDP parameters.

iii Finally, perform convex partitioning on each of the smoothed polygons. A number of al-

gorithms exist for such a partitioning. We elect to use the Hertel-Mehlhorn algorithm [48],

which has a time complexity of 𝑂 (𝑛) and is guaranteed to produce at most four times the

minimal number of convex polygons required for the partition.

This approach produces a reasonable number of convex partitions that fit tightly to the predicted

relay region, as illustrated in Fig. 2. The procedure is performed only once for each source-

destination pair, and the same partitions are then used in each iteration of Algorithm 1.

2) Mixed Integer Second-Order Cone Problem Formulation: With the convex partitions, we

can now reformulate (8) as a MISOCP. First, note that for each convex polygon 𝐶𝑖
𝑘
, there exists

𝐴𝑖
𝑘
, 𝑏𝑖

𝑘
, such that 𝐴𝑖

𝑘
𝑟𝑖 − 𝑏𝑖𝑘 ≤ 0𝑛 if and only if 𝑟𝑖 is in 𝐶𝑖

𝑘
, where 0𝑛 indicates a vector of length

𝑛 of all 0’s, and with an abuse of notation, ‘≤’ is the entry-wise comparison. Furthermore, we

introduce a set of indicator variables 𝜂𝑖
𝑘
, where 𝜂𝑖

𝑘
= 1 if 𝑟𝑖 ∈ 𝐶𝑖𝑘 and 𝜂𝑖

𝑘
= 0 otherwise, and 𝜂
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is the collection of all 𝜂𝑖
𝑘
. Then, we have the following mixed-integer program (MIP):

min
𝑋𝑟 , 𝑆, 𝜂

𝑛∑︁
𝑖=1

𝜋𝑖

𝑛∑︁
𝑗=𝑖

𝜋 𝑗 𝑠𝑖, 𝑗 (9a)

s.t. | |𝑟𝑖 − 𝑟 𝑗 | |2 ≤ 𝑣𝑠𝑖, 𝑗 , ∀ 𝑖, 𝑗 (9b)

𝜂𝑖𝑘 (𝐴
𝑖
𝑘𝑟𝑖 − 𝑏

𝑖
𝑘 ) ≤ 0𝑛, ∀𝑖, 𝑘 (9c)

𝑚𝑖∑︁
𝑘=1

𝜂𝑖𝑘 = 1, ∀𝑖, 𝜂𝑖𝑘 ∈ {0, 1}, ∀𝑖, 𝑘 . (9d)

where constraints (9c) and (9d) guarantee 𝑟𝑖 ∈ 𝑅𝑖. However, the quadratic constraint (9c) contains

both continuous and integer variables, making the problem intractable for many MIP solvers.

We next show how to make (9c) linear.

Let 𝑟𝑖,1 and 𝑟𝑖,2 denote the first and second coordinates of 𝑟𝑖, respectively, and let 𝑅𝑖,𝑘,min =

min{𝑟𝑖,𝑘 | 𝑟𝑖 ∈ 𝑅𝑖} and 𝑅𝑖,𝑘,max = max{𝑟𝑖,𝑘 | 𝑟𝑖 ∈ 𝑅𝑖}. First, we constrain 𝑟𝑖 to be within the

bounding box B𝑖 = [𝑅𝑖,1,min, 𝑅𝑖,1,max] × [𝑅𝑖,2,min, 𝑅𝑖,2,max]. Then for some large constant 𝑐𝑖
𝑘
>

max𝑟𝑖∈𝐵𝑖 ( | |𝐴𝑖𝑘𝑟𝑖 | |∞), let 𝑏̃𝑖
𝑘
= 𝑏𝑖

𝑘
+ 𝑐𝑖

𝑘
1𝑛, 𝐴̃𝑖𝑘 = [𝐴𝑖

𝑘
, 𝑐𝑖

𝑘
1𝑛], and 𝑟𝑖

𝑘
= [𝑟𝑖, 𝜂𝑖𝑘 ]

𝑇 , with 1𝑛 a vector

of 1’s with length 𝑛. Then 𝐴̃𝑖
𝑘
𝑥𝑖
𝑘
− 𝑏̃𝑖

𝑘
≤ 0𝑛 if and only if 𝜂𝑖

𝑘
(𝐴𝑖

𝑘
𝑟𝑖 − 𝑏𝑖𝑘 ) ≤ 0𝑛, and the problem

can be rewritten as a MISOCP:

min
𝑋𝑟 , 𝑆, 𝜂

𝑛∑︁
𝑖=1

𝜋𝑖

𝑛∑︁
𝑗=𝑖

𝜋 𝑗 𝑠𝑖, 𝑗 (10a)

s.t. | |𝑟𝑖 − 𝑟 𝑗 | |2 ≤ 𝑣𝑠𝑖, 𝑗 , ∀ 𝑖, 𝑗 (10b)

𝐴̃𝑖𝑘𝑟
𝑖
𝑘 − 𝑏̃

𝑖
𝑘 ≤ 0𝑛, ∀𝑖, 𝑘, 𝑟𝑖 ∈ B𝑖, ∀𝑖 (10c)

𝑚𝑖∑︁
𝑘=1

𝜂𝑖𝑘 = 1, ∀𝑖, 𝜂𝑖𝑘 ∈ {0, 1}, ∀𝑖, 𝑘 . (10d)

The constraints in (10c) are now linear, so this problem can be solved with mathematical solvers

which provide guarantees of optimality and finite time convergence.

