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Near-Field Rainbow: Wideband Beam Training

for XL-MIMO
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Abstract

Wideband extremely large-scale multiple-input-multiple-output (XL-MIMO) is a promising tech-

nique to achieve Tbps data rates in future 6G systems through beamforming and spatial multiplexing.

Due to the extensive bandwidth and the huge number of antennas for wideband XL-MIMO, a significant

near-field beam split effect will be induced, where beams at different frequencies are focused on different

locations. The near-field beam split effect results in a severe array gain loss, so existing works mainly

focus on compensating for this loss by utilizing the time delay (TD) beamformer. By contrast, this paper

demonstrates that although the near-field beam split effect degrades the array gain, it also provides a

new possibility to realize fast near-field beam training. Specifically, we first reveal the mechanism of

the near-field controllable beam split effect. This effect indicates that, by dedicatedly designing the

delay parameters, a TD beamformer is able to control the degree of the near-field beam split effect, i.e.,

beams at different frequencies can flexibly occupy the desired location range. Due to the similarity with

the dispersion of natural light caused by a prism, this effect is also termed as the near-field rainbow

in this paper. Then, taking advantage of the near-field rainbow effect, a fast wideband beam training

scheme is proposed. In our scheme, the close form of the beamforming vector is elaborately derived

to enable beams at different frequencies to be focused on different desired locations. By this means,

the optimal beamforming vector with the largest array gain can be rapidly searched out by generating

multiple beams focused on multiple locations simultaneously through only one radio-frequency (RF)

chain. Finally, simulation results demonstrate the proposed scheme is able to realize near-optimal near-

field beam training with a very low training overhead.
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Index Terms

XL-MIMO, near-field, wideband, beam training.

I. INTRODUCTION

Wideband extremely large-scale multiple-input-multiple-output (XL-MIMO) has been regarded

as a promising technology to meet the capacity requirement for future 6G communications [1],

[2]. Benefiting from the huge spatial multiplexing gain provided by a very large number of

antennas, XL-MIMO is able to significantly increase the spectrum efficiency [3]. Moreover, XL-

MIMO can also provide very high beamforming gain to compensate for the severe path loss

at millimeter-wave (mmWave) or terahertz (THz) band, which may provide tens of GHz-wide

bandwidth to enable Tbps data rates for future 6G networks [4].

Nevertheless, due to the very large array aperture and the extensive bandwidth at high fre-

quencies, a significant near-field beam split effect will be introduced [5]. Firstly, compared to

the far-field propagation in conventional 5G systems where electromagnetic (EM) wavefronts

can be approximated as planar, the deployment of XL-MIMO, especially at high-frequency,

indicates that the near-field propagation will become essential in 6G networks, where the EM

wavefronts have to be accurately modeled as spherical [6], [7]. The boundary between the far-

field and near-field regions is determined by the Rayleigh distance, which is proportional to the

square of the array aperture and the signal frequency [8]. With the increased array aperture and

frequency of XL-MIMO, its near-field range can be several dozens and even hundreds of meters

[9]. For example, for a 1-meter diameter array operating at 30 GHz, the near-field region extends

to distances of 200 meters, dominating the typical outdoor communication environments. As a

result, spherical wavefronts should be exploited to realize near-field beamfocusing (near-field

beamforming) in XL-MIMO systems to allow focusing signals at a specific location, rather than

the conventional far-field beamsteering (far-field beamforming) that steers signals towards a

specific angle [9].

Secondly, the very large bandwidth results in the near-field beam split effect. In XL-MIMO

systems, phase-shifter (PS) based beamformer is widely considered to generate focused beams

aligned with certain locations to provide beamfocusing gain [10]. Such a beamformer works

well for narrowband systems. However, for wideband systems, the beams at different frequencies

with spherical wavefronts will be focused on different physical locations due to the use of nearly

frequency-independent PSs, which is referred to as the near-field beam split effect [5]. This
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effect results in a severe array gain loss since the beams over different frequencies cannot be

aligned with the target user in a certain location, which should be carefully addressed.

A. Prior Works

As the antenna number is not very large for current 5G massive MIMO communications

[11], existing works mainly focus on a simplified far-field beam split effect. To be specific, the

channels are modeled under the planar wavefronts, and the beams over different frequencies are

split into different spatial angles, where the distance information is ignored. These works can be

generally classified into two categories, i.e., techniques overcoming the far-field beam split effect

[12]–[16] and those taking advantage of it [17]–[19]. The first category desires to mitigate the

array gain loss caused by the far-field beam split. To realize this target, introducing time-delay

circuits into beamforming structures, such as true-time-delay array [12], [13] or delay-phase

precoding structure [15], [16], is considered to be promising. Thanks to the frequency-dependent

phase shift provided by the time-delay circuit, the generated beams over the entire bandwidth can

be aligned with a certain spatial angle, and thus the far-field beam split effect can be alleviated.

For the second category of taking advantage of the far-field beam split, it has been proved that

time-delay circuits can not only mitigate the far-field beam split, but also flexibly control its

degree [17]–[19]. By carefully designing the delay parameters, the covered angular range of the

beams over different frequencies can be controlled. Benefiting from this fact, very fast channel

station information (CSI) acquisition in the far-field, such as fast beam training or beam tracking,

can be realized. In [17], [18], based on the true-time-delay array architecture, fast beam training

schemes with only one pilot overhead were studied by generating frequency-dependent beams to

simultaneously search multiple angles. In [19], a fast beam tracking scheme based on the delay-

phase precoding architecture was proposed by adaptively adjusting the degree of the far-field

beam split according to the user mobility. From the discussion above, we can find that although

far-field beam split results in a severe beamsteering gain loss that should be addressed, it can

also benefit the fast far-field CSI acquisition in massive MIMO systems.

When it comes to the XL-MIMO systems, the more realistic near-field beam split effect

should be considered, since the antenna number is huge. Recently, researchers in [5] have tried

to compensate for the corresponding array gain loss in the near-field range. Specifically, the near-

field beam split effect was defined and analyzed in our previous work [5], and the time-delay

(TD) based beamformer was also utilized to overcome this effect. We have proposed to partition
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the entire array into multiple sub-arrays, and then the user can be assumed to be located within

the near-field range of the entire array but in the far-field range of each sub-array. Based on

this partition, time-delay circuits can also be utilized to compensate for the group delays across

different sub-arrays induced by near-field spherical wavefronts. As a result, the beams over the

entire bandwidth can be focused on the desired spatial angle and distance, and the near-field

beam split effect is alleviated accordingly.

Efficient design of wideband XL-MIMO beamfocusing to alleviate the near-field beam split

effect requires accurate near-field CSI. To meet this requirement, an intuitive way is to directly

utilize the existing wideband far-field CSI acquisition schemes [17]–[19] to estimate the near-

field wideband channel. However, since the far-field planar wavefront mismatches the near-field

spherical wavefront, these methods [17]–[19] may be not valid in the near-field range. To cope

with this problem, inspired by the classical far-field hierarchical beam training scheme [20],

a near-field hierarchical beam training method is proposed in [21], which uniformly searches

multiple angles and distances to obtain the near-field CSI. Moreover, from the perspective

of near-field array gain, [6] proved that the distances should be non-uniformly searched for

improving channel estimation accuracy. Nevertheless, existing near-field CSI acquisition methods

assume that, the bandwidth is not very large, so the near-field beam split effect is not considered.

