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Abstract—In this paper, we investigate channel acquisition for
high frequency (HF) skywave massive multiple-input multiple-
output (MIMO) communications with orthogonal frequency
division multiplexing (OFDM) modulation. We first introduce
the concept of triple beams (TBs) in the space-frequency-time
(SFT) domain and establish a TB based channel model using
sampled triple steering vectors. With the established channel
model, we then investigate the optimal channel estimation and
pilot design for pilot segments. Specifically, we find the conditions
that allow pilot reuse among multiple user terminals (UTs), which
significantly reduces pilot overhead and increases the number
of UTs that can be served. Moreover, we propose a channel
prediction method for data segments based on the estimated
TB domain channel. To reduce the complexity, we formulate
the channel estimation as a statistical inference problem and
then obtain the channel by the proposed constrained Bethe
free energy minimization (CBFEM) based channel estimation
algorithm, which can be implemented with low complexity by
exploiting the structure of the TB matrix together with the chirp
z-transform (CZT). Simulation results demonstrate the superior
performance of the proposed channel acquisition approach.

Index Terms—Massive MIMO-OFDM, HF skywave communi-
cations, pilot reuse, channel estimation, channel prediction.

I. INTRODUCTION

High frequency (HF) communications, whose frequency
range is usually from 3 MHz to 30 MHz, can provide world-
wide coverage through skywave propagation. Compared with
satellite communications, an alternative for global coverage,
HF communications can be flexibly deployed with relatively
low cost and are robust to jamming [2], [3]. However, the low
data transmission rate of HF communications makes it hard to
compete with satellite communications. Therefore, there has
been some research on applying the multiple-input multiple-
output (MIMO) technique to traditional point-to-point HF
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communications [4]–[6], where certain performance gains can
be achieved.

In the past decade, massive MIMO has been widely studied
for terrestrial cellular communications. It can significantly
improve the spectrum and power efficiencies by deploying
a large number of antennas at the base station (BS) and
simultaneously serving a number of user terminals (UTs) in
the same time-frequency resource [7]. Recently, it has been
introduced into the HF skywave communications in [8], where
a spatial-beam based wideband model for HF skywave massive
MIMO channels within the orthogonal frequency division mul-
tiplexing (OFDM) transmission framework has been developed
and the asymptotic achievable sum-rate is obtained when using
the minimum mean-squared error (MMSE) based uplink (UL)
receiver and downlink (DL) precoder with perfect channel
state information (CSI) at the BS. It is demonstrated in [8]
that massive MIMO can also vastly improve the performance
of HF skywave communications.

The acquisition of the CSI is essential for massive MIMO
to harvest the significant performance gain, which has been
well investigated in terrestrial cellular massive MIMO systems
[9]–[29]. The conventional orthogonal pilot signaling and
channel estimation methods, such as least squares (LS) and
MMSE [9], are not suitable for the massive MIMO system
due to the overwhelming pilot overhead and the forbidding
computational complexity. By exploiting the constraint of the
angle spread in the massive MIMO, the pilot reuse schemes
have been proposed to reduce the pilot overhead, where UTs
with non-overlapping angle domain channels are allowed to
share the same pilot [10]–[13]. For these pilot schemes, the
pilot scheduling can be performed based on channel statis-
tics [10], [11] or the spatial information acquired by the
spatial rotation enhanced discrete Fourier transform (DFT)
method [12], [13]. On the other hand, due to the limited
local scatters, the terrestrial massive MIMO channel exhibits
sparsity [30], which enables channel estimation through sparse
signal recovery. Thus sparse channel estimation in [31] has
been proposed to reduce the pilot overhead. In [14]–[17],
the greedy algorithms iteratively identify the sparse support
and reconstruct the channel. Besides, statistical inference
methods have also been developed for efficient sparse chan-
nel recovery. The expectation-maximization (EM) Gaussian-
mixture approximate message passing (AMP) algorithm [18]
and the turbo-orthogonal AMP algorithm [19] exploit the
channel sparsity in the angle domain to estimate massive
MIMO channels. For massive MIMO-OFDM communica-
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tions, the sparse angle-delay domain channel can be obtained
by EM-generalized AMP, EM-vector AMP algorithms [20]
and the structured turbo compressive sensing (CS) algorithm
[21]. Recently, constrained Bethe free energy minimization
(CBFEM) unifies different message passing algorithms into
a single optimization framework in [22]. CBFEM transforms
the statistical inference problem into an optimization one with
a clear objective function, where different constraints will
lead to different solving algorithms, such as the expectation
propagation (EP) variant [22], the hierarchical hybrid message
passing [23], and the AMP with nearest neighbor sparsity
pattern learning algorithm [24]. Moreover, channel estimation
approaches highly depend on the channel models. The spatial-
beam based channel model has been widely used in [10],
[18], [25] for channel estimation and also applied to the signal
detection [32] and precoding [33]. An accurate spatial-beam
based channel model using finely sampled steering vectors in
[26]–[29] can improve channel estimation performance.

In this paper, we investigate channel acquisition for HF sky-
wave massive MIMO-OFDM communications. We introduce
the concept of the triple beams (TBs) in space-frequency-time
(SFT) domain and use it to derive a TB based channel model.
Based on the TB based channel model, we can design pilots
and develop the channel estimation algorithm to accurately
estimate the HF skywave massive MIMO-OFDM channels.
The main contributions are summarized as follows.

• We derive a TB based channel model from the physical
principle of HF skywave channels using sampled triple
steering vectors in the SFT domain, each of which corre-
sponds to a physical TB consisting of the spatial-beam,
the frequency-beam, and the temporal-beam, pointing to-
wards the sampled directional cosine, delay, and Doppler
frequency, respectively.

• Based on the proposed channel model, we first investigate
the optimal estimation of channels at pilot segments and
find the conditions to minimize the normalized mean-
squared error (NMSE) of channel estimates. Specifically,
we show that UTs with overlapping TB domain channels
should be allocated pilot sequences with different phase
shift factors while UTs with non-overlapping TB domain
channels can reuse the same pilot sequence. Furthermore,
the pilot is designed, including UT grouping and pilot
scheduling, and the channel prediction method for data
segments is established based on the estimated TB do-
main channel.

• We formulate the channel estimation as a statistical
inference problem, which can be solved within the
optimization framework of CBFEM. We then acquire
the channel by the proposed CBFEM based channel
estimation algorithm, which can be implemented with
low complexity by exploiting the structure of the TB
matrix together with the chirp z-transform (CZT).

The rest of the paper is organized as follows. In Section
II, we derive the channel model for HF skywave massive
MIMO-OFDM communications. In Section III, we investigate
the optimal channel estimation for pilot segments and develop
a pilot design. Moreover, a channel prediction method for

data segments is presented. In Section IV, the CBFEM based
channel estimation algorithm and its low-complexity imple-
mentation are presented. Section V provides simulation results
and the paper is concluded in Section VI.

Notations: The uppercase (lowercase) boldface letters de-
note matrices (vectors). The superscripts (·)∗, (·)T, (·)H and
tr {·} denote the conjugate, transpose, conjugated-transpose,
and matrix trace operations, respectively. ̄ =

√
−1 denotes

the imaginary unit. ‖x‖ denotes the `2-norm of x, and ‖X‖F
denotes the Frobenius norm of X. |Ψ| denotes the cardinality
of set Ψ. Ψ1 × Ψ2 denotes the Cartesian product of sets Ψ1

and Ψ2. dxe denotes the smallest integer that is not less than
x, while bxc denotes the largest integer that is not greater
than x. ◦ and ⊗ denote the Hadamard and the Kronecker
product operators, respectively. [x]a and [x]a:b denote the a-
th element and elements a to b of vector x, respectively.
[X]a,b, [X]:,b, and [X]a:b,c:d denote the (a, b)-th element,
the b-th colomn, and rows a to b and columns c to d of
X, respectively. E {·}, Var {·}, H {·} and D {·} denote the
statistical expectation, variance, entropy, and relative entropy,
respectively. diag {x} denotes the diagonal matrix with x
along its main diagonal, and diag {X1, · · · ,XN} forms the
block-diagonal matrix with X1, · · · ,XN . 0 denote the all-zero
vector or matrix. IN denotes the identity matrix of dimension
N while IN×G denotes the matrix composed of the first G
(≤ N ) columns of IN . X � 0 (X � 0) denotes that X
is Hermitian positive definite (semi-definite). CN (x; a,A)
denotes the circular symmetric complex Gaussian probability
density function with mean a and covariance A.

II. HF SKYWAVE MASSIVE MIMO-OFDM CHANNEL
MODEL

After introducing the configuration of the HF skywave
massive MIMO-OFDM system in this section, we present the
concept of the triple beams in the SFT domain and establish a
triple-beam based channel model from the physical principle
of HF skywave channels by using sampled triple steering
vectors.

