
OCTOBER 2021 1

Deep Reinforcement Learning for

Simultaneous Sensing and Channel Access in

Cognitive Networks
Yoel Bokobza, Ron Dabora and Kobi Cohen

Abstract

We consider the problem of dynamic spectrum access (DSA) in cognitive wireless networks, where

only partial observations are available to the users due to narrowband sensing and transmissions. The

cognitive network consists of primary users (PUs) and a secondary user (SU), which operate in a time

duplexing regime. The traffic pattern for each PU is assumed to be unknown to the SU and is modeled

as a finite-memory Markov chain. Since observations are partial, then both channel sensing and access

actions affect the throughput. The objective is to maximize the SU’s long-term throughput. To achieve

this goal, we develop a novel algorithm that learns both access and sensing policies via deep Q-learning,

dubbed Double Deep Q-network for Sensing and Access (DDQSA). To the best of our knowledge, this

is the first paper that solves both sensing and access policies for DSA via deep Q-learning. Second, we

analyze the optimal policy theoretically to validate the performance of DDQSA. Although the general

DSA problem is P-SPACE hard, we derive the optimal policy explicitly for a common model of a cyclic

user dynamics. Our results show that DDQSA learns a policy that implements both sensing and channel

access, and significantly outperforms existing approaches.

Index Terms

Cognitive radio networks, deep reinforcement learning, dynamic spectrum access, wireless channels.

The authors are with the School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva,
Israel (e-mail: yoelb@post.bgu.ac.il; ron@ee.bgu.ac.il; kobi.cohen10@gmail.com).

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

This work was supported by the Israel Science Foundation under Grant 584/20, and 5G WIN consortium.

October 28, 2021 DRAFT

ar
X

iv
:2

11
0.

14
54

1v
1

 [
cs

.I
T

]
 2

4
O

ct
 2

02
1

OCTOBER 2021 2

I. INTRODUCTION

The increasing demand for wireless communications and the limited availability of the electro-

magnetic spectrum have triggered the development of efficient methods to increase the spectrum

utilization in recent years. A main paradigm in this context is dynamic spectrum access (DSA),

in which users monitor the spectrum to detect and access free channels for communications

[1]. There are two main approaches for implementing DSA in wireless networks: A centralized

approach and a distributed approach. In centralized access management, there is a central network

processor, which is a single point of contact for information sharing, whereas in the distributed

management every node makes access decisions based only on its own observations without

sharing information with other nodes.

In this paper, we focus on the design of distributed DSA for cognitive communication net-

works. In such networks, every user is designated as either a primary user (PU) or a secondary

user (SU). When a PU requires a radio resource, a channel is allocated according to a prede-

termined resource allocation scheme which guarantees channel allocation to the PUs, while the

SUs access the channel opportunistically and independently. To that aim, each SU independently

monitors the wireless spectrum to identify free channels which are not being used by the PUs

for communication. When properly designed, the incorporation of opportunistic SUs can achieve

the desired overall increase in spectrum utilization [2]. In practical implementations, due to

bandwidth limitations in the sensing operation, an SU can sense only a part of the available

spectrum (i.e., narrowband sensing), which implies that when operating in a distributed manner,

access decisions are based on partial observations. For the purpose of this study we focus on a

network that consists of a single SU which shares the spectrum resources with several PUs, where

channel access is implemented in a time-division multiple access (TDMA) manner, with fixed-

length time slots. The transmissions of the PUs take place in frames whose length is a random

variable (as it depends on the PU’s incoming traffic, which is random) and may span several

TDMA time slots. For each PU, the random length of the transmitted frame is modeled as a finite-

memory Markov chain, where different PUs may have different state transition probabilities for

their corresponding chains. The SU does not have knowledge of the Markov chains of the PUs.

As a result, at each time slot, based on its previous observations, the SU selects which channels to

sense, and whenever it needs to transmit, it is allowed to select a single channel for transmission

at the next time slot. Whenever the SU transmits on a channel that is not occupied by a PU,

October 28, 2021 DRAFT

OCTOBER 2021 3

it receives an acknowledgment (ACK) signal indicating a successful transmission. Otherwise,

a not-acknowledgment (NACK) signal is received denoting an unsuccessful transmission. The

objective of the DSA algorithm in such a setup is to maximize the long-term rate of successful

transmissions.

A. Related Work

DSA has attracted a growing attention in past and more recent years, see e.g., [1], [3]. Related

studies of DSA based on multi-armed bandit (MAB) formulations can be found in [4]–[13]. In the

case of i.i.d channels, such that each channel is modeled as a 2-state Markov chain, representing

the channel status as ”busy” or ”free”, where in addition, the state transition probabilities are

known a-priori at the SU, and under the assumption that when the channel is in a busy state it has

a larger probability to remain in the busy state than to switch to the free state, the myopic policy

has been proven to be optimal [4]. In this strategy, the SU accesses the channel that will maximize

the expected immediate reward without considering the effect of this action on future rewards.

While the myopic policy is easy to understand and simple to implement, it generally does not

achieve optimal performance if one of the aforementioned assumptions is violated [4]. Another

algorithm that achieves optimal policy under the same optimality conditions of the myopic policy

is the Whittle index algorithm [5]. This algorithm has the advantage over the myopic algorithm

in that it can lead to the derivation of good access policies even if the channels are not identically

distributed. A major weakness of both the myopic algorithm and the Whittle index algorithm

is that they are not applicable in scenarios in which the channels are correlated. Another major

concern is that both the myopic policy and the Whittle index policy require full knowledge of the

state transition probabilities, which is often unavailable in practical scenarios. This requirement

has motivated the introduction of methods which can acquire an optimal policy approximately

without requiring such a-priori knowledge. A major approach which is capable of achieving this

goal is the reinforcement learning (RL) algorithm. RL is a class of machine learning algorithms,

which can learn an optimal policy via interaction with the environment without knowledge of

the system dynamics (such algorithms are also known as model-free algorithms) [14, Ch. 1].

Q-learning [15] is one of the most popular RL techniques which can directly learn the optimal

policy online by estimating the optimal action-value function. Early works which applied Q-

learning to DSA used the classical tabular Q-learning method [16], [17]. However, it may be

difficult to apply this method when the state space becomes large. This issue has motivated the

October 28, 2021 DRAFT

OCTOBER 2021 4

combination of deep learning with RL, giving rise to the deep reinforcement learning (DRL) class

of algorithms. These algorithms have attracted much attention in recent years due to their ability

to approximate the action-value function for large state and action spaces. Recently, the work

[18] proposed a DRL-based algorithm called deep Q-network (DQN), which is a combination of

deep neural networks and the Q-learning algorithm. Recent studies that developed DRL-based

algorithms for DSA problems can be found in [19]–[29]. In [19], [20], the authors applied DQN

to the DSA problem, where it was assumed that at each time step, the SU can choose one

channel to access and it receives an ACK/NACK signal as feedback from the accessed channel,

based-on which the reward is computed. In [19], [20], the observations consist of the indices

of the past accessed channels and the corresponding rewards, which are used as the inputs to

the DQN algorithm. In [21], the authors assumed multi-band spectrum sensing without power

limitations, which corresponds to a fully-observed scenario, and trained a DQN to select which

channel to access in the next time step based on the current state of the entire spectrum. In [23],

[26], the authors used a deep recurrent Q-Network (DRQN), which is a combination of a DQN

and a long short-term memory (LSTM) to derive the optimal access policy when observations

are obtained using a fixed sensing pattern, in which at each time step the SU senses half of the

available channels, such that a different half is sensed at each subsequent time step. The LSTM

layer in the DRQN algorithm uses past observations for the prediction of the state, which in

turn, allows the agent to select a channel for accessing at the next time step. In [22], [25], the

authors used another DRL algorithm called deep actor-critic algorithm, which is a policy-based

RL algorithm combined with a deep neural network. They compared their results with that of the

algorithm in [20] and showed that their proposed algorithm achieves better performance. Power

control aspects have been addressed in [27], [28]. In our recent work, we developed algorithmic

solutions to reduce the size of DRL models when deploying in cheap hardware devices for DSA

[29].