Moreover, unlike the angle-dependent far-field CSI, to obtain the near-field CSI, the angle and

distance information should be estimated simultaneously, which may result in unacceptable

pilot overhead for near-field beam training [21]. Unfortunately, to the best of our knowledge,

determining how to obtain accurate wideband XL-MIMO near-field CSI with acceptable pilot

overhead has not been studied in the literature.

B. Our Contributions

To fill in this gap, inspired by the two categories of research on the far-field beam split,

i.e., overcoming and taking advantage of it, we unveil that although the near-field beam split

effect degrades the array gain, it can also provide a new possibility to benefit the near-field CSI

acquisition. Based on this new finding, we propose a fast wideband near-field beam training

scheme by taking advantage of the near-field beam split effect. Specifically, our contributions

are summarized as follows.

• Firstly, we prove the effect of near-field controllable beam split, i.e., time-delay circuits

can flexibly control the degree of near-field beam split. Specifically, it has been proved
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in far-field scenarios that, time-delay circuits can control the covered angular range of the

beams over different frequencies when the distance is very large [17]–[19]. By contrast,

we will reveal that not only the covered angular range, but also the covered distance range

of the beams over different frequencies can be controlled by the elaborate design of time

delays, and thus the control of the near-field beam split is achievable. A simple analogy

of the near-field controllable beam split effect is the dispersion of white light with a large

bandwidth caused by a prism, thus in this paper, this effect is also termed as “near-field

rainbow”. This near-field rainbow effect allows us to generate multiple beams focusing

on multiple locations simultaneously by only one radio-frequency (RF) chain, which is not

achievable for existing schemes.

• Then, based on the mechanism of the near-field rainbow, a wideband near-field beam training

scheme is proposed to realize fast near-field CSI acquisition. In the proposed scheme,

multiple beams focusing on multiple angles in a given distance range are generated by time-

delay circuits in each time slot. Next, for different time slots, different distance ranges are

measured by fine-tuning the time-delay parameters. By this means, the optimal spatial angle

can be searched in a frequency-division manner, while the optimal distance is obtained in a

time-division manner. Unlike the exhaustive near-field beam training scheme that searches

only one location in each time slot, the proposed scheme is able to search multiple locations

in each time slot, thus the beam training overhead can be significantly reduced.

• Finally, we provide simulation results to demonstrate the mechanism of the near-field

rainbow and verify the advantages of the proposed beam training scheme. We demonstrate

that our scheme is able to achieve a satisfactory average rate performance at a significantly

reduced training overhead. We also show that our beam training scheme outperforms the

existing far-field schemes in the near-field range. Additionally, our scheme also works

well in the far-field range, since the proposed near-field beam training scheme is able

to automatically decay to the far-field beam training in the far-field scenarios.

C. Organization and Notation

Organization: The rest of this paper is organized as below. In Section II, the system model is

introduced. We first introduce the near-field beam split effect in wideband XL-MIMO systems

and then discuss how to mitigate it with a time-delay beamformer. Then in Section III, we prove

the mechanism of the near-field controllable beam split. In Section IV, the exhaustive near-field
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Fig. 1. The near-field spherical wavefront model.

beam training is defined and the near-field rainbow based beam training is proposed. Section V

provides the simulation results. Finally, conclusions are drawn in Section VI.

Notation: Lower-case and upper-case boldface letters represent vectors and matrices, respec-

tively; [x]n denotes the n-th element of the vector x; (·)∗, (·)T , and (·)H denote the conjugate,

transpose, and conjugate transpose, respectively; | · | and Tr(·) denote the absolute and trace

operator; dxe denotes the nearest integer greater than or equal to x; CN (µ,Σ) and U(a, b)

denote the Gaussian distribution with mean µ and covariance Σ, and the uniform distribution

between a and b, respectively.

II. SYSTEM MODEL

In this section, we first introduce the near-field channel model and the near-field beam split

effect in wideband XL-MIMO, then we discuss how to mitigate it by time-delay circuits.

A. Near-Field Wideband Channel Model

In this paper, a wideband XL-MIMO system is considered. We assume the base station (BS)

is equipped with a uniform linear array (ULA) to serve a single omnidirectional antenna user

using orthogonal frequency division multiplexing (OFDM) with M subcarriers. For expression

simplicity, we assume the number of BS antennas is Nt = 2N + 1. We denote B, c, fc, λc = c
fc

as the bandwidth, the light speed, the central carrier frequency, and the central wavelength,

respectively. The antenna spacing is presented as d = λc
2

.

Due to the severe path loss incurred by the scatters, mmWave and THz communications

heavily rely on the line-of-sight (LoS) path [4]. Therefore, we mainly focus on the near-field



7

LoS channel, while the discussions in this paper can be straightforwardly extended to the non-

LoS (NLoS) scenarios. As shown in Fig. 1, the user is located at (r0 cosϑ0, r0 sinϑ0) with

θ0 = sinϑ0. Taking into account the near-field spherical wave characteristic [22], the channel

between the n-th BS antenna and the user at the m-th subcarrier with n = −N, · · · , 0, · · · , N

and m = 1, 2, · · · ,M can be represented as

[hm]n = β(n)
m e−jkmr

(n)
0 , (1)

where km = 2πfm
c

denotes the wavenumber at subcarrier frequency fm = fc+
B
M

(
m− 1− M−1

2

)
and r

(n)
0 represents the distance between the user and the n-th BS antenna. As the coordi-

nate of the n-th BS antenna is (0, nd), r(n)0 can be derived from the geometry as r
(n)
0 =√

(r0 cosϑ0)2 + (r0 sinϑ0 − nd)2 =
√
r20 + n2d2 − 2rlθ0nd. The path gain β(n)

m can be modeled

as [23]

β(n)
m =

√
GtF

(
ϑ
(n)
0

) λm

4πr
(n)
0

, (2)

where wavelength λm = fm
c

and ϑ
(n)
0 denotes the angle between the user and the n-th BS

antenna. Moreover, Gt is the antenna gain and F (ϑ) denotes normalized power radiation pattern,

satisfying
∫ π/2
ϑ=0

GtF (ϑ) sinϑdϑ = 1. An example of normalized power radiation pattern is

F (ϑ) = cos3 ϑ, ϑ ∈
[
−π

2
, π
2

]
[23]. Generally, the distance r0 between the user and BS is larger

than the array aperture D = Ntd. For example, for a 256-element ULA working at 30 GHz, r0

is very likely to be larger than D = 256 × 0.5 × 10−3 = 1.28 meters. With r0 > D, we can

assume β(−N)
m ≈ · · · ≈ β

(N)
m ≈ βm =

√
GtF (ϑ0)

λm
4πr0

based on the Fresnel approximation [24].

As a result, the near-field LoS channel hm ∈ CNt×1 can be represented as

hm = βm

[
e−jkmr

(−N)
0 , · · · , e−jkmr

(N)
0

]T
=
√
Ntβmam(θ0, r0), (3)

where am(θ0, r0) is the near-field array response vector.

Notice that since the near-field spherical wave characteristic is considered, the array response

vector am(θ0, r0) is significantly different from the classical far-field array response vector [25],

where the latter is based on the planar wave assumption and ignores the influence of distance r0.