A. System Configuration

We consider a HF skywave massive MIMO-OFDM system.
The BS is equipped with a uniform linear array (ULA) with
M antennas and serves U single-antenna UTs. Let Nc denote
the number of subcarriers, Ng denotes the length of the cyclic
prefix (CP), ∆f denotes the subcarrier spacing, and Ts =

1
Nc∆f denotes the sampling interval. We assume that Nv valid
subcarriers are used to transmit data and pilots with the index
set K = {k0, k1, · · · , kNv−1}.

The HF skywave massive MIMO-OFDM system operates
in time-division duplex (TDD) mode with frame structure
shown in Fig. 1. Each frame consists of NF timeslots and
each timeslot consists of NS OFDM symbols, thus the number
of OFDM symbols in each frame is N = NFNS. In each
timeslot, the np-th OFDM symbol is the pilot used for UL
training and the other OFDM symbols are used for UL/DL
data transmission.
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Fig. 1. The frame structure.

In HF skywave communications, the carrier frequency fc

varies with the ionospheric conditions at different times.
Therefore, we set inter-antenna spacing d according to the
highest system operating frequency fo, that is, d = λo/2,
where λo = c/fo is the wavelength, and c is the speed of
light. This is different from the traditional massive MIMO
communications, where the antenna spacing is usually half
the wavelength of the carrier.

B. Triple-Beam Based Channel Model

Let xu,n,k denote the transmitted data of UT u on the
n-th OFDM symbol at the k-th subcarrier, where n ∈
{0, 1, · · · , N − 1} and k ∈ K. After OFDM modulation, the
analog baseband signal on the n-th OFDM symbol transmitted
by UT u with the CP can be expressed as

x̄u,n(t)=

kNv−1∑
k=k0

xu,n,ke
̄2πk∆ft,−NgTs≤ t−nTsym<NcTs, (1)

where Tsym = (Nc +Ng)Ts is the time duration of an OFDM
symbol including CP. At the BS, the received analog baseband
signal on the n-th OFDM symbol at the m-th antenna can be
expressed as

ȳm,n (t)=

U−1∑
u=0

∫ ∞
−∞

h̄u,m (t, τ) x̄u,n (t− τ) dτ+z̄m,n (t) , (2)

where m ∈ {0, 1, · · · ,M − 1}, z̄m,n (t) is the additive white
Gaussian noise and h̄u,m (t, τ) is the time-varying channel
impulse response between UT u and the m-th antenna of the
BS. The channel impulse response can be expressed as

h̄u,m (t, τ) =

Pu−1∑
p=0

γu,pe
̄2πνu,pte−̄2πfcm∆τΩu,p

× δ (τ − τu,p −m∆τΩu,p) , (3)

where Pu is the number of paths between UT u and the BS,
γu,p, νu,p, and Ωu,p is the complex-valued gain, the Doppler
frequency, and the directional cosine of the p-th path of UT u,
respectively, τu,p is the p-th propagation path delay between
UT u and the first antenna of the BS, and ∆τ = d/c. In (3), the
complex-valued gain can be expressed as γu,p = βu,pe

̄ϕu,p ,
where βu,p and ϕu,p are the gain and initial phase, respectively,
and ϕu,p is uniformly distributed over [0, 2π). The directional
cosine is defined as Ωu,p

∆
= sin θaz

u,p cos θel
u,p, where θaz

u,p and
θel
u,p are the azimuth angle of arrival (AoA) and elevation

AoA, respectively. Note that the propagation delay across the

antenna array (i.e., m∆τΩu,p in the delta function) is consid-
ered due to the spatial-wideband effect caused by the equipped
large-scale antenna array and wider bandwidth compared with
traditional HF communications [8], [34].

We assume that the channel state keeps constant within
an OFDM symbol and varies symbol by symbol due to the
Doppler effect. After the OFDM demodulation, the received
data at the k-th subcarrier on the n-th OFDM symbol at the
m-th antenna is given by

ym,n,k =

U−1∑
u=0

hSFT
u,m,n,kxu,n,k + zm,n,k, (4)

where zm,n,k is the additive white Gaussian noise with distri-
bution CN

(
zm,n,k; 0, σ2

z

)
, and hSFT

u,m,n,k is channel frequency
response at the k-th subcarrier on the n-th OFDM symbol
between UT u and the m-th antenna at the BS, which is given
by

hSFT
u,m,n,k =

∫
h̄u,m (nTsym, τ)e−̄2πk∆fτdτ

=

Pu−1∑
p=0

γu,pe
̄2πνu,pnTsyme−̄2πfcm∆τΩu,p

× e−̄2πk∆fτu,pe−̄2πk∆fm∆τΩu,p . (5)

We consider the whole space-frequency domain chan-
nel over N OFDM symbols between UT u and the BS,
which is referred to as the space-frequence-time (SFT) do-
main channel vector, hSFT

u , with element hSFT
u,m,n,k of index

(nMNv + (k − k0)M +m). We denote

vk (Ω)
∆
=
[
1, e−̄2π(fc+k∆f)∆τΩ, · · · ,

e−̄2π(fc+k∆f)(M−1)∆τΩ
]T
∈ CM×1, (6)

u (τ)
∆
=
[
e−̄2πk0∆fτ , e−̄2πk1∆fτ , · · · ,

e−̄2πkNv−1∆fτ
]T
∈ CNv×1, (7)

d (ν)
∆
=
[
1, e̄2πνTsym , · · · , e̄2πν(N−1)Tsym

]T
∈ CN×1, (8)

as steering vectors in the space domain, the frequency domain,
and the time domain, pointing towards directional cosine Ω,
delay τ , and Doppler frequency ν, respectively. Note that the
steering vectors in the space domain are different for different
subcarriers due to the spatial-wideband effect. Denote

p (Ω, τ, ν)
∆
=d (ν)⊗ (v (Ω)◦(u (τ)⊗eM ))∈CMNvN×1, (9)

where eM
∆
= [1, 1, · · · , 1]

T ∈ CM×1, and

v (Ω)
∆
=
[
vk0(Ω)

T
,vk1

(Ω)
T
,· · ·,vkNv−1

(Ω)
T
]T
∈CMNv×1. (10)

Therefore, the SFT domain channel can be expressed as

hSFT
u =

Pu−1∑
p=0

γu,pp (Ωu,p, τu,p, νu,p) ∈ CMNvN×1. (11)
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In this physical channel model, p (Ωu,p, τu,p, νu,p) represents
a triple steering vector pointing towards the channel parame-
ters (Ωu,p, τu,p, νu,p). Moreover, the complex-valued gain of a
path, γu,p, is also the weight of the triple steering vector. Based
on this physical channel model, we next derive a statistical
channel model by sampling the triple steering vectors, which
is referred to as the triple-beam based channel model and will
be used in the channel acquisition.

We assume that all UTs are synchronized. Note that
the parameters (Ωu,p, τu,p, νu,p) of each path for each UT
are limited within sets Ban = {Ω |Ω ∈ [−1, 1)}, Bde =
{τ |τ ∈ [0, τmax)} and Bdo = {ν |ν ∈ [−νmax, νmax)}, re-
spectively, where τmax

∆
=

Ng

Nc∆f is the maximum delay spread,

and νmax
∆
= Nd

2NTsym
is the maximum Doppler [35], [36]. We

uniformly divide these sets into multiple disjoint subsets as

Ban=

Nan−1⋃
nan=0

Λan
nan

, Λan
nan

=

[
2nan−Nan

Nan
,
2nan−Nan+2

Nan

)
, (12a)

Bde =

Nde−1⋃
nde=0

Λde
nde
, Λde

nde
=

[
Nτnde

NdeNv∆f
,
Nτ (nde+1)

NdeNv∆f

)
, (12b)

Bdo=

Ndo−1⋃
ndo=0

Λdo
ndo

,Λdo
ndo

=

[
Nd

(
ndo−Ndo

2

)
NdoNTsym

,
Nd

(
ndo−Ndo

2 +1
)

NdoNTsym

)
,

(12c)
where Nτ

∆
=

NvNg

Nc
, and 2

Nan
, Nτ
NdeNv∆f and Nd

NdoNTsym
are the

intervals in directional cosine, delay and Doppler frequency,
which can be flexibly adjusted by properly selecting Nan =⌈
FanM

fc

fo

⌉
,1 Nde = FdeNτ , and Ndo = FdoNd, where Fan,

Fde, and Fdo are referred to as fine factors.
Denote Γu

∆
=
{

(Ωu,0, τu,0, νu,0) , (Ωu,1, τu,1, νu,1) , · · · ,
(Ωu,Pu−1, τu,Pu−1, νu,Pu−1)

}
as the path parameter set of UT

u, and let Λnan,nde,ndo

∆
= Λan

nan
×Λde

nde
×Λdo

ndo
. The SFT domain

channel in (11) can be rewritten as

hSFT
u =

Nan−1∑
nan=0

Nde−1∑
nde=0

Ndo−1∑
ndo=0

∑
(Ωu,p,τu,p,νu,p)∈Γu∩Λnan,nde,ndo

γu,p

× p (Ωu,p, τu,p, νu,p) . (13)

