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Abstract

Data-aided channel estimation is a promising solution to improve channel estimation accuracy

by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we

propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems.

Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols among

the symbols in the first part of transmitted data block. This strategy facilitates an update of the channel

estimate before the end of data block transmission and therefore achieves a significant reduction in

communication latency compared to conventional data-aided channel estimation approaches. Towards

this end, we first define a Markov decision process (MDP) which sequentially decides whether to use

each detected symbol as an additional pilot signal. We then develop an RL algorithm to efficiently find

the best policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit

the a-posteriori probability for approximating both the optimal future actions and the corresponding

state transitions of the MDP and derive a closed-form expression for the best policy. Simulation results

demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and

detection performance loss caused by insufficient pilot signals.
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Multiple-input multiple-output (MIMO), channel estimation, data-aided channel estimation, rein-

forcement learning, Monte Carlo tree search.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication is one of the core technologies in

modern wireless standards. The use of multiple antennas significantly improves both the capacity

and the reliability of wireless systems by providing spatial multiplexing and diversity gains [2]–

[4]. A key requirement to enjoy these benefits is accurate channel state information (CSI) at both

transmitter and receiver. For example, the capacity of MIMO communication systems increases

linearly with the number of either transmit or receive antennas under the premise that perfect

CSI is available at both the transmitter and receiver [2], [3].

To obtain accurate CSI at the receiver (CSIR), various channel estimation techniques have

been developed for MIMO communication systems [5]–[17]. One of the most popular and

widely adopted technique is pilot-aided channel estimation [5]–[8]. The fundamental idea of

this technique is to send pilot signals, known as a priori at the receiver, and then to estimate the

CSI from received signals observed during pilot transmission. A representative example of this

technique is the least-squares (LS) channel estimator that minimizes the sum of squared errors

in the estimated CSIR [7], [8]. Another example is the linear minimum-mean-squared-error

(LMMSE) channel estimator which is a linear estimator that minimizes the mean-squared-error

(MSE) of the estimated CSIR based on the first-order and the second-order channel statistics

[7], [8]. The accuracy of the CSIR obtained from pilot-aided channel estimation improves

with the number of the pilot signals available in a communication system. In addition, the

larger the number of spatially multiplexed data streams utilized in MIMO systems, the larger

the number of pilot signals required for accurate CSIR. Despite this requirement, in practical

MIMO communication systems, only a small portion of radio resources are allocated for pilot

transmission, while most of the radio resources are allocated for transmitting data (non-pilot)

signals.

Data-aided channel estimation is a promising solution to overcome the limitation of pilot-aided

channel estimation due to an insufficient number of pilot signals [9]–[17]. The basic strategy of

the data-aided channel estimation is to exploit data symbols as additional pilot signals to update

an initial channel estimate obtained from pilot-aided channel estimation. This strategy allows

the receiver to enjoy the effect of increasing the number of pilot signals and therefore has a

potential to provide more accurate CSIR compared to the pilot-aided channel estimation without

sacrificing radio resource for data transmission. A non-iterative data-aided channel estimation
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was first investigated in [9]. In this method, data symbols are reconstructed by properly encoding

and modulating the outputs of channel decoder, so that the reconstructed data symbols are utilized

as pilot signals for channel estimation. The performance of this method, however, is degraded

under the presence of decoding error which leads to the mismatch between the reconstructed

and transmitted data symbols. To resolve this problem, iterative data-aided channel estimation

has been studied in [13]–[17], which iteratively performs channel estimation and data detection

to mitigate both channel estimation and decoding errors. In [15], an iterative turbo channel

estimation technique was developed in which soft-decision symbols are utilized as pilot signals at

each iteration. A similar iterative approach was also developed in [16] by selectively utilizing soft-

decision symbols as pilot signals according to an MSE-based criterion. The common limitation

of these iterative data-aided channel estimators is that they increase not only the computational

complexity of receive processing, but also communication latency.

Recently, deep-learning-based channel estimation has also drawn increasing attention in order

to circumvent the limitation of pilot-aided channel estimation [18]–[26]. A basic idea of this

technique is to learn a channel from training samples, each of which describes the input-output

relation of a communication system. The most prominent feature of the deep-learning-based

channel estimation is that it can be readily incorporated into complicated communication systems,

e.g., massive MIMO, millimeter-wave, and doubly-selective channels [20]–[22]. The use of deep

learning, however, requires a huge training set to optimize neural networks and therefore increases

both computational complexity and communication latency. To resolve this drawback, a model-

driven deep learning approach was studied in [23]–[26]. This approach effectively reduces the size

of training set by learning only the parameters of a model for estimating the channel. Specifically,

a joint optimization with data detection and channel estimation was introduced in [25] based

on a Bayesian model. A similar channel estimation method for millimeter-wave MIMO systems

was introduced in [26]. Although these model-driven channel estimators effectively mitigate the

limitation of the deep learning-based channel estimation, the use of deep learning still brings

non-negligible computational complexity and communication latency that may not be affordable

in practical systems.

This paper presents a new type of data-aided channel estimation for MIMO communication

systems, referred to as semi-data-aided channel estimation, which reduces communication latency

caused by iterative data-aided channel estimation. The basic strategy of the presented channel

estimator is to leverage reinforcement learning (RL) for selecting reliable detected symbol vectors
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only among the symbols in the first part of data block. The most prominent feature of the

presented channel estimator is that it does not utilize the channel decoder outputs and therefore

facilitates an early update of a channel estimate even before the end of data block transmission.

Simulation results demonstrate that the presented channel estimator effectively mitigate both

channel estimation error and detection performance loss caused by insufficient pilot signals. The

major contributions of this paper are summarized as follows:

• We present a Markov decision process (MDP) to sequentially determine the best selection of

detected symbol vectors for minimizing the MSE of the semi-data-aided channel estimation.

To this end, we adopt a binary action that indicates whether to exploit each detected symbol

vector as an additional pilot signal, while defining a reward function as the MSE reduction

of the channel estimate. With this MDP, we successfully formulate a symbol vector selection

problem for the semi-data-aided channel estimation as a sequential decision-making problem

that can be efficiently solved via RL.

• We propose a novel RL algorithm to efficiently find the best policy of the presented MDP.

The underlying challenge is that the state transition of the presented MDP is unknown at the

receiver due to the lack of knowledge of transmitted symbol vectors. In the proposed algo-

rithm, we tackle this challenge by leveraging a Monte Carlo tree search (MCTS) approach

in [27]–[29] which looks ahead the rewards of near-future actions, while approximating

the rewards of distant-future actions via Monte Carlo simulations. We modify the original

MCTS approach by exploiting a-posteriori probability (APP), computed from data detection,

for approximating both the optimal future actions and the corresponding state transitions

of the MDP. The most prominent advantage of the proposed RL algorithm is that the best

policy for each state has a closed-form expression that can be readily computed at the

receiver.