The radius of the near-field region is determined by the Rayleigh distance RD = 2D2

λc
[8]. For

a 1-meter diameter array operating at 30 GHz, its Rayleigh distance reaches up to 200 meters.

Therefore, in such a mmWave XL-MIMO system, the near-field spherical wave characteristic

becomes essential and the distance information cannot be ignored.
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Fig. 2. The schematic diagrams of different distance rings α = 1−θ2
2r

.

However, since the distance r(n)0 is a complicated radical function with respect to the antenna

index n, it is difficult to analyze the property of the near-field spherical wavefront directly from

(3). To deal with this problem, the Fresnel approximation [24] can be adopted to approximate

r
(n)
0 as

r
(n)
0

(a)
≈ r0 − ndθ0 + n2d2

1− θ20
2r0

, (4)

where (a) is based on the second-order Taylor expansion
√

1 + x ≈ 1+ 1
2
x− 1

8
x2. For expression

simplicity, we denote α0 =
1−θ20
2r0

and α = 1−θ2
2r

. As shown in Fig. 2, the curve α = 1−θ2
2r

corresponds to a ring in the physical space, and thus the curve α = 1−θ2
2r

is termed as distance

ring α. Then, according to (4), the n-th element of am(θ0, r0) can be approximated as

[am(θ0, r0)]n ≈
1√
Nt

e−jkm(r0−ndθ0+n2d2α0) = e−jkmr0 [bm(θ0, α0)]n, (5)

where [bm(θ0, α0)]n = 1√
N
ejkm(ndθ0−n2d2α0) denotes the n-th element of vector bm(θ0, α0). Since

the residue phase e−jkmr0 in (5) has no relationship with the antenna index n, we only need to

focus on the vector bm(θ0, α0).

B. Near-Field Beam Split

At mmWave or THz band, frequency-independent PS-based beamformer is widely considered

to serve the user by generating a focused beam aligned with location (r0, θ0) in the polar

coordinate. Generally, the beamfocusing vector wPS generated by frequency-independent PSs

is usually set as wPS = b∗c(θ0, α0) to focus the beam energy on the location (r0, θ0) [26], where

bc(θ0, α0) represents the array response vector (5) at frequency fc.
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Fig. 3. The near-field beam split effect.

However, the array response vector (5) of the wideband channel is frequency-dependent, which

mismatches the frequency-independent beamfocusing vector wPS = b∗c(θ0, α0). This mismatch

leads to the fact that, the beams generated by wPS at different frequencies will be focused on

different locations, which is detailed in the following Lemma 1.

Lemma 1. For near-field wideband communications, the beam at frequency fm generated by

wPS = b∗c(θ0, α0) will be focused on the location (θm, rm), satisfying

θm = (kc/km)θ0 = (fc/fm)θ0 = θ0/ηm, (6)

αm = (kc/km)α0 = (fc/fm)α0 = α0/ηm, (7)

where we define αm = 1−θ2m
2rm

, ηm = fm/fc, and kc = 2πfc
c

.

Proof : At frequency fm, the array gain achieved by wPS on an arbitrary user location (r, θ)

with α = 1−θ2
2r

is

|wT
PSbm(θ, α)| = 1

Nt

∣∣∣∣∣
N∑

n=−N

ejnd(kmθ−kcθ0)−jn
2d2(kmα−kcα0)

∣∣∣∣∣
= G(kmθ − kcθ0, kmα− kcα0), (8)

where we define G(x, y) = 1
Nt

∣∣∣∑n e
jndx−jn2d2y

∣∣∣. Apparently, the beam at frequency fm is fo-

cused on the location (rm, θm) corresponding to the maximum array gain G(kmθm−kcθ0, kmαm−
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kcα0), i.e.,

(rm, θm) = arg max
r,θ

G(kmθ − kcθ0, kmα− kcα0), (9)

where αm = 1−θ2m
2rm

. Since G(0, 0) = 1 and |G(x, y)| ≤ 1, it is obvious that (x, y) = (0, 0) is an

optimal solution to maximize the function G(x, y). Therefore, we have kmθm − kcθ0 = 0 and

kmαm − kcα0 = 0, which leads to the results of (6) and (7). �

According to Lemma 1, the beam at fm is focused on the location (θm, rm) = (θm,
1−θ2m
2αm

) =

( θ0
ηm
, r0

ηm− 1
ηm

θ20
1−θ20

). As shown in Fig. 3, since the desired user is located at (r0, θ0) 6= (rm, θm), the

beam at frequency fm cannot be aligned with the desired user location. This misalignment is

termed as the “near-field beam split” effect [5], which will result in a severe array gain loss when

fm is far away from fc in wideband XL-MIMO systems. For example, if the carrier frequency

and bandwidth are 30 GHz and 1 GHz, and the BS is equipped with a 256-element ULA, then

around 50% subcarriers will suffer from more than 50% array gain loss [5]. Therefore, the near-

field beam split effect should be elaborately addressed, especially when the bandwidth is very

large.

C. Time-Delay Based Beamformer

To mitigate the near-field beam split effect, a method is to utilize TD based beamformer rather

than PS based beamformer to generate frequency-dependent beams to match the frequency-

dependent channels. Notice that the TD based beamsteering has been studied in the far-field

wideband systems [12]–[19], while in this study, we consider utilizing it to overcome and control

the near-field beam split effect.

As shown in Fig. 4, we assume the BS is equipped with an Nt-element TD beamformer1. Then

the frequency response at frequency fm of the n-th antenna is [wm]n = 1√
Nt
e−j2πfmτ

(n)′ , where

wm denotes the frequency-dependent beamforming vector, and τ (n)′ denotes the adjustable time-

delay parameter of the n-th time-delay circuit. For expression simplicity, we denote r(n)′ = cτ (n)
′

as the adjustable distance, and then [wm]n becomes 1√
Nt
e−jkmr

(n)′ . Notice that [wm]n has a

similar form with the array response vector [bm(θ0, r0)]n = 1√
Nt
ejkm(ndθ0−n2d2α0). Thus, the n-th

adjustable distance r(n)′ can be set as r(n)′ = ndθ′−n2d2α′, while θ′ and α′ are adjustable delay

1The main purpose of this paper is to derive that time-delay circuits are able to control the near-field beam split effect. Therefore,

we directly utilize the time-delay beamformer as an example, while the discussion on some other low-power consumption

architectures, such as delay-phase precoding, is left for future works.
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TD beamformer
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Fig. 4. The TD beamformer architecture.

parameters of a TD beamformer. Then, the corresponding beamfocusing vector at fm can be

presented as

[wm(θ′, α′)]n =
1√
Nt

e−jkm(ndθ′−n2d2α′). (10)

In this case, at frequency fm, the array gain on an arbitrary location (r, θ) with α = 1−θ2
2r

is

given by

|wm(θ′, α′)Tbm(θ, α)| = 1

Nt

∣∣∣∣∣
N∑

n=−N

ejnd(kmθ−kmθ
′)−jn2d2(kmα−kmα′)

∣∣∣∣∣
= G(km(θ − θ′), km(α− α′)). (11)

Obviously, the beam at fm is focused on (rm, θm) = arg maxr,θG(km(θ − θ′), km(α − α′)).

