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Abstract

Joint communication and sensing (JCS) has become a promising technology for mobile networks

because of its higher spectrum and energy efficiency. Up to now, the prevalent fast Fourier transform

(FFT)-based sensing method for mobile JCS networks is on-grid based, and the grid interval determines

the resolution. Because the mobile network usually has limited consecutive OFDM symbols in a

downlink (DL) time slot, the sensing accuracy is restricted by the limited resolution, especially for

velocity estimation. In this paper, we propose a multiple signal classification (MUSIC)-based JCS system

that can achieve higher sensing accuracy for the angle of arrival, range, and velocity estimation, compared

with the traditional FFT-based JCS method. We further propose a JCS channel state information (CSI)

enhancement method by leveraging the JCS sensing results. Finally, we derive a theoretical lower bound

for sensing mean square error (MSE) by using perturbation analysis. Simulation results show that in
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terms of the sensing MSE performance, the proposed MUSIC-based JCS outperforms the FFT-based

one by more than 20 dB. Moreover, the bit error rate (BER) of communication demodulation using the

proposed JCS CSI enhancement method is significantly reduced compared with communication using

the originally estimated CSI.

Index Terms

Joint communication and sensing, MUSIC-based range and velocity estimation, perturbation anal-

ysis.

I. INTRODUCTION

A. Background and Motivations

Wireless communication and sensing are both indispensable for critical machine-type ap-

plications, e.g., the 5th generation (5G) and the future 6th generation (6G) networks [1]–

[3]. Nevertheless, the proliferation of wireless sensing and communication infrastructures and

devices will result in severe spectrum congestion problems [4]. Joint communication and sensing

(JCS) has emerged as one of the most promising 6G key techniques due to its potential in

improving spectrum and energy efficiency. It aims to achieve wireless sensing and communication

simultaneously using unified spectrum and transceivers, sharing the same transmitted signals [5].

B. Related Works

Since orthogonal frequency-division multiplexing (OFDM) is the most popular physical-layer

signal solution for broadband wireless networks, the JCS techniques based on OFDM signals

have been widely researched. Sturm et al. [6] proposed a fast Fourier transform (FFT)-based

frequency-domain OFDM JCAS signal processing method, realizing both active range estima-

tion and communication. By utilizing the FFT-based JCS signal processing method, Zhang et

al. [5] proposed a practical OFDM JCS system based on the time-division-duplex (TDD) mobile

network, which is suitable for downlink (DL) echo sensing. In [7], the authors proposed an

IEEE 802.11ad-based OFDM JCS vehicle-to-vehicle (V2V) system exploiting the preamble of a

single-carrier physical layer frame to achieve V2V communication and full-duplex radar in the

60 GHz band. In [8], the authors proposed a code-division OFDM JCS system by introducing

code-division multiplex into FFT-based OFDM JCS processing to improve the JCS sensing

performance. As pointed out in [9], the full-duplex (FD) is the critical enabler for implementing



DL JCS, which can simultaneously transmit JCAS signals and receive reflections. Seyed Ali et

al. [10] realized an FD JCS platform that detects targets while communicating with another node

by canceling the self-leakage interference with analog and digital self-leakage canceler.

Despite the above studies, there is a huge obstacle to utilizing the FFT-based OFDM JCS

method in real applications. This method has to use consecutive OFDM subcarriers and symbols

to estimate the range and velocity on the fixed grid, while the grid interval determines the

resolution. Therefore, the range and velocity resolutions are determined by the number of used

subcarriers and OFDM symbols, respectively. Thus, for mobile networks that typically have

limited subcarriers and OFDM symbols, e.g., 14 OFDM symbols in each DL time slot, the

sensing accuracy, especially the velocity accuracy, is largely restricted. Besides, in [11], the

author showed that overlapped interference deteriorates sensing performance in a networking

situation. Therefore, it is also important for a sensing method that can still work effectively

under a low signal to interference plus noise ratio (SINR).

C. Our Contributions

To resolve the aforementioned problems, we propose a multiple signal classification (MUSIC)-

based sensing scheme for OFDM JCS systems that can achieve accurate estimation of the angle

of arrival (AoA), range, and velocity, adapting to various OFDM communication signals with

limited OFDM subcarriers and symbols. We also propose a JCS channel state information (CSI)

enhancement method that exploits the JCS sensing results for refining CSI estimation with a

Kalman filter. Furthermore, we provide some theoretical lower bound of mean square error

(MSE) for the proposed MUSIC-based JCS sensing algorithms.

The main contributions of this paper are summarized as follows.

1. We propose a novel MUSIC-based JCS range and velocity estimation scheme, which consists

of expanded two-dimensional (2D) MUSIC algorithms and two-step descent searching

algorithms. The proposed scheme can use communication signals to achieve accurate range

and velocity estimation.

2. We propose a JCS CSI enhancement method based on the Kalman filter, which exploits the

JCS sensing parameters to construct the state transfer model and refines the CSI estimation

using the JCS sensing results. This method can improve the bit error rate (BER) in the case

of imperfect CSI.