We approximate the triple steering vector p (Ωu,p,τu,p,νu,p)
for (Ωu,p,τu,p,νu,p)∈Γu ∩ Λnan,nde,ndo

as the sampled triple
steering vector p (Ωnan

, τnde
, νndo

), where Ωnan
= 2nan−Nan

Nan
,

τnde
= Nτnde

NdeNv∆f , and νndo
= Nd(ndo−Ndo/2)

NdoNTsym
. This approxima-

tion tends to be accurate as the numbers of divided subsets
Nan, Nde and Ndo tend to be relatively large. We then
define a matrix P that consists of sampled triple steering
vectors and its (ndoNanNde + ndeNan + nan)-th column is
p (Ωnan

, τnde
, νndo

), which represents the triple steering vector
pointing towards the sampled directional cosine Ωnan , delay
τnde

and Doppler frequency νndo
. Moreover, according to (9),

P can be expressed as

P
∆
= D⊗ (V (U⊗ INan

)) ∈ CMNvN×NanNdeNdo , (14)

1For fixed fo, the angular resolution of the antenna array is proportional
to fc.

where D ∈ CN×Ndo with [D]i,j = e
̄2πi

Nd(j−Ndo/2)
NdoN ,

U ∈ CNv×Nde with [U]i,j = e
−̄2π(i+k0) Nτj

NdeNv , V =

diag
{
Vk0 , · · · ,VkNv−1

}
, and Vk ∈ CM×Nan with

[Vk]i,j = e−̄2π(fc+k∆f)i∆τ 2j−Nan
Nan . Specially, when the

spatial-wideband effect is not considered, Vk will be reduced
to Ṽ ∈ CM×Nan with [Ṽ]i,j = e−̄2πfci∆τ

2j−Nan
Nan , which is

independent of the subcarrier, and (14) can be rewritten as
P = D⊗U⊗ Ṽ in this case.

Then the SFT domain channel in (13) can be approximated
as

hSFT
u = PhTB

u , (15)

where hTB
u ∈ CNanNdeNdo×1 can be expressed as[

hTB
u

]
ndoNanNde+ndeNan+nan

∆
=

∑
(Ωu,p,τu,p,νu,p)∈Γu∩Λnan,nde,ndo

γu,p.

(16)
In the channel representation of (15), all the UTs share the
same set of sampled triple steering vectors. Each sampled
triple steering vector corresponds to a physical triple-beam in
the SFT domain. Therefore, we refer to it as the triple-beam
(TB) based channel model. hTB

u is the TB domain channel
vector and P is referred to as the TB matrix. Furthermore, the
SFT domain channel covariance matrix of UT u can be given
by

RSFT
u = E

{
hSFT
u

(
hSFT
u

)H}
= PE

{
hTB
u

(
hTB
u

)H}
PH

= PRTB
u PH ∈ CMNvN×MNvN , (17)

where RTB
u

∆
= E

{
hTB
u

(
hTB
u

)H} ∈ CNanNdeNdo×NanNdeNdo

is the TB domain channel covariance matrix of UT u,
also referred to as the TB domain statistical CSI. We as-
sume that TB domain channel coefficients follow independent
complex Gaussian distributions with zero mean and differ-
ent variances. Hence, RTB

u is a diagonal matrix with the
(ndoNanNde+ndeNan+nan)-th diagonal element expressed
as
∑

(Ωu,p,τu,p,νu,p)∈Γu∩Λnan,nde,ndo
β2
u,p. Due to the limited

propagation path number, Doppler spread, and small angle
spread, the TB domain channel typically exhibits sparsity in
HF skywave massive MIMO-OFDM communication. Hence,
compared with RSFT

u , the number of non-zero elements in
RTB
u is substantially smaller since it is a diagonal matrix

and most of the elements on the diagonal are approximately
zero. Moreover, RTB

u varies slowly relative to the com-
munication timescale [34], [36], [37]. Therefore, there are
sufficient resources to acquire RTB

u . For instance, the low-
complexity method in [38] can estimate the spatial-frequency
beam domain statistical CSI directly without involving the in-
stantaneous channel, which can be straightforwardly extended
to the TB based channels. Thus we assume that the TB domain
statistical CSI RTB

u is available at the BS in the rest of the
paper.

In our proposed TB based channel model, we generalize
the concept of the spatial-beam in massive MIMO [8], [10]
to the TB consisting of the spatial-beam, the frequency-beam
and the temporal-beam. Moreover, when fo = fc, Nan = M ,
Nde = Nτ , Ndo = Nd, the spatial-wideband effect is ignored,
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the columns of P will become orthogonal. Besides, we can
set Nan > M , Nde > Nτ , and Ndo > Nd to make sampling
intervals in (12) smaller and obtain a higher resolution of the
angle, delay, and Doppler frequency, respectively. Although
the orthogonality among the columns in P no longer holds
under such a setting, it makes the channel model more accurate
and ensures more accurate channel acquisition. Moreover,
the TB based channel model can also be applied in generic
massive MIMO communications and wireless channels with
different carrier frequencies, different propagation scenarios,
and different system configurations although we focus on the
HF skywave channels in this work.

III. CHANNEL ACQUISITION AND PILOT DESIGN

In this section, we first investigate optimal channel esti-
mation for pilot segments. Then we find the conditions to
minimize the NMSE of the channel estimate and develop
a pilot design, including UT grouping and pilot scheduling.
Moreover, we propose a method to predict the channel at data
segments based on the estimated TB domain channel.

A. Channel Estimation for Pilot Segment
We first consider the estimation of the SFT domain channel

at pilot segments. According to (15) and the frame structure
shown in Fig. 1, the SFT domain channel at pilot segments
can be expressed as

hSFT,p
u = P̃hTB

u ∈ CMNvNF×1, (18)

where

P̃
∆
= (Θ⊗ INv ⊗ IM ) P

= D̃⊗ (V (U⊗ INan
)) ∈ CMNvNF×NanNdeNdo , (19)

Θ ∈ CNF×N with the nF-th row being the (nFNS + np)-th
row of IN , and D̃ = ΘD ∈ CNF×Ndo .

In each timeslot in Fig. 1, the channel estimation should be
performed to obtain the CSI using the pilot. We combine the
current timeslot with the previous NF− 1 timeslots to form a
complete frame as in Fig. 1, where the current timeslot refers
to the last timeslot in the whole frame. In this case, we need
to save the received signals at pilot segments in the previous
NF−1 timeslots and perform channel estimation together with
the received signal at the pilot segment in the current timeslot.

Let xp
u ∈ CNv×1 denote the transmitted pilot of UT u at

valid subcarriers. The received signal y ∈ CMNvNF×1 at the
BS can be given by

y =

U−1∑
u=0

Xuh
SFT,p
u + z = XhSFT,p + z, (20)

where hSFT,p ∆
=

[(
hSFT,p

0

)T
,
(
hSFT,p

1

)T
, · · · ,

(
hSFT,p
U−1

)T]T
∈

CMNvNFU×1, Xu
∆
=INF⊗(diag{xp

u}⊗IM)∈CMNvNF×MNvNF ,
X

∆
= [X0,X1, · · · ,XU−1] ∈ CMNvNF×MNvNFU , and z ∈

CMNvNF×1 is the additive white Gaussian noise with distri-
bution CN

(
z; 0, σ2

zIMNvNF

)
. Substituting (18) into (20), we

can obtain that

y = X
(
IU ⊗ P̃

)
hTB + z = AhTB + z, (21)

where hTB ∆
=
[(

hTB
0

)T
,
(
hTB

1

)T
,· · ·,

(
hTB
U−1

)T]T∈CNanNdeNdoU×1

and A
∆
= X

(
IU ⊗ P̃

)
.

According to the relationship between the SFT domain
channel and the TB domain channel shown in (18), the
estimation of hSFT,p can be converted to the estimation of
hTB. Since the TB domain channel hTB is distributed as the
complex Gaussian distribution, the optimal estimate of hTB is
the MMSE estimate, which is given by

ĥTB = RTBAH
(
ARTBAH + σ2

zIMNvNF

)−1
y, (22)

where RTB =E
{
hTB

(
hTB

)H}
=diag

{
RTB

0 ,RTB
1 ,· · ·,RTB

U−1

}
.