B. Optimizing the Stochastic Robotic Routing Policy

In the second part of our iterative procedure, we fix 𝑋𝑟 to focus on finding the optimum

stochastic robotic routing policy 𝜋. As a result, the optimization problem of (6) simplifies to:

min
𝜋

𝑊̄ (𝜆, 𝜁 , 𝑆(𝑋𝑟), 𝑃(𝜋))

s.t.
𝑛∑︁
𝑖=1

𝜋𝑖 = 1, 𝜋𝑖 > 0, ∀𝑖 .

(11)
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This problem is mathematically similar to the stochastic polling system optimization problem,

and as discussed in Section III-A, no exact algorithm is known for solving it in its general

form. Thus, similar to [17], we use successive quadratic approximations to find approximate

solutions. Specifically, we use sequential least squares programming (SLSQP), which finds a

local minimum. We next briefly discuss a special case from polling systems literature for which

a closed form solution to (11) does exist, and discuss its potential relevance to our robotic routing

problem.

1) Square Root Rule Approximation: For a polling system with exhaustive service, Poisson

arrivals, and a stochastic robotic routing policy, if all switching times are identical, then average

wait time becomes convex in 𝜋, and a closed-form solution exists for the optimal visit frequencies,

as stated in the following lemma:

Lemma 2. Let 𝜋∗ be the visit frequencies which minimize the average wait time in a polling

system with exhaustive service, Poisson arrivals, and stochastic routing. If 𝑠𝑖, 𝑗 = 𝑠𝑘,𝑙 , ∀𝑖, 𝑗 , 𝑘, 𝑙 ∈
{1, ..., 𝑛}, then

𝜋∗𝑖 =

√︁
𝜌𝑖 (1 − 𝜌𝑖)∑𝑛

𝑗=1
√︁
𝜌 𝑗 (1 − 𝜌 𝑗 )

. (12)

Proof. See [17].

While Eq. (12) results in a closed-form solution, it requires identical switching times. In our

robotic routing context, this will only hold if all switching times are zero since 𝑠𝑖,𝑖 = 0. This then

results in the trivial case discussed in Theorem 1. As such, this special case does not directly

apply to our scenario. However, we have observed from extensive simulations that Eq. (12)

is a good approximation when all switching times except the self-loops, 𝑠𝑖,𝑖, are similar, i.e.,

when 𝑠𝑖, 𝑗 ≈ 𝑠𝑘,𝑙 , ∀𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, ..., 𝑛}, 𝑖 ≠ 𝑗 , 𝑘 ≠ 𝑙. In other words, Eq. (12) may be a good

approximation if the optimum robotic relay positions become approximately equal distanced.

We leave rigorous investigation of this approximation to future work.5

2) Observed Transition Probabilities: The visit frequencies 𝜋 found by solving (11) are with

respect to the discrete time Markov chain produced by taking snapshots of the system at polling

instances, i.e., Q. Consider the robot immediately after it completes servicing source 𝑞𝑖. With

5Note that even if we assume there is some form of delay that results in non-zero 𝑠𝑖,𝑖’s, such values would be negligible as

compared to the time it takes for the robot to travel from one relay region to the next, which is what differentiates this problem

from polling systems.
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probability 𝜋𝑖, the robot then transitions back to servicing 𝑞𝑖. However, under the exhaustive

service policy adopted in this paper (see Section II-B), 𝑞𝑖 will be empty at this point, resulting

in the robot eventually finding another source to service instantly (i.e., no time expires). As such,

it makes sense to exclude the self loops for simplicity, as summarized next:

Remark 2. The observed stochastic robotic routing policy is Markovian with transition proba-

bilities 𝑃̃ given by

𝑝𝑖 𝑗 =


𝜋 𝑗∑
𝑘≠𝑖 𝜋𝑘

if 𝑗 ≠ 𝑖,

0 otherwise.
(13)

Consequently, the robot is always observed leaving a relay position immediately upon service

completion, and the observed visit frequencies, 𝜋̃, may be found by finding the stationary

distribution associated with 𝑃̃, i.e., 𝜋̃𝑇 𝑃̃ = 𝜋̃𝑇 . These observed transition probabilities give clearer

descriptions of the robotic relay’s behavior and are used in Section VI to analyze the results of

the simulated experiments.

C. A Derived Deterministic Robotic Relay Policy

After convergence, an additional step may be taken to produce a routing table policy based on

the AORP in which the relay positions and visit frequencies are the same but the robot visits the

pairs according to a deterministic, periodic (not cyclic) sequence determined by 𝜋AORP, using

the Golden Ratio rule [49]. We refer to this policy as the AORP-Table (AORPT). The AORPT

policy eliminates the need to select the next source to service on the fly while ensuring the same

visit frequencies. As the traditional state-of-the-art in robotics route design is also deterministic,

we use the AORPT for comparison in Section VI. We next give a brief example.