3. We derive the theoretical MSEs for the proposed MUSIC-based JCS range and velocity

estimation scheme using perturbation analysis. The theoretical MSEs of range and velocity

estimation match the simulation MSEs well in the high SINR regime.

4. Extensive simulations are conducted to validate the proposed JCS sensing and CSI enhance-

ment schemes and the theoretical MSEs. The results show that the proposed sensing scheme

outperforms the conventional 2D-FFT method in terms of range and Doppler estimation

MSEs by more than 20 dB, and the JCS CSI enhancement method can significantly improve

communication performance.

D. Organization and Notations

The remaining parts of this paper are organized as follows. In Section II, we describe the

DL JCS model and transmitting signal model, and propose the JCS channel model. Section

III proposes the MUSIC-based JCS AoA, range and velocity estimation method. Section IV

provides a theoretical analysis of the proposed estimation method. In Section V, the simulation

results are presented. Section VI concludes this paper.

Notations: Bold uppercase letters denote matrices (e.g., M); bold lowercase letters denote

column vectors (e.g., v); scalars are denoted by normal font (e.g., γ); the entries of vectors

or matrices are referred to with brackets, for instance, the qth entry of vector v is [v]q, and

the entry of the matrix M at the mth row and qth column is [M]n,m; (·)H , (·)∗ and (·)T denote

Hermitian transpose, complex conjugate and transpose, respectively; ‖vk‖l represents the l-norm

of vk; E (·) represents the expectation of random variables; M1 ∈ CM×N and M2 ∈ RM×N

represent that M1 and M2 are M ×N complex-value and real-value matrices, respectively, and

v ∼ CN (m,σ2) means v follows a complex Gaussian distribution with mean m and variance

σ2.

II. SYSTEM MODEL

A. DL JCS Model

As shown in Fig. 1, we consider the DL JCS process between the BS and the machine-

type user equipment (MUE), such as a road-side infrastructure and a vehicle. Millimeter-wave

(mmWave) signal is considered for DL JCS. It is particularly suitable for JCS given its potential

high resolution. The BS and MUEs are equipped with uniform plane arrays (UPAs). The BS

is equipped with two spatially well-separated UPAs and a self-leakage canceler to realize the
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FD capability, as detailed in [10]. Therefore, the self-leakage between arrays is ignored and not

considered in the signal model in this paper. One BS array is used for transmitting the DL JCS

signal, and the other is used for consistently receiving echoes of the JCS signal. MUE receives

the JCS signal to demodulate the communication data, while BS receives the echoes to estimate

the AoAs, ranges, and velocities. Moreover, we consider that both BS and MUE receive the

superimposed co-channel interference from multiple reflected interference sources (ISs). The

MUE is equipped with one UPA for receiving the communication signal. The array sizes of the

BS and MUEs are Pt ×Qt and Pr ×Qr, respectively.

B. UPA Model

Fig. 2 demonstrates the model of UPAs. The uniform interval between the neighboring antenna

elements is denoted by da. The size of the UPA is denoted by P × Q. The two-dimensional

(2D) AoA for receiving or the AoD for transmitting the kth far-field signal is pk = (ϕk, θk)
T ,

where ϕk is the azimuth angle, and θk is the elevation angle. We use Ap,q to denote the (p,q)th

antenna element, and A0,0 to represent the reference antenna element. Then, the phase difference

between Ap,q and A0,0 is expressed as

ap,q(p)=exp

[
−j2π

λ
da(p cosϕ sin θ+q sinϕ sin θ)

]
, (1)

where λ = c/fc is the wavelength of the carrier, c is the speed of light in vacuum, and fc is the

carrier frequency.



The steering vector for the array is

a (pk) = [ap,q (pk)] |p=0,1,...,P−1;q=0,1,...,Q−1 , (2)

where a (pk) is a PQ×1 vector, and [vp,q]|(p,q)∈S1×S2 denotes the vector stacked by vp,q satisfying

p ∈ S1 and q ∈ S2.

The steering matrix for K far-field signals is then represented as

A = [a (p1) , a (p2) , ..., a (pK)] , (3)

which is a matrix of dimension PQ×K.

C. DL JCS Signal and Channel Model

In this paper, we consider the JCS system using OFDM-based signals. The transmitting signal

is

sD (t)=
Ms−1∑
m=0

Nc−1∑
n=0

√
Ptdn,me

j2π(fc+n∆f)tRect(
t−mT
T

), (4)

where Pt is the DL transmit power, dn,m is the mth baseband OFDM symbol of the nth subcarrier,

∆f is the subcarrier interval, T = Ts +Tg, Ts = 1
∆f

is the duration of OFDM symbol, Tg is the

guard interval, Ms and Nc are the number of OFDM symbols and subcarriers, respectively, and

Rect (t/T ) is the rectangular window function of duration T . When the DL preamble signal for

beam alignment and CSI estimation is transmitted, dn,m is replaced by the preamble symbols,

denoted by d̄n,m, which is known and deterministic to both BS and MUE. When the DL data

signal is transmitted, dn,m ∈ ΘQAM is a random symbol, where ΘQAM is the constellation of

quadrature amplitude modulation (QAM). Note that dn,m is known to BS but unknown to MUE.