The estimate of hSFT,p can be expressed as

ĥSFT,p =
(
IU ⊗ P̃

)
ĥTB

= RSFT,pXH
(
XRSFT,pXH+σ2

zIMNvNF

)−1
y, (23)

where

RSFT,p =
(
IU ⊗ P̃

)
RTB

(
IU ⊗ P̃

)H

= E
{

hSFT,p
(
hSFT,p

)H}
= diag

{
RSFT,p

0 ,RSFT,p
1 , · · · ,RSFT,p

U−1

}
. (24)

Note that (23) is also the MMSE estimate of hSFT,p.
As an important measure for channel estimation, the NMSE

of ĥSFT,p is defined as

NMSE
∆
=

E
{∥∥∥hSFT,p − ĥSFT,p

∥∥∥2
}

E
{
‖hSFT,p‖2

}
=

U−1∑
u=0

1

MNvNFUϑu
tr
{
RSFT,p
u −RSFT,p

u XH
uC−1XuR

SFT,p
u

}
,

(25)

where C
∆
=
∑U−1
u=0 XuR

SFT,p
u XH

u + σ2
zIMNvNF and ϑu

∆
=∑Pu−1

p=0β
2
u,p is the large-scale fading between the BS and UT u.

From (25), the NMSE of ĥSFT,p can be regarded as the
average of the NMSE of each UT. For UT u, the term
U−1∑
u=0

XuR
SFT,p
u XH

u in C implies that the NMSE of each UT

is related to not only its own statistical CSI but also that of
other UTs, which is referred to as the inter-UT interference.

B. Pilot Design

We next discuss the pilot design for the optimal channel
estimation. Motivated by the widely used phase shift pilots
[39], the transmitted pilot of UT u is given by

xP
u=σpxc ◦

[
e
−̄2πk0

Nτφu
NdeNv,e

−̄2πk1
Nτφu
NdeNv,· · ·,e−̄2πkNv−1

Nτφu
NdeNv

]T
,

(26)
where σp is the square root of the pilot transmit power, φu∈
{0, Nde, · · · , (bNv/Nτc − 1)Nde} is referred to as the phase
shift factor and xc is a sequence with unity modulus elements.
A good choice for xc is the Zadoff-Chu (ZC) sequence [40],
which has been extensively used in the fifth generation (5G)
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wireless networks [41]. Note that P̃ in (19) can be rewritten
as

P̃ = P̄
(
INdo

⊗ IbNv/NτcNde×Nde
⊗ INan

)
, (27)

where

P̄
∆
=D̃⊗

(
V
(
Ū⊗INan

))
∈CMNvNF×NanbNv/NτcNdeNdo , (28)

and Ū ∈ CNv×bNv/NτcNde with
[
Ū
]
i,j

=e
−̄2π(i+k0) Nτj

NdeNv . It

can be checked that XuP̃ = σpXcP̄Su, where Xc
∆
= INF

⊗
(diag {xc} ⊗ IM ) and

Su
∆
=
(
INdo
⊗
[
0Nde×φu ,INde

,0Nde×((bNv/Nτc−1)Nde−φu)
]T⊗INan

)
(29)

is the selection matrix depending on φu. Thus A can be
rewritten as

A = σpXcP̄ [S0, · · · ,SU−1] . (30)

Next, we properly allocate all pilot sequences to each UT
and optimize the channel estimation performance. To this
end, we have the following theorem, proved in Appendix A,
which provides the criterion for the UT grouping and pilot
scheduling.
Theorem 1: When M,Nv, NF → ∞, the minimum value of
NMSE is given by

NMSEmin =

U−1∑
u=0

1

MNvNFUϑu
tr
{

RSFT,p
u

−RSFT,p
u

(
RSFT,p
u +

σ2
z

σ2
p

IMNvNF

)−1

RSFT,p
u

}
, (31)

provided that, for ∀u, u′ and u 6= u′, one of the following
conditions is satisfied

1) φu 6= φu′ , RTB
u RTB

u′ 6= 0,
2) RTB

u RTB
u′ = 0.

From Theorem 1, when the NMSE achieves the minimum
value, the NMSE of the channel estimate of each UT is only
related to its own statistical CSI and is not related to other
UTs, which means that the inter-UT interference is eliminated.
Furthermore, RTB

u RTB
u′ 6= 0 means that there is an overlap

between the TB domain channels of UTs u and u′ while
RTB
u RTB

u′ = 0 implies that the TB domain channels of
UTs u and u′ are non-overlapping. Therefore, condition 1)
implies that to minimize the NMSE, UTs with overlapping
TB domain channels should be allocated pilot sequences with
different phase shift factors while condition 2) implies that
UTs with non-overlapping TB domain channels can reuse
the same pilot sequence. Such a result is intuitive because
we need pilot sequences with different pilot shift factors to
separate UTs with overlapping TB domain channels along the
delay-dimension at the BS while UTs with non-overlapping
TB domain channels can be directly separated at the BS, thus
the same pilot sequence can be reused to reduce pilot overhead
and increases the number of UTs that can be served. The above
result is also consistent with findings in conventional massive
MIMO literature [10], [12].

Next, we define the degree of channel overlap between UTs
u and u′ as

ρu,u′
∆
=

tr
{
RTB
u RTB

u′

}
‖RTB

u ‖F
∥∥RTB

u′

∥∥
F

. (32)

It can be directly checked that 0 ≤ ρu,u′ ≤ 1. In practical
systems, the conditions in Theorem 1 are hard to be well
satisfied due to limited M , Nv, and NF. However, the power
of the TB domain channel of each UT is typically concen-
trated on a narrow support and the channel overlap degree
among UTs with different supports of TB domain channel
can be small. Therefore, we can divide all UTs into S groups
(S ≤ bNv/Nτc) according to the following UT grouping
criterion.

i). The degree of channel overlap between any two UTs in
the same group should be as low as possible.

ii). UTs with a high degree of channel overlap should be
allocated to different groups.

Meanwhile, we allocate pilot sequences with different phase
shift factors to each UT group. With UT grouping and pilot
scheduling, the inter-UT interference can be suppressed and
the channel estimation performance can be improved.

Motivated by the hierarchical clustering [42], we propose
a UT grouping algorithm shown in Algorithm 1 according to
the UT grouping criterion. Specifically, we first place each UT
in a group of its own. Then in each iteration, we search for a
pair of UT groups, where the average channel overlap degree
between UTs in these two groups is the smallest, and combine
them into one UT group. The iteration is terminated when the
current number of groups is equal to S.

Algorithm 1: UT grouping algorithm
Input: The number of UTs U ; the number of groups

to divide S; the degree of overlap between
UTs {ρu,u′ , u, u′ = 0, 1, · · · , U − 1}

Initialize: The index set of UT groups
Ψ = {0, 1, · · · , U − 1}; the initial UT grouping result
Υs = {s} , s ∈ Ψ
while |Ψ| > S do
{s1, s2} = arg min

s∈Ψ,s′∈Ψ\s

∑
u∈Υs,u′∈Υs′

ρu,u′

|Υs||Υs′ |

Υs1 ← Υs1 ∪Υs2

Ψ← Ψ\s2

end
Output: UT grouping result {Υs, s ∈ Ψ}

Note that the TB domain statistical CSI includes three
dimensions, i.e., the spatial-beam dimension, the frequency-
beam dimension, and the temporal-beam dimension. In the
above discussion, all these three dimensions are utilized for
UT grouping and the computational complexity of ρu,u′ in
(32) is O (NanNdeNdo). Typically, the angle spread of the
HF skywave channel is small [43]–[45], which implies that
the TB domain channel of many UTs can be non-overlapping
along the spatial-beam dimension, and we can just use the
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spatial-beam dimension of the TB domain statistical CSI to
perform UT grouping. To this end, we first define

RB
u

∆
=

NdeNdo−1∑
i=0

NdeNdo−1∑
j=0

[
RTB
u

]
iNan:(i+1)Nan−1,
jNan:(j+1)Nan−1

∈CNan×Nan . (33)

Then we have the following theorem, proved in Appendix B.
Theorem 2: For arbitrary Nv and NF, when M → ∞, the
NMSE in (25) can be rewritten as

NMSE =

U−1∑
u=0

1

MNvNFUϑu
tr
{
RSFT,p
u

−RSFT,p
u XH

u C̄−1
u XuR

SFT,p
u

}
, (34)

where

C̄u
∆
=XuR

SFT,p
u XH

u+
∑
u′∈Iu

Xu′R
SFT,p
u′ XH

u′+σ
2
zIMNvNF , (35)

and Iu
∆
=
{
u′
∣∣u′ 6= u,RB

u′R
B
u 6= 0

}
.

By comparing C̄u and C, the NMSE of each UT is only
related to the statistical CSI of its own and UTs with overlap-
ping TB domain channels along the spatial-beam dimension
when only M →∞. Therefore, when the TB domain channels
of UTs u and u′ are non-overlapping along the spatial-beam
dimension, i.e., u′ /∈ Iu, they can reuse the same pilot
sequence without affecting the NMSE performance.