B. Main Contributions

We consider the DSA problem in cognitive wireless networks, consisting of multiple PUs and a

single SU, as in [19]–[23], [25]–[27]. The PUs access the channel according to a predetermined

policy, which guarantees channel allocation to every PU while the SU accesses the channel

opportunistically. As an SU can sense only a subset of the network’s bandwidth (referred to as

partial observations), this problem can be formulated as a partially observable Markov decision

October 28, 2021 DRAFT

OCTOBER 2021 5

process (POMDP) [20]. In a case where the transition probabilities are known to the SU, an

exact solution to this problem is P-SPACE hard and has an exponential computational complexity

[30]. In real-world models, the DSA problem is even harder to solve, as considered here, since

the SU does not know the state probabilities of the PUs, nor which PU uses which channel. As a

result, the SU does not know the state transition probabilities of the wireless network. Based on

its past observations, the SU should select the best channel to access in the subsequent time step,

such that the long-term throughput is maximized. To facilitate model-free learning we develop

DRL-based algorithm to the design of the optimal policy. The novel and unique aspect of our

approach is that as successful access decisions heavily rely on sensing, it is advantageous to train

the agent to select both the channel to be sensed, as well as the channel to be accessed in the

next time step. This is in contrast to previous works which designed DRL agents to maximize

the throughput using predetermined sensing policies, or designed only access policies without

a separate selection of channel sensing. Thus, the performance of these algorithms degrades

under PU access policies in general. In this work, we develop a novel algorithm for a single

agent that learns both access and sensing policies via deep Q-learning, dubbed Double Deep

Q-network for Sensing and Access (DDQSA). For efficient learning, we employ a double deep

Q-network (DDQN), which is a combination of double Q-learning [31] and deep neural network,

which facilitates learning from experience in an unknown environment with a large state space

via interactions with the environment [32]. To the best of our knowledge, this is the first paper

that solves both sensing and access policies for DSA via deep Q-learning. Second, we analyze

the optimal policy theoretically to validate the performance of DDQSA. Although the general

DSA problem is known to be P-SPACE hard [30], we derive the first analytic development of

the optimal policy for a common model of a cyclic PU dynamics. We tackle this challenge by

exploiting the structure of the cyclic user dynamics to derive the optimal sensing policy that

transfers this problem from a POMDP to a Markov decision problem (MDP). Then, we derive

the corresponding optimal access policy using the optimality equations explicitly. Our results

show that DDQSA learns a policy that implements both sensing and channel access, and achieves

near-optimal performance. We further evaluate the throughput achieved by DDQSA under several

PU access strategies, and compare the throughput obtained by DDQSA with those obtained by

a DRL which uses deterministic sensing (i.e., a DRL which makes only access decisions with

a predetermined sensing policy), and with an algorithm that performs an access without any

sensing. The numerical simulations clearly demonstrate much better performance of DDQSA

October 28, 2021 DRAFT

OCTOBER 2021 6

over existing approaches.

C. Organization and Notations

The rest of this paper is organized as follows: Section II details the network setup and

assumptions; Section III, motivates and discusses the rationale for the selected DRL approach

and details the proposed DDQSA algorithm. In Section IV, we develop the optimal sensing

and access policies for a network with a cyclic PU dynamics. These optimal policies serve

as a benchmark for testing our algorithm. Section V reports simulation results, including a

comparison with approaches proposed in previous works and with the optimal scheme (when

possible). These results clearly demonstrate the advantages of the proposed approach over other

approaches. Lastly, Section VI concludes this work.

We use N to denote natural numbers, bold letters, e.g., S to denote vectors, and Si denotes

the i’th element in the vector S, i ≥ 0. Calligraphic letters used to denote sets, e.g., S, and the

cardinality of a set is denoted by | · |, e.g., |S| is the cardinality of the set S .

II. PROBLEM FORMULATION

We consider a wireless network with N ∈ N channels, Kp ∈ N PUs, Kp ≤ N , and a single

SU. We denote the i’th PU by pui, for i ∈ {0, ..., Kp − 1}, and abbreviate the n’th channel as

chn, n ∈ {0, ..., N −1}. At each time step, the SU chooses a set of L ∈ N channels, L ≤ N , for

sensing to aggregate observations and predict which channel is the best channel for transmission

at the next time step, in the sense of maximizing the long-term throughput. For simplicity, we

further assume that L is a divisor of N . The sensing outcome can be either ”free”, when the

channel is not being accessed by any PU, or ”busy” when the channel is being accessed by a

PU. The SU can base its prediction of the best channel for transmission in the next time step on

all its past observations. If the SU has data for transmission, it transmits in the next time-step on

the selected channel and receives feedback: If channel selection is successful, the SU receives an

ACK message from the destination. Otherwise, the SU obtains a NACK signal which indicates

that transmission has failed. Note that in practice, NACK can be determined by a timer and is

not necessarily a response received from the destination. For the subsequent discussion, we will

assume that the SU transmits at each time step, and then, in Section V-C, we will show that

this assumption can be easily removed with almost no effect on the algorithm’s performance.

October 28, 2021 DRAFT

OCTOBER 2021 7

Following the natural intuition, we begin by formulating the problem as a POMDP with two

policies: One policy for sensing and one for channel access. This formulation is quite intuitive

and simplifies the explanations in the following sections. In Section IV, we will show that this

problem can be formulated as a single policy problem, and thus can be solved with a single agent.