Next, we present the JCS channel model. As illustrated in Fig. 1, the DL JCS channel

comprises a communication channel and an echo sensing channel.

• The JCS communication channel consists of a line-of-sight (LoS) path and several non-

line-of-sight (NLoS) scattering paths.

• The JCS echo sensing channel consists of the echo path from MUE as a scatterer, and the

echo paths from other scatterers which may or may not contribute to the communication

channel. Since the signals after multiple reflections are much smaller than those with only

one reflection, we only consider echoes directly reflected from scatterers.



Then, the JCS sensing echo and communication channels at the nth subcarrier of the mth

OFDM symbol are defined as [5], [8]

Hi,n,m=
L−1∑
l=0

[
αi,n,m,la(piRX,l)a(pTX,l)

]
, (5)

where pTX,l is the AoD of BS’s JCS transceivers, a(pTX,l) ∈ CPtQt×1 is the corresponding

transmit steering vectors as given in (2), L is the number of scatterers, l = 0 is for the direct

path between BS and MUE, l = 1, · · · , L−1 is for the reflected paths involved the lth scatterer.

Moreover, i = S and i = C represent the echo sensing and communication channels, respectively;

pSRX,l and pCRX,l are the AoAs of BS’s echo receiver and the MUE’s communication receiver,

respectively; and αS,n,m,l and αC,n,m,l are the channel fading for the lth sensing echo path and

communication path, respectively.

1) JCS Echo Sensing Channel: When i = S, a(pSRX,l) ∈ CPtQt×1 is the receive steering

vector for the lth echo sensing path, as given in (2). Since the mmWave array is typically small,

pSRX,l = pTX,l. Moreover, αS,n,m,l is the fading factor for the lth echo (when l = 0, MUE acts

as a scatterer), which is given by

αS,n,m,l = bS,le
j2πmTfs,l,1e−j2πn∆fτs,l , (6)

where fs,0,1 = 2vr,0,1
λ

and τs,0 = 2d0,1
c

are the echo Doppler frequency shifts and time delay

between BS and MUE, with vr,0,1 and d0,1 being the corresponding radial relative velocity and

the distance, respectively; fs,l,1 =
2vr,l,1
λ

and τs,l =
2dl,1
c

are the echo Doppler frequency shifts

and time delay between BS and the lth scatterer, with vr,l,1 and dl,1 being the corresponding

radial relative velocity and distance, respectively. Moreover, bS,l =
√

λ2

(4π)3dl,1
4βS,l, and βS,l is the

random reflection fading factor of the lth scatterer, following the complex Gaussian distribution

with zero mean and variance σ2
Sβ,l.

2) JCS Communication Channel: When i = C, a(pCRX,l) ∈ CPrQr×1 is the receive steering

vector for the lth communication path, as given in (2). Moreover, αC,n,m,l is the fading factor

for the lth path, and is expressed as

αC,n,m,l=

bC,0ej2πmTfc,d,0e−j2πn∆fτc,0 , l = 0

bC,le
j2π(fd,l,1+fd,l,2)mT e−j2πn∆f(τc,l,1+τc,l,2) , l > 0

, (7)

where fc,d,0 = vr,0,1
λ

and τc,0 = d0,1
c

are the Doppler frequency shift and time delay of the LoS

path; fd,l,1 =
vr,l,1
λ

, fd,l,2 =
vr,l,2
λ

, τc,l,1 =
dl,1
c

and τc,l,2 =
dl,2
c

are the Doppler frequency shifts
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and time delay between BS and scatterer, and between the scatterer and MUE of the lth NLoS

path, respectively, with vr,l,2 and dl,2 being the radial relative velocity and distance between the

lth scatterer and MUE, respectively; bC,0 =
√

λ2

(4πd0)2
is the propagation loss of the LoS path,

and bC,l =
√

λ2

(4π)3dl,1
2dl,2

2βC,l is the path fading factor of the lth NLoS path with βC,l being the

scattering factor of the lth scatterer. Here, βC,l is the random reflecting factor of the scatterer in

the lth path, which is assumed to follow the complex Gaussian distribution with zero mean and

variance σ2
Cβ,l. Due to the existence of bC,l, the LoS path is much stronger than the NLoS path

for mmWave.

Note that HC,n,m is unknown and needs to be estimated by utilizing the DL preambles, d̄n,m.

The parameters of HS,n,m are unknown, and BS has to estimate the AoA, range and Doppler in

HS,n,m. Since BS acts as both the sensing transmitter and receiver, both dn,m and d̄n,m can be

used for DL sensing. Moreover, l = 0 represents a special path, for which the echo time delay

and Doppler are twice of those in the communication channel, which is the theoretical basis for

the JCS CSI enhancement method to be introduced in Section III-B.

D. JCS Received Signal Model

In this subsection, we present the expressions for DL JCS received signals.