We define channel overlap degree in the spatial-beam di-
mension between UTs u and u′ as

ρ̃u,u′
∆
=

tr
{
RB
uRB

u′

}
‖RB

u‖F
∥∥RB

u′

∥∥
F

. (36)

It is worth noting that when we only utilize the spatial-
beam dimension of TB domain statistical CSI to perform UT
grouping, the computational complexity of ρ̃u,u′ is O (Nan),
which is much smaller than that of ρu,u′ . Moreover, UTs
with overlapping TB domain channels along the spatial-beam
dimension can still be allocated pilot sequences with different
phase shift factors to suppress the inter-UT interference. The
corresponding UT grouping and pilot scheduling method are
similar to the case of using the whole TB domain statistical
CSI, in which only ρu,u′ needs to be replaced by ρ̃u,u′ .

C. Channel Prediction for Data Segment

With the channel estimates for pilot segments, we can
directly use it for DL transmit design or UL signal detection in
the slow fading channel, where the channel changing over one
time slot can be ignored. On the other hand, in the fast fading
channel, it is not appropriate to directly apply the channel at
pilot segments to data segments [46].

If the channel varies symbol by symbol, we can try to
predict the channel at the data segment using the relationship
between the SFT domain channel and the TB domain channel.
Specifically, according to (15), the estimate of the SFT domain
channel of the NF timeslots for all UTs can be given by

ĥSFT = (IU ⊗P) ĥTB, (37)

where ĥSFT ∆
=

[(̂
hSFT

0

)T
,
(̂
hSFT

1

)T
,· · ·,

(̂
hSFT
U−1

)T]T
∈CMNvNU×1,

and ĥSFT
u ∈ CMNvN×1 is the estimate of the SFT domain

channel of the whole frame for UT u. Note that the channel
of the data segment to be predicted is in the current timeslot
and has been contained in ĥSFT. Hence, the predicted space-
frequency domain channel corresponding to the nS-th OFDM
symbol of UT u in the current timeslot is given by

ĥSF
u,nS

=
[
ĥSFT
u

]
((NF−1)NS+nS)MNv:

((NF−1)NS+nS+1)MNv−1

∈ CMNv×1, (38)

where nS = 0, 1, · · · , NS − 1.
In summary, to acquire the CSI of the current timeslot, we

first combine the current timeslot and the previous timeslots
into a complete frame and utilize the received signal at pilot
segments to obtain the channel estimation result ĥSFT,p and
ĥTB. Then we use the estimated TB domain channel, ĥTB, to
predict the channel at the data segment according to (37) and
(38).

IV. CBFEM BASED CHANNEL ESTIMATION

To reduce the complexity, we formulate the channel es-
timation as a statistical inference problem and develop a
CBFEM based channel estimation algorithm. Then we exploit
the structure of the TB matrix and the CZT to further reduce
its computational complexity.

A. Algorithm

Although the MMSE estimation in (22) can achieve
the optimal channel estimation performance, its complex-
ity is unaffordable in practical systems. Since the statis-
tical CSI, RTB, is available, (21) can be rewritten as
y=Āh̄TB+z, where h̄TB ∈ CNTB

aveU×1 consists of non-
zero elements in hTB, Ā ∈ CMNvNF×NTB

aveU consists of
the columns of A corresponding to the non-zero posi-
tions, and NTB

ave is the average number of non-zero ele-
ments of hTB

u for each UT. Thus the complexity of (22) is
O
(

(MNvNF)
3

+ (MNvNF)
2
NTB

aveU
)

. Moreover, with the
matrix inversion lemma, the MMSE estimate of h̄TB can
be rewritten as h̄TB

MMSE = R̄TB
(
ĀHĀR̄TB + σ2

zI
)−1

ĀHy,
where R̄TB is a diagonal matrix consisting of the non-
zero diagonal elements of RTB. In this case, the complexity
becomes O

((
NTB

aveU
)3

+
(
NTB

aveU
)2
MNvNF

)
. Therefore, the

complexity of MMSE estimation is O
(

min
{

(MNvNF)
3

+

(MNvNF)
2
NTB

aveU,
(
NTB

aveU
)3

+
(
NTB

aveU
)2
MNvNF

})
. Al-

though the TB domain channel exhibit sparsity in HF skywave
massive MIMO-OFDM communications, when the number of
UTs U is relatively large, the large NTB

aveU will make the
complexity of MMSE estimation still unbearable in practical
systems. Therefore, we develop a low-complexity channel
estimation algorithm by formulating the channel estimation
as a statistical inference problem.

Many statistical inference methods can be used to solve this
problem, such as message passing algorithms [18]–[24], [47].
A novel technique, named CBFEM, can unify different mes-
sage passing algorithms into a single optimization framework,
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which has a clear objective function and can derive different
solving algorithms through different constraints. Therefore,
we propose to use the CBFEM technique to estimate hTB

by transforming the statistical inference problem into an opti-
mization one and derive the CBFEM based channel estimation
algorithm by solving this problem.

From (21), we have

p
(
hTB,w |y

)
=

1

p (y)
p (y |w ) p

(
w
∣∣hTB

)
p
(
hTB

)
=

1

p (y)

MNvNF−1∏
i=0

p (yi |wi )
MNvNF−1∏

i=0

p
(
wi
∣∣hTB

)NanNdeNdoU−1∏
j=0

p
(
hTB
j

)
,

(39)

where w
∆
= AhTB ∈ CMNvNF×1 is the auxiliary

vector, p (yi |wi ) = CN
(
yi;wi, σ

2
z

)
, p

(
wi
∣∣hTB

)
=

δ
(
wi − aih

TB
)
, p
(
hTB
j

)
= CN

(
hTB
j ; 0,

[
RTB

]
j,j

)
, ai is

the i-th row of A, hTB
j is the j-th element of hTB, and yi

and wi are the i-th element of y and w, respectively.
Variational Bayesian inference [48], [49] can be utilized

to find a trial belief b
(
hTB,w

)
to approximate a posterior

probability density p
(
hTB,w |y

)
from a specific probability

density family Q by minimizing the variational free energy
FV (b), i.e., b

(
hTB,w

)
= arg min
b(hTB,w)∈Q

FV (b), and FV (b) is

defined as

FV (b) = D
{
b
(
hTB,w

) ∥∥p (hTB,w |y
)}
− ln p (y) , (40)

where − ln p (y) is termed Helmholtz free energy. We use
the Bethe approximation to limit the range of probability
density family Q by introducing factor beliefs and variable
beliefs [50]. Denote by,i (wi), bw,i

(
wi,h

TB
)
, and bh,j

(
hTB
j

)
as the factor beliefs of p (yi |wi ), p

(
wi
∣∣hTB

)
, and p

(
hTB
j

)
,

respectively. Let qw,i(wi) and qh,j
(
hTB
j

)
denote the variable

beliefs of wi and hTB
j , respectively. According to the Bethe

approximation, we have

b
(
hTB,w

)
=

MNvNF−1∏
i=0

by,i (wi) bw,i
(
wi,h

TB
)NanNdeNdoU−1∏

j=0

bh,j
(
hTB
j

)
MNvNF−1∏

i=0

qw,i (wi)
NanNdeNdoU−1∏

j=0

(
qh,j

(
hTB
j

))MNvNF

,

∀b
(
hTB,w

)
∈ Q. (41)

Moreover, the Bethe approximation needs to fulfill the
marginalization consistency constraints

by,i (wi) =

∫
bw,i

(
wi,h

TB
)
dhTB = qw,i (wi) , (42a)

bh,j
(
hTB
j

)
=

∫
bw,i

(
wi,h

TB
)
dwidh

TB
\hTB
j

=qh,j
(
hTB
j

)
, (42b)

where the normalization and non-negative constraints are omit-
ted for brevity since they hold for any valid belief. According
to [51], we can relax the constraints in (42) into the first-order
and second-order moment consistency constraints as follows

E {wi |by,i } = E {wi |bw,i } = E {wi |qw,i } (43a)

E
{
hTB
j |bh,j

}
= E

{
hTB
j |bw,i

}
= E

{
hTB
j |qh,j

}
(43b)

E
{
|wi|2 |by,i

}
= E

{
|wi|2 |bw,i

}
= E

{
|wi|2 |qw,i

}
(43c)

E
{∣∣hTB

j

∣∣2 |bh,j}=

MNvNF−1∑
i=0

E
{∣∣hTB

j

∣∣2|bw,i}
MNvNF

=E
{∣∣hTB

j

∣∣2|qh,j}
(43d)

where (43d) is an approximate second-order moment consis-
tency constraint due to the fact that the belief bw,i contains
the variable hTB

j for any i.
Substituting (41) into (40), we can obtain the Bethe free

energy as follows

FB (b) =

MNvNF−1∑
i=0

D {by,i ‖p (yi|wi )}+
MNvNF−1∑

i=0

D
{
bw,i

∥∥p (wi∣∣hTB
)}

+

NanNdeNdoU−1∑
j=0

D
{
bh,j
∥∥p (hTB

j

)}
+H {qw,i}+

NanNdeNdoU−1∑
j=0

MNvNFH {qh,j},

(44)

Finally, we transform the channel estimation into the following
CBFEM question

min
{by,i},{bw,i},{bh,j},
{qw,i},{qh,j}

FB (b) s.t.(43). (45)

We can utilize Lagrange multipliers to solve the CBFEM
question, which is given in Appendix C. The resulting
CBFEM based channel estimation algorithm is summarized
in Algorithm 2, where bh

∆
=
∏NanNdeNdoU−1
j=0 bh,j , e

∆
=

[1, 1, · · · , 1]
T ∈ CNanNdeNdoU×1 and (·)◦−1 denotes the

element-wise inverse. Moreover, during the iterations, the
damping factor can be leveraged to ensure the convergence
of the algorithm [22].