• We present two additional strategies for enhancing the advantages of the semi-data-aided

channel estimation operating with the proposed RL algorithm. In the first strategy, we

develop a low-complexity policy that approximates the optimal policy of the presented

MDP based on Monte Carlo sampling. Utilizing this new policy, we further reduce the

computational complexity required in the proposed RL algorithm. In the second strategy,

we utilize an updated channel estimate for re-detecting the symbol vectors that are not

selected by the proposed RL algorithm. Utilizing this strategy, we further improve data
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detection performance when employing the semi-data-aided channel estimation, without a

significant increase in the computational complexity.

• In simulations, we evaluate the normalized MSE (NMSE) and block-error-rate (BLER) of

the proposed channel estimator for a coded MIMO communication system. Our simulation

results demonstrate that the proposed channel estimator significantly reduces the NMSE in

channel estimation, while improving the BLER of the system, compared to conventional

pilot-aided channel estimation. It is also shown that the proposed RL algorithm effectively

selects detected symbol vectors that can improve the performance of the semi-data-aided

channel estimation. We also investigate the robustness of the proposed channel estimator

in time-varying channels and demonstrate that the proposed channel estimator reduces per-

formance degradation in time-varying environment by tracking temporal channel variations

during data transmission.

An RL algorithm for optimizing the symbol vector selection of data-aided channel estimation

was first introduced in our prior work [1]. In this algorithm, the optimal policy of the MDP is

derived under a simplistic assumption that underestimates the effect of future actions and rewards.

In this paper, we generalize the RL algorithm in [1] by employing the MCTS approach which

provides a more accurate evaluation of the effect of the future actions and rewards. In addition

to this major change, we newly introduce the semi-data-aided channel estimation strategy to

further reduce the delay required for updating the channel estimate and also introduce the data

re-detection strategy to improve detection performance after the symbol vector selection.

The remainder of this paper is organized as follows. Section II introduces system model and

preliminaries considered in this paper. In Section III, we formulate an optimization problem that

adaptively selects the detected symbols for the semi-data-aided channel estimator. An efficient

RL algorithm to solve the optimization problem is proposed in Section IV. Simulation results

are presented in Section V to verify the effectiveness of the proposed channel estimator. The

conclusion is finally presented in Section VI.

Notation: Matrices 0m and Im represent the m×m all-zero matrix and the m × m identity

matrix, respectively. Superscripts (·)T and (·)H denote the transpose and the conjugate transpose,

respectively. Operators E(·), P(·), | · |, and ‖ · ‖F denote the expectation of a random variable,

the probability of an event, the cardinality of a set, and the Frobenius norm, respectively. (·)−1

denotes the inverse operation. The set C represents the set of complex numbers.
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Fig. 1. A MIMO communication system in which a transmitter equipped with Ntx antennas communicates with a receiver

equipped with Nrx antennas. A transmission frame consists of a pilot block with length Tp followed by a data block with length

Td. The data block consists of two parts: The lengths of the first part and the second part are Tu and Td − Tu, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we introduce a MIMO communication system considered in this work. The

LMMSE channel estimator and the maximum-a-posteriori-probability (MAP) data detector are

presented for the considered system. We then describe the challenge of the LMMSE channel

estimator to achieve the optimal performance.

A. System model

We consider a MIMO communication system in which a transmitter equipped with Ntx

antennas communicates with a receiver equipped with Nrx antennas, as illustrated in Fig. 1.

We model the wireless channel of the considered system as a frequency-flat Rayleigh fading

channel denoted by H ∈ CNrx×Ntx where the entries of H are independent and identically

distributed (i.i.d.) random variables with the distribution of CN (0, 1). We assume a block fading

channel in which the entries of H keep constant during a transmission frame.

A transmission frame consists of a pilot block with length Tp followed by a data block with

length Td, as illustrated in Fig. 1. A set of time slot indices associated with the pilot block and

the data block is denoted by Tp = {−Tp + 1, . . . , 0} and Td = {1, . . . , Td}, respectively. Let
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p[n] ∈ C
Ntx be the pilot signal sent at time slot n such that E [‖p[n]‖2] = Ntx. Then the received

signal at time slot n ∈ Tp is given by

y[n] = Hp[n] + z[n], (1)

where z[n] ∼ CN (0Nrx
, σ2INrx

) is a circularly symmetric complex Gaussian noise vector at

time slot n. For the data transmission, the transmitter generates data symbol vectors after symbol

mapping of information bits. Let x[n] ∈ XNtx be the data symbol vector sent at time slot n ∈ Td,

where X is a constellation set such that E [‖x[n]‖2] = Ntx. Then the received signal at time slot

n ∈ Td during the data transmission is given by

y[n] = [y1[n], · · · , yNrx
[n]]T = Hx[n] + z[n]. (2)

B. LMMSE Channel Estimator

The LMMSE channel estimator is a linear estimator that minimizes the MSE of a channel

estimate. This method has been widely adopted in wireless communication systems as it provides

a good trade-off between estimation accuracy and computational complexity [7], [8]. Let Yp a

matrix that concatenates received signals observed during the pilot transmission. From (1), Yp

is expressed as

Yp =
[
y[−Tp + 1], · · · ,y[0]

]
= HP+ Zp, (3)

where P =
[
p[−Tp + 1], · · · ,p[0]

]
, and Zp =

[
z[−Tp + 1], · · · , z[0]

]
. From (3), the LMMSE

channel estimator is given by

WLMMSE = argmin
W∈CTp×Ntx

E
[
‖YpW −H‖2F

]

= PH
(
PPH + σ2INtx

)−1
, (4)

where the expectation is taken with respect to channel and noise distributions. Consequently, the

LMMSE channel estimate is computed as

Ĥp = YpP
H
(
PPH + σ2INtx

)−1
. (5)

If the entries of H are i.i.d. with CN (0, 1), the MSE of the LMMSE channel estimate is computed

as

E
[
‖Ĥp −H‖2F

]
= NrxTr

[
E
[
(ĥH

p,r − hH
r )(ĥp,r − hr)

]]

= Nrxσ
2Tr

[(
PPH + σ2INtx

)−1]
, (6)
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where ĥp,r and hr are the r-th row of Ĥp and H, respectively. As can be seen from (6), the

MSE of the LMMSE channel estimate decreases with the number of the pilot signals Tp.

C. Maximum-A-Posteriori-Probability (MAP) Data Detector

In this work, we assume that the receiver employs the MAP data detection method which

finds the symbol vector with the maximum APP for a received signal. This method is optimal

in terms of minimizing detection error probability and therefore has a potential to maximize the

performance of a channel estimator presented in Sec. IV. Nevertheless, as will be discussed later,

the applicability of the presented channel estimator is not limited to the MAP data detection

method.