1) DL Communication Received Signal: The frequency-domain DL communication signal

received by MUE at the mth OFDM symbol of the nth subcarrier is expressed as

yC,n,m =
√
Ptdn,m(wRX)HHC,n,mwTX + nXC,n,m, (8)

where wTX ∈ CPtQt×1 and wRX ∈ CPrQr×1 are the JCS transmit and communication receive

beamforming (BF) vectors, respectively; ‖wTX‖2
2 = ‖wRX‖2

2 = 1. In this paper, the low-

complexity least-square (LS) method is used to generate wTX and wRX for BF. BS utilizes



the known DL preambles, i.e., dn,m = d̄n,m, to conduct beam alignment with MUE. When

beam alignment is completed, wTX = c1[aT (p̃TX,0)]† and wRX = c2[a(p̃RX,0)]†, where c1

and c2 are both arbitrary complex values with modulus 1, [·]† is the pseudo-inverse opera-

tion, p̃TX,0 ≈ pTX,0, and p̃RX,0 ≈ pCRX,0. Simultaneously, the unknown communication CSI,

(wRX)HHC,n,mwTX , can be estimated by processing the received preambles.

Moreover, nXC,n,m = nC,n,m+ξC,n,m is the sum of noise and interference, nC,n,m = (wRX)HnC,n,m

and ξC,n,m = (wRX)HxC,n,m are transformed noise and interference, the dimensions of nC,n,m

and xC,n,m are both PrQr × 1, nC,n,m is Gaussian noise vectors with each element following

CN (0, σ2
N), and xC,n,m is the reflected interference signals from other network devices. We

assume there are Nic ISs, and the reflected fading for each IS follows a Gaussian distribution.

Since the superimposed one of multiple random OFDM signals is noise-like, the pth element of

xC,n,m can be given as [xC,n,m]p =
Nic−1∑
i=0

√
Pi,cβ

I
i,p, where Pi,c is the power of incident signal

from the ith IS, and βIi,p ∼ CN (0, 1). Let PIC=
Nic−1∑
i=0

Pi,c. The interference to noise power ratio

(INR) is γINC = PIC

σ2
N

. Further, we define the communication SINR (C-SINR) as

γC,n,m =
Pt ‖hC,n,m‖2

2

PIC + σ2
N

, (9)

where hC,n,m = (wRX)HHC,n,mwTX is the gain of DL communication signal at each antenna

element.

2) DL Echo Sensing Received Signal: The echo signal that BS receives for the mth OFDM

symbol at the nth subcarrier is given by

yS,n,m =
√
Ptdn,mHS,n,mwTX+nXS,n,m =

√
Ptdn,m

L−1∑
l=0

[
(αS,n,m,l)χTX,la(pSRX,l)

]
+nXS,n,m, (10)

where χTX,l = aT (pTX,l)wTX represents the gain of the DL JCS transmit BF, nXS,n,m = nS,n,m+

xS,n,m is the sum of noise and interference, nS,n,m is the Gaussian noise vector with each element

following CN (0, σ2
N), xS,n,m is the superimposed interference vector for Nis reflected ISs, and

the dimensions of nS,n,m and xS,n,m are PtQt × 1. Similar to xC,n,m, the pth element of xS,n,m

can be given as [xS,n,m]p =
Nis−1∑
i=0

√
Pi,sβ

I
i,p, where Pi,s is the incident power of the ith IS, and

βIi,p ∼ CN (0, 1). The aggregate power of each element of xS,n,m is PIS=
Nic−1∑
i=0

Pi,s. The sensing

INR is defined as γINS = PIS/σ
2
N . Further, the sensing SINR (S-SINR) is defined as

γS,n,m =
Pt ‖hS,n,m,l‖2

2

PIS + σ2
N

, (11)



where hS,n,m,l = αS,n,m,lχTX,l is the gain of DL echo sensing signal at each antenna element.

By defining sn,m,l =
√
Ptdn,mαS,n,m,lχTX,l and sn,m = [sn,m,l]|l=0,1,...,L−1, (10) can be ex-

pressed in the matrix form as

yS,n,m = AS,RXsn,m + nXS,n,m, (12)

where AS,RX = [a(pSRX,l)]|l=0,1,...,L−1 is the steering matrix stacked by steering vectors of L

echoes, AS,RX ∈ CPtQt×L, and sn,m ∈ CL×1. By stacking all the Ms OFDM symbols with Nc

subcarriers, we have

YS = AS,RXS + NX
t , (13)

where S = [sn,m]|(n,m)∈[0,··· ,Nc]×[0,··· ,Ms] ∈ CL×NcMs , and YS ∈ CPtQt×NcMs .

III. DL JCS SIGNAL PROCESSING

In this section, we demonstrate the signal processing for DL JCS sensing and communication,

which is shown in Fig. 3. We first present the sensing signal processing scheme, and then

elaborate on the JCAS CSI enhancement method.

A. JCS Sensing Signal Processing

In this subsection, we first present the conventional MUSIC method for estimating the 2D

AoAs, and then introduce the novel MUSIC-based range and Doppler estimation method.