Algorithm 2: CBFEM based channel estimation al-
gorithm

Input: A, y, σ2
p, σ2

z , p
(
hTB

)
= CN

(
hTB; 0,RTB

)
1 Initialize: bh = p

(
hTB

)
,ηh,bh = 0

2 repeat
3 ηh,bw = −Var

{
hTB |bh

}◦−1 − 1
MNvNF

ηh,bh

4 ηh,bh =

MNvNF

((
σ2

peT
(
ηh,bw

)◦−1−σ2
z

)
σ−2

p e−
(
ηh,bw

)◦−1
)◦−1

5 τ̃h,bw = E
{
hTB |bh

}
◦Var

{
hTB |bh

}◦−1

6 κ = τ̃h,bw ◦
(
ηh,bw

)◦−1

7 ψ = Aκ
8 $ = 1

MNvNFσ2
p
AH (y +ψ)− κ

9 bh∝p
(
hTB

)
CN

(
hTB;$,diag

{
−
(
ηh,bh

)◦−1
})

10 until the termination condition is fulfilled;
Output: ĥTB = E

{
hTB |bh

}
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B. Low-Complexity Implementation

The computational complexity of each iteration of the
proposed CBFEM based channel estimation algorithm mainly
comes from steps 7 and 8. In this subsection, we focus on
these two steps and further reduce their complexity.

Recalling (28) and (30), steps 7 and 8 of the CBFEM based
channel estimation algorithm can be rewritten as

ψ = σpXc

(
D̃⊗

(
V
(
Ū⊗ INan

)))
[S0, · · · ,SU−1]κ, (46)

$=
1

MNvNFσp
[S0, · · ·,SU−1]

H
(
D̃H⊗

((
ŪH⊗INan

)
VH
))

×XH
c (y +ψ)− κ. (47)

Since Vk and D̃ are not DFT matrices, fast Fourier transform
(FFT) cannot be directly used. In this case, the CZT [52] can
be utilized to reduce the computational complexity of (46) and
(47). Specifically, Vk and D̃ can be rewritten as

Vk = diag
{
ξWS,k,Nan,0,M

}
FH
N(S)×M

×diag
{
ξ̃WS,k,M,Nan,N(S)

}
FN(S)×Nandiag

{
ξWS,k,0,0,Nan

}
, (48a)

D̃ = diag

{
ξ
WT,Ndo,

npNdo
NS

,NF

}
FH
N(T)×NF

×diag
{
ξ̃WT,NF,Ndo,N(T)

}
FN(T)×Ndo

diag

{
ξ
WT,−

2np
NS

,0,Ndo

}
, (48b)

respectively, where FN denotes the N -dimensional uni-
tary DFT matrix, FN×G denotes the matrix composed
of the first G (≤ N ) columns of FN , N(S) and N(T)

are integers greater than or equal to M + Nan − 1 and
NF + Ndo − 1, respectively. WS,k

∆
= e−̄

4π(fc+k∆f)∆τ
Nan ,

WF
∆
= e

−̄ 2πNτ
NdeNv , WT

∆
= e

̄
2πNdNS
NdoN , ξW,α1,α2,N ∈ CN×1

with [ξW,α1,α2,N ]i = W (i2−α1i−α2)/2, and ξ̃W,N1,N2,N
∆
=

√
NFN

[
ξH
W,0,0,N1

,0, ξH
W,2(N2−1),−(N2−1)2,N2−1

]T
∈ CN×1.

With (46), (47) and (48), steps 7 and 8 can be implemented
efficiently and the complexities are respectively reduced
to O

(
NanNdoN̄delog2N̄de + NvNdoN(S)log2N(S) +

MNvN(T)log2N(T)

)
and O

(
NvNFN(S)log2N(S) +

NanNFN̄delog2N̄de + NanN̄deN(T)log2N(T)

)
, where

N̄de
∆
= bNv/NτcNde.

V. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the proposed channel acquisition approach
for HF skywave massive MIMO-OFDM communications. The
main simulation parameters are given in Table I. We generate
UTs at a distance of 2000 km from the BS, and azimuth angles
of the UTs seen from the BS are generated in the interval (-90°
90°). A commercial ray-tracing software, Proplab-Pro version
3.1, is utilized to generate the realistic HF skywave channel for
each UT independently [53]. Specifically, we use the software
to get parameters of each propagation path between the BS and
each UT, including the path gain, the propagation delay, the az-
imuth and elevation AoA. The maximum Doppler comes from

the ionosphere and UT mobility, i.e., νmax = νiono

2 + vu
c fc,

where νiono is the Doppler spread imposed by the ionosphere
and vu is the velocity of UT u. In the simulation, νiono is
set to be 0.5 Hz for moderate ionospheric conditions at mid-
latitude regions [54], the Doppler frequency of each path is
randomly generated within the range [−νmax, νmax), and Nd

is set to be 8 according to the maximum Doppler. Then using
the generated path parameters and randomly generated initial
phases for paths, the SFT domain channel of each UT is
generated according to (5) and the statistical CSI RTB is
acquired by the method proposed in [38].

Note that ĥSFT,p consists of the estimated spatial-frequency
domain channels of pilot segments in NF timeslots and only
the spatial-frequency domain channel of the last timeslot (i.e.,
the current timeslot) is needed for DL transmit design or UL
signal detection. Therefore, in addition to the NMSE of all
timeslots defined in (25), we will also show the NMSE be-
tween the estimated channel and the real channel in the current
timeslot. The signal-to-noise ratio (SNR) in the simulation
refers to the received SNR, whose range is set to be [-10
20] dB. Such a range is realizable in practice since each UT
only needs about 50 W of transmit power to achieve a SNR of
up to 20 dB under the given simulation parameters. We refer
to the UT grouping algorithm based on the channel overlap
degree (32) and (36) as TB-UG and B-UG, respectively, and
the number of groups to divide is set to be S = bNv/Nτc. The
performance of random UT grouping (Random-UG) is also
provided for comparison, and we refer to the CBFEM based
channel estimation algorithm as the CBFEM-CE algorithm.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier frequency fc 16 MHz
Subcarrier spacing ∆f 250 Hz

Number of subcarriers Nc 2048
Length of CP Ng 512

Number of valid subcarriers Nv 1536
Number of BS antennas M 128

BS antenna spacing d 9 m
Size of frame (NF, NS, np) (8, 14, 6)

Number of UTs U 64
Velocity of UTs vu 30 / 100 / 250 km/h

We first compare the NMSE performance of different al-
gorithms with different fine factors. The MMSE estimation,
the generalized approximate message passing (GAMP) [47],
and the expectation propagation variant (EPV) [22] algorithms
are included along with the proposed CBFEM-CE algorithm.
Since the simulation parameters in Table I will make the
complexity of the MMSE estimation unbearable, we use a
set of smaller parameters only in this simulation. Specifically,
we set M = 64, Nv = 128, and the number of UTs is
set to be 32. The simulation results are shown in Fig. 2,
where the UT grouping algorithm is TB-UG and the UT
velocity is 100 km/h. From the figure, larger fine factors
can achieve better performance due to the improved accuracy
of the proposed TB based channel model. Furthermore, the
performance of CBFEM-CE, GAMP, and EPV algorithms can
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Fig. 2. The NMSE performance of different algorithms with different fine
factors. (a) NMSE of all timeslots; (b) NMSE of current timeslot.

approach that of the optimal MMSE estimation with a very
small gap. Moreover, the proposed CBFEM-CE algorithm can
be implemented with much lower complexity by using the
CZT and the structure of the TB matrix.