Similar to the derivation of the optimal solution of (9), G(km(θ − θ′), km(α − α′)) approaches

its maximum value when km(θ− θ′) = 0 and km(α−α′) = 0. Therefore, the beam at frequency

fm is focused on θm = θ′ and rm = r′ = 1−θ′2
2α′

, which is not relevant to fm. Then, once the LoS

path information (r0, θ0) is available at the BS, and the delay parameters are set as θ′ = θ0 and

α′ =
1−θ20
2r0

, then the beams across the entire bandwidth are able to be focused on the location

θm = θ′ = θ0 and rm = 1−θ′2
2α′

= r0. As a consequence, the near-field beam split effect can be

mitigated by the TD beamformer.

On the other hand, efficient wideband beamfocusing requires that the LoS path information

(r0, θ0) is available at the BS side. To realize this requirement, in the following discussions,

we prove that a TD beamformer can not only mitigate the near-field beam split effect, but also
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flexibly control its degree. Then, we will further utilize this property to achieve efficient near-field

beam training to obtain (r0, θ0).

III. MECHANISM OF NEAR-FIELD CONTROLLABLE BEAM SPLIT

In [17]–[19], the researchers proved the mechanism of far-field controllable beam split, i.e., by

elaborately designing the time-delay parameters, the beams over the entire bandwidth are able

to cover a desired angular range in the far-field. Taking advantage of this mechanism, multiple

beams aligned with multiple angles can be generated by only one RF chain to acquire the far-

field CSI rapidly. Similarly, to obtain the near-field CSI, we surprisingly find that time-delay

circuits can not only control the angular coverage range but also control the distance coverage

range of the beams, i.e., the near-field controllable beam split is achievable. In this section, we

will prove the mechanism of this effect, and then in the next section utilize this mechanism to

achieve fast near-field beam training. For readers better understand our ideas, we first prove the

far-field controllable beam split and then extend it to the near-field scenarios.

A. Far-Field Controllable Beam Split

For the far-field scenarios, the distances r and r′ are assumed to be larger than the Rayleigh

distance RD, so that the spherical wavefront can be approximated as a planar wavefront. In this

case, all of the distance-related parameters α = 1−θ2
2r

and α′ = 1−θ′2
2r′

reliably approach 0. Then, the

array response vector becomes [bm(θ, α)]n = [bm(θ, 0)]n = 1√
Nt
ejkmndθ, and the beamfocusing

vector realized by a TD beamformer becomes [wm(θ′, 0)]n = 1√
Nt
e−jkmndθ

′ . Therefore, the array

gain in (11) can be simplified as

G (km(θ − θ′), 0) =

∣∣∣∣∣ sin
(
Nt
2
dkm(θ − θ′)

)
Nt sin

(
1
2
dkm(θ − θ′)

)∣∣∣∣∣ , (12)

where G(x, 0) =

∣∣∣∣ sin(Nt2 dx)
Nt sin( 1

2
dx)

∣∣∣∣. It has been previously proved that the beams over the entire band-

width generated by wm(θ′, 0) are focused on the spatial angle θm = θ′, with m = 1, 2, · · · ,M .

However, notice that the spatial angle θm is corresponding to an actual physical angle ϑm =

arcsin θm as shown in Fig. 1, which implies the value range of θm is restrained by θm ∈ [−1, 1].

By contrast, θ′ is an adjustable parameter of a TD beamformer. A question naturally arises that, if

the adjustable parameter is set as θ′ /∈ [−1, 1], then what it has to do with the actual spatial angle

θm? Actually, the answer to this question is exactly the mechanism of the far-field controllable

beam split.
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For expression simplicity, parameter θ′ /∈ [−1, 1] is termed as the abnormal value, while

parameter θ′ ∈ [−1, 1] is termed as the actual value. Restrained by the value range of θm, if θ′

is an abnormal value, it is obvious that θm 6= θ′. To acquire the relationship between θm and θ′,

we observe that the far-field array gain G(x, 0) is a periodic function against x with a period
2π
d

. For any integer p ∈ Z, we have

G

(
x− 2pπ

d
, 0

)
=

∣∣∣∣∣sin
(
N
2
dx−Npπ

)
N sin

(
1
2
dx− pπ

) ∣∣∣∣∣ =

∣∣∣∣∣ sin
(
N
2
dx
)

N sin
(
1
2
dx
)∣∣∣∣∣ = G(x, 0). (13)

In Section II, we have indicated that the optimal solution xopt to maximize G(x, 0) is (xopt, 0) =

(0, 0). However, according to (13), we find that (0, 0) is just one of the optimal solutions for

maximizing G(x, 0). The periodicity of G(x, 0) implies that the optimal solutions should satisfy

(xopt, 0) = (2pπ
d
, 0), p ∈ Z. As a consequence, by solving θm = arg maxθG(km(θ − θ′), 0), the

focused spatial angle θm at frequency fm is derived as

θm = θ′ +
2pπ

dkm
= θ′ +

2p

ηm
, (14)

where the function of p ∈ Z is to ensure θm ∈ [−1, 1] becomes an actual spatial angle. From

(14), the mechanism of the far-field controllable beam split is acquired, which has the following

features.

Feature 1: Since p is an integer, if p 6= 0, the spatial angle θm is related to the frequency fm,

which means beams at different frequencies will split towards different spatial angles. Therefore,

despite the TD based beamsteering architecture being utilized, the far-field beam split effect can

also be induced.

Feature 2: The specific value of p ∈ Z is determined by θ′. If θ′ ∈ [−1, 1] belongs to the

actual value range of θm, then p can be zero and θm exactly equals to θ′. That is to say, with

θ′ ∈ [−1, 1], the far-field beam split effect is eliminated. While if θ′ /∈ [−1, 1] becomes an

abnormal value, then to guarantee that θm is an actual spatial angle, it is obvious that p cannot

be zero. For instance, if θ′ is set as 1.5, at the central frequency fc with ηc = fc
fc

= 1, the

corresponding spatial angle is θc = 1.5 + 2p/ηc = 1.5 + 2p, p ∈ Z. Only if p = −1 can

θc = −0.5 ∈ [−1, 1] be an actual spatial angle. Therefore, with θ′ /∈ [−1, 1], p is not zero and

thus θm is a function of the frequency fm, where the beam split effect is induced again.

Feature 3: Notice that the beam split pattern (14) of a TD beamformer is different from (6)

of a PS beamformer. For a PS beamformer, the degree of beam split is fixed and uncontrollable.

However, for a TD beamformer, the degree of beam split is controllable by adjusting θ′. For
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instance, considering the central frequency fc, if θ′ is set as 1.5, then p should be −1 and

θc = 1.5 − 2 = −0.5. On the other hand, if θ′ is set as 3.5, then p should be −2 and θc =

3.5 − 4 = −0.5. For the above two examples, although the spatial angles θc are the same, the

integers p are different, which indicates the degree of the beam split θm = θ′+2p/ηm is different.

Therefore, by adjusting the delay parameter θ′, the integer p is indirectly controlled, then the

degree of beam split is adjusted. This property is termed as the far-field controllable beam split.

Benefiting from this property, the adjustment on the angular coverage range of the beams is

achieved, which can be utilized to realize fast far-field CSI acquisition [17]–[19].

In the next sub-section, we will extend this conclusion to a more general near-field scenario.

B. Near-Field Controllable Beam Split

For the near-field scenario, the distances r and r′ are lower than the Rayleigh distance. Then

α and α′ can not be zero, and the near-field spherical wave characteristics should be considered.