1) JCS MUSIC 2D Angle Detection: First, the correlation matrix of YS is obtained as

RX=
1

MsNc

YS[YS]H . (14)

By applying eigenvalue decomposition to RX, we have

[Ux,Σx] = eig (RX) , (15)

where Σx is the real-value eigenvalue diagonal matrix in descending order, and Ux is the

orthogonal eigen matrix. Calculate the average of eigenvalues and denote it as mx. Let αt

be a preset threshold, which is determined as elaborated in Appendix A. Then, the number of

echo paths is determined as the number of eigenvalues no smaller than αtmx, denoted by Nx.

Construct UN = Ux (:, Nx + 1 : PtQt)
1 as the noise subspace basis. We then use it to obtain

the spatial angular spectrum function as [12]

fa (p; UN) = aH (p) UN(UN)Ha (p) , (16)

1Ux (:, Nx + 1 : PtQt) means the slice matrix of (Nx + 1)th to the PtQtth columns of the matrix.



where p = (ϕ, θ) is the 2D angle, and a (p) is given in (2). The spatial spectrum is represented

as [12]

Sa (p; UN) = [aH (p) UN(UN)Ha (p)]−1. (17)

The maximum points of Sa (p; UN), i.e., the minimum points of fa (p; UN) are the estimated

AoAs [13]. We first find Nx local maximum points of Sa (p; UN) using a grid searching method

with relatively large granularity, then we use the Newton descent method to identify the accurate

minimum point of fa (p; UN) by inputting the above local maximum points as initial points for

iteration.

2) JCS Range and Doppler Detection: After the AoAs are obtained, through BF at the AoA

of interest, the filtered received signal at the nth subcarrier of the mth OFDM symbol can be

expressed as

ȳS,n,m,k = (wRX,S,k)
HyS,n,m =

√
Ptdn,m

L−1∑
l=0

[αS,n,m,lχTX,l$RX,l,k] + wt,n,m,k, (18)

where wt,n,m,k=(wRX,S,k)
HnXS,n,m is the transformed noise and interference with zero mean and

variance σW 2, $RX,l,k = (wRX,S,k)
Ha(pSRX,l) is the receive BF gain, and wRX,S,k is the receive

BF vector for the kth AoA, k ∈ [0, 1, ..., Nx − 1]. Note that $RX,k,k is typically larger than

$RX,l,k (l 6= k) due to the narrow beam feature of mmWave.

By substituting (6) into (18), we obtain (19).

ȳS,n,m,k =
√
Ptdn,mbS,k$RX,k,kχTX,ke

j2πfs,k,1mT e−j2πn∆f( rk
c )+

L−1∑
l=0,l 6=k

[√
Ptdn,mbS,l$RX,l,kχTX,le

j2πfs,l,1mT e−j2πn∆f( rl
c )
]

+ wt,n,m,k.
(19)

In (19), there are independent complex exponential functions for range and Doppler, i.e., e−j2πn∆f( rl
c )

and ej2πfs,l,1mT , respectively. Here, we define the range and Doppler steering vectors as

ar (r) = [e−j2πn∆f r
c ]|n=0,1,...,Nc−1, (20)

af (f) = [ej2πmTf ]|m=0,1,...,Ms−1, (21)

respectively. The range and Doppler steering matrices are defined as

Ar = [ar (rl)]|l=0,1,...,L−1, (22)

Af = [af (fs,l,1)]|l=0,1,...,L−1, (23)

where Ar ∈ CNc×L, and Af ∈ CMs×L.



Stack ȳS,n,m,k into a matrix ȲS where
[
ȲS

]
n,m

= ȳS,n,m,k, then erase the communication

symbol matrix Ds where [Ds]n,m = dn,m. From ȲS , we obtain

H̄S =
ȲS

Ds

, (24)

where the division is element-wise, and H̄S ∈ CNc×Ms .

According to (19), H̄S can be expressed by Ar as

H̄S = ArSr,s + Wtr, (25)

where Sr,s = [sr,m]|m=0,1,...,Ms−1 ∈ CL×Ms , sr,m = [
√
PtbS,l$TX,l,kχTX,le

j2πmTfs,l,1 ]|l=0,1,...,L−1,

and [Wtr]n,m = wt,n,m,k.

On the other hand, the transpose of H̄S , i.e.,
(
H̄S

)T , can be presented by Af as(
H̄S

)T
= AfSf,s + Wtf , (26)

where Sf,s = [sf,n]|n=0,1,...,Nc−1 ∈ CL×Nc , sf,n=[
√
PtbS,l$TX,l,kχTX,le

−j2πn∆f
rl
c ]|l=0,1,...,L−1, and

Wtf = [Wtr]
T .

The range and Doppler can be estimated via the autocorrelation of H̄S and
(
H̄S

)T , which are

given by

RX,r =
1

Ms

H̄S(H̄S)H ,RX,f =
1

Nc

(H̄S)T (H̄S)∗, (27)

respectively. Denote the noise subspaces of RX,r and RX,f as Ux,rN and Ux,fN , respectively.

Theorem 1. The minimum of ‖Ux,rN
Har (r)‖2

2, denoted by rs,l, is linked to the range via

rs,l = 2dl,1. The minimum of ‖Ux,fN
Haf (f)‖2

2 corresponds to the Doppler value, fs,l,1.