TABLE II
COMPUTATIONAL COMPLEXITIES OF DIFFERENT CHANNEL ESTIMATION

ALGORITHMS

Algorithm Complexity

MMSE
O
(

min
{

(MNvNF)3 + (MNvNF)2NTB
aveU,(

NTB
aveU

)3
+
(
NTB

aveU
)2

MNvNF

})
CBFEM-CE

(per iteration)

O
(

(NanNdo + NanNF) N̄delog2N̄de

+ (NvNdo + NvNF)N(S)log2N(S)

+
(
MNv + NanN̄de

)
N(T)log2N(T)

)
GAMP / EPV
(per iteration) O

(
MNvNFN

TB
aveU

)
The computational complexity of different channel estima-

tion algorithms are summarized in Table II and are plotted
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Fig. 3. The complexities of different algorithms versus the number of UTs.

in Fig. 3 under different numbers of UTs, where Fan =
Fde = Fdo = 2 and the number of iterations for CBFEM-CE,
GAMP, and EPV algorithms are set to 300 (the number of
iterations required is different for different SNRs and system
configurations). From the figure, the complexity of MMSE is
the highest due to the matrix-inversion. On the other hand,
owing to the utilization of the structure of the TB matrix
and the CZT, the complexity of CBFEM-CE algorithm is the
lowest among all the algorithms.

Fig. 4 shows the convergence performance of different
algorithms under different SNRs, where the UT velocity is 100
km/h, Fan = Fde = Fdo = 2, and the UT grouping algorithm
is TB-UG. From the figure, the NMSE performance of the
CBFEM-CE algorithm improves as the number of iterations
increases until the convergence. Moreover, the CBFEM-CE
algorithm has similar convergence behavior to that of GAMP
and EPV algorithms with much lower complexity.
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Fig. 4. The convergence performance of different algorithms under different
SNRs.
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Fig. 5. The NMSE performance of different UT grouping algorithms. (a)
NMSE of all timeslots; (b) NMSE of current timeslot.

Fig. 5 compares the NMSE performance of different UT
grouping algorithms, where the UT velocity is 100 km/h,
Fan = Fde = Fdo = 2, and the channel estimation algorithm
is CBFEM-CE. From the figure, the proposed UT grouping
algorithms are crucial to the channel estimation and have
a significant performance gain over random-UG, especially
when the SNR is high. This is because there is severe inter-UT
interference when the number of UTs is large, which can be
effectively tackled by the proposed UT grouping algorithms.
Moreover, the performance of TB-UG is almost the same as
that of B-UG while the computational complexity of ρ̃u,u′ used
in B-UG is much lower than that of ρu,u′ used in TB-UG.

Fig. 6 shows the NMSE performance of the proposed chan-
nel prediction method under different UT velocities, where
the frame structure is as in Fig. 1, SNR = 15 dB, the UT
grouping algorithm is TB-UG, Fan = Fde = Fdo = 2, and
the channel estimation algorithm is CBFEM-CE. The NMSE
here refers to the NMSE between the channel obtained by
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Fig. 6. The NMSE performance versus OFDM symbol index under different
UT velocities.

channel prediction and the real channel of each OFDM symbol
in the current timeslot. We observe that when we directly
apply the estimated channel at the pilot segment to the data
segment, the NMSE performance will rapidly degrade as the
delay between the pilot symbol and data symbols increases,
especially when the UT velocity is fast. However, the proposed
channel prediction method can acquire a more accurate CSI
of the data segment due to the utilization of the estimated TB
domain channel, which is conducive to DL transmit design
and UL signal detection.

VI. CONCLUSIONS

In this paper, we have investigated the channel acquisition
for HF skywave massive MIMO-OFDM communications. We
first established a TB based channel model using sampled
triple steering vectors, each of which corresponds to a physical
TB in the SFT domain. Then, based on the channel model, we
investigated the optimal channel estimation for pilot segments
and revealed the conditions for minimizing the NMSE of the
channel estimate. We showed that UTs with overlapping TB
domain channels should be allocated pilot sequences with
different phase shift factors while UTs with non-overlapping
TB domain channels can reuse the same pilot sequence.
Moreover, the pilot design was given, including UT grouping
and pilot scheduling, and the channel prediction method for the
data segment was provided based on the TB domain channel
estimate. To reduce the complexity of the channel estimation,
we developed the CBFEM based channel estimation algorithm
and its low-complexity implementation using CZT based on
the structure of the TB matrix. Simulation results verified the
validity of the proposed CSI acquisition approach.

APPENDIX A
PROOF OF THEOREM 1

We start by presenting a lemma that is required in the
subsequent proof.
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Lemma 1: When one of the conditions in Theorem 1 satisfies,
we have

lim
M,Nv,NF→∞

1

MNvNF
RSFT,p
u XH

uXu′R
SFT,p
u′ = 0. (49)

Proof: According to (17) and the fact that XuP̃=σpXcP̄Su
we have

lim
M,Nv,NF→∞

1

MNvNF
RSFT,p
u XH

uXu′R
SFT,p
u′

= lim
M,Nv,NF→∞

σ2
p

MNvNF
P̃RTB

u SH
u P̄HXH

c XcP̄Su′R
TB
u′︸ ︷︷ ︸

Φ

P̃H.

(50)

Then we have

lim
M,Nv,NF→∞

σ2
p

MNvNF
[Φ]a,b

= lim
M,Nv,NF→∞

σ2
p

[
RTB
u

]
a,a

[
RTB
u′
]
b,b

× 1

NF

NF−1∑
nF=0

e
−̄2π(nFNS+np)

Nd(ndo−n
′
do)

NdoN

︸ ︷︷ ︸
αT(ndo,n′do)

× 1

Nv

kNv−1∑
k=k0

e
̄2πk

Nτ (nde−n
′
de+φu−φu′ )

NdeNv

︸ ︷︷ ︸
αF(nde,n′de,φu,φu′)

× 1

M

M−1∑
m=0

e̄2π(fc+k∆f)m∆τ
2(nan−n′an)

Nan︸ ︷︷ ︸
αS(nan,n′an,k)

, (51)

where

ndo =ba/(NdeNan)c , nde =〈ba/Nanc〉Nde
, nan =〈a〉Nan

,

n′do =bb/(NdeNan)c , n′de =〈bb/Nanc〉Nde
, n′an =〈b〉Nan

,

and 〈·〉N denotes the modulo-N operation.
When RTB

u RTB
u′ 6= 0, there is an overlap between TB

domain channels of UTs u and u′, thus we let φu 6= φu′ so
that nde−n′de +φu−φu′ 6= 0 and αF (nde, n

′
de, φu, φu′) = 0

when Nv → ∞. When RTB
u RTB

u′ = 0, there is no overlap
between TB domain channels of UTs u and u′, which means
that when both

[
RTB
u

]
a,a

and
[
RTB
u′

]
b,b

are not equal to
0, we have a 6= b, thus at least one of ndo − n′do 6= 0,
nde − n′de + φu − φu′ 6= 0, and nan − n′an 6= 0 satisfies. In
this case, at least one of αT (ndo, n

′
do), αF (nde, n

′
de, φu, φu′)

and αS (nan, n
′
an, k) is equal to 0 when M,Nv, N → ∞. In

summary, when one of the conditions in Theorem 1 satisfies,

lim
M,Nv,N→∞

σ2
p

MNvNF
Φ = 0. (52)

Substituting (52) into (50), we obtain (49). This completes the
proof of Lemma 1.

Next, we define that

C̃u
∆
= XuR

SFT,p
u XH

u + σ2
zIMNvNF

. (53)

Due to the fact that C � 0, C̃u � 0, and C − C̃u �
0, we can obtain that C̃−1

u −C−1 � 0 [55]. Therefore,
RSFT,p
u XH

u

(
C̃−1
u −C−1

)
XuR

SFT,p
u � 0, and

NMSE

U−1∑
u=0

1

MNvNFUϑu
tr
{

RSFT,p
u

−RSFT,p
u XH

u C̃−1
u XuR

SFT,p
u

}
. (54)

According to Lemma 1, when one of the conditions in Theo-
rem 1 satisfies, we have

lim
M,Nv,NF→∞

1

MNvNF
RSFT,p
u XH

uCXuR
SFT,p
u

= lim
M,Nv,NF→∞

1

MNvNF
RSFT,p
u XH

u C̃uXuR
SFT,p
u

⇒ lim
M,Nv,NF→∞

1

MNvNF
tr
{
RSFT,p
u −RSFT,p

u XH
uC−1XuR

SFT,p
u

}
= lim
M,Nv,NF→∞

1

MNvNF
tr
{
RSFT,p
u −RSFT,p

u XH
u C̃−1

u XuR
SFT,p
u

}
.

(55)

Substituting (55) into (25), the equality in (54) holds and
the NMSE is reduced to the minimum value in (31). This
completes the proof.