Let xk be a vector in XNtx with k ∈ K = {1, . . . , K} where K = |X |Ntx. The APP of the

event {x[n] = xk} for the given received signal y[n] is expressed as

θk[n] , P [x[n] = xk|y[n]]

=
P [y[n]|x[n] = xk]P [x[n] = xk]

∑

j∈K P [y[n]|x[n] = xj ]P [x[n] = xj]

(a)
=

P [y[n]|x[n] = xk]
∑

j∈K P [y[n]|x[n] = xj ]
, (7)

where the equality (a) holds when the probability of transmitting each symbol vector is equal (i.e.,

P [x[n] = xk] =
1
K

, ∀k ∈ K). Since z[n] ∼ CN (0Nrx
, σ2INrx

), the probability P [y[n]|x[n] = xk]

in (7) is given by

P [y[n]|x[n] = xk] =
1

(πσ2)Nrx
exp

(

−‖y[n]−Hxk‖2
σ2

)

, (8)

for k ∈ K. This probability is also known as the likelihood function. By applying (8) into (7),

the APP is computed as

θk[n] =
exp

(
− 1

σ2‖y[n]−Hxk‖2
)

∑

j∈K exp
(
− 1

σ2 ‖y[n]−Hxj‖2
) . (9)

Then the MAP detection rule is given by

x̂[n] = xk̂n
, where k̂n = argmax

k∈K
θk[n]. (10)

In practical communication systems, the receiver cannot compute the exact APP in (9) as it

requires perfect information of H. As an alternative approach, an approximate APP is utilized
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for data detection, which is computed based on the MIMO channel estimate Ĥp from (5) as

follows:

θ̂k[n] =
exp

(
− 1

σ2‖y[n]− Ĥpxk‖2
)

∑

j∈K exp
(
− 1

σ2‖y[n]− Ĥpxj‖2
) . (11)

Unfortunately, when employing the pilot-aided channel estimation with an insufficient number of

the pilot signals, channel estimation error (i.e., Ĥp−H) is inevitable at the receiver, as shown in

(6). Because this error leads to a mismatch between the true APP in (9) and the approximate APP

in (11), the use of the approximate APP results in detection performance degradation. Moreover,

the degree of the performance degradation increases as the number of the pilot signals, Tp,

reduces. To resolve this problem, in the following sections, we will present a novel channel

estimation approach that utilizes detected symbol vectors to reduce the channel estimation error

caused by insufficient pilot signals.

III. OPTIMIZATION PROBLEM FOR SEMI-DATA-AIDED CHANNEL ESTIMATION

Data-aided channel estimation is a well-known approach to reduce channel estimation error

when the number of pilot signals is insufficient. The fundamental idea of the data-aided channel

estimation is to exploit detected symbol vectors as additional pilot signals for updating a channel

estimate. On the basis of the same idea, in this section, we present a new type of the data-aided

channel estimation, referred to as semi-data-aided channel estimation, which enables fast update

of the channel estimate with the selective use of detected symbol vectors. In what follows, we

first elaborate on the basic idea of the semi-data-aided channel estimation and an optimization

problem to maximize its performance. We then reformulate the optimization problem as an MDP

in order to adopt RL to solve this problem.

A. Semi-Data-Aided Channel Estimation

Our key observation is that not every detected symbol vector is a good candidate for a pilot

signal because some detected symbol vectors differ from the transmitted symbol vectors due to

data detection error. Another important observation is that once the receiver obtains a sufficient

number of additional pilot signals, increasing the number of the pilot signals gives no significant

improvement in channel estimation accuracy. Motivated by these observations, in the semi-data-

aided channel estimation, we exploit only the detected symbol vectors that are beneficial for

improving the channel estimation accuracy. Meanwhile, we select these symbol vectors only
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among the first Tu detected symbol vectors, while utilizing the updated channel estimate for

detecting the remaining Td − Tu symbol vectors, as illustrated in Fig. 1. We refer to this

strategy as a semi-data-aided channel estimation because it utilizes only a portion of detected

symbol vectors, unlike the conventional data-aided channel estimation. The most prominent

advantage of our strategy is that a channel estimate is updated after the transmission of Tu

symbol vectors; thereby, our strategy significantly reduces the delay required for updating the

channel estimate compared to conventional data-aided channel estimation methods that updates

the channel estimates after the end of data block transmission (i.e., Td time slots). Moreover, the

semi-data-aided channel estimation does not utilize the outputs of a channel decoder, implying

that the repetitions of channel decoding process is not necessary. Because of this feature, the

computational complexity of the semi-data-aided channel estimation is lower than those of

conventional data-aided channel estimation methods which require to repeat the channel decoding

process (e.g., [10]–[12], [15]–[17]).

B. Optimization Problem for Symbol Vector Selection

A key to the success of the semi-data-aided channel estimation is to optimize the selection of

detected symbol vectors so that the accuracy of an updated channel estimate can be maximized.

A direct optimization of the symbol vector selection, however, is very challenging in practical

systems due to the lack of knowledge of transmitted symbol vectors and also due to high

computational complexity. To shed some light on this challenge, we formulate an optimization

problem for the symbol vector selection to minimize the error of the updated channel estimate.

Let a ∈ {0, 1}Tu be a vector whose n-th entry indicates whether to utilize the detected symbol

vector at time slot n, x̂[n], in the semi-data-aided channel estimation. If the receiver utilizes

only the detected symbol vectors indicated by a as additional pilot signals, the LMMSE channel

estimate is updated as

Ĥ(a) = Y(a)WLMMSE(a) = Y(a)X̂H(a)
(
X̂(a)X̂H(a) + σ2INtx

)−1
, (12)

where Y(a) =
[
Yp,y[l1(a)], · · · ,y[l‖a‖0(a)]

]
, X(a) =

[
P, x̂[l1(a)], · · · , x̂[l‖a‖0(a)]

]
, and li(a)

is the index of the i-th nonzero entry in a vector a. Note that ‖a‖0 is the number of nonzero

entries in a. Based on the above notations, a symbol vector selection problem for minimizing

the MSE of the updated channel estimate is formulated as

a⋆ = argmin
a∈{0,1}Tu

E
[
‖Ĥ(a)−H‖2F

]
= argmin

a∈{0,1}Tu
E
[
‖Y(a)WLMMSE(a)−H‖2F

]
, (13)
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where the expectation is taken with respect to channel and noise distributions. The first key

observation is that the distribution of Y(a) depends on the transmitted symbol vectors associated

with a; thereby, solving the optimization problem in (13) requires perfect knowledge of the first

Tu transmitted symbol vectors at the receiver. Another important observation is that the number

of possible choices for symbol vector selection is given by 2Tu which exponentially increases

with the number of symbol vector candidates. These observations reveal that directly solving the

problem in (13) is very challenging at the receiver in practical systems.

C. MDP for Symbol Vector Selection

To circumvent the aforementioned challenge, we reformulate the optimization problem in (13)

as an MDP which sequentially decides whether to use each detected symbol vector when its

reward is a reduction in channel estimation error. In Sec. IV, we will demonstrate how this MDP

allows the receiver to approximately but efficiently solves the original problem in (13) using an

RL approach. Details of our MDP formulation are elaborated below.