Consider the case with four source-destination pairs with 𝜋 = [1/2, 1/4, 1/8, 1/8]. The Golden

Ratio Rule produces the following visit sequence for the robot to follow repeatedly:

(𝑞1, 𝑞2, 𝑞1, 𝑞3, 𝑞1, 𝑞2, 𝑞1, 𝑞4) . (14)

The resulting policy is periodic but not cyclic. Furthermore, it spaces visits evenly throughout

the period. To illustrate, consider an alternative sequence which satisfies the visit frequencies 𝜋:

(𝑞1, 𝑞2, 𝑞1, 𝑞2, 𝑞1, 𝑞3, 𝑞1, 𝑞4) . (15)

Here the two visits to 𝑞2 both occur in the first half of the sequence whereas in (14), the visits

are evenly distributed.
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In summary, in this section, we showed how to find approximately-optimal solutions to the

optimization problem in (6). Our proposed approach first finds an efficient convex partition for

each predicted relay region. It then iteratively optimizes the robotic relay positions to minimize

average switching time while fixing the robotic routing policy, followed by optimizing average

wait time over the routing policy (i.e., visit frequencies) while fixing the relay positions. After

convergence, the visit frequencies can further be translated to a deterministic policy for efficient

robotic operation in the field.

V. LONG-TERM AVERAGE POWER CONSUMPTION AND SERVICE RATE

In this section, we present important system properties regarding the long-term average power

consumption and service rate. The results further motivate the choice used for the optimization

problem formulation of the past sections. Our analysis focuses on average values when operating

in the stationary regime. Thus, the results hold both in expectation across an ensemble of

realizations over a finite number of stages, with initial conditions drawn according to the

stationary distribution of the Markov chain L, and in averaging asymptotically over time for any

realization of the process, regardless of initial conditions. We first prove that the percentage of

time spent servicing is independent of the robotic relay policy (𝑋𝑟 , 𝑃). We then use this finding

to derive key results regarding average power consumption and service rate.

A. Relating Percentage of Time Servicing to System Traffic

We first examine the significance of the system traffic, 𝜌𝑠, more closely and show that it

gives the long-term percentage of time the robot spends servicing bits in a queue. Recall that,

as presented in Section II-D, robotic operation may be decomposed into a series of stages

demarcated by the polling instants, and that L is a Markov chain with L𝑘 giving the state of

the system, i.e., the queue lengths and current queue under service, at the 𝑘 th polling instant.

Recall further that the robotic relay system is stable in the sense that L is positive recurrent if

and only if 𝜌𝑠 < 1 and Q is irreducible. We are now ready to present the following lemma:

Lemma 3. For any stable robotic relay policy, average stage duration in the stationary regime,

𝑡, is given by 𝑡 = 𝑠/(1 − 𝜌𝑠), where 𝑠 is the average switching time.

Proof. Under the assumption of stability, the average number of bits entering the system in a

stage, 𝑡𝜆𝑠, equals the average number leaving, (𝑡 − 𝑠)/𝛽. The result follows directly.

As 𝑠 is determined by our robotic relay policy, the average stage duration and the average time

spent servicing during a single stage are likewise determined by the policy. However, Lemma 3
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also indicates that the proportion 𝑠/𝑡 is fixed (equal to 𝜌𝑠) regardless of robotic relay policy,

and similarly, the long-term percentage of time spent servicing is independent of the policy, as

stated in the following theorem. Here and throughout the rest of the section, we use ‘ a.s.
= ’ to

indicate almost sure equality, and 𝑡𝑜 is the time of operation.

Theorem 3. Under any stable robotic routing policy, the system traffic 𝜌𝑠 gives the long-term

percentage of time spent servicing, i.e., lim𝑡𝑜→∞ 𝜙(𝑡𝑜)/𝑡𝑜
a.s.
= 𝜌𝑠, where 𝜙(𝑡𝑜) is the total time

spent servicing during operation.

Proof. 𝜙(𝑡𝑜) may be decomposed into the sum of all service times completed during the full

stages and an additional service time completed for the current, incomplete stage. 𝑡𝑜 may be

decomposed similarly so that

lim
𝑡𝑜→∞

𝜙(𝑡𝑜)
𝑡𝑜

= lim
𝑡𝑜→∞

(∑𝐾 (𝑡𝑜)
𝑘=1 𝜙𝑘 + 𝜙𝜖

)
/𝐾 (𝑡𝑜)(∑𝐾 (𝑡𝑜)

𝑘=1 𝑡𝑘 + 𝑡𝜖
)
/𝐾 (𝑡𝑜)

a.s.
= lim

𝐾→∞

(∑𝐾
𝑘=1 𝜙𝑘

)
/𝐾(∑𝐾

𝑘=1 𝑡𝑘

)
/𝐾

a.s.
=

(𝑡 − 𝑠)
𝑡

= 𝜌𝑠 , (16)

where 𝐾 (𝑡𝑜) is the number of complete stages after operation of duration 𝑡𝑜, 𝜙𝑘 is the time

spent servicing during the 𝑘 th stage, 𝜙𝜖 is any additional service time, 𝑡𝑘 is the duration of the

𝑘 th stage, and 𝑡𝜖 is any additional time. The second equality holds because 𝑡𝜖 and 𝜙𝜖 are almost

surely finite and the remaining equalities hold due to the positive recurrence of L as guaranteed

by the assumption of stability.

B. Energy Consumption and Average Power

Consider average energy consumption over a single stage of operation, including both com-

munication and motion energy. We have the following theorem:

Theorem 4. For any stable robotic relay policy, the average energy consumed over a single

stage while operating in the stationary regime, Ēst, is given by Ēst = 𝑡 (Γ𝑚 (𝑣) (1 − 𝜌𝑠) + Γ𝑡𝜌𝑠)

Proof. Note that Ēst = 𝑠 Γ𝑚 (𝑣) + (𝑡 − 𝑠)Γ𝑡 . The result follows directly from Lemma 3.