Let S = {−1, 1}N be the channel state space, where ′1′ denotes that the channel is currently

being used for transmissions and ′ − 1′ denotes that the channel is free. Let s(i) ∈ S be the

N -length polar form representation of the integer i ∈ {0, 1, ..., 2N − 1}, where the j’th element

in s(i), s(i)
j , represents the state of the j’th channel (′1′ if busy, and ′−1′ if free), and let S(t) ∈ S

denote the state at time step t ∈ N. We define two action sets: As =∆ {0, 1, ..., N
L
− 1} is the

action set for sensing, and Aac =∆ {0, 1, ..., N − 1} is the action set for access. Accordingly, the

set of N channels is partitioned into sensing subsets, each sensing subset consists of L channels,

and the action As(t) = i ∈ As denotes that the SU is sensing the channels {chm}(i+1)·L−1
m=i·L at

time step t ∈ N. The action Aac(t) = j ∈ Aac denotes that the SU decides to access chj for

transmission at time step t + 1. As the SU senses only a subset of L channels in the network,

the observations space, denoted by X , X = {−1, 1}L, is the set of all possible observation

outcomes in the L channels belonging to the currently observed subset. The observation outcome

in time t ∈ N is denoted by X(t) =∆
[
l,
(
x0(t), x1(t), ..., xL−1(t)

)]
, where the first element

X0(t) = l ∈ {0, 1, ..., N
L
− 1} indicates that at time t, the l’th subset of channels was sensed,

i.e., As(t) = l, and
(
x0(t), x1(t), ..., xL−1(t)

)
∈ X , denotes the sensing outcome at time step

t ∈ N, where the sensing outcome xi(t) = 1 implies that at time step t the i’th channel of the

l’th sensing subset is busy, and xi(t) = −1 implies that it is free. We define two policies: The

sensing policy, denoted by πs, and the access policy, denoted by πac. Let R(t) denote the reward

at time step t. When a transmission is successful, i.e., when at time step t the algorithm correctly

selects a free channel for transmission at time t+ 1 (receives an ACK signal at time t+ 1), we

set the reward to R(t+1) = 1, to encourage the agent to access free channels. When the selected

channel at time t is busy at time t+ 1 (i.e, SU receives NACK signal), then R(t+ 1) = −1, to

discourage the agent from selecting a busy channel for transmission.

Our objective is to derive an RL-based algorithm to identify the pair of policies π∗s , and π∗ac

that maximize the expected accumulated discounted reward over an infinite time horizon, i.e.

(π∗s , π
∗
ac) = argmax

πs,πac

{
Eπs,πac

{ ∞∑
t=1

γt−1R(t+ 1)|X(1)
}}
,

October 28, 2021 DRAFT

OCTOBER 2021 8

for a discount factor γ ∈ [0, 1).

III. THE PROPOSED DRL-BASED ALGORITHM FOR CHANNEL SENSING AND ACCESS

In this section, we describe the proposed Double Deep Q-network for Sensing and Access

(DDQSA) algorithm. Prior to detailing the algorithm, we briefly review Q-learning and DQN to

motivate our selection of this algorithmic approach.

A. Q-Learning

Q-learning is a model-free RL algorithm. When applied to an MDP, and under certain as-

sumptions, this algorithm obtains the optimal policy in the sense of maximizing the expected

accumulated discounted reward for any given initial state [14, Ch. 6]. The Q-learning algorithm

is a value-based RL algorithm, which means that it computes the optimal action-value function

for finding the optimal policy. Let A denote the set of actions, S denote the set of states, and

let qπ(s, a), s ∈ S, a ∈ A, denote the action-value function, which is the expected accumulated

discounted reward starting from state s, picking action a, and following policy π afterwards. The

term γ ∈ [0, 1), denotes the discount factor. Because we consider the case of infinite time-horizon

problem, then [14, Ch. 3]

qπ(s, a) =
∆ Eπ

{
t=∞∑
t=1

γt−1R(t+ 1)|S(t) = s, A(t) = a

}
.

The optimal policy π∗, is a policy that satisfies q∗(s, a) =∆ qπ∗(s, a) ≥ qπ(s, a) for any policy π

and for every possible state-action pair, (s, a) ∈ S×A. The optimal policy can be obtained easily

from the optimal action-value function, q∗(s, a), as π∗(s) = argmax
a∈A

{q∗(s, a)}. The Q-learning

algorithm iteratively estimates the optimal action-value function for each valid state-action pair

in an online manner as follow: At each time step t ∈ N, the agent observes a state s ∈ S, selects

an action a ∈ A, receives a reward r for executing the selected action a ∈ A, and observes the

next state s′ ∈ S. Then, the estimation of the corresponding q∗(s, a), referred to as the Q-value

and denoted as Q(s, a), is updated according to the update rule:

Q(s, a)← Q(s, a) + α ·
(
r + γ ·max

a′∈A
{Q(s′, a′)} −Q(s, a)

)
,

for some α ∈ (0, 1) referred as the learning rate. To explore various state-action pairs, the action

a is selected according to an ε-greedy policy, meaning that most of the time the selected action

October 28, 2021 DRAFT

OCTOBER 2021 9

maximizes the estimated optimal action-value function, whereas in the rest of the time the action

is selected randomly from the set of all valid actions. Mathematically, the agent at state s ∈ S,

selects an action a = argmax
a′∈A

{Q(s, a′)} with probability 1− ε, and a uniformly random action

from all possible actions in state s, with probability ε. According to [14, Ch. 6], this algorithm

is proven to converge to q∗(s, a) with probability 1 if all of the state-action pairs are visited

infinitely often, and a variant of the usual stochastic approximation conditions is satisfied. In

a general DSA setting, as considered here, the transition probabilities are unknown and only

partial observations are available. As a result, convergence is not guaranteed theoretically.

B. Deep Q-Network

While Q-learning performs well when the action and state spaces are small and provably

converges for MDP formulation, it turns out that for large state and action spaces, this algorithm

is impractical. There are two main reasons for Q-learning impracticality for large state and action

spaces: The first reason is that in the Q-learning algorithm, the agent has to visit multiple states

and select different actions in each state to learn the optimal Q-value, which requires a very

extensive exploration and may result in a long learning time. The second reason is that in the Q-

learning algorithm, the agent has to store the Q-value for every state-action pair, which results in

large storage requirements for large action and state spaces. Recently, a class of DRL algorithms

that combines Q-learning and deep neural networks, referred to as DQN, has been proposed.

The role of the deep neural network in the DQN is to map observations and actions into their

Q-values, which eliminates the need to store them in a table, thereby significantly reducing the

storage requirement for large action and state spaces. Furthermore, the deep neural network

has the ability to extract features from previous observations in order to infer the Q-value of

observations that have not yet been observed [33]. This capability does not exist when using

tabular methods, as when using tables, each state and action pair has to be visited to estimate

the corresponding Q-value.

It should be noted that DQN-based learning is not guaranteed to converge to the optimal

solution theoretically, even for problems which can be formulated as an MDP. In practice,

however, it achieves very good performance even in various POMDP models with infinitely large

state space. For example, the work of [18], developed a DQN algorithm for teaching an agent

how to play Atari games directly from screen images, and achieved very good performance in

various Atari games. Nevertheless, in the POMDP framework of the DSA problem, DQN suffers

October 28, 2021 DRAFT

OCTOBER 2021 10

from performance degradation due to very partial observations which do not provide sufficient

information about the entire channel states.

To cope with this problem, our proposed approach is to select observations wisely in the

algorithm design, such that considering the state as a combination of a sufficient number of

past observations, the algorithm can better infer about the actual system state, and find a (near-

)optimal access policy to maximize the throughput. The novelty of our approach is the joint

learning of efficient sensing and access policies via online learning by implementing a modified

version of DQN, known as DDQN.

C. The Proposed DDQSA Algorithm

We start by showing that the DSA problem defined in Section II can be formulated as a single

agent problem with a single policy for both sensing and access. Then, we introduce the DDQSA

algorithm.

Due to the partial observations, we maintain a history vector consisting of H ∈ N most

recent past observations to facilitate extracting more information about the state of the channel.