1) State: The state set of the MDP associated with time slot n is defined as

Sn =
{(

Xn, X̂n, an

)
|

Xn =
[
P,xj1, · · · ,xj‖an‖0

]
, X̂n =

[
P, x̂[l1(an)], · · · , x̂[l‖an‖0(an)]

]
, an ∈ {0, 1}n−1

}
,

(14)

where ji is the candidate index for the next transition at the i-th nonzero entry in a vector an such

that ji ∈ K. In (14), an is the set of the actions until the time slot n− 1. If ai = 1, it indicates

that the detected symbol vector at time slot i will be exploited as additional pilot signals for the

data-aided channel estimation. Using this definition, the LMMSE channel estimate obtained at

the state Sn =
(
Xn, X̂n, an

)
∈ Sn is given by

Ĥ (Sn) = Y(Sn)X̂
H
n

(
X̂nX̂

H
n + σ2INtx

)−1
, (15)

where Y(Sn) =
[
Yp,y[l1(an)], · · · ,y[l‖an‖0(an)]

]
.

2) Reward Function: The reward function of the MDP is defined as the MSE reduction of the

channel estimate when transiting from the current state to the next state. Based on this definition,

the reward function associated with the state transition from Sn ∈ Sn to Sn+1 ∈ Sn+1 is given

by

R (Sn, Sn+1) =
1

Nrx

{

E
[
‖Ĥ (Sn)−H‖2F

]
− E

[
‖Ĥ (Sn+1)−H‖2F

]}

. (16)
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3) Action: The action set of the MDP is defined as A = {1, 0} which indicates whether to

exploit the current detected symbol vector as an additional pilot signal. For example, the action

with a = 1 implies that the detected symbol vector will be exploited as the pilot signal.

4) State Transition: From the definitions of the state and action, the current state is updated

using the detected symbol vector when a = 1; otherwise, the current state remains unchanged.

Thus, the state U (Sn|a) ∈ Sn+1 that can be transited to the current Sn = (Xn, X̂n, an) ∈ Sn is

given by

U (Sn|a) =







(
[Xn,xkn], [X̂n, x̂[n]], [an, 1]

)
, a = 1,

(
Xn, X̂n, [an, 0]

)
, a = 0.

(17)

5) Optimal Policy: The optimal policy of the MDP for a state Sn ∈ Sn is defined as

π⋆ (Sn) = argmax
a∈A

Q (Sn, a) , (18)

where Q (Sn, a) is the Q-value function that represents the optimal sum of the rewards obtained

after taking the action a ∈ A at the state Sn. By the definition in (17), Q (Sn, a) can be expressed

as

Q (Sn, a) = R (Sn,U (Sn|a)) + γV⋆ (U (Sn|a)) , (19)

where 0 ≤ γ ≤ 1 is a discounting factor, and V⋆
(
Sm

)
is the optimal value function which

is the optimal sum of the rewards that can be obtained from the state Sm ∈ Sm with m ∈
{n + 1, . . . , Tu}. The optimal value function for a state Sm ∈ Sm can be recursively computed

as follows:

V⋆ (Sm) =
∑

a∈A

π⋆ (Sm, a) (R (Sm,U (Sm|a)) + γV⋆ (U (Sm|a))) , (20)

where π⋆ (Sm, a) is the probability of choosing action a at the state Sm according to the optimal

policy. In Fig. 2, we depict the state-action diagram of the MDP defined above. In this figure,

the state Sn is transited to the next state U (Sn|a) when taking an action a. Particularly, when

a = 1, the state Sn is transited to the state U (Sn|1) by exploiting the transmitted symbol index

kn. Based on the state transition and the optimal policy in (18), the states are transited to the

next states until the end of data subblock.

Characterizing the optimal policy of the above MDP faces two major challenges in practical

communication systems. First, the state transition is unknown at the receiver due to the lack of

information of the transmitted symbol vectors. Second, the number of the states in this MDP
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Fig. 2. State-action diagram of the original MCTS for a ∈ A and Sn ∈ Sn.

exponentially increases with the length of Tu (see Fig. 2). To circumvent these challenges, in

the following section, we design a computationally-efficient algorithm to solve the MDP without

perfect knowledge on the state transition and the reward function.

IV. PROPOSED CHANNEL ESTIMATOR VIA REINFORCEMENT LEARNING

RL is a type of machine learning that can find the optimal policy of an MDP with unknown or

partial information on an environment’s dynamics [27]. In this section, we propose an efficient

RL algorithm to approximately but efficiently determine the optimal policy of the MDP in

Sec. III-C. We then present the semi-data-aided channel estimator that utilizes the proposed RL

algorithm for optimizing the symbol vector selection. We also introduce an additional strategy to

improve detection performance after the symbol vector selection in the semi-data-aided channel

estimator.

A. Proposed RL Algorithm

The key idea of the proposed RL algorithm is to exploit the APP computed from data detection

for approximately determining the optimal policy based on MCTS [27]–[29]. In the proposed

algorithm, we particularly modify the original MCTS to make this approach applicable for the
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receiver in practical systems. In what follows, we elaborate on the details of the proposed RL

algorithm applied to determine the optimal policy for the state Sn ∈ Sn with n ∈ {1, . . . , Tu}.
1) Tree Policy and Rollout Policy: The basic idea of MCTS is to determine the best action at

the current state by looking ahead the rewards of near-future actions according to a tree policy,

while approximating the rewards of distant-future actions according to a rollout policy [27].

Typically, the tree policy is designed to mimic the optimal policy, while the design of the rollout

policy focuses more on computational simplicity and tractability. To design an effective tree

policy for the proposed algorithm, our intuition is that the higher the reliability of the detected

symbol vector is, the higher the probability of selecting the corresponding symbol vector as an

additional pilot signal is. Inspired by this intuition, we exploit the APP computed from data

detection as a measure of the reliability of the detected symbol vector. We then set the tree

policy of the proposed algorithm as

πt (Sm, a) =







θ̂k̂m [m], a = 1,

1− θ̂k̂m [m], a = 0,
(21)

for every state Sm ∈ Sm with m ∈ {n + 1, . . . , n + N}, where N is the number of the near-

future actions taken according to the tree policy. We also denote the sequence of actions randomly

chosen by the tree policy in (21) by at = [at1, · · · , atN ] ∈ AN . To determine an effective rollout

policy, we introduce a pre-determined threshold ηroll such that 0 ≤ ηroll ≤ 1. We then choose

the action a = 1 if the APP is higher than ηroll and a = 0 otherwise, i.e.,

πr (Sm) =







1, θ̂k̂m [m] ≥ ηroll,

0, θ̂k̂m [m] < ηroll,
(22)

for every state Sm ∈ Sm associated with time slot m ∈ {n + N + 1, . . . , Tu}. Our rollout

policy is useful to reduce the computational complexity of the value function estimation after N

state transitions. Meanwhile, this policy also mimics the behavior of the tree policy (21) if the

detected symbol vector is reliable enough (i.e., θk̂m[m] ≈ 1). We denote the sequence of actions

determined by the rollout policy in (22) by ar = [ar1, · · · , arTu−n−N ] ∈ ATu−n−N .