Recalling from Lemma 3 that 𝑡 is a linear function of 𝑠, we see the energy per stage is a linear

function of average switching time 𝑠, which is in turn determined by the robotic relay policy

(see Section II-B). In other words, the optimization problem in (7) amounts to minimizing the

average energy consumed per stage, which is an important metric in robotics literature. We next

move from stage-level analysis to formally consider the long-term average power consumption

of the robot.
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Theorem 5. Let E(𝑡𝑜) be the energy consumed during operation of duration 𝑡𝑜. Then under any

stable robotic relay policy lim𝑡𝑜→∞ E(𝑡𝑜)/𝑡𝑜 =
a.s.
= Γ𝑚 (𝑣) (1 − 𝜌𝑠) + Γ𝑡𝜌𝑠.

Proof. Note that E(𝑡𝑜) = (𝑡𝑜 − 𝜙(𝑡𝑜))Γ𝑚 (𝑣) + 𝜙(𝑡𝑜)Γ𝑡 , where the first and second terms give the

motion and communication energy, respectively. The result then follows from Theorem 3.

While Theorem 5 is an asymptotic result, in practice it holds for a long enough period of

time (corroborated by simulation results of Section VI), as summarized next:

Remark 3. For operation over a sufficiently large but finite duration 𝑡𝑜, E(𝑡𝑜) is well approxi-

mated by E(𝑡𝑜) ≈ (Γ𝑚 (𝑣) (1 − 𝜌𝑠) + Γ𝑡𝜌𝑠)𝑡𝑜 .

C. System Long-Term Average Service Rate

The average number of bits serviced during a stage must equal the average number of bits

that enter the system for any stable policy (see Lemma 3), which leads to the following:

Theorem 6. Under any stable robotic relay policy, lim𝑡𝑜→∞ 𝑑 (𝑡𝑜)/𝑡𝑜
a.s.
= 𝜆𝑠, where 𝑑 (𝑡𝑜) is the

total number of bits serviced during operation.

Proof. From the assumption of stability, data in and data out must be equal in the long-term.

While Theorem 6 is an asymptotic result, we find in practice that the empirical service rate

converges quickly to 𝜆𝑠, which leads to the following remark:

Remark 4. The total bits serviced during operation over a sufficiently large but finite duration

𝑡𝑜 is well approximated by 𝑑out(𝑡𝑜) ≈ 𝜆𝑠𝑡𝑜.

Importantly, systems with identical average long-term service rates may have vastly different

average wait times. As a trivial example, consider two systems which each service a single bit

during operation over a fixed amount of time. The first services the bit immediately and then

idles the remainder of the time, while the second idles for a time and then services the bit at the

very end of operation. While the average service rate of the two systems is identical, the first

system results in less wait time. As such, the average wait time is the key metric to consider

when optimizing robotic operation.

VI. SIMULATION RESULTS

In this section, we demonstrate the performance and efficacy of our approach with extensive

simulations in realistic channel environments. First, we discuss channel prediction and the
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extraction of convex partitions from the predicted relay regions. We then extensively study

the performance of our approach by showing the effect of various system parameters on the

AORP. We further show that our proposed approach can significantly reduce the average wait

time compared to the state-of-the-art. Finally, we discuss the average service rate and energy

consumption of the AORP to corroborate Theorems 6 and 5.

In our implementation of Algorithm 1, (6) is solved using the SLSQP solver of SciPy 1.7.1,

and (10) is solved with IBM CPLEX 12.9. To initialize 𝜋, we use the approximation in (12),

and in all simulations, we keep the following system parameters fixed: channel bandwidth 𝐵 =

2 Mhz, spectral efficiency 𝜉 = 8 bits/s/Hz, robot’s constant velocity 𝑣 = 1 m/s, and motion power

parameters 𝜅1 = 7.2 N and 𝜅2 = 0.29 W.

A. Relay Region Prediction

We first generate the source-robot and robot-destination communication channels using real-

istic channel parameters derived from real-world measurements in downtown San Francisco.

The following channel parameters, introduced in Section II-A, are extracted from the real

channel measurements of [50]: 𝛼2 = 16, 𝛽 = 2.09 m, 𝜃 = [5.2 dB,−7.5]𝑇 and 𝜎2 = 1.96.

Then, different channel instances are generated based on these parameters using the probabilistic

channel generator described in [51]. Briefly, [51] utilizes a given set of path loss, shadowing and

multipath parameters to generate a 2D channel whose underlying parameters match the given

set. The robot and sources transmit with a power of Γ𝑡 = 100 mW, the receiver noise power

is −85 dBm, and the acceptable SNR threshold for all the channels is set to 33 dB. Given the

transmit power, the SNR threshold translates to a CNR threshold of Υth, dB = 13 dBm. This then

dictates the true relay regions, which the robot does not know but needs to predict.

The robot then uses 1% apriori channel samples for each channel to predict the channel over the

rest of the workspace, which is unvisited. Using the approach outlined in Section II-A, the robot

predicts the relay regions by calculating the probability of successful end-to-end communication,

𝑝𝑖,sd, based on the CNR threshold (see Eqs. (1) and (2)).