We define the history-observations space as OH = {−1, 0, 1}N ·H , where OH(t) = [O(t −

H +1),O(t−H +2), ...,O(t)] ∈ OH . O(t) is a length N vector that represents the observation

outcomes at time step t ∈ N, where Oi(t) = 1 denotes that chi was sensed at time step t and was

found to be busy, Oi(t) = −1 denotes that chi was sensed at time step t and was found to be free,

and Oi(t) = 0 denotes that chi was not sensed at time step t. The extended action space which

facilitates selection of both sensing and access actions is denoted by Aex = {0, 1, ..., N2

L
− 1}.

At each time step, the agent picks an action a(t) ∈ Aex, where a(t) = i, means that at time

step t, the agent senses the channels {chm}
(b i

N
c+1)·L−1

m=b i
N
c·L and transmits on channel chi (mod N) at

the next time step.

DDQSA utilizes the DDQN architecture originally proposed in [32], which combines double

Q-learning and deep neural networks. Note that in the standard DQN, at the update step, a

maximization operation is used for both selecting an action that maximizes the estimated Q-

value and at the same time evaluating this Q-value with the selected action. This usually results

in an overestimation of the Q-values, which causes performance degradation [31]. In [32], the

authors proposed to use two neural networks, one for selecting an action and the other for

estimating the Q-value associated with the selected action, which was shown to achieve better

performance. In DDQSA, we use the observations history OH(t) as the state of the wireless

October 28, 2021 DRAFT

OCTOBER 2021 11

network which is used directly as an input to the DDQN. The output layer of the network,

consisting of |Aex| neurons where the i’th neuron in the output layer, i ∈ Aex, represents an

estimation of q∗(OH(t), i).

Note that although the immediate reward R(t + 1) is the same for any action a(t) with the

same value of a(t) (mod N), the next observation will be different, thus the target, R(t+ 1) +

γ · max
a′∈Aex

{
Q
(
OH(t + 1), a′

)}
will be different and this would result in the agent learning a

better joint sensing and access policy over time, where the learned access policy matches the

corresponding sensing policy. Following this formulation, the objective can be stated as finding

the optimal policy π∗ such that

π∗ = argmax
π

{
Eπ
{ t=∞∑

t=1

γt−1R(t+ 1)|OH(1)
}}
.

From this policy we can obtain both sensing and access policies by setting πs(O
H) =

bπ(OH)
N
c ∈ As, and πac(O

H) = π(OH) (mod N) ∈ Aac for any history observation outcome

OH ∈ OH . To balance between exploration and exploitation, we used the ε-greedy policy: At

each time step t ∈ N, the agent selects an action a(t) = argmax
a′∈Aex

{
Q(OH(t), a′)

}
with probability

1− ε, and selects a random action uniformly among all actions with probability ε.

D. Pseudocode of DDQSA

Let D denotes the replay buffer [18] and θθθ, θθθ− denotes the policy network weights, and

the target network weights, respectively. The steps of the proposed DDQSA algorithm are

summarized in Algorithm 1 below:

October 28, 2021 DRAFT

OCTOBER 2021 12

Algorithm 1 The DDQSA Algorithm for Optimizing Jointly Spectrum Sensing and Access
1: Initialize replay buffer D to capacity C, the mini-batch MB with size |MB|, and the target

network update rate J .

2: Initialize the policy network weights θθθ randomly.

3: Initialize the target network weights θ−θ−θ− ← θθθ.

4: Observe OH(1).

5: for time step t = 1, 2, ... do

6: Set ε = 1
1+0.01·t .

7: ε-greedy: a(t) =


argmax
a′∈Aex

{
Q
(
OH(t), a′

)}
w.p. 1− ε,

random action, a ∈ Aex w.p. ε.
8: Execute actions:

as(t) = ba(t)
N
c; aac(t) = a(t) (mod N).

9: Obtain the reward R(t+ 1), and observe the next state OH(t+ 1).

10: Store the tuple
(
OH(t), a(t), R(t+ 1), OH(t+ 1)

)
in D.

11: Sample a mini-batch MB =∆ {(oi, ai, ri,o′i)}|1 ≤ i ≤ |MB|} randomly from D.

12: Set target yi = ri+ γ ·Q(o′i, argmax
a′∈Aex

{
Q(o′i, a

′;θθθ)
}
;θ−θ−θ−) and perform batch training with

inputs oi, and outputs yi, using all (oi, ai, ri,o′i) ∈MB.

13: Every J iterations set θθθ− ← θθθ.

14: end for

IV. DEVELOPING THE OPTIMAL SENSING AND ACCESS POLICIES FOR A NETWORK WITH A

CYCLIC PU DYNAMICS

In this section, we analyze the optimal policy theoretically to validate the performance of

DDQSA. Although the general DSA problem is known to be P-SPACE hard [30], we derive the

first structured solution of the optimal sensing and access policies analytically for the common

model of a cyclic PU dynamics. In the next section, we will demonstrate that DDQSA indeed

achieves a throughput which is very close to the optimal throughput.

Consider a network consisting of N ≥ 2 channels, where N is assumed to be even (note that

the case of N = 2 is trivial since both channels are sensed at each given time), the size of the

sensing subset is L = 2, and the number of PUs is Kp = N − 1. The PUs access the channel

according to the following rule: At each time step, the PUs either transmit at the same channel

as in the previous time step with probability Pstay, or jointly switch to the adjacent channel to

October 28, 2021 DRAFT

OCTOBER 2021 13

the right in a cyclic manner with probability Pswitch, or jointly switch two channels to the right

cyclically with probability PDswitch = 1− Pstay − Pswitch. It follows from the description above

that the state space of this network consists of four states, each corresponding to one possible

location of the single free channel that can change its position with probabilities Pstay, Pswitch,

and PDswitch according to the rules of the network. Let U = {0, 1, , , , , N − 1} denote the set

of possible free channels and let U(t) ∈ U , such that U(t) = i indicates that the free channel

at time step t ∈ N is the i’th channel, chi. With these definitions, for any s, s′ ∈ U , the state

transition probability is given by:

Pr(s′|s) =



Pstay if s′ = s,

Pswitch if s′ = s+ 1 (mod N),

PDswitch if s′ = s+ 2 (mod N),

0 otherwise.

(1)

Setting the history length to H = 2, we first analyze the possible observation outcomes and show

that the optimal sensing policy π∗s results in a one-to-one mapping between the observations in

the last two time steps and the current channel state U(t), thereby making the state space fully

observable:

• When X(t) = [l, (−1, 1)], X(t) = [l, (1,−1)] then, irrespective of X(t − 1), since there

is only one free channel, then it is obtained that the current state is U(t) = l · L, and

U(t) = l · L+ 1, respectively.

• Consider X(t) = [l, (1,−1)]: We conclude that U(t) = l ·L+1, thus, U(t+1) can be either

l · L+ 1, l · L+ 2 (mod N), or l · L+ 3 (mod N). Hence, in the next time step, we must

sense the pair of channels of subset l + 1 (mod N
L
):

– If X(t+ 1) = [l + 1 (mod N
L
), (1, 1)] then, U(t+ 1) = l · L+ 1.

– If X(t+ 1) = [l + 1 (mod N
L
), (−1, 1)], then U(t+ 1) = l · L+ 2 (mod N).