Proof. The proof is presented in Appendix C.

By applying eigenvalue decomposition to RX,r and RX,f , we have

[Ux,r,Σx,r] = eig (RX,r) , [Ux,f ,Σx,f ] = eig (RX,f ) , (28)

where Σx,r and Σx,f are the real-value diagonal matrices of eigenvalues in the descending order,

and Ux,r and Ux,f are the corresponding eigenvector matrices.

We use mx,r to denote the mean value of Σx,r, and then set the threshold αt,r using the

method in Appendix A by replacing Σx with Σx,r. The number of targets in the AoA of

interest, Nx,r, is then determined as the number of eigenvalues no smaller than αt,rmx,r. Then,

the noise subspace basis for range estimation is derived as Ux,rN = Ux,r(:, Nx,r + 1 : Nc). Since



the number of targets is the same for both Doppler and range estimation, the noise subspace

basis for the Doppler estimation can be derived as Ux,fN = Ux,f (:, Nx,r + 1 : Ms).

We use Ux,rN and Ux,fN to derive the range and Doppler spectrum functions as

fr(r; Ux,rN) = ar(r)
HUx,rN(Ux,rN)Har(r), ff (f ; Ux,fN) = af (f)HUx,fN(Ux,fN)Haf (f),

(29)

respectively. The range and Doppler spectra can be given by

Sr(r; Ux,rN) = [ar(r)
HUx,rN(Ux,rN)Har(r)]

−1,

Sf (f ; Ux,fN) = [af (f)HUx,fN(Ux,fN)Haf (f)]−1,
(30)

respectively.

The maximum points of Sr(r; Ux,rN) and Sf (f ; Ux,fN), i.e., the minimum points of fr(r; Ux,rN)

and ff (f ; Ux,fN), are the range and Doppler estimation values, denoted by r̂s,l and f̂s,l, respec-

tively. The distance, dl,1, and radial velocity, vr,0,1 , between BS and the target are given by

d̂l,1 =
r̂s,l
2

and v̂r,0,1 =
λf̂s,l

2
.

The minimum of fr(r) and ff (f) can be identified using a two-step Newton descent method.

We first find the local maximum points of Sr(r) and Sf (f) with large-granularity grid searching.

Then, we use the Newton descent method to find the accurate minimum points of fr(r) and

ff (f) using the above local maximum points as the initial points. The iterative expression for

the Newton descent method is derived as follows.

By applying the Taylor series decomposition to fr(r) and ff (f), and taking their first order

derivative over r and f , respectively, we obtain

∂fr (r)

∂r
.
=
∂fr(r0)

∂r
+
∂2[fr(r0)]

∂2r
(r − r0), (31)

and
∂ff (f)

∂f
.
=
∂ff (f0)

∂f
+
∂2[ff (f0)]

∂2f
(f − f0). (32)

By setting the above first-order derivative to be 0, the iterative descent expression for range and

Doppler estimation can be given by

r(k) = r(k−1) −
[
∂2fr(r

(k−1))

∂2r

]−1
∂fr(r

(k−1))

∂r
, (33)

f (k) = f (k−1) −
[
∂2ff (f

(k−1))

∂2f

]−1
∂ff (f

(k−1))

∂f
, (34)



respectively. From (29), the first-order and second-order derivatives of ff (f) and fr (r) are

expressed as
∂fr(r)

∂r
=2Re{a(1)

r (r)HUx,rN(Ux,rN)Har(r)}, (35)

∂ff (f)

∂f
=2Re{a(1)

f (f)HUx,fN(Ux,fN)Haf (f)}, (36)

∂2fr(r)

∂2r
=2Re

{
a

(2)
r (r)HUx,rN(Ux,rN)Har(r) + a

(1)
r (r)HUx,rN(Ux,rN)Ha

(1)
r (r)

}
, (37)

∂2ff (f)

∂2f
=2Re

{
a

(2)
f (f)HUx,fN(Ux,fN)Haf (f) + a

(1)
f (f)HUx,fN(Ux,fN)Ha

(1)
f (f)

}
, (38)

where a
(1)
r (r), a

(1)
f (f), a

(2)
r (r), and a

(2)
f (f) are the first-order and second-order derivatives of

ar(r) and af (f), respectively. From (20) and (21), these expressions are presented as

a
(1)
r (r) = [(−j2πn∆f

c
)e−j2πn∆f r

c ]|n=0,1,...,Nc−1, a
(1)
f (f) = [(j2πmT )ej2πmTf ]|m=0,1,...,Ms−1,

a
(2)
r (r) = [(−j2πn∆f

c
)
2
e−j2πn∆f r

c ]|n=0,1,...,Nc−1, a
(2)
f (f) = [(j2πmT )2ej2πmTf ]|m=0,1,...,Ms−1.