2) Approximation for Monte Carlo Simulations: In the original MCTS, the optimal value

function is estimated through Monte Carlo simulations according to the tree policy and the

rollout policy [27]. Unfortunately, a receiver in practical communication systems cannot adopt

such simulation-based approach because executing the Monte Carlo simulations requires perfect
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Fig. 3. State-action diagram of the approximate MCTS for a ∈ A and Sn ∈ Sn.

information of the transmitted symbol vectors at the receiver. To circumvent this limitation, we

introduce a virtual state that can mimic the effect of Monte Carlo simulations without actual

execution. The virtual state is defined as the state that can be arrived when the true symbol

vector exactly behaves like its expectation:

E
[
x[m]

∣
∣y[m],H

]
=

K∑

j=1

θj [m]xj , (23)
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for m ∈ {n, . . . , Tu}. We refer to the expectation in (23) as an expected symbol vector at time

slot m. Since the receiver cannot compute the exact APP due to the lack of perfect channel

knowledge, we use an approximate APP for tracking both the tree policy and the rollout policy.

When tracking the tree policy, we use an accurate estimate based on a new channel estimate

obtained by taking the series of actions according to the tree policy. Let at ∈ AN be the sequence

of the actions chosen by the tree policy in (21). When taking the actions in at from the state

Sn =
(
Xn, X̂n, an

)
∈ Sn, the LMMSE channel estimate is given by

Ĥ
(
Sn; a

t
)
= Ȳ

(
Sn; a

t
)
X̄H(Sn; a

t)
(
X̄(Sn; a

t)X̄H(Sn; a
t) + σ2INtx

)−1
, (24)

where

X̄(Sn; a
t) =

[
X̂n, x̃[n + l1(a

t)], · · · , x̃[n + l‖at‖0(a
t)]
]
,

Ȳ
(
Sn; a

t
)
=

[
Y(Sn),y[n+ l1(a

t)] · · · ,y[n+ l‖at‖0(a
t)]
]
.

Based on the channel estimate in (24), the APP estimate used for tracking the tree policy is

determined as

θ̂tk[m] =
exp

(
− 1

σ2‖y[m]− Ĥ
(
Sn; a

t
)
xk‖2

)

∑

j∈K exp
(
− 1

σ2 ‖y[m]− Ĥ
(
Sn; at

)
xj‖2

) . (25)

Unlike the tree policy, we use the initial estimate of the APP in (11) when tracking the rollout

policy, in order to reduce a required computational complexity. Utilizing the above strategy, we

approximate the expected symbol vector as

x̃[m] =







K∑

j=1

θ̂tj [m]xj , m ∈ {n, n+ 1, . . . , n+N},
K∑

j=1

θ̂j [m]xj , m ∈ {n+N + 1, . . . , Tu}.
(26)

Under the assumption of x[m] = x̃[m] for m ∈ {n, . . . , Tu}, the virtual state arrived when taking

the sequence of actions a = [a1, . . . , am] ∈ Am from the state Sn ∈ Sn is given by

Ũ (Sn|a) =
([

Xn, X̃n(a)
]
,
[
X̂n, X̂n(a)

]
, [an, a]

)

, (27)

where

X̃n(a) =
[
x̃[n + l1(a)], · · · , x̃[n+ l‖a‖0(a)]

]
,

X̂n(a) =
[
x̂[n + l1(a)], · · · , x̂[n+ l‖a‖0(a)]

]
.

By using our policies (21), (22) and virtual state in (27), we depict the state-action diagram of

our MCTS approach in Fig. 3. The tree policy that mimics the optimal policy is applied for the
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time indices {n+1, . . . , n+N}. Because the tree policy considers the effect of both actions, the

number of states to compute is proportional to 2N . In contrast, the rollout policy only considers

the reliable state which has a higher APP and therefore requires a much lower computational

complexity.

3) Optimal Policy: Based on the MCTS approach explained above, we characterize the

optimal policy of the MDP in Sec. III-C in a closed-form expression. This result is given in the

following theorem:

Theorem 1: When employing the MCTS approach in Sec. IV-A, the optimal policy of the

MDP in Sec. III-C for a state Sn =
(
Xn, X̂n, an

)
∈ Sn is

π⋆(Sn) = I

[
∑

at∈AN

ωt
n(a

t)∆n([a
t, ar]) ≥ 0

]

, (28)

where

ωt
n(a) =

|a|
∏

l=1

(θ̂k̂n+l
[n+ l])al

(
1− θ̂k̂n+l

[n + l]
)1−al , (29)

∆n(a) = ‖tn(a)‖2
{

σ2 + σ4
(
‖tn(a)‖2 − 2βn(a)

)
+ ‖vn(a)‖2 − ‖en(a)− un(a) + vn(a)‖2

}

,

(30)

and related parameters are defined as

Qn(a) =
(

X̂nX̂
H
n + X̂n(a)X̂

H
n (a) + σ2INtx

)−1

,

Dn(a) = X̂n(X̂n −Xn)
H + X̂n(a)(X̂n(a)− X̃n(a))

H + σ2INrx
,

tn(a) =
1

√

1 + αn(a)
Qn(a)x̂[n],

en(a) =
1

√

1 + αn(a)
(x̂[n]− x̃[n]),

un(a) = DH
n (a)tn(a),

vn(a) =
1

‖tn(a)‖2
DH

n (a)Qn(a)tn(a),

αn(a) = x̂H [n]Qn(a)x̂[n],

βn(a) =
1

‖tn(a)‖2
tHn (a)Qn(a)tn(a).

Proof: See Appendix A.

The optimal policy in (28) determines the best action at the current state by considering the

average reward of all possible N future actions that can be chosen by the tree policy. In this
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context, the weight ωt
n(a

t) in (29) represents the probability of taking a certain sequence of

actions, at, according to the tree policy in (21). As can be seen from Theorem 1, the most

prominent feature of the proposed RL algorithm is that the optimal policy has a closed-form

expression which can be computed in a deterministic way at the receiver in practical systems.