– If X(t+ 1) = [l + 1 (mod N
L
), (1,−1)], then U(t+ 1) = l · L+ 3 (mod N).

• Consider X(t) = [l, (−1, 1)]: We conclude that U(t) = l · L, thus, U(t + 1) can be either

l ·L, l ·L+1, or l ·L+2 (mod N). Hence, in the next time step, we must sense the same

pair of channels of subset l:

– If X(t+ 1) = [l, (−1, 1)] then, U(t+ 1) = l · L,

– If X(t+ 1) = [l, (1,−1)], then U(t+ 1) = l · L+ 1,

October 28, 2021 DRAFT

OCTOBER 2021 14

– If X(t+ 1) = [l, (1, 1)], then U(t+ 1) = l · L+ 2 (mod N).

• Assume that X(t−1) = [l, (−1, 1)], and X(t) = [l, (1, 1)]. Then it is guaranteed that the free

channel is now U(t) = l ·L+2 (mod N). This state is equivalent to the partial observation

X(t) = [l + 1 (mod N
L
), (−1, 1)]. Then, U(t + 1) is either l · L + 2 (mod N), l · L + 3

(mod N), or l · L+ 4 (mod N). In this case,

– If the sensing action is As(t) = l + 1 (mod N
L
), then X(t + 1) will be either [l + 1

(mod N
L
), (−1, 1)], [l+1 (mod N

L
), (1,−1)], or [l+1 (mod N

L
), (1, 1)] which has a one-

to-one correspondence with U(t+1) being equal to l ·L+2 (mod N), l ·L+3 (mod N),

or l · L+ 4 (mod N), respectively.

– If As(t) = l, then X(t + 1) will be [l, (1, 1)] (if N = 4, it will be either [l, (1, 1)], or

[l, (−1, 1)]). Then, if X(t + 1) = [l, (1, 1)] it follows that U(t + 1) may be l · L + 2

(mod N) or l · L+ 3 (mod N), and we cannot know for sure the channel state.

– We conclude that if the last two observations are X(t − 1) = [l, (−1, 1)] and X(t) =

[l, (1, 1)], the optimal sensing policy is to choose the sensing action As(t) = l + 1

(mod N
L
) because it facilitates deterministic knowledge of the channel state at the next

time step, U(t+ 1).

Let Xinit =∆
{
[l, (x0, x1)]

∣∣x0 = −1, or x1 = −1 and l ∈ {0, 1, ..., N
L
− 1}

}
denote the initial

set. By following similar reasoning, it follows that under the assumption of X(1) ∈ Xinit,

any consecutive pair of observations,
(
X(t − 1),X(t)

)
, contains sufficient information to fully

determine the network state U(t). For example, Table I summarizes all of the possible observa-

tions for N = 4 channels, their corresponding full network state, and the sensing policy, where

πs
(
X(t− 1),X(t)

)
= 0 denote that given the two observations at time steps t− 1 and t, then at

time t+1 the SU will sense subset 0 of the network channels, consisting of ch0, and ch1 , whereas

πs
(
X(t−1),X(t)

)
= 1 denotes that given

(
X(t−1),X(t)

)
, at time step t+1 the SU will sense

subset 1 of the network channels consisting of ch2, and ch3. Following this sensing policy, and

under the assumption of X(1) ∈ Xinit, the spectrum is fully observable at each time step, and

hence this sensing policy is necessarily the optimal sensing policy. As the state is fully observable,

finding the best access policy can be formulated as an MDP problem. According to the Bellman

optimally equations [14, Ch. 3], the optimal policy π∗ac must satisfy π∗ac(s) = argmax
a∈Aac

{q∗(s, a)},

where q∗(s, a) is the optimal action-value function for s ∈ U , a ∈ Aac. Next, we characterize the

optimal access policy: Letting s′ denote the next state, U(t + 1) and v∗(s) denote the optimal

October 28, 2021 DRAFT

OCTOBER 2021 15

TABLE I
OPTIMAL SENSING POLICY FOR N = 4

X(t− 1) X(t) U(t) πs
(
X(t− 1),X(t)

)
don’t care [0, (−1, 1)] 0 0
don’t care [0, (1,−1)] 1 1
don’t care [1, (−1, 1)] 2 1
don’t care [1, (1,−1)] 3 0
[0, (−1, 1)] [0, (1, 1)] 2 1
[1, (−1, 1)] [1, (1, 1)] 0 0
[1, (1,−1)] [0, (1, 1)] 3 0
[0, (1,−1)] [1, (1, 1)] 1 1
[1, (1, 1)] [1, (1, 1)] 1 1
[0, (1, 1)] [0, (1, 1)] 3 0
[0, (1, 1)] [1, (1, 1)] 0 0
[1, (1, 1)] [0, (1, 1)] 2 1

access value function
(
v∗(s) =∆ max

a∈Aac

{
q∗(s, a)

})
, then q∗(s, a) can be computed as:

q∗(s, a) =
∑

r∈{−1,1},s′∈U

Pr(r, s′|s, a) ·
(
r + γ · v∗(s′)

)
=
∑
s′∈U

Pr(s′|s, a)
(∑
r∈{−1,1}

Pr(r|s′, s, a) ·
(
r + γ · v∗(s′)

))
(a)
=γ ·

∑
s′∈U

Pr(s′|s) · v∗(s′) +
∑
s′∈U

Pr(s′|s) ·
(∑
r∈{−1,1}

r · Pr(r|s′, a)
)
, (2)

where in step (a), we used the fact that given the next state and the current action, the reward

is fully determined, i.e., Pr(r|s′, s, a) = Pr(r|s′, a), and that in the fully-observed case, the

action does not affect the probability of the next state given the previous state, i.e., Pr(s′|s, a) =

Pr(s′|s). Note that in the considered setup Pr(r|s′, a) is deterministic, i.e.,

Pr(r = 1|s′, a) = 1(s′ = a), Pr(r = −1|s′, a) = 1(s′ 6= a), (3)

October 28, 2021 DRAFT

OCTOBER 2021 16

where 1(A) stands for the indicator function of the event A. From (3),∑
s′∈U

Pr(s′|s)
∑

r∈{−1,1}

r · Pr(r|s′, a) = Pr(s′ = a|s)−
∑
s′ 6=a

Pr(s′|s)

= Pr(s′ = a|s)− (1− Pr(s′ = a|s))

= 2 · Pr(s′ = a|s)− 1. (4)

Plugging (4) into (2) we obtain the optimal access policy as:

π∗ac(s) = argmax
a∈Aac

{
q∗(s, a)

}
= argmax

a∈Aac

{
γ ·
∑
s′∈U

Pr(s′|s) · v∗(s′) +
∑
s′∈U

Pr(s′|s) ·
(∑
r∈{−1,1}

r · Pr(r|s′, a)
)}

(a)
= argmax

a∈Aac

{2 · Pr(s′ = a|s)− 1}

= argmax
a∈Aac

{Pr(s′ = a|s)}. (5)

where (a) follows as the first summand is independent of a ∈ Aac. Then, letting Pmax =

max{Pstay, Pswitch, PDswitch}, from (1) and (5) we conclude that for s ∈ U we have:

π∗ac(s) = argmax
a∈Aac

{Pr(s′ = a|s)} =


s if Pstay = Pmax

s+ 1 (mod N) if Pswitch = Pmax

s+ 2 (mod N) if PDswitch = Pmax

. (6)

The above analysis leads to two important insights: First, we conclude that if the observations

can be selected such that the agent can infer the full network state (as in the case analyzed

in this section), the discount factor γ ∈ [0, 1) can be set arbitrarily. Practically, the best option

will be to set γ = 0, since for example, in the Q-learning algorithm the update rule becomes

simply Q(s, a)← (1−α) ·Q(s, a)+α · r. As a result, the algorithm converges faster due to the

elimination of the unnecessary term α ·maxa′∈A{Q(s′, a′)} from the update rule. This follows

as the term α ·maxa′∈A{Q(s′, a′)} includes an estimate of the function q∗(s
′, .) which may be

very different from its true value at the beginning of the learning process. The second insight

is that our algorithm requires γ > 0 to converge to the maximal throughput, which makes the

suggested problem formulation a non-degenerated RL problem in the sense that actions selected

in order to maximize the accumulated future rewards and not only the immediate reward. The

October 28, 2021 DRAFT

OCTOBER 2021 17

reason is that in general, the full network state cannot be determined from a finite number of

past observations. Furthermore, even in that case, then at the beginning of the learning process,

the sensing policy is arbitrary. Then, usually the agent cannot infer about the channel state at

the beginning. This implies that the agent must consider the effect of selecting which channels

to sense on future rewards thereby improving its sensing policy.

Let suci denote the event of a successful transmission at time step i ∈ N and define the

throughput of the optimal policy for this scenario as T =∆ limt→∞

∑t
i=1 1(suci)

t
. Following the

optimal sensing policy implies that the events {1(suci)}∞i=1 are i.i.d random variables. Then,

according to the weak law of large numbers [34] we have:

T = lim
t→∞

∑t
i=1 1(suci)

t
= E[1(suci)] = Pr(suci).

According to the optimal access policy, the SU accesses a free channel with probability Pmax,

which implies that T = Pr(suci) = Pmax. Note that even if X(1) /∈ Xinit, we may choose

sensing and access actions randomly. In this case, the probability that X(t) /∈ Xinit for any

t ∈ N is 0. Therefore, the probability that there exists t0 ∈ N such that X(t0) ∈ Xinit is 1. Once

X(t0) ∈ Xinit for some t0 > 0, we can apply the optimal sensing and access policies ∀t > t0

and asymptotically achieve the optimal throughput, because in this case,

T = lim
t→∞

∑t
i=1 1(suci)

t

= lim
t→∞

∑t0
i=1 1(suci)

t
+ lim

t→∞

∑t
i=t0+1 1(suci)

t

= lim
t→∞

∑t−t0
j=1 1(sucj+t0)

t
= Pmax. (7)

Finally, note that for j ≥ 1, j + t0 ≥ t0 + 1, i.e. the optimal sensing and access policies

are followed. Therefore, we conclude that limt→∞

∑t−t0
j=1 1(sucj+t0

)

t
= Pmax, for any X(1) =[

l,
(
x0(1), x1(1)

)]
, l ∈ {0, 1, ..., N

L
− 1},

(
x0(1), x1(1)

)
∈ X .

V. EXPERIMENTS

In this section, we report the outcomes of experiments carried out to test and evaluate the

performance of the proposed DDQSA algorithm. DDQSA was implemented as described in

Algorithm 1 in Section IV, with two hidden layers of a fully connected deep neural network,

where each layer consists of 128 neurons with the rectified linear unit (ReLU) activation function,

October 28, 2021 DRAFT

OCTOBER 2021 18

ReLU(x) = max{0, x}. The activation function for each neuron in the output layer is the linear

activation function f(x) = x. The ε-greedy policy has been applied such that ε = 1
1+0.01·t , i.e.,

ε decays over time. At each time step, a mini-batch of 64 samples
(
|MB| = 64

)
from the

replay buffer is uniformly sampled and used for training. The Adam algorithm [35] is used as

the optimizer with the mean-squared error (MSE) loss function. We set the discount factor to

γ = 0.8, the learning rate is α = 10−4, the replay buffer capacity is C = 30000, and J = 20. We

define the relative throughput ρ(τ) =∆ η(τ)
ηbound(τ)

, τ ∈ N, where η(τ) is the number of successful

transmissions in the range of time steps beginning from (τ − 1) · 100+ 1 up to time step τ · 100

divided by 100, and ηbound(τ) is defined as the number of time steps in which at least one

channel was free, in the range of time steps beginning from (τ − 1) · 100 + 1 up to τ · 100,

divided by 100. Thus, ηbound(τ) is an upper bound on the throughput of any DSA algorithm for

the setup defined in Section II. In the following, ρ(τ) is used as the figure-of-merit for evaluating

the performance of the different algorithms.

In the experiments, we compare the performance of DDQSA with that of three other algorithms

with fixed sensing or access policies:

1) Random Access: In this policy, the SU does not employ sensing, and at each time step

selects randomly and uniformly a channel for accessing.

2) Random Sensing: In this policy, the SU randomly selects a subset of channels to sense, and

uses these observations to learn an access policy by employing a DDQN.

3) Alternating Sensing: In this policy, the SU senses each of the subsets of channels alter-

natingly (as in [26]) and uses these observations to learn an access policy by applying a

DDQN.

The performance of the different algorithms was obtained by averaging the outcomes of 30

independent experiments for each algorithm at each scenario.

A. Comparison with the Optimal Policy for the Cyclic PU Network

First, we consider the cyclic network defined in Section IV with N = 4 channels. In this

network, ηbound(τ) = 1,∀τ ∈ N, since there is always a single free channel at each time step,

thus, ρ(τ) = η(τ). As obtained in Section IV, the throughput of the optimal access and sensing

policies for this network is Pmax. In this experiment we set Pstay = 0.1, Pswitch = 0.1, and

PDswitch = 0.8, which implies that for τ � 1, ρ(τ) = η(τ) ≈ Pmax = PDswitch = 0.8. The

throughput of the random access algorithm can be analytically obtained as ρRA(τ) = 0.25,

October 28, 2021 DRAFT

OCTOBER 2021 19

Fig. 1. Relative throughputs for the cyclic PU network defined in Section IV.

which follows by noting that there are 4 channels, where at each time-step there is a single free

channel. Fig. 1 depicts the simulation results for this scenario. From Fig. 1, we observe that

the DDQSA algorithm performs well and asymptotically attains near-optimal performance (the

throughput is numerically evaluated at approximately 0.79), whereas under alternating sensing

policy, the throughput is about 0.64 and under the random sensing policy it is about 0.7, both

are highly sub-optimal. We conclude that DDQSA is indeed capable of learning near-optimal

joint sensing and access policy, thereby justifying the rationale of our proposed approach.

B. Experiment Results for Other General Scenarios

We consider now a network consisting of N = 4 channels, with 4 PUs, Kp = 4, observations

subsets of size L = 2, and a history length of H = 6. The PU transmissions occur in frames

which may span more than one time step according to the Markov model described in Section II:

For pui, i ∈ {0, 1, ..., Kp − 1}, we set the maximal frame length to li, and let Li = {0, 1, ..., li}

denote the state space for pui. When pui is at the k’th state of its frame we set its state to

mi = k. When pui is not transmitting, referred to as idle, we set its state to mi = 0.