(39)

B. JCS Communication Signal Processing

By substituting (5) into (8), and taking into consideration that wTX and wRX in (8) generate

beams pointed at the AoD and AoA of the LoS communication path, respectively, we obtain the

communication received signal as

yC,n,m =
√
Ptdn,mhC,n,m + nXC,n,m, (40)

where hC,n,m = bC,0$RX,0χTX,0e
j2πmTsfc,d,0e−j2πn∆fτc,0 is the real communication channel re-

sponse, and $RX,0 = (wRX)Ha(pCRX,0) and χTX,0 = aT (pTX,0)wTX are the BF transmitting

and receiving gains. In the CSI estimation, dn,m = d̄n,m, and we denote yC,n,m = ȳC,n,m as the

received signal. The CSI estimated with the LS method is expressed as [14]

ĥC,n,m =
ȳC,n,m√
Ptd̄n,m

= hC,n,m + wC,n,m, (41)

where wC,n,m =
nX
C,n,m√
Ptd̄n,m

is the transformed noise plus interference and follows CN (0, σ2
p),

σ2
p = (PIC + σ2

N)/Pt. The estimated communication response matrix at Ms OFDM symbols

is denoted by ĤC , where [ĤC ]n,m = ĥC,n,m. The method for estimating σ2
p based on ĤC is

presented in Appendix B.

The conventional communication uses ĤC to demodulate the communication data. On the

other hand, fc,d,0 and τc,0 can be estimated by JCS as f̂c,d,0 = f̂s,0/2 and τ̂c,0 = r̂s,0/(2c),



Algorithm 1: JCS CSI Enhancement method
Input: The observation variance σ2

p; The variance of initial estimation pw,0; The initial

observation ĥC,0,m; The transfer factor A = e−j2π∆fτ̂c,0; The observation sequence

Φ̂.

Output: Filtered sequence [h̄C,n,m]|n=0,··· ,Nc−1.

Step 1: h̄C,0,m = ĥC,0,m.

Step 2: for n = 1 to Nc − 1 do

ĥ−n,m = Ah̄C,n−1,m;

p−w,n = Apw,n−1A
∗;

Kk = (p−w,n)∗(p−w,n + σ2
p)
−1;

h̄C,n,m = ĥ−n,m + (ĥC,n,m − ĥ−n,m)Kk;

pw,n = (1−Kk)p
−
w,n;

end

return [h̄C,n,m]|n=0,··· ,Nc−1.

respectively. Based on the prior information obtained by JCS sensing, we propose a Kalman

filter-based JCS CSI enhancement method to improve CSI by leveraging the sensing estimation

results of JCS.

For the mth OFDM symbol, ĥC,n,m can be regarded as the observation of hC,n,m as given

in (41). Since bC,0 is unchanged for the same OFDM symbol. The state transfer of hC,n,m is

given by

hC,n+1,m = e−j2π∆f(τc,0)hC,n,m, (42)

The Kalman filter algorithm that utilizes Φ̂ = [ĥC,n,m]|n=0,··· ,Nc−1 to recursively derive the

estimation of Φ = [hC,n,m]|n=0,··· ,Nc−1 is presented in Algorithm 1, with the details of the

Kalman Filter algorithm referenced to [15]. Note that we obtain hC,n,m = e−j2πn∆fτc,0hC,0,m

from (42), based on which we can further estimate the initial observation variance as

pw,0=
Nc−1∑
n=1

‖ej2πn∆f(τ̂c,0)ĥC,n,m−ĥC,0,m‖2
2/(Nc − 1), (43)

After [h̄C,n,m]|n=0,··· ,Nc−1 for m = 0, ...,Ms− 1 are all derived via Algorithm 1, we can form

the enhanced CSI matrix H̄C , where [H̄C ]n,m = h̄C,n,m, to demodulate the data symbols. First,

yC,n,m given in (8) is equalized as r̂C,n,m = yC,n,m/(
√
Pth̄C,n,m), then we use the maximum



likelihood (ML) method to estimate dn,m as d̂n,m = arg min
d∈ΘQAM

‖r̂C,n,m − d‖2
2, where ΘQAM is the

constellation.

IV. PERFORMANCE ANALYSIS OF THE JCS PROCESSING

In this section, the analytical MSE results of AoAs, range, Doppler, and location estimation

of the proposed MUSIC-based JCS processing are derived using the perturbation method.

A. Analysis of 2D Angle Detection MSE

From (13), the noise term Nt can be treated as the perturbation to the useful signal, which is

expressed as

YS = YS,R + NX
t , (44)

where YS,R = AS,RXS is the useful signal. The singular value decomposition of YS,R can be

expressed as

YS,R=UΣVH =[Us,U0]

 Σs 0

0 0

VH
s

VH
0

=UsΣsV
H
s , (45)

where U0 is the noise subspace basis, and U0
HYS,R = 0. Further, we have U0

HAS,RX = 0.