B. Relay Region Convex Partitioning

We next show the process of extracting the convex partitions as proposed in Section IV-A1,

which plays a central role in the optimization of robotic relay positions. Fig. 3 (a,b) shows an

example of source-to-robot and robot-to-destination channels, generated with the aforementioned

real-world parameters. The robot then uses 1 % a priori channel samples and predicts the channel
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at the rest of the workspace in order to calculate 𝑝𝑖,sd across a fine grid of points. We construct the

relay region by selecting those points for which 𝑝𝑖,sd ≥ 𝑝th. Fig. 3 (c-e) shows a true connected

region and two samples of the predicted regions for two values of 𝑝th. As can be seen, for

𝑝th = 0.9, the prediction framework is more conservative in declaring a location as connected,

resulting in a smaller predicted relay region. As expected, fewer convex partitions are required

for 𝑝th = 0.9.

The table then compares the probability of true connectivity as well as the number of associated

convex partitions for three values of 𝑝th. As can be seen, the predicted relay regions provide

good approximations of the regions where the robot may successfully communicate with both

the source and destination, i.e., 𝑅true
𝑖

. In particular, we see that the probability that a point in

𝑅𝑖 is in 𝑅true
𝑖

becomes higher as the threshold increases, as expected. We furthermore observe

that the probability of true connectivity is larger than the threshold probability, i.e., for 𝑝𝑐 =

P(𝑥 ∈ 𝑅true
𝑖

|𝑥 ∈ 𝑅𝑖), we have 𝑝𝑐 > 𝑝th. Finally, the number of convex partitions reduces as 𝑝th

increases, as expected.

Overall, as 𝑝th increases, the chance that locations in the predicted relay region are truly

connected goes up, and the number of convex polygons required to partition the region decreases,

simplifying optimization problem (10). However, increasing 𝑝th makes the channel prediction

more conservative and can lead to inefficient robotic operation as larger areas of the true relay

region are excluded from the predicted region (see Fig. 3 (d,e)). As a result, the robot travels

longer distances than needed between relay positions. In the rest of the paper, we use 𝑝th = 0.7

for the prediction of all relay regions.

C. Impact of System Parameters

This section explores the impact of several system parameters on our proposed approach.

We start with a system of three source-destination pairs in order to show the impact of several

different system parameters on the performance. We then increase the complexity and show the

performance for a system consisting of six source-destination pairs.

1) Traffic: To isolate the effect of traffic distribution, consider the three-queue system with

symmetric placement of the subsystems shown in Fig. 4 (we note that the relay regions’ irreg-

ularity always introduces some asymmetry). In all three cases, system traffic is held constant

at 𝜌𝑠 = 0.5 while 𝜌1 is varied, where 𝜌𝑖 is the traffic at the 𝑖th source (see Section II-B). The

remaining traffic is split evenly between 𝜌2 and 𝜌3. The AORP transition probabilities are shown
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𝑝th = 0.5 𝑝th = 0.7 𝑝th = 0.9

𝑝𝑐 0.84 0.93 0.99

|𝐶 | 15 14 12

Fig. 3. Sample generated (a) source-to-robot and (b) robot-to-destination channels. The spatial variation of the channel is

highly non-convex, as can be seen. (c) True relay region (red) and contours of predicted probability of successful end-to-end

communication 𝑝sd. (d,e) Final convex partitioning given two threshold probabilities 𝑝th. The predicted relay regions (blue) are

overlaid on the true relay region (red). (Bottom) The table shows 𝑝𝑐 , the probability that a point in the predicted connected

region is truly connected, and |𝐶 |, the number of convex partitions, for three values of 𝑝th. See the color pdf for better viewing.

on the routes, observed visit frequencies and traffic are labeled on each subsystem, and the relay

position within each predicted relay region is marked.

Intuitively, as the traffic 𝜌𝑖 at 𝑞𝑖 increases, 𝜋̃AORP
𝑖

should increase. As can be seen, with

𝜌1 = 0.1, 𝑞1 receives only half the traffic received by either 𝑞2 or 𝑞3. Then, under the AORP, the

robot mainly moves back and forth between 𝑞2 and 𝑞3, visiting 𝑞1 on average only once every

four visits. When increasing 𝜌1 so that the traffic of each queue is 0.17, 𝜋̃AORP
1 increases so that

the robot services each queue with approximately equal frequency. Finally, when 𝜌1 = 0.4, 𝑞1

receives four times the combined traffic of 𝑞2 and 𝑞3. As can be seen, about half the visits are

made to 𝑞1 while the remaining are split between 𝑞2 and 𝑞3. Furthermore, the relay positions

𝑟AORP
2 and 𝑟AORP

3 move farther away from each other to be closer to 𝑟AORP
1 since the robot will

rarely switch between 𝑞2 and 𝑞3. In summary, when a queue accounts for a greater proportion

of the total system traffic, the visit frequency to that queue increases, and the relay positions

may shift to account for certain switches occurring more frequently.