APPENDIX B
PROOF OF THEOREM 2

We start by presenting a lemma that is required in the
subsequent proof.
Lemma 2: For arbitrary Nv and NF, when u′ /∈ Iu, we have

lim
M→∞

1

MNvNF
RSFT,p
u XH

uXu′R
SFT,p
u′ = 0. (56)

Proof: When Nv and NF are arbitrary and only M →∞,
we can obtain that

lim
M→∞

1

MNvNF
RSFT,p
u XH

uXu′R
SFT,p
u′ = lim

M→∞

σ2
p

MNvNF
P̃Φ̃P̃H,

(57)
where

lim
M→∞

σ2
p

MNvNF

[
Φ̃
]
a,b

= lim
M→∞

σ2
p

NdeNdo−1∑
i=0

NdeNdo−1∑
j=0

[
RTB
u

]
a,iNan+nan

[
RTB
u′
]
jNan+n′an,b

×αT(n′′do, n
′′′
do)αF(n′′de, n

′′′
de, φu, φu′)αS(nan, n

′
an, k) , (58)

where

n′′do =bi/Ndec , n′′de =〈i〉Nde
, n′′′do =bj/Ndec , n′′′de =〈j〉Nde

,

and nan, n′an, αT (n′′do, n
′′′
do), αF (n′′de, n

′′′
de, φu, φu′) and

αS (nan, n
′
an, k) are similar to the definitions in Appendix A.

When u′ /∈ Iu, the TB domain channel of UTs u and u′

is non-overlapping along the spatial-beam dimension, which
means that when both

[
RTB
u

]
a,iNan+nan

and
[
RTB
u′

]
jNan+n′an,b

are not equal to 0, we have nan 6= n′an, thus αS (nan, n
′
an, k) =

0 when M →∞. Therefore, we have

lim
M→∞

σ2
p

MNvNF
Φ̃ = 0. (59)
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Substituting (59) into (57), we obtain (56). This completes the
proof of Lemma 2.

Then we have

lim
M→∞

1

MNvNF
RSFT,p
u XH

uCXuR
SFT,p
u

(a)
= lim

M→∞

1

MNvNF
RSFT,p
u XH

u C̄uXuR
SFT,p
u

⇒ lim
M→∞

1

MNvNF
tr
{
RSFT,p
u −RSFT,p

u XH
uC−1XuR

SFT,p
u

}
= lim
M→∞

1

MNvNF
tr
{
RSFT,p
u −RSFT,p

u XH
u C̄−1

u XuR
SFT,p
u

}
,

(60)

where (a) follows from Lemma 2. Substituting (60) into (25),
we can obtain (34) . This concludes the proof.

APPENDIX C
DERIVATION OF CBFEM BASED CHANNEL ESTIMATION

ALGORITHM

The Lagrange function of the (45) can be given by

LB = FB

+

MNvNF−1∑
i=0

2Re
{(
τ
w,by
i

)∗
(E {wi |qw,i } − E {wi |by,i })

}
+

MNvNF−1∑
i=0

2Re
{(
τw,bwi

)∗
(E {wi |qw,i } − E {wi |bw,i })

}
+

MNvNF−1∑
i=0

NanNdeNdoU−1∑
j=0

2Re
{(
τh,bwi,j

)∗(
E
{
hTB
j |qh,j

}
−E
{
hTB
j |bw,i

})}

+

NanNdeNdoU−1∑
j=0

2Re
{(
τh,bhj

)∗ (
E
{
hTB
j |qh,j

}
− E

{
hTB
j |bh,j

})}

+

MNvNF−1∑
i=0

η
w,by
i

(
E
{
|wi|2 |qw,i

}
− E

{
|wi|2 |by,i

})
+

MNvNF−1∑
i=0

ηw,bwi

(
E
{
|wi|2 |qw,i

}
− E

{
|wi|2 |bw,i

})
+

NanNdeNdoU−1∑
j=0

ηh,bwj

(
MNvNFE

{∣∣hTB
j

∣∣2|qh,j}−MNvNF−1∑
i=0

E
{∣∣hTB

j

∣∣2|bw,i})

+

NanNdeNdoU−1∑
j=0

ηh,bhj

(
E
{∣∣hTB

j

∣∣2 |qh,j }− E
{∣∣hTB

j

∣∣2 |bh,j }).
(61)

Then by setting the first-order derivatives of (61) for each
belief equal to zeros, a series of fixed-point equations can be
obtained as follows.

by,i ∝ p (yi |wi ) CN

(
wi;−

τ
w,by
i

η
w,by
i

,− 1

η
w,by
i

)
, (62)

qw,i ∝ CN

(
wi;−

τ
w,by
i + τw,bwi

η
w,by
i + ηw,bwi

,− 1

η
w,by
i + ηw,bwi

)
, (63)

bw,i ∝ p
(
wi
∣∣hTB

)
CN

(
wi;−

τw,bwi

ηw,bwi

,− 1

ηw,bwi

)

×
NanNdeNdoU−1∏

j=0

CN

(
hTB
j ;−

τh,bwi,j

ηh,bwj

,− 1

ηh,bwj

)
, (64)

qh,j∝CN

hTB
j ;−

MNvNF−1∑
i=0

τh,bwi,j +τh,bhj

MNvNFη
h,bw
j +ηh,bhj

,− MNvNF

MNvNFη
h,bw
j +ηh,bhj

 ,

(65)

bh,j ∝ p
(
hTB
j

)
CN

(
hTB
j ;−

τh,bhj

ηh,bhj

,− 1

ηh,bhj

)
. (66)

Next, for constraints (43), let (XX-1), (XX-2), (XX-3)
denote the equation between the first and the second term, the
second and the third term, the first and third term, respectively,
for brevity. For example, (43a-1) denotes E {wi |by,i } =
E {wi |bw,i }, (43a-2) denotes E {wi |bw,i } = E {wi |qw,i } and
(43a-3) denotes E {wi |by,i } = E {wi |qw,i }. let aij denote
the (i, j)-th element of A. Note that the modulus of of each
element of A is the same, i.e., σp.

According to (43b-3) and (43d-3), we can obtain that

ηh,bwj = − 1

Var
{
hTB
j |bh,j

} − ηh,bhj

MNvNF
. (67)

According to (43a-2) and (43c-2), we can obtain that

η
w,by
i =

NanNdeNdoU−1∑
j=0

σ2
p

ηh,bwj

−1

∆
= η̃w,by . (68)

According to (43a-3) , (43c-3) and p (yi |wi ) ∝
CN

(
yi;wi, σ

2
z

)
, we can obtain that ηw,bwi = −1

/
σ2

z

and τw,bwi = yi
/
σ2

z . Then according to (43b-2), (43d-2) and
(68), we can obtain that

ηh,bhj =

((
η̃w,by

)−1 − σ2
z

MNvNFσ2
p

− 1

MNvNFη
h,bw
j

)−1

, (69)

τh,bhj =

MNvNF−1∑
i=0

−
a∗ij (yi + ψi)− σ2

p

τh,bwi,j

ηh,bwj

(η̃w,by )
−1 − σ2

z −
σ2

p

ηh,bwj

=

MNvNF−1∑
i=0

µi,j , (70)

where

ψi
∆
=

NanNdeNdoU−1∑
j=0

aij
τh,bwi,j

ηh,bwj

, (71)

µi,j
∆
= −

a∗ij (yi + ψi)− σ2
p

τh,bwi,j

ηh,bwj

(η̃w,by )
−1 − σ2

z −
σ2

p

ηh,bwj

. (72)

According to (69) and (70), we have

$j
∆
=−

τh,bhj

ηh,bhj

=
1

MNvNFσ2
p

MNvNF−1∑
i=0

(
a∗ij (yi + ψi)−σ2

p

τh,bwi,j

ηh,bwj

)
.

(73)
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According to (43b-3) and (43d-3), we can obtain that∑MNvNF−1

i=0
τh,bwi,j =

MNvNFE
{
hTB
j |bh,j

}
Var

{
hTB
j |qh,j

} −τh,bhj

=
MNvNFE

{
hTB
j |bh,j

}
Var

{
hTB
j |bh,j

} −τh,bhj . (74)

According to (70), (74) and the constraint E
{
hTB
j |bw,i

}
=

E
{
hTB
j |bw,i′

}
, we can obtain that

τh,bwi,j =
E
{
hTB
j |bh,j

}
Var

{
hTB
j |bh,j

} − τh,bhj +

MNvNF−1∑
i′=0,i′ 6=i

µi′,j . (75)

In HF skywave massive MIMO-OFDM communications,
MNvNF is usually very large. Hence we approximate that
MNvNF−1∑
i′=0,i′ 6=i

µi′,j ≈
MNvNF−1∑

i=0

µi,j . The approximation here is

conducive to the derivation of the low-complexity implementa-
tion, and the resulting channel estimation algorithm still has a
satisfactory performance, as shown in simulation results. Then
τh,bwi,j is rewritten as

τh,bwi,j =
E
{
hTB
j |bh,j

}
Var

{
hTB
j |bh,j

} ∆
= τ̃h,bwj . (76)

We define ηh,bw , ηh,bh , τ̃h,bw and $, whose j-th element are
ηh,bwj , ηh,bhj , τ̃h,bwj and $j , respectively. In addition, we define
ψ, whose i-th element is ψi. Then (66), (67), (68), (69), (71),
(73) and (76) can be rewritten in vector and matrix form and
constitute the CBFEM based channel estimation algorithm.
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