October 28, 2021 DRAFT

OCTOBER 2021 20

Denote by Pi(k|j), j, k ∈ Li the probability that PU pui will make a transition from state j to

state k. Because the frame length is bounded, Pi(0|li) = 1, ∀i ∈ {0, 1, ..., Kp − 1}. In addition,

Pi(k|j) = 0 ∀j, k such that 0 ≤ j < li, 0 < k ≤ li and k 6= j + 1. In the simulations we set

l0 = 3, l1 = 4, l2 = 4 , and l3 = 5. A diagram which illustrates the state transition probabilities

for pu0 is depicted in Fig. 2. The transition probabilities for all PUs are summarized in Table II.

Fig. 2. An illustration of the state transition diagram for pu0.

TABLE II
PUS STATE TRANSITION PROBABILITIES

Pi(0|0) Pi(0|1) Pi(0|2) Pi(0|3) Pi(0|4) Pi(0|5)
i = 0 0.1 0.1 0.15 1 - -
i = 1 0.2 0.2 0.1 0.2 1 -
i = 2 0.15 0.18 0.3 0.1 1 -
i = 3 0.28 0.2 0.02 0.15 0.01 1

In the following simulations, we consider three scenarios:

• In the first scenario, referred to as Scenario 1, we set the access policy of PUs such that

each PU can access a single, fixed, pre-determined channel at each time step, i.e., pui can

access only chi, whenever it needs to transmit.

• In the second scenario, referred to as Scenario 2, we set the PUs access policy as follows:

– Once a PU begins transmitting at a given channel, it will transmit the entire frame over

that channel, e.g., if channel chj was allocated to pui when mi = 1, then channel chj

will be allocated to pui until mi = 0, at which this channel allocation is determined.

October 28, 2021 DRAFT

OCTOBER 2021 21

Fig. 3. Relative throughputs of the different algorithms for Scenario 1

– If a new PU, e.g., pui begins to transmit at a given time step (mi = 1), it will use channel

chk for transmission where chk is the available channel with the minimal index k. This

can be justified by an ordering of channels according to some measure of quality, e.g.,

SNR, where a channel with a larger noise power is assigned a smaller index.

– If two PUs or more begin to transmit at a given time step, the PU with the minimal index

will use the available channel with the minimal index for transmission. For example, if

at any time step, both pui, and puj (i < j) begin to transmit, and chk, chl (k < l) are

available, then pui will transmit on chk, and puj will transmit on chl. This represents a

preference assignment where the preferred user has a larger index.

• In the third scenario, referred to as Scenario 3, the PUs follow the same policy as described

for Scenario 2, but at every even time step, the channels are flipped, i.e., every 2 time steps,

ch0 will switch with ch3, and ch1 will switch with ch2, which corresponds to a frequency

hopping network.

For evaluating the throughput of the random access algorithm, recall that it does not apply any

learning process, hence its throughput is evaluated by simply making random access decisions

October 28, 2021 DRAFT

OCTOBER 2021 22

Fig. 4. Relative throughputs of the different algorithms for Scenario 2

Fig. 5. Relative throughputs of the different algorithms for Scenario 3

October 28, 2021 DRAFT

OCTOBER 2021 23

for 1.5 ·106 time steps and then averaging the resulting throughput. It follows that the throughput

of the random access algorithm is the same for all 3 scenarios described in this subsection, and

is approximately ρRA(τ) ≈ 0.415, ∀τ ∈ N.

Fig. 3 depicts the relative throughputs of the different algorithms for Scenario 1. It can be

observed from the figure that the DDQSA algorithm achieves the best asymptotic performance,

and that the asymptotic throughput achieved by applying alternating sensing is slightly lower

than the throughput of the DDQSA algorithm in this case. This result suggests that when each

PU accesses a single fixed channel, a near-optimal sensing policy is to sense the subsets of

channels alternatingly. Fig. 4, depicts the relative throughputs of the different algorithms for

Scenario 2. Observe that for this scenario, the throughput achieved by the DDQSA algorithm

is significantly superior to that achieved by the other three algorithms. Among the other three

referenced algorithms, the best asymptotic relative throughput is achieved by the alternating

sensing algorithm, which is about 0.85, whereas the throughput achieved by the DDQSA al-

gorithm is approximately 0.92. This clearly demonstrates that the DDQSA is able to learn a

sensing policy and correspondence access policy which improves the throughput. Lastly, Fig.

5, depicts the relative throughputs for Scenario 3. It is observed again that DDQSA achieves

the best throughput asymptotically. Note that in this case the convergence rate is slower, since

the PUs have a complex access policy as the states of the network correspond to the state of

Scenario 2 for two consecutive time steps and then, for the next two time steps the states are a

mirror image of the states of the network in Scenario 2, and so on. This behavior requires from

the agent more interactions with the environment in order to learn (near-)optimal policies.

C. Implementations Aspects

In the above simulations and in the design of the DDQSA algorithm, it was assumed that the

SU accesses channel at each time step and thus receives an ACK/NACK signal at each time

step. As in practical scenarios a node may also have idle times, we note that this assumption can

be easily relaxed, requiring only some minor changes in Algorithm 1. To accommodate the fact

that the SU may have idle times, we assume that the SU accesses the channel with probability

Pac < 1, and does not access any channel with probability PNac = 1− Pac > 0. The changes in

Algorithm 1 required to deal with the case when Pac < 1 are as follows:

• In line 6 of Algorithm 1, the ε should decay as ε = 1
1+0.01·t̃ , where t̃ ∈ N is a counter of

the time steps in which the SU transmits.

October 28, 2021 DRAFT

OCTOBER 2021 24

Fig. 6. Relative throughputs for the cyclic PU network for different access probabilities

• In line 8, the agent executes both actions as(t) and aac(t) when the SU needs to transmit

at time step t + 1, and executes only action as(t) when the SU has nothing to transmit at

time step t+ 1.

• When the SU has nothing to transmit at time step t+1, then lines 9 and 10 in Algorithm 1

should be skipped since the agent will not receive a reward at time step t+ 1.

In Fig. 6, we compared the relative throughput of the DDQSA algorithm for the cyclic

PU network for the situations in which the SU transmits at every time step with the relative

throughput of the modified version of the DDQSA algorithm described above when the SU

transmits with probability Pac = 0.7, and with probability Pac = 0.2. From Fig. 6, it is observed

that the relative throughput when Pac = 0.7 and Pac = 0.2 are very close to the relative throughput

when the SU transmits at every time step. When the SU transmits with a small probability, e.g.,

Pac = 0.2, ρ(τ) is noisier because ρ(τ) involves an averaging operation over 100 time-steps. In

addition, it is observed that as Pac decreases, the convergence rate becomes slower due to the

fact that the replay buffer is loaded less frequently when the SU transmits infrequently.

October 28, 2021 DRAFT

OCTOBER 2021 25

VI. CONCLUSION

We considered the DSA problem, where multiple PUs access a network according to a

predetermined scheme and a cognitive SU, which has no prior knowledge about the PUs dynamics

and the access policy they use, and attempts to access the channel. In order to successfully

transmit, the SU estimates the indices of free channels. To that aim, the SU is capable of sensing

a subset of the available channels at each time step, due to sensing bandwidth limitations.