2) Subsystem Placement: The relative placement of each source-destination subsystem also

greatly impacts the AORP, as shown in Fig. 5. To isolate the effect of subsystem placement, we

keep the traffic at all subsystems equal. The subsystems are first placed so that midpoints between

each source-destination pair form the vertices of an equilateral triangle. The first subsystem is

then increasingly offset in the direction of the positive 𝑦-axis, as shown.
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Fig. 4. Effect of traffic distribution on the AORP probability transitions and relay positions. The green squares indicate the relay

positions, and the observed transition probabilities, 𝑝AORP
𝑖, 𝑗

, are labeled on the arrows along each edge while the thickness of

each edge corresponds to 𝑝AORP
𝑖, 𝑗

as well. Each subsystem is labeled with both the corresponding incoming traffic, 𝜌𝑖 , and the

resulting visit frequency, 𝜋̃AORP
𝑖

. For each subsystem, the predicted relay region (in black) is overlaid on the true connected

region. Moving from left to right, the increase in 𝜌1 is reflected in the AORP transition probabilities and visit frequencies, as

can be seen. See the color pdf for optimum viewing of this figure.

Fig. 5. Effect of subsystem placement on the AORP probability transitions and relay positions. The green squares indicate the

relay positions, and the observed transition probabilities, 𝑝AORP
𝑖, 𝑗

, are labeled on the arrows along each edge while the thickness

of each edge corresponds to 𝑝AORP
𝑖, 𝑗

as well. In all cases, the traffic at each queue is 𝜌𝑖 = 0.17. For each subsystem, the predicted

relay region (in black) is overlaid on the true connected region. Moving from left to right, subsystem one is moved farther away

from the rest of the subsystems, and the impact of its increased isolation is then reflected in the AORP transition probabilities

and visit frequencies, as can be seen. See the color pdf for optimum viewing of this figure.

When the placement is symmetric (Fig. 5 (left)), each queue is serviced with approximately

the same frequency. The slight difference in visit frequencies can be explained by the particular

shape of the predicted relay regions, which are naturally different from each other. In other

words, although the source-destination pairs are positioned symmetrically, different shapes and

locations of the predicted relay regions result in 𝑟AORP
2 and 𝑟AORP

3 being placed closer to one

another than either can be to 𝑟AORP
1 , thus making the switching time to 𝑞1 relatively longer. As

a result, 𝑞1 is visited less frequently.



25

Fig. 6. Impact of subsystem placement on the observed visit frequency of the first subsystem under the AORP (𝜋̃AORP
1 ) for

different traffic values, i.e., for various values of the ratio 𝜌1/𝜌𝑠 in the three-queue system. See the color pdf for optimum

viewing of this figure.

As the first subsystem is offset by first 20 m and then 40 m in the subsequent figures, 𝜋̃AORP
1

drops to 0.25, then 0.22, respectively. Intuitively, the optimum switching times 𝑠2,1, 𝑠1,2, 𝑠3,1

and 𝑠1,3 increase as 𝑞1 moves farther away, so visits to 𝑞1 lead to greater wait times in 𝑞2 and

𝑞3. Thus, 𝑞1 is visited less often as it becomes more isolated.

3) Impact of Both Traffic and Subsystem Placement: Fig. 6 shows the impact of both subsys-

tem placement and varying traffic. An offset of 0 indicates the system is configured symmetrically,

as in Fig. 5 (left), and increasing the offset moves the 𝑞1 subsystem away from the original

configuration, as shown in Fig. 5 (center, right). The overall system traffic 𝜌𝑠 is constant across all

experiments, and 𝜌1/𝜌𝑠 gives the percentage of incoming traffic through 𝑞1, which is varying. The

remaining traffic is split evenly between 𝑞2 and 𝑞3 so that traffic is symmetric when 𝜌1/𝜌𝑠 = 0.33 .

The figure then shows the AORP observed visit frequency of the first subsystem (𝜋̃AORP
1 ). As can

be seen, regardless of the distribution of traffic, moving subsystem one farther away, decreases

𝜋̃AORP
1 . Likewise, when less traffic arrives at 𝑞1, 𝜋̃AORP

1 decreases regardless of offset.

4) Velocity: We next discuss the impact of the robot’s speed on the performance of the

AORP. Switching times scale linearly with the inverse of robot’s velocity, i.e., 1/𝑣, and as such,

𝑣 significantly impacts the average wait time of the AORP. Specifically, Eqs. (3) and (5) indicate

that wait time 𝑊̄ is an affine function of 1/𝑣 for any stochastic policy. This is seen in Fig. 7

(right), which shows the average wait time of the AORP as a function of the robot’s speed in the

three-queue system shown in Fig. 4 (right). Interestingly, as 𝑣 → ∞, 𝑠𝑖, 𝑗 → 0, ∀𝑖, 𝑗 ∈ {1, ..., 𝑛},
and consequently 𝑊̄ converges to the wait time of an M/G/1 queue (see Theorem 1).

Fig. 7 further shows the queue lengths over the last four minutes of a two-hour operation
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Fig. 7. Impact of robot velocity on wait times and queue lengths in a three-queue system. (Left, center) Sample realization

of queue lengths during the last four minutes of a two-hour operation period for two sample velocities. The peaks (troughs)

indicate polling (switching) instants. Larger 𝑣 results in shorter stages and queue lengths. (Right) Increasing 𝑣 also reduces

overall average waiting time at a rate of 1/𝑣. See the color pdf for optimum viewing of this figure.

for 𝑣 = 1 m/s (left) and 𝑣 = 2 m/s (right). Doubling the velocity reduces all switching times by

half, and as this shortens average queue lengths, the time spent servicing during a single stage

decreases, too, as mathematically characterized in Section V. This results in the completion of

approximately twice as many stages (i.e., polling instances), as can be seen.