To prove the mechanism of the near-field controllable beam split, analog to the derivation in the

far-field scenarios, we consider the abnormal values for the adjustable parameters θ′ and α′ in

(10) simultaneously.

Specifically, it has been discussed before θ′ /∈ [−1, 1] is an abnormal value for the angle. As

for the distance-related parameter α = 1−θ2
2r

, since 1 > θ2 and r > 0, a realistic α should be

larger than zero. On this condition, α′ < 0 is obvious the abnormal value for the distance ring. If

θ′ ∈ [−1, 1] and α′ > 0 are actual values, it was proved in Section II-C that the near-field beam

split effect is eliminated, i.e., beams are focused on θm = θ′ and αm = α′ for all frequencies

fm. On the other hand, for the abnormal value θ′ /∈ [−1, 1] or α′ < 0, the following Lemma 2

explains the behaviors of the beams generated by wm(θ′, α′).

Lemma 2. If θ′ /∈ [−1, 1] or α′ < 0, the beam at frequency fm generated by wm(θ′, α′) according

to (10) will be focused on the location (θm, rm), satisfying

θm = θ′ +
2pπ

dkm
= θ′ +

2p

ηm
, (15)

αm = α′ +
2qπ

d2km
= α′ +

2q

dηm
, (16)

where rm = 1−θ2m
2αm

and p, q ∈ Z are integers to guarantee θm ∈ [−1, 1] and αm > 0.

Proof : Similar to the derivation of (14), the periodicity of the near-field array gain function

G(x, y) should be considered. It is proved in Appendix A that G(x, y) is a periodic function
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Fig. 5. The schematic diagrams of the near-field rainbow on (a) the angle dimension and (b) the distance dimension.

against the vector variable (x, y) with a period (2π
d
, 2π
d2

). Therefore, for any integers p ∈ Z and

q ∈ Z, G(x, y) can be rewritten as

G(x, y) = G(x− 2pπ

d
, y − 2qπ

d2
). (17)

It has been indicated in Section II that the optimal solution (xopt, yopt) to maximize the array

gain G(x, y) is (xopt, yopt) = (0, 0). The periodicity in (17) implies (0, 0) is just one of the optimal

solutions for maximizing G(x, y). Besides, the optimal solutions should satisfy (xopt, yopt) =

(2pπ
d
, 2qπ
d2

) with p ∈ Z and q ∈ Z. Accordingly, to obtain the focused location of the beam at

frequency fm by solving (θm, rm) = arg maxθ,rG(km(θ−θ′), km(α−α′)), we have km(θm−θ′) =

2pπ
d

and km(αm − α′) = 2qπ
d2

. As a consequence, θm and αm become θ′ + 2p
ηm

and α′ + 2q
dηm

,

respectively, where the function of integers p and q is to ensure that θm ∈ [−1, 1] and αm > 0

are an actual spatial angle and an actual distance ring. �

According to Lemma 2, the mechanism of the near-field controllable beam split is acquired,

which has the following features.

Feature 1: If p 6= 0 or q 6= 0, then θm or αm is related to the frequency fm, which means

beams at different frequencies will be focused on different locations. Therefore, despite the TD

beamformer being utilized, the near-field beam split effect can also be induced.

Feature 2: As the function of the abnormal value of θ′ has been discussed in the previous

section, we mainly explain the impact of the abnormal value of α′ on the integer q here. If

α′ > 0 is an actual value, then q could be zero, and for all beams, we have αm = α′. However,

if α′ < 0 is an abnormal value, to guarantee αm > 0, the value of q must be larger than 0,

and thus the beams at different subcarriers will be focused on different distances rm = 1−θ2m
2αm

.
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For instance, let the delay parameter α′ be −2
d
, then we have αm = 2

d
( q
ηm
− 1). To guarantee

αm ≥ 0 is an actual distance ring, the integer q should be larger than ηm. Accordingly, when

fm ≤ fc and ηm = fm
fc
≤ 1, then the integer q = 1 is enough to make αm > 0 and the beam

at fm is focused on the distance ring αm = 2
d
( 1
ηm
− 1). On the other hand, when fm > fc and

ηm = fm
fc
> 1, then the integer q = 2 is enough to make αm > 0 and the beam at fm is focused

on the distance ring αm = 2
d
( 2
ηm
− 1). As a consequence, the abnormal value of α′ is able to

introduce and control the beam split effect on the distance dimension.

Feature 3: The far-field scenario is a special case of the near-field controllable beam split by

setting αm = α′ = 0. The far-field scenario assumes the distance is very large, and it can only

control the beam split effect on the angle θm. By contrast, the near-field controllable beam split

effect can adjust the degree of the beam split effect on the angle θm and distance rm jointly.

For instance, one can set θ′ as an abnormal value and α′ as an actual value, then we have

θm = θ′ + 2p/ηm, αm = α′ and rm = 1−θ2m
2αm

= 1−(θ′+2p/ηm)2

2α′
. Therefore, the beam at frequency

fm is focused on a location satisfying
(

1−θ2m
2rm

, θm

)
=
(
α′, θ′ + 2p

ηm

)
, which indicates that the

beams are focused on multiple angles in the distance ring α′ in the near-field, as shown in

Fig. 5 (a). Moreover, we can set θ′ as an actual value and α′ as an abnormal value, then the

beams are focused on multiple distances at the same angle as shown in Fig. 5 (b), satisfying(
1−θ2m
2rm

, θm

)
=
(
α′ + 2q

dηm
, θ′
)

. As a result, by carefully designing the parameters α′ and θ′, the

beams across the entire band could occupy multiple angles and distances simultaneously, and

this property is more flexible than that in the far-field scenario.

In conclusion, the mechanism of near-field controllable beam split indicates that a TD beam-

former can not only mitigate the near-field beam split effect, but also control its degree, i.e.,

one can flexibly adjust the covered angular range and distance range of the beams generated by

TD beamformer over the entire bandwidth. A simple analogy of this effect is the dispersion of

white light caused by a prism. Since a prism has different refractive indices for the wideband

white light, the different frequency components of the pure light will disperse and eventually

produce the rainbow. In our discussion, the function of time-delay circuits is similar to that of

the prism. Therefore, the near-field controllable beam split effect is also termed as “near-field

rainbow” in this paper.

By elaborately designing the pattern of the near-field rainbow as shown in Fig. 5, efficient

near-field beam management can be realized, which will be discussed in the next section.
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IV. PROPOSED BEAM TRAINING SCHEME

In this section, we first introduce the concept of near-field beam training and indicate the

overhead for exhaustive near-field beam training is much larger than the far-field beam training,

which is unacceptable in XL-MIMO systems. To solve this problem, we propose a wideband

beam training algorithm by taking advantage of the near-field rainbow.

A. Exhaustive Near-Field Beam Training

Beam training is a well-adopted scheme to obtain CSI for current 5G systems [27]. The

concept of near-field beam training can be derived from the classical far-field beam training.

For the classical far-field beam training, the spatial angle information θ0 is desired. The optimal

beamsteering vector for a user is selected from a predefined far-field beam codebook through

a training procedure between the BS and the user. Generally, each codeword in the far-field

codebook determines a unique spatial angle, where the distance is assumed to be very large so

that the near-field property is ignored. Therefore, the entire far-field codebook occupies all of

the potential angles in the far-field.