4) Low-Complexity Policy: A major limitation of the optimal policy in (28) is that the

complexity of computing the policy increases exponentially with the number of the near-future

actions, N . Therefore, computing this policy is not affordable if N is large, implying that we

cannot arbitrarily increase the value of N to improve the performance of the proposed RL

algorithm. To circumvent this limitation, we develop a low-complexity policy that approximates

the optimal policy in (28) based on Monte Carlo sampling. Recall that the weighted sum in (28)

is nothing but the expectation of ∆n([a
t, ar]) because ωt

n(a
t) is the probability of obtaining an

action sequence at from the tree policy in (21). Motivated by this observation, we randomly

draw Nsample samples of at according to the tree policy. We then compute the empirical mean

of ∆n([a
t, ar]) by averaging the values of ∆n([a

t, ar]) computed for Ns samples. Let ∆̂n be the

empirical mean determined by the Monte Carlo sampling approach. Then the optimal policy is

approximately determined as π⋆(Sn) = I[∆̂n ≥ 0]. We refer to this policy as a low-complexity

policy for the state Sn. The complexity required for determining the low-complexity policy

increases linearly with the number of samples, Nsample, and is independent from N . Therefore, the

overall complexity of the proposed RL algorithm can be significantly reduced by harnessing the

low-complexity policy with Nsample ≪ 2N . It is also possible to reduce a mismatch between the

optimal policy and the low-complexity policy by increasing Nsample at the cost of the complexity.

Remark (Applicability to other data detection methods): A key requirement of the proposed

RL algorithm is the APPs that can be directly obtained from the MAP data detection method.

Despite this requirement, the proposed RL algorithm is universally applicable to any other soft-

output data detection method which computes the log-likelihood ratios (LLRs) of transmitted

data bits. In this case, the proposed RL algorithm can utilize the APPs computed from the

LLRs which can be readily performed at the receiver with a slight increase in the computational

complexity.

B. Proposed Channel Estimator

The proposed channel estimator adopts the RL algorithm in Sec. IV-A for optimizing the

selection of detected symbol vectors utilized as additional pilot signals. The proposed channel
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estimator is summarized in Algorithm 1. In particular, depending on the choice of a policy

determination strategy, the receiver computes either the optimal policy in Step 5 or the low-

complexity policy in Steps 7–12. In Step 14, we consider the most probable state transition

for the unknown transmitted symbol vector. To address this, the detected symbol vector k̂n is

assumed to be the same as the transmitted symbol vector if the action 1 is chosen according to

the optimal policy. The corresponding state Û (Sn|a) ∈ Sn+1 is given by,

Û (Sn|a) =







(
[Xn,xk̂n

], [X̂n, x̂[n]], [an, 1]
)
, a = 1,

(
Xn, X̂n, [an, 0]

)
, a = 0.

(31)

Finally, at time slot Tu, we can obtain the updated channel estimate Ĥu = Ĥ(STu+1).

Algorithm 1: The proposed semi-data-aided channel estimator

1 Set S1 = (P,P, φ).

2 for n = 1 to Tu do

3 Determine a
r according to (22).

4 if Optimal policy then

5 Compute a⋆ = π⋆(Sn) from (28).

6 else if Low-complexity policy then

7 Initialize ∆̂n = 0.

8 for s = 1 to Nsample do

9 Randomly draw a
t according to (21).

10 Update ∆̂n ← s−1
s

∆̂n + 1
s
∆n ([at, ar]) from (30).

11 end

12 Set a⋆ = π⋆(Sn) = I[∆̂n ≥ 0].

13 end

14 Set Sn+1 = Û (Sn|a⋆) from (31).

15 end

16 Set Ĥu = Ĥ(STu+1) from (15).

C. Re-Detection of Unselected Symbol Vectors

An important byproduct of the proposed semi-data-aided channel estimator is the set of

detected symbol vectors that are not selected as pilot signals for channel estimation. Since

these vectors are turned out to be not reliable, we can treat them as incorrectly detected symbol
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Fig. 4. A block diagram of receive processing with the proposed semi-data-aided channel estimator.

vectors. Motivated by this observation, to further improve detection performance, we utilize the

final channel estimate determined by Algorithm 1 for re-detecting received signals associated

with the symbol vectors not selected by the proposed RL algorithm. Suppose that the final state

and the channel estimate of Algorithm 1 is given by S⋆ =
(
X⋆, X̂⋆, a⋆

)
and Ĥ⋆, respectively.

Then the set of time slot indices associated with the unselected symbol vectors is expressed as

T0(a⋆) = {l | a⋆l = 0}, (32)

where a⋆l is the l-th entry of a⋆. The optimal MAP data detection is performed again based on

Ĥ⋆ for the received signals associated with time slots in T0(a⋆). This strategy yields

k̂n = argmax
k∈K

θ̂⋆k[n], ∀n ∈ T0(a⋆), (33)

where

θ̂⋆k[n] =
exp

(
− 1

σ2‖y[n]− Ĥ⋆xk‖2
)

∑

j∈K exp
(
− 1

σ2‖y[n]− Ĥ⋆xj‖2
) . (34)

In Fig. 4, we illustrate the overall receive processing with the proposed semi-data-aided

channel estimator and the re-detection strategy, where T1(a⋆) = {l | a⋆l = 1} and θ̂[n] =
[
θ̂1[n], · · · , θ̂K [n]

]T
. Although the re-detection process requires an additional complexity, this

process is executed only once more for a portion of received signals. Therefore, the complexity

of our strategy is still lower than that of iterative data-aided channel estimation (e.g., [11]–

[16]) which requires multiple executions of channel estimation and data detection for the whole

received signals.
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V. SIMULATION RESULTS

In this section, using simulations, we evaluate the NMSE and BLER of the proposed channel

estimator in a coded MIMO system with the MAP data detection method. In these simulations, we

consider 4-QAM for symbol mapping and assume that Ntx = 2, Nrx = 4, Tp = 4, Tu = 200, and

Td = 2048. For channel coding, we adopt the rate 1/2 turbo code based on parallel concatenated

codes with feedforward and feedback polynomial (15, 13) in octal notation. For performance

comparison, we consider the following methods:

• PCSI: This is an ideal case in which perfect channel state information is available at the

receiver (i.e., Ĥ = H).

• Pilot-CE: This is a conventional pilot-aided channel estimator described in Sec. II-B.

• Semi-CE (Opt): This is a semi-data-aided channel estimator when correctly detected symbol

vectors are utilized as additional pilot signals by assuming perfect knowledge of transmitted

symbol vectors. This can be interpreted as the true optimal policy of the MDP in Sec. III-C.

• Semi-CE (Pro, Opt): This is a semi-data-aided channel estimator when detected sym-

bol vectors are selected according to the optimal policy determined by the proposed RL

algorithm. A re-detection strategy discussed in Sec. IV-C is also adopted.

• Semi-CE (Pro, Low): This is a semi-data-aided channel estimator when detected symbol

vectors are selected according to the low-complexity policy determined by the proposed RL

algorithm. A re-detection strategy discussed in Sec. IV-C is also adopted.

• Semi-CE (All): This is a semi-data-aided channel estimator when all the expected symbol

vectors in (23) are utilized as additional pilot signals.

• Iter-CE: This is an iterative data-aided channel estimator in which the best Tu virtual pilots

are utilized as additional plot signals for every iteration. The number of iterations is set as

4. This method is a slight modification of the method proposed in [16].

We set the parameters of the proposed RL algorithm as (N,Nsample, ηroll) = (8, 10, 0.5) unless

specified otherwise. We define a per-bit signal-to-noise ratio (SNR) as Eb/N0 = 1
log2 |X |σ2 , and

also define NMSE as
‖Ĥ−H‖2F
‖H‖2

F

.