5) A More Complex System: To illustrate how the proposed AORP works in more complex

scenarios, we next consider the system of six source-destination pairs shown in Fig. 8. The

system consists of three high traffic queues (𝑞1, 𝑞2, and 𝑞3) and three low traffic queues (𝑞4,

𝑞5, and 𝑞6). Furthermore, the second and fifth subsystems are placed towards the center.

The table shows that while the relative traffic at each queue is somewhat reflected in the AORP

visit frequencies, they are not exactly proportional due to different locations of the subsystems

as well as the underlying space-varying channel quality. The three high traffic queues are visited

most, and the edges traversed most frequently form a triangle with vertices given by the relay

positions 𝑟AORP
1 , 𝑟AORP

2 , and 𝑟AORP
3 . Among the high (low) traffic queues, 𝑞2 (𝑞5) is visited most

often as it is located more centrally compared to 𝑞1 and 𝑞3 (𝑞4 and 𝑞6). Consequently, when

the robot moves from 𝑞1 to 𝑞3, it will frequently stop at 𝑞2 along the way. Furthermore, the

particular channel realizations in the first, second, and third subsystems results in the second

relay position, 𝑟AORP
2 , being placed closer to 𝑟AORP

1 than 𝑟AORP
3 . As a result, 𝑞1 is visited more

frequently than 𝑞3 despite their symmetry in traffic and subsystem placement. Thus, we again see

that the AORP accounts for the differing arrival rates, the relative positioning of the subsystems,
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Subsys. 𝜌𝑖/𝜌𝑠 𝜋̃AORP
𝑖

1 0.32 0.21

2 0.32 0.50

3 0.32 0.19

4 0.01 0.03

5 0.01 0.04

6 0.01 0.03

Fig. 8. (Left) The AORP for a six-queue system. For each subsystem, the predicted relay region (in black) is overlaid on the

true connected region. The transmitter and receiver locations for each source-destination pair are marked, and green squares

indicate the relay positions. The observed transition probabilities 𝑝AORP
𝑖, 𝑗

are labeled along each route. (Right) The table gives

the percentage of traffic, 𝜌𝑖/𝜌𝑠 , and observed visit frequency, 𝜋̃AORP
𝑖

, for each queue. See the color pdf for optimum viewing.

and the specific shape of the communication channels, even in more complex systems.

D. Comparison to the State-of-the-Art

We next compare our proposed robotic routing policy with a baseline approach that would

be consistent with the state-of-the-art. To the best of our knowledge, the problem of interest to

this paper is solved neither in the robotics nor in the communication literature, so we will use

the solution proposed for a similar problem in the literature as a baseline. Specifically, visiting

different relay regions in an efficient manner resembles a category of robotic path planning

problems known as traveling salesperson problems with neighborhoods, which continues to be

the basis of proposed solutions to several data gathering problems in robotics literature [1, 3,

26, 29, 52–54]. We then compare our approach with this baseline.

Consider the three-queue system shown in Fig. 9, with 𝜌1 = 0.32, 𝜌2 = 0.04, and 𝜌3 = 0.04.

Since the baseline is a deterministic policy, we compare it with AORP-Table as discussed in

Section IV-C. For each policy, we simulate twenty two-hour operation periods with the queues

initially empty. As shown in Fig. 9, the wait time under the baseline policy is 92.89 s, while

under the AORP, it is 66.05 s. Thus the average wait time under the baseline policy is 26.84 s
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Fig. 9. Comparison of our proposed approach (top) and the baseline (bottom) for a three-pair system with 𝜌 = 0.32 and

𝜌2 = 𝜌3 = 0.04. The observed probability transitions under the AORP, 𝑝𝑖, 𝑗 , are labeled along each edge of the AORP, and the

thickness of the line between relay positions indicates the relative frequency with which the edge is traversed. Under the AORP,

𝑝2,3 ≈ 𝑝3,2 � 0.01, so for ease of presentation, we treat those probabilities as 0. See the color pdf for optimum viewing.

(41 %) longer than the average wait time under the AORP. This is achieved through a proper

design that jointly considers the path planning and communication aspects of the problem, as we

have proposed in this paper. We note that given the conservative bias of our prediction framework

as discussed earlier, the probability of the relay positions being truly connected is very high. As

such, the relay positions are assumed connected for both our approach and the baseline in the

analysis of Fig. 9.

E. Confirmation of the Theories of Section V

Theorems 5 and 6 characterized the robot’s average service rate and average operation power

under a stable policy. We next confirm these theorems with our simulated data. Consider the three-

queue system of Fig. 9. Again, we run twenty two-hour simulations, and for each simulation,

record the average power and service throughput. The average power across all simulations is

4.58 W, consistent with the 4.53 W predicted by Theorem 5. Similarly, the average service rate

from simulated data is 6.34 Mb/s, while Theorem 6 predicts it to be 6.40 mb/s.
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As discussed in Section V, the overall average power and average service rate are independent

of the robotic routing policy (assuming the policy is stable) when averaged over several stages

of operation. To this end, we further note that the average power and service rate under the

baseline policy were 4.61 W and 6.29 Mb/s, respectively, which is consistent with the theorems

and remarks of Section V. As such, the average wait time is the right metric to consider when

designing robotic relay policies, as we have done in this paper.