Similarly, the near-field beam training desires to obtain the location information (r0, θ0) of the

dominant path between the BS and the user. The optimal beamfocusing vector is selected from

a predefined near-field beam codebook through a training procedure between the BS and the

user. Each near-field codeword determines a unique location, and the entire near-field codebook

occupies all of the desired angles and distances.

To be more specific, we introduce the procedure of exhaustive near-field beam training realized

by a TD beamformer. Notice that the procedure below is also valid for the PS beamformer when

the bandwidth is not very large. We define [θmin, θmax] as the potential range of spatial angle,

satisfying −1 ≤ θmin ≤ θmax ≤ 1. Moreover, we assume the minimum distance between the BS

and the user is ρmin, so that the potential range of distance is r ∈ [ρmin,+∞] or α = 1−θ2
2r
∈

[0, αmax] with αmax = 1
2ρmin

. Then, multiple angles from θ ∈ [θmin, θmax] and distances from

r ∈ [ρmin,+∞] are sampled simultaneously to construct the near-field codebook. As proved in

[6], the sampled locations could satisfy

θu = θmin +
u

U
(θmax − θmin), (18)

αs =
s

S
αmax, (19)
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where u = 0, 1, · · · , U−1 and s = 0, 1, · · · , S−1. U denotes the number of sampled angles and

S denotes the number of sampled distance rings. Notice that when S = 1, we have αs ≡ 0, and

then the near-field codebook is naturally decayed to the far-field codebook. The exhaustive near-

field beam training scheme searches the entire codebook {θu} and {αs} to obtain the optimal

beamfocusing vector. Apparently, the overhead for exhaustive near-field beam training, i.e., the

number of time slots used for beam training, is T1 = US.

In the t-th time slot, where t = sU+u with t = 0, 1, · · · , T1−1, u = 0, 1, · · · , U−1, and s =

0, 1, · · · , S−1, we set the parameters of the TD beamformer as θ′t = θu = θmin + u
U

(θmax−θmin)

and α′t = αs = s
S
αmax, and then generate the beamfocusing vector wm(θ′t, α

′
t) according to (10).

Since θ′t and α′t are actual values, the BS is able to transmit the pilot sequence to the user by

the beam focused on the location (r′t, θ
′
t) =

(
1−θ2u
2αs

, θu

)
. So the received signal ym,t in the t-th

time slot at fm is

ym,t =
√
Pth

T
mwm(θ′t, α

′
t)xm + nm, (20)

where nm ∼ CN (0, σ2) denotes the Gaussian noise, Pt denotes the transmit power, and xm

denotes the transmit pilot satisfying ‖xm‖2 = 1. After T1 time slots, the estimated physical

location (r̂, θ̂) = (1−θ̂
2

2α̂
, θ̂) corresponding to the largest user received power can be selected from

the T1 measured locations, where,

(θ̂, α̂) = arg max
θ′t,α

′
t

M∑
m=1

‖ym,t‖2. (21)

Finally, a near-field beam wm(θ̂, α̂) aligned with the location (r̂, θ̂) can be generated to serve

the user, and a near-optimal beamfocusing gain can be achieved.

Nevertheless, since the exhaustive near-field beam training scheme has to search the entire

near-field codebook exhaustively, and the scale of the near-field codebook is much larger than

that of the far-field, i.e. US � U , the training overhead is unacceptable in practice. Therefore,

a near-field beam training scheme with low pilot overhead is essential for XL-MIMO systems.

B. Proposed Near-Field Beam Training Scheme

The main reason for the high training overhead of exhaustive near-field beam training is that

only one physical location can be measured in each time slot. By contrast, as we discussed

in Section III-B, a TD beamformer is able to generate multiple beams focusing on multiple

locations by only one RF chain. Taking advantage of the near-field rainbow, multiple physical
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locations can be measured simultaneously in each time slot. Inspired by this observation, we

propose a near-field rainbow-based beam training method to significantly reduce the training

overhead.

Generally, since the spatial resolution of an antenna array on the angle is much higher than

that on the distance, the number of sampled angles U is usually much larger than the number of

sampled distances S [6]. Thus, the training overhead is mainly determined by the search of angle

θ0. Therefore, the near-field rainbow on the angle dimension, as shown in Fig. 5 (a), is utilized

to avoid the exhaustive search of angle, i.e., the angle-related parameters θ′ are set as abnormal

values, while the distance-related parameters α′ can be set as actual values. In other words, the

proposed scheme searches the optimal angle in a frequency division manner, and searches the

optimal distance ring in a time division manner. The specific procedure of the proposed beam

training scheme is illustrated in Algorithm 1.

Algorithm 1: Proposed near-field rainbow based beam training scheme
Inputs:

Potential angular range [θmin, θmax], focused angle θc at the central frequency, potential

distance range [0, αmax], the number of sampled distances S, central frequency fc, bandwidth

B.

Output:

Estimated physical location (r̂, θ̂)

1: fL = fc − B
2

, fH = fc + B
2

2: Calculate the abnormal delay parameter:

θ′ = θc − 2 dmax {fL(θmax − θc), fH(θc − θmin)} /Be

3: for t ∈ {0, 1, · · · , S − 1} do

4: Calculate the normal delay parameter: α′t = t
S
αmax

5: Obtain the beamfocusing vector: [wm(θ′, α′t)]n = 1√
Nt
e−jkm(ndθ′−n2d2α′t)

6: Received signal: ym,t =
√
Pth

T
mwm(θ′, α′t)xm + nm

7: end for

8: (m̂, t̂) = arg maxm,t ‖fmym,t‖2,

9: θ̂ = θ′ + (θc − θ′)fc/fm̂
10: α̂ = α′

t̂

11: return (r̂, θ̂) =
(

1−θ̂2
2α̂

, θ̂
)

.



20

Firstly, in steps 1-2, we desire to design the abnormal parameter θ′ /∈ [−1, 1], so that the

frequency-dependent angles θm = θ′ + (2pfc)/fm across the entire band is able to cover the

entire potential angle range [θmin, θmax], as shown in Fig. 5 (a). To realize this target, we first

assume that, at the central frequency fc, the beam is aligned with the angle θc = θ′+ 2p, where

θc is a predefined spatial angle satisfying −1 ≤ θmin < θc < θmax ≤ 1. Then we have

θ′ = θc − 2p, p ∈ Z. (22)

Without loss of generality, we assume the delay parameter θ′ < −1, then p = θc−θ′
2

> −1−θ′
2

>

0 is a positive integer. In this case, the frequency-dependent angle θm = θ′ + (2pfc)/fm is

monotonically decreasing with respect to the frequency fm.

Moreover, since the available bandwidth is B, the lowest frequency and the highest frequency

are fL = fc − B
2

and fH = fc + B
2

, respectively. Therefore, the minimum and maximum values

of θm are θ′ + 2pfc
fH

and θ′ + 2pfc
fL

, respectively. To cover the entire potential angles [θmin, θmax],

it should satisfy

θmin ≥ θ′ + (2pfc)/fH , (23)

θmax ≤ θ′ + (2pfc)/fL. (24)

By solving (22), (23), and (24), one of the solutions to θ′ is

θ′ = θc − 2 dmax {fL(θmax − θc), fH(θc − θmin)} /Be , (25)

where dxe denotes the nearest integer greater than or equal to x, and p is given by p = θc−θ′
2

=⌈
1
B

max {fL(θmax − θc), fH(θc − θmin)}
⌉
.