Fig. 5 compares the NMSE and BLER of various channel estimators for different per-bit

SNRs. Fig. 5 shows the proposed channel estimator has better NMSE and BLER performances

than the conventional pilot-aided channel estimator by exploiting detected symbol vectors as

additional pilot signals. It is also shown that the proposed channel estimator outperforms Semi-
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Fig. 5. NMSE and BLER of various channel estimators for different per-bit SNRs.

CE (All) which exploits all the detected symbol vectors without a proper selection. Meanwhile,

the SNR gap between the proposed channel estimator and Semi-CE (Opt) is only 0.5 dB. These

results demonstrate that the proposed RL algorithm effectively selects a set of detected symbol

vectors that can improve the performance of the semi-data-aided channel estimation. Another

interesting observation is that Semi-CE (Pro, Low) has a similar performance to Semi-CE

(Pro, Opt); this result implies that the low-complexity policy, whose complexity is proportional

to Nsample = 10, well approximates the optimal policy, whose complexity is proportional to

2N=8 = 256, by leveraging a Monte Carlo sampling method. Although Iter-CE achieves the

best performance among the considered channel estimators, it significantly increases both the

delay and computational complexity of the overall receive processing because this estimator

requires repeated executions of both data detection and channel decoding.

Fig. 6 compares the NMSE and BLER of various channel estimators for different pilot lengths.

Fig. 6 shows that the proposed channel estimator provides significant performance gain compared

to the conventional pilot-aided channel estimator regardless of the pilot length. It is also shown

that a larger NMSE reduction is achieved in the case of Eb/N0 = −2 dB than in the case of

Eb/N0 = 0 dB. The reason behind this result is that the number of reliable detected symbol

vectors increases as the detection performance improves, which allows the use of a more accurate

MCTS approach in the proposed RL algorithm. Another interesting observation in Fig. 6(b) is

that the proposed channel estimator with Tp = 4 even outperforms Pilot-CE with Tp = 8, which
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Fig. 6. Performance comparison of various channel estimators for different pilot lengths.
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Fig. 7. Performance comparison of various channel estimators for different Tu.

implies that the proposed estimator requires fewer pilot signals to achieve the same BLER

performance.

Fig. 7 compares the NMSE and BLER of the proposed channel estimator for different Tu. Fig.

6(a) shows that the NMSE performance of the proposed channel estimator improves with Tu.

This gain is attained by increasing the number of detected symbol vectors that can be utilized as

additional pilot signals. Thanks to this gain, in Fig. 6(b), it is shown that the BLER performance

with the proposed channel estimator also improves with Tu. Another important observation is
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Fig. 8. NMSE performance of the proposed channel estimator according the number of near-future actions N .

that the improvement of both the NMSE and BLER performances decreases as Tu increases.

This result implies that once a sufficient number of additional pilot signals are attained, there is

no significant gain by increasing the number of pilot signals, while the computational complexity

of data-aided channel estimation is proportional to Tu. Considering this fact, the semi-data-aided

channel estimation is an effective strategy for adjusting the performance-complexity trade-off of

data-aided channel estimation, by controlling the length of Tu.

Fig. 8 compares the NMSE of the proposed channel estimator for different numbers of the

near-future actions, N , in the MCTS approach. Fig. 8 shows that the NMSE performance

of the proposed channel estimator improves with N because increasing this number allows

the proposed RL algorithm to accurately estimate near-future rewards. This performance gain,

however, is attained at the cost of the computational complexity required for determining the

best policy for the MDP. Considering this trade-off, in our simulations, we set N = 8 which

provides sufficient accuracy for the estimation of the near-future rewards, while preventing from

a significant increase in the computational complexity.

Fig. 9 compares the BLER of various channel estimators in time-varying channels. To model

these channels, we adopt the first-order Gaussian-Markov process in [31], [32] in which the

channel matrix at time slot n is given by

H(n) =
√
1− ǫ2H(n−1) + ǫE(n), (35)
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Fig. 9. Performance comparison of various channel estimators in time-varying channels.

for n ∈ { − Tp+1, . . . , Td}, where ǫ ∈ [0, 1] is a temporal correlation coefficient, and E(n) ∈
CNrx×Ntx is an i.i.d. Gaussian random matrix with zero mean and unit variance. In this simulation,

the temporal correlation coefficient is set as ǫ = 1.5 × 10−2 or ǫ = 10−2. Note that PCSI in

Fig. 9 assumes perfect CSIR only at the beginning of data transmission (i.e., n = 1), while it

does not assume perfect channel tracking during data transmission. Fig. 9 shows that the BLER

performance loss due to channel estimation error is more severe when the wireless channel varies

over time because accurate channel estimation is more challenging in time-varying channels. In

particular, when ǫ = 1.5 × 10−2, PCSI at n = 1 still shows severe degradation in the BLER

performance if the receiver does not properly track temporal channel variations. Unlike this, the

proposed channel estimator is shown to be robust against temporal channel variations because

it has a potential to track the channel variations during the first Tu time slots, by exploiting

detected symbol vectors as additional pilot signals.

VI. CONCLUSIONS

In this paper, we have proposed a semi-data-aided LMMSE channel estimator for MIMO

systems. The key idea of the proposed estimator is to selectively exploit detected symbol

vectors as additional pilot signals, while optimizing this selection via RL. To this end, we

have defined the MDP for symbol vector selection and then developed a novel RL algorithm

based on the MCTS approach. Using simulations, we have demonstrated that the proposed
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channel estimator reduces the NMSE in channel estimation, while improving the BLER of

the system, compared to conventional pilot-aided channel estimation. Meanwhile, the proposed

channel estimator significantly reduces communication latency for updating a channel estimate

compared to conventional iterative data-aided channel estimators. An important future research

direction is to develop a semi-data-aided channel estimator for wideband systems by modifying

both the MDP and the proposed RL algorithm. It would also be interesting to develop a semi-

data-aided channel estimator for time-varying systems by properly defining the reward function

of the MDP to consider the effect of temporal channel variations.