VII. CONCLUSIONS

This paper considered a mobile robot (ground or UAV) which relays data between pairs

of otherwise far-away source and destination communication nodes. We posed the problem of

finding the optimal stochastic robotic relay policy, consisting of visiting frequencies and relay

positions. To find approximate solutions to this problem, we proposed a novel algorithm (AORP)

which alternately optimizes average wait time over the visiting frequencies and average switching

time over relay positions. To minimize the average switching time, we showed how to decompose

the highly non-convex relay regions into efficient convex partitions, allowing us to formulate the

problem as a MISOCP. Additionally, we mathematically characterized a number of important

properties of the system related to the robot’s long-term energy consumption and service rate.

Through extensive simulations with real channel parameters, we showed how various system

parameters affect the AORP and further compared with the state-of-the-art.

APPENDIX - PROOF OF THEOREM 2

Proof. We consider each term in the expression

𝜌𝑖𝑡

𝜋𝑖
+ 𝑠𝑖 +

(𝜌𝑠 − 𝜌𝑘 )𝑡
𝜋𝑘

+ 1 − 𝜋𝑘
𝜋𝑘

𝑛∑︁
ℎ=1

𝜋ℎ

∑︁
𝑙≠𝑘

𝜋𝑙𝑠ℎ,𝑙 .

Looking back in time, the process first serviced the data in 𝑞𝑖. From [55], the expected time to do

so is 𝜌𝑖𝑡/𝜋𝑖 (first term). Immediately preceding this, the robot switched to 𝑞𝑖 (second term). With

probability 𝜋𝑘 , the queue serviced immediately prior to 𝑞𝑖 was 𝑞𝑘 . With probability 1 − 𝜋𝑘 , the

queue just prior to 𝑞𝑖 was not 𝑞𝑘 , and we expect 1/𝜋𝑘 additional backward steps before reaching

𝑞𝑘 . These steps consist of servicing and switching intervals. None of the servicing intervals occur

at 𝑞𝑘 , so the expected number of times 𝑞 𝑗 , 𝑗 ≠ 𝑘 , is serviced is [𝜋 𝑗/(1 − 𝜋𝑘 )]/𝜋𝑘 . Summing

over all 𝑗 ≠ 𝑘 , the contribution to 𝑇𝑘𝑖 from these intervals is the third term. Similarly, we expect

to have switched away from 𝑞 𝑗 a total of 𝜋 𝑗/𝜋𝑘 times, but none of those switches will be to 𝑞𝑘 .

Thus the contribution to 𝑇𝑘𝑖 from all these switching times is the fourth term.



30

REFERENCES

[1] J. Zhou, J. Li, R. Q. Hu, and Y. Qian, “Study of visiting frequency in a delay tolerant network,” in 2012 IEEE Int. Conf.

on Commun., 2012, pp. 58–62.

[2] K. H. Kabir, M. Sasabe, and T. Takine, “Optimal visiting order of isolated clusters in dtns to minimize the total mean

delivery delay of bundles,” Numerical Algebra, Control and Optimization, vol. 1, pp. 563–576, 2011.

[3] O. Tsilomitrou, N. Evangeliou, and A. Tzes, “Mobile robot tour scheduling acting as data mule in a wireless sensor

network,” 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 327–332,

2018.

[4] E. Carrillo, S. Yeotikar, S. Nayak, M. K. M. Jaffar, S. Azarm, J. W. Herrmann, M. Otte, and H. Xu, “Communication-aware

multi-agent metareasoning for decentralized task allocation,” IEEE Access, vol. 9, pp. 98 712–98 730, 2021.

[5] Z. Zhang, B. Zhang, and Y. Wu, “Joint communication-motion planning in networked robotic systems,” Applied Sciences,

vol. 12, no. 12, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/12/6261

[6] J. Park, H.-H. Choi, and J.-R. Lee, “Flocking-inspired transmission power control for fair resource allocation in vehicle-

mounted mobile relay networks,” IEEE Transactions on Vehicular Technology, vol. 68, pp. 754–764, 2019.

[7] S. Reveliotis and Y.-I. Kim, “Min-time coverage in constricted environments: Problem formulations and complexity

analysis,” IEEE Transactions on Control of Network Systems, vol. 9, no. 1, pp. 172–183, 2022.

[8] A. Muralidharan and Y. Mostofi, “Energy Optimal Distributed Beamforming using Unmanned Vehicles,” IEEE Transactions

on Control of Network Systems, 2017.

[9] S. Evmorfos, K. I. Diamantaras, and A. P. Petropulu, “Reinforcement learning for motion policies in mobile relaying

networks,” IEEE Transactions on Signal Processing, vol. 70, pp. 850–861, 2022.

[10] A. Ghaffarkhah and Y. Mostofi, “Channel learning and communication-aware motion planning in mobile networks,” in

Proc. American Control Conf., 2010.

[11] A. Muralidharan and Y. Mostofi, “Path Planning for Minimizing the Expected Cost Until Success,” IEEE Trans. on Robot.,

vol. 35, no. 2, pp. 466–481, 2019.

[12] ——, “Statistics of the Distance Traveled until Connectivity for Unmanned Vehicles,” Autonomous Robots, vol. 44, no. 1,

pp. 25–42, 2020.

[13] ——, “Communication-aware robotics: Exploiting motion for communication,” Annu. Rev. of Control, Robot., and Auton.

Syst., 2020.

[14] D. Henkel and T. X. Brown, “Delay-tolerant communication using mobile robotic helper nodes,” in 2008 6th International

Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008, pp. 657–666.
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