Then, in step 4, different distance rings are searched in different time slots by adjusting

the normal delay parameter α′t. Similar to the exhaustive near-field beam training scheme, the

potential range of distance ring is α ∈ [0, αmax], and the number of distance rings to be measured

is S. Therefore, in the t-th time slot, α′t is set as t
S
αmax with t = 0, 1, · · · , S− 1 to measure the

beamfocusing gains on the distance ring 1−θ2
2r

= α′t.

As a result, with the parameters α′t and θ′, as shown in Fig. 5 (a), the beams wm(θ′, α′t)

generated in step 5 by the TD beamformer is able to occupy the entire angular range in the
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distance ring α′t. Utilizing these beams, in step 6, the received signal ym,t in the t-th time slot

at frequency fm is denoted as

ym,t =
√
Pth

T
mwm(θ′, α′t)xm + nm

=
√
Pt
√
Ntβma

T
m(θ0, r0)wm(θ′, α′t)xm + nm

=
√
PtNtβmgm,txm + nm, (26)

where gm,t = aTm(θ0, r0)wm(θ′, α′t). The optimal beamfocusing vector is corresponding to the

maximum beamfocusing gain ‖gm,t‖2. Since ‖xm‖2 = 1 and nm ∼ CN (0, σ2), the maximum

likelihood estimation of gm,t is

ĝm,t =
ym,t√

PtNtβmxm
. (27)

Thus, the beamfocusing gain ‖ĝm,t‖2 can be estimated as ‖ĝm,t‖2 = 1
PtNt

‖ym,t‖2
‖βm‖2 . Based on the

definition of ‖βm‖2 in Section II, we have ‖ĝm,t‖2 = C‖fmym,t‖2, where C is a constant that is

not relevant to fm. Notice that the proposed beam training scheme does not require the specific

value of ‖βm‖2. As long as the relationship between βm and fm is available, whether quadratic

function, exponential function, and so on, the proposed scheme is always valid.

Besides, in step 8, based on the formulation of beamfocusing gain ‖ĝm,t‖2 = C‖fmym,t‖2, the

label of the optimal beam t̂ and m̂ is acquired by maximizing ‖ĝm,t‖2 over the total S measured

distance rings and M subcarriers, where

(m̂, t̂) = arg max
m,t
‖fmym,t‖2. (28)

Eventually, in steps 9-10, based on the mechanism of the near-field rainbow (15), the estimated

spatial location is

θ̂ = θ′ + 2p/ηm̂ = θ′ + (θc − θ′)fc/fm̂, (29)

α̂ = α′t̂. (30)

After that, the beam training is completed, and the BS can generate the beamfocusing vector

wm(θ̂, α̂) to serve the user for data transmission.

The advantage of the proposed near-field rainbow based beam training method is that the

optimal angle is searched out in a frequency division manner. Therefore, the training overhead is

only determined by the overhead for searching the optimal distance ring, which is significantly

reduced. In the next sub-section, we quantitatively analyze the training overheads of the two

near-field beam training schemes above.
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C. Comparison on the Beam Training Overhead

Beam training overhead refers to the number of time slots used for beam training. It is obvious

that, the training overhead of the exhaustive near-field beam training scheme is T1 = US, while

the training overhead of the proposed near-field rainbow based scheme is T2 = S. As discussed

in [6], the number of distance rings is generally much less than the number of angles. For

instance, if the BS antenna number is N = 256, the carrier is fc = 60 GHz, and the minimum

distance is ρmin = 2 m, then U is usually set as U = N = 256 while S is generally set as 10 [6].

In this case, the training overhead T2 = S = 10 is much less than T1 = US = 2560. Therefore,

benefiting from the near-field rainbow, the proposed scheme is able to significantly reduce the

pilot overhead for near-field beam training, which will be further verified by simulation results

in Section V.

V. SIMULATION RESULTS

In this section, simulations are provided to verify the effect of the near-field rainbow and

demonstrate the performance of the proposed near-field rainbow based beam training scheme.

We consider a wideband XL-MIMO system, where the BS equips an Nt = 256-element ULA

with a TD beamformer. The carrier frequency is fc = 60 GHz, the number of sub-carriers is

M = 2048, and the bandwidth is B = 3 GHz.

A. The Demonstration of Near-Field Controllable Beam Split

Firstly, in Fig. 6, we verify that time-delay circuits are able to produce near-field controllable

beam split. Specifically, in Fig. 6 (a), the near-field rainbow on the dimension of angle is

evaluated. We set the delay parameter θ′ as θ′ = −6 /∈ [−1, 1] and the parameter α′ as α′ = 1
2r′

with r′ = 10 m. On the distance ring α′ = 1−θ2
2r

, the array gains at different frequencies with

respect to (w.r.t) the angle are shown in Fig. 6 (a). For clarity, only a few frequencies are

plotted. The beams over different frequencies are focused on multiple angles in the distance ring

α′ = 1−θ2
2r

, and cover a given angular range [−0.2, 0.2]. Therefore, the near-field rainbow on the

angle dimension is verified.

Then, in Fig. 6 (b), the near-field rainbow on the dimension of distance is evaluated. We set

the angle θ′ as θ′ = sin π
8
∈ [−1, 1] and the distance ring α′ as α′ = −2

d
< 0. In the physical

angle θ′, the array gains at different frequencies w.s.t the distance are shown in Fig. 6(b). For

clarity, only a few frequencies are plotted. The beams over different frequencies are focused
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Fig. 6. Near-field rainbow achieved by a TD beamformer. In (a), we set θ′ = −6 /∈ [−1, 1] and α′ = 1
20

m−1 > 0. The array

gains at multiple frequencies w.r.t the angle on distance ring α′ are evaluated. In (b), we set θ′ = π
8
∈ [−1, 1] and α′ = − 2

d
< 0.

The array gains at multiple frequencies w.r.t the distance on angle θ′ are evaluated.

on multiple distances in the angle θ′, which covers the entire distance range. Therefore, the

near-field rainbow on the distance dimension is also achievable.

B. Beam Training Performance

In this subsection, the performance of the proposed near-field rainbow based beam training

scheme is evaluated. The potential spatial angle range of the user is set as [θmin, θmax] =

[− sin π
3
, sin π

3
], while the potential distance of the user is set as [ρmin,+∞] = [3 m,+∞] and

thus the range of α is α ∈ [0, 1
6
m−1]. The spatial angle at the center frequency is fixed to θc = 0.

Then, for the proposed near-field rainbow based scheme, according to (25), the delay parameter

θ′ is acquired as θ′ = ξ = −36 with p = 18. Moreover, we set the number of distance rings to

be searched as S = 10. For the exhaustive near-field beam training, the number of angles to be

searched is U = N = 256. Finally, we use the average rate performance to quantify the beam

training performance, which is mathematically defined as

R =
1

M

M∑
m=1

log2

(
1 +

Pt
σ2
‖hTmwm‖2

)
=

1

M

M∑
m=1

log2

(
1 +

PtNtβ
2
m

σ2
‖aTm(θ0, r0)wm‖2

)
, (31)

where wm denotes the beamfocusing vector for data transmission searched by beam training and

SNR = PtNtβ2
m

σ2 denotes the signal-to-power ratio. The compared benchmarks are shown below.