To identify the SU policy which maximizes its throughput, we developed a novel DDQSA

algorithm, which aims to determine the best sensing strategy and the corresponding best access

strategy, based on past observations collected by the SU via online learning. We compared the

throughput of the proposed DDQSA algorithm with that of three other algorithms which use

pre-determined sensing or access policies for four different scenarios. The results showed that

DDQSA outperforms the baseline algorithms in all cases. Moreover, for Scenario 1, in which the

PUs use a cyclic access policy, we analytically derived the optimal sensing and access policies

and the corresponding maximal throughput. In this scenario, the throughput of DDQSA is very

close to the optimal throughput and is significantly higher than the throughputs achieved by

the other three algorithms. Finally, we demonstrated that a modified version of the suggested

DDQSA algorithm can be applied to more practical scenarios in which the SU does not transmit

at every time step.

These results clearly demonstrate the ability of DDQSA to learn near-optimal policies and the

overall superiority of the proposed approach over existing methods.

REFERENCES

[1] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp.

79–89, May 2007.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless

networks: A survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, Sep. 2006.

[3] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of deep reinforcement

learning in communications and networking: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp.

3133–3174, May 2019.

[4] S. H. A. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari, “Optimality of myopic sensing in multichannel

opportunistic access,” IEEE Transactions on Information Theory, vol. 55, no. 9, pp. 4040–4050, Sep. 2009.

[5] K. Liu and Q. Zhao, “Indexability of restless bandit problems and optimality of whittle index for dynamic multichannel

access,” IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 5547–5567, Nov. 2010.

[6] C. Tekin and M. Liu, “Online learning of rested and restless bandits,” IEEE Transactions on Information Theory, vol. 58,

no. 8, pp. 5588–5611, May. 2012.

October 28, 2021 DRAFT

OCTOBER 2021 26

[7] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless multiarmed bandit with unknown dynamics,” IEEE

Transactions on Information Theory, vol. 59, no. 3, pp. 1902–1916, Mar. 2013.

[8] C. Tekin and M. Liu, “Approximately optimal adaptive learning in opportunistic spectrum access,” in Proc. IEEE

INFOCOM, 2012, pp. 1548–1556.

[9] J. Oksanen and V. Koivunen, “An order optimal policy for exploiting idle spectrum in cognitive radio networks,” IEEE

Transactions on Signal Processing, vol. 63, no. 5, pp. 1214–1227, Mar. 2015.

[10] K. Cohen, Q. Zhao, and A. Scaglione, “Restless multi-armed bandits under time-varying activation constraints for dynamic

spectrum access,” in 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, Apr. 2014, pp. 1575–1578.

[11] S. Bagheri and A. Scaglione, “The restless multi-armed bandit formulation of the cognitive compressive sensing problem,”

IEEE Transactions on Signal Processing, vol. 63, no. 5, pp. 1183–1198, Mar. 2015.

[12] T. Gafni and K. Cohen, “Learning in restless multi-armed bandits via adaptive arm sequencing rules,” IEEE Transactions

on Automatic Control, Dec. 2020.

[13] ——, “Distributed learning over markovian fading channels for stable spectrum access,” arXiv preprint arXiv:2101.11292,

2021.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, May 1992.

[16] Y. Li, H. Ji, X. Li, and V. C. Leung, “Dynamic channel selection with reinforcement learning for cognitive wlan over

fiber,” International Journal of Communication Systems, vol. 25, no. 8, pp. 1077–1090, Mar. 2012.

[17] P. Venkatraman, B. Hamdaoui, and M. Guizani, “Opportunistic bandwidth sharing through reinforcement learning,” IEEE

Transactions on Vehicular Technology, vol. 59, no. 6, pp. 3148–3153, Jul. 2010.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

Feb. 2015.

[19] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforcement learning for dynamic multichannel access,”

in Proc. International Conference on Computing, Networking and Communications (ICNC), 2017, pp. 257–265.

[20] ——, “Deep reinforcement learning for dynamic multichannel access in wireless networks,” IEEE Transactions on Cognitive

Communications and Networking, vol. 4, no. 2, pp. 257–265, Jun. 2018.

[21] H. Q. Nguyen, B. T. Nguyen, T. Q. Dong, D. T. Ngo, and T. A. Nguyen, “Deep q-learning with multiband sensing for

dynamic spectrum access,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN),

2018, pp. 1–5.

[22] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “Actor-critic deep reinforcement learning for dynamic multichannel

access,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018, pp. 599–603.

[23] Y. Xu, J. Yu, and R. M. Buehrer, “Dealing with partial observations in dynamic spectrum access: Deep recurrent q-

networks,” in Proc. IEEE Military Communications Conference (MILCOM), 2018, pp. 865–870.

[24] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for distributed dynamic spectrum access,” IEEE

Transactions on Wireless Communications, vol. 18, no. 1, pp. 310–323, Jan. 2019.

[25] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “A deep actor-critic reinforcement learning framework for dynamic

multichannel access,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 4, pp. 1125–1139,

Dec. 2019.

[26] Y. Xu, J. Yu, and R. M. Buehrer, “The application of deep reinforcement learning to distributed spectrum access in dynamic

heterogeneous environments with partial observations,” IEEE Transactions on Wireless Communications, vol. 19, no. 7,

pp. 4494–4506, Jul. 2020.

October 28, 2021 DRAFT

OCTOBER 2021 27

[27] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. Leung, “Power control based on deep reinforcement learning for

spectrum sharing,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 4209–4219, 2020.

[28] J. Tan, Y.-C. Liang, L. Zhang, and G. Feng, “Deep reinforcement learning for joint channel selection and power control

in d2d networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1363–1378, 2020.

[29] D. Livne and K. Cohen, “Pops: Policy pruning and shrinking for deep reinforcement learning,” IEEE Journal of Selected

Topics in Signal Processing, vol. 14, no. 4, pp. 789–801, May 2020.

[30] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision processes,” Mathematics of Operations

Research, vol. 12, no. 3, pp. 441–450, 1987.

[31] H. Hasselt, “Double q-learning,” Advances in Neural Information Processing Systems, vol. 23, pp. 2613–2621, 2010.

[32] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Proc. of the AAAI

Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[33] M. A. Nielsen, Neural networks and deep learning. Determination press San Francisco, CA, 2015, vol. 25.

[34] J. Tabak, Probability and Statistics: The Science of Uncertainty. Facts on File, 2011.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. of the International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015.

October 28, 2021 DRAFT

	I Introduction
	I-A Related Work
	I-B Main Contributions
	I-C Organization and Notations

	II Problem Formulation
	III The Proposed DRL-Based Algorithm for Channel Sensing and Access
	III-A Q-Learning
	III-B Deep Q-Network
	III-C The Proposed DDQSA Algorithm
	III-D Pseudocode of DDQSA

	IV Developing the Optimal Sensing and Access Policies for a Network with a Cyclic PU Dynamics
	V Experiments
	V-A Comparison with the Optimal Policy for the Cyclic PU Network
	V-B Experiment Results for Other General Scenarios
	V-C Implementations Aspects

	VI Conclusion
	References