APPENDIX

Let Ce (Sn) = E
[
(ĥr (Sn)− hr)(ĥr (Sn)− hr)

H
]

be the error covariance matrix between hr

and ĥr (Sn), where ĥr (Sn) are the r-th row of Ĥ (Sn). This covariance matrix does not depend

on the index of a receive antenna because the channel and the noise distributions are assumed

to be equal across different receive antennas. Therefore, the MSE of the channel estimate at the

state Sn ∈ Sn is given by

E
[
‖Ĥ (Sn)−H‖2F

]
= NrxTr [Ce (Sn)] . (36)

Utilizing this fact, the reward function in (16) associated with the state transition from Sn ∈ Sn
to Sn+1 ∈ Sn+1 is computed as

R (Sn, Sn+1) = Tr [Ce (Sn)−Ce (Sn+1)] . (37)

Meanwhile, when Ũ (Sn|a) ∈ Sn+1, the future reward in (20) can be expressed by exploiting

(21), (22), and (27) as

V⋆
(

Ũ (Sn|a)
)

=
∑

at∈AN

ωt
n(a

t)

[
N∑

m=1

R

(

Ũ
(
Sn|[a, at

1:m−1]
)
, Ũ

(
Sn|[a, at

1:m]
))

+

Tu−n−N∑

l=1

R

(

Ũ
(
Sn|[a, at, ar

1:l−1]
)
, Ũ

(
Sn|[a, at, ar

1:l]
))

]

. (38)

where a1:l = [a1, · · · , al] is a sub-vector of a when l ≤ m. We assume that at
1:0 is the empty

set with a slight abuse of notation. By applying (37) and (38) into (19) and (20), the Q-value is

obtained as

Q (Sn, a) = Tr

[

Ce (Sn)−
∑

at∈AN

ωt
n(a

t)Ce

(

Ũ
(
Sn|[a, at, ar]

))
]

. (39)
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Then the optimal policy in (18) is expressed as

π⋆ (Sn) = argmax
a∈{0,1}

Q (Sn, a)

= I [Q (Sn, 1)− Q (Sn, 0) ≥ 0]

= I

[
∑

at∈AN

ωt
n(a

t)∆n(a) ≥ 0

]

, (40)

where

∆n(a) = Tr
[
Ce

(
Ũ (Sn|[0, a])

)
−Ce

(
Ũ (Sn|[1, a])

)]
, (41)

ωt
n(a

t) =

|a|
∏

l=1

πt
(

Ũ
(
Sn|[a, at

1:l−1]
)
, al

)

=

|a|
∏

l=1

(θ̂k̂n+l
[n+ l])al

(
1− θ̂k̂n+l

[n+ l]
)1−al . (42)

The remaining task is to characterize ∆n(a) in (41). From (17) and (27), the virtual state

Ũ (Sn|[a, a]) ∈ Sn+m is characterized as

Ũ (Sn|[a, a]) = (Xn+m, X̂n+m, an+m)

=







([
Xn,xkn, X̃n(a)

]
,
[
X̂n, x̂[n], X̂n(a)

]
, [an, 1, a]

)

a = 1
([

Xn, X̃n(a)
]
,
[
X̂n, X̂n(a)

]
, [an, 0, a]

)

, a = 0.
(43)

Therefore, from (2) and (43), the distribution of ȳH
r

(
Ũ (Sn|[a, a])

)
is given by

ȳH
r

(
Ũ (Sn|[a, a])

)
∼ CN

(
0‖an+m‖0 ,X

H
n+mXn+m + σ2I‖an+m‖0

)
. (44)

Using this fact, the error covariance matrix in (41) is expressed as

Ce

(
Ũ (Sn|[a, a])

)
= σ2Qn([a, a])− σ4Q2

n([a, a]) +Qn([a, a])Dn([a, a])D
H
n ([a, a])Qn([a, a]),

(45)
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where

Qn([a, a]) =
(

X̂n+mX̂
H
n+m + σ2INtx

)−1

(a)
=







(
X̂nX̂

H
n + X̂n(a)X̂

H
n (a) + σ2INtx

)−1
, a = 0,

(
Q−1

n ([0, a]) + x̂[n]x̂H [n]
)−1

, a = 1,

Dn([a, a]) = X̂n+m

(

X̂n+m −Xn+m

)H

+ σ2INtx

(b)
=







X̂n

(
X̂n −Xn

)H
+ X̂n(a)

(
X̂n(a)− X̃n(a)

)H
+ σ2INtx

, a = 0,

Dn([0, a]) + x̂[n] (x̂[n]− x̃[n])H , a = 1,

and both (a) and (b) come from (43). By using the error covariance matrix in (45), ∆n(a) in

(41) is rewritten as

∆n(a) = σ2 Tr [Qn([0, a])−Qn([1, a])]
︸ ︷︷ ︸

=An(a)

−σ4 Tr
[
Q2

n([0, a])−Q2
n([1, a])

]

︸ ︷︷ ︸

=Bn(a)

+ Tr
[
Qn([0, a])Dn([0, a])D

H
n ([0, a])Qn([0, a])−Qn([1, a])Dn([1, a])D

H
n ([1, a])Qn([1, a])

]

︸ ︷︷ ︸

=Cn(a)

.

(46)

By the matrix inversion lemma, the matrix Qn([1, a]) is rewritten as

Qn([1, a]) = Qn([0, a])−
Qn([0, a])x̂[n]x̂

H [n]Qn([0, a])

1 + x̂H [n]Qn([0, a])x̂[n]
. (47)

From (47), the first term of the right-hand-side (RHS) of (46) is expressed as

An(a) = Tr

[
Qn([0, a])x̂[n]x̂

H [n]Qn([0, a])

1 + x̂H [n]Qn([0, a])x̂[n]

]

= ‖tn(a)‖2, (48)

where tn(a) =
1√

1+αn(a)
Qn([0, a])x̂[n] with αn(a) = x̂H [n]Qn([0, a])x̂[n]. The second term of

the RHS of (46) is expressed as

Bn(a) = Tr
[

(Qn([0, a])−Qn([1, a]))
H (Qn([0, a]) +Qn([1, a]))

]

= 2βn(a)‖tn(a)‖2 − ‖tn(a)‖4, (49)

where βn(a) =
1

‖tn(a)‖2
tHn (a)Qn([0, a])tn(a). The last term of the RHS of (46) is computed as

Cn(a) = Tr
[

Qn([0, a])Dn([0, a])D
H
n ([0, a])Qn([0, a])

−
(
Qn([0, a])− tn(a)t

H
n (a)

) (
Dn([0, a]) + x̂[n](x̂[n]− x̃[n])H

)

×
(
Dn([0, a]) + x̂[n](x̂[n]− x̃[n])H

)H (
Qn([0, a])− tn(a)t

H
n (a)

) ]

= ‖tn(a)‖2
(
‖vn(a)‖2 − ‖en(a)− un(a) + vn(a)‖2

)
, (50)
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where en(a) = 1√
1+αn(a)

(x̂[n] − x̃[n]), vn(a) = 1
‖tn(a)‖2

DH
n (a)Qn(a)tn(a), and un(a) =

DH
n (a)tn(a). Applying (48)–(50) into (41) yields

∆n(a) = ‖tn(a)‖2
(
σ2 + σ4

(
‖tn(a)‖2 − 2βn(a)

)
+ ‖vn(a)‖2 − ‖en(a)− un(a) + vn(a)‖2

)
.

(51)

Finally, we obtain the result in (28) from (40) with (51) and (42), where Qn(a) = Qn([0, a])

and Dn(a) = Dn([0, a]).
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