• Perfect CSI: The perfect channel hm is available at the BS, which is served as the benchmark

for the upper bound of average rate performance.
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Fig. 7. Average rate performance vs. training overhead.

• Far-field rainbow based beam training: The classical wideband far-field beam training scheme

achieved by TD beamformer in [18]. This method can be regarded as the far-field rainbow-

based beam training scheme, where only the optimal angle is searched in a frequency-

division manner and the distance ring α is assumed to be zero.

• Near-field hierarchical beam training: This method is the hierarchical beam scheme training

designed for reconfigurable intelligence surface (RIS) aided near-field communications [21].

We transform this method to XL-MIMO scenarios for comparison.

• Far-field hierarchical beam training: This method is the classical hierarchical beam training

designed for the far-field scenarios [20].

• Exhaustive search: This method is the exhaustive near-field beam training scheme provided

in Section IV-A. In the training procedure, we first fix the distance ring αs and exhaustively

search all of the angles θu. Then, we change the distance ring αs and repeat the above steps

until all of the distance rings and angles are measured.

Fig. 7 illustrates the average rate performance against the training overhead. The training

overhead is increasing from 0 to US = 2560. The SNR is set as 10 dB. 103 realizations of

the user location are generated for Monte Carlo simulations, where θ0 ∼ U(− sin π
3
, sin π

3
) and

r0 ∼ U(3 meters, 30 meters). In the t-th time slot, we utilize the optimal beamforming vector

searched during the time slots 1 ∼ t to serve the user. Specifically, the training overhead of
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Fig. 8. Average rate performance vs. SNR.

the two far-field schemes are both very low, e.g., 22 overhead for the hierarchical far-field

scheme and only one overhead for the far-field rainbow based scheme. However, since the far-

field schemes only consider the angle information while ignoring the distance information, their

average rate performance is not satisfactory. Besides, to achieve a satisfactory average rate,

the training overhead of the near-field hierarchical scheme and the exhaustive scheme will be

very high, e.g., 200 overhead for the near-field hierarchical scheme and more than 1000 for the

exhaustive scheme. By contrast, the proposed near-field rainbow based beam training scheme

enjoys a much higher average rate performance with very low overhead. This is thanks to two

factors: 1) both the angle and distance information are considered, 2) the near-field rainbow effect

is exploited to avoid the exhaustive search for the angle information. Actually, the proposed

scheme has already achieved 96% of the average rate benchmark with only 8 training overhead.

Fig. 8 shows the impact of SNR on different beam training schemes. Here, the SNR is

increasing from -5 dB to 15 dB. The maximum training overhead Tmax for all considered methods

is set as Tmax = 256. Notice that in our simulations, only the overhead for exhaustive beam

training is Tmax = 256, while the overhead for other schemes is set according to their overhead

requirements as illustrated in Fig. 7, which are always less than Tmax. The other simulation

settings are the same as those in Fig. 7. It is clear from Fig. 8 that, the proposed scheme

outperforms all existing far-field and near-field beam training schemes, and is able to achieve

the near-optimal achievable average rate performance compared with the benchmark. In addition,
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we can observe that the exhaustive beam training scheme suffers from severe degradation of the

average rate performance. This is mainly because the maximum training overhead (256) is much

less than the required training overhead (more than 1000) for the exhaustive scheme to achieve

satisfactory average rate performance.

In Fig. 9, we illustrate the average rate performance against the distance. Here, the distance

r0 between the user and BS is gradually increasing from 3 meters to 60 meters. The parameters

are set as follows: SNR = 10 dB, Tmax = 256, θ0 ∈ U(− sin π
6
, sin π

6
). The other simulation

settings are the same as those in Fig. 8. The impact of near-field propagation on the beam

training performance is clear in Fig. 9. For the far-field schemes, with the decrease of distance,

near-field propagation becomes dominant and thus the average rate of these far-field schemes

rapidly deteriorates. As for the degradation of the exhaustive scheme, since the maximum training

overhead is limited to 256, this scheme is hard to search the locations in the near-field. Moreover,

although the near-field hierarchical beam training scheme is able to slightly alleviate the average

rate loss, its performance is unacceptable when the distance is less than 20 meters. By contrast,

since the proposed scheme is able to search the optimal angle and distance with very low

pilot overhead by exploiting the near-field rainbow, its performance is robust to all considered

distances, whether in the near-field or in the far-field.

Fig. 10 shows the average rate performance against the angle θ0. Here, the angle θ0 is

gradually increasing from − sin π
3

to sin π
3

and the distance r0 is randomly generated from

r0 ∼ U(3 meters, 30 meters). The other simulation settings are the same as those in Fig. 9.



27

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

3

3.5

Fig. 10. Average rate performance vs. angle.

Notice that although the distance r0 is fixed, the distance ring α0 =
1−θ20
2r0

still varies with the

angle θ0. For the far-field schemes, their performance is severely degraded when the angle θ0 is

around zero. This is because the near-field property is more significant when the angle is around

zero, which has been proved in [5]. Moreover, there exists severe fluctuation for the near-field

hierarchical beam training scheme. This is because the near-field hierarchical scheme proposed

in [21] creates the near-field codebook by uniformly sampling the codeword in the cartesian

coordinates. It has been indicated in [6] that this kind of codebook cannot realize satisfactory

beam training performance in the entire near-field environment. By contrast, the proposed scheme

achieves a near-optimal average rate for all considered angles.

VI. CONCLUSIONS

This paper investigated the wideband near-field beam training for XL-MIMO systems. The

mechanism of the near-field rainbow is revealed, i.e., time-delay circuits can flexibly control

the degree of the near-field beam split effect. Then, a near-field rainbow based beam training

scheme was proposed to search the optimal angle in a frequency-division manner, and the optimal

distance is searched in a time-division manner. The simulation results verified that: i) the beams

generated by a TD beamformer over the entire bandwidth can cover multiple angles and distances,

ii) our near-field rainbow based scheme can achieve a near-optimal average rate with much-

reduced training overhead, iii) the performance of our scheme is robust to the distance and angle.
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This paper unveiled that although the near-field beam split effect induces a severe beamfocusing

gain loss, it also provides a new possibility to realize fast near-field CSI acquisition. In our

future work, we will extend the mechanism of the near-field rainbow to other beamforming

architectures, such as the delay-phase precoding architecture [15].

APPENDIX A. THE PERIODICITY OF G(x, y)

G(x, y) is a periodic function against the vector variable (x, y) with period (2π
d
, 2π
d2

). Specifi-

cally, for any integers p ∈ Z and q ∈ Z, we have

G

(
x− 2pπ

d
, y − 2qπ

d2

)
=

1

Nt

∣∣∣∣∣
N∑

n=−N

ejnd(x−
2pπ
d

)−jn2d2(y− 2qπ

d2
)

∣∣∣∣∣
=

1

Nt

∣∣∣∣∣
N∑

n=−N

ejndx−jn
2d2yej2πn(qn−p)

∣∣∣∣∣ . (32)

Since 2πn(qn− p) is an integer multiple of 2π, we have ej2πn(qn−p) = 1. Therefore,

G

(
x− 2pπ

d
, y − 2qπ

d2

)
=

1

Nt

∣∣∣∣∣
N∑

n=−N

ejndx−jn
2d2y

∣∣∣∣∣ = G(x, y). (33)

As a result, the periodicity of function G(x, y) is proved.
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