With noise as perturbation, YS can be expressed as

YS =
[
Ũs, Ũ0

] Σ̃s 0

0 Σ̃0

 ṼH
s

ṼH
0

 , (46)

where Σ̃0 = ∆Σ0, Σ̃s = Σs + ∆Σs, and Ũ0 = U0 + ∆U0. Here, Ũ0 and Ũs are both

orthogonal unitary matrices, and ŨH
0 YS=∆Σ0Ṽ

H
0 . In the high SINR regime, solving the per-

turbation problem is equivalent to seeking the optimal ∆U0 to minimize ‖ŨH
0 YS‖2 subject to

the constraint ŨH
0 Ũ0 = I [13]. By substituting (44) into ‖ŨH

0 YS‖2, we have

‖ŨH
0 YS‖2=‖(U0 + ∆U0)H(YS,R + NX

t )‖2. (47)

The second-order perturbation (∆U0)HNt and U0
HYS,R=0 can be discarded. By using the LS

method [13], ∆U0 can be presented as

∆U0 = −UsΣ
−1
s VH

s [Nt]
HU0. (48)

The MUSIC 2D angle estimation result is distorted by the noise perturbation, which is expressed

as p̃k = pk + ∆pk, where pk is the actual value of AoA. Apply Taylor series decomposition to



fa(p̃k; Ũ0) in (16), and take the first three terms. Applying first-order derivative to the truncated

Taylor series, we have

∂fa(p̃k; Ũ0)

∂p
.
=
∂fa(pk; Ũ0)

∂p
+
∂2fa(pk; Ũ0)

∂2p
∆pk. (49)

By setting (49) to be 0, we can obtain

∆pk = −Hp
−1(pk; Ũ0)Gp(pk; Ũ0), (50)

where Hp(pk; Ũ0) = ∂2fa(pk;Ũ0)
∂2p

∈ C2×2 is the Hessian matrix of fa, and Gp(pk; Ũ0) =

∂fa(pk;Ũ0)
∂p

∈ C2×1 is the gradient vector of fa.

With the perturbation expression, we can obtain

Gp(pk; Ũ0) = Gp(pk; U0) + ∆Gp, (51)

Hp(pk; Ũ0) = Hp(pk; U0) + ∆Hp. (52)

From (16), we have

Gp(pk; U)=
∂fa(p; U)

∂p
= 2Re{a(1)

p (p)HUUHa(p)}, (53)

vec[Hp(p; U)] = 2Re
{

vec[a
(1)
p (p)HUUHa

(1)
p (p)] + a

(2)
p (p)HUUHa(p)

}
, (54)

where vec(·) is to vectorize a matrix, a
(1)
p (p) and a

(2)
p (p) are the first-order and second-order

derivatives of a(p) over p, respectively, which can be derived from (2).

Since U0
HAS,RX = 0, we can obtain

Gp(pk; U0) = 0, (55)

Hp(pk; U0)=2Re{a(1)
p (pk)

HU0U0
Ha(1)

p (pk)}. (56)

We use Hp0 to represent Hp(pk; U0). By substituting (55) and (56) into (51) and (52), (50) can

be rewritten as

∆pk = −(Hp0 + ∆Hp)−1(∆Gp) = −

 I−Hp0
−1∆Hp+

(Hp0
−1∆Hp)2 + ...

Hp0
−1∆Gp. (57)

Discarding the perturbation terms that are higher than second-order in (57), we can rewrite (57)

as

∆pk = −Hp0
−1∆Gp, (58)



where the perturbation expression of ∆Gp is derived in Appendix D as

∆Gp=2Re{−a(1)
p (pk)

HU0U0
H [Nt]

HVsΣ
−1
s Us

Ha(pk)}, (59)

By substituting (59) and (56) into (58), we can obtain ∆pk as shown in (60).

∆pk = [Re{a(1)
p (pk)

HU0U0
Ha(1)

p (pk)}]−1Re{a(1)
p (pk)

HU0U0
H [Nt]VsΣs

−1Us
Ha(pk)}. (60)

The MSE of angle estimation can be expressed as

MSE(pk) = E{diag(∆pk[∆pk]
H)}. (61)

B. Analysis of Range and Doppler Detection MSE

1) Analysis of Range Detection MSE: The noisy signal for the range estimation, as shown in

(25), is rewritten as

H̄S = H̄S,p + Wtr, (62)

where H̄S,p = ArSr,s is the useful signal. The singular value decomposition of H̄S,p is

H̄S,p=[Ur,s,Ur,0]

Σr,s 0

0 0

 VH
r,s

VH
r,0

=Ur,sΣr,sV
H
r,s, (63)

where Ur,s and Ur,0 are orthogonal unitary matrices, and Ur,0
HH̄S,p = 0. We further obtain

Ur,0
HAr = 0.

By treating Wtr as a perturbation term, H̄S can be decomposed as

H̄S =
[
Ũr,s, Ũr,0

] Σ̃r,s 0

0 ∆Σr,0

 ṼH
r,s

ṼH
r,0

 , (64)

where Σ̃r,0 = ∆Σr,0, and Ũr,0 = Ur,0 + ∆Ur,0. Because Ũr,s and Ũr,0 are orthogonal unitary

matrices, we have ŨH
r,0H̄S=∆Σr,0Ṽ

H
r,0. In the high SINR regime, solving the perturbation

problem is equivalent to seeking the optimal ∆Ur,0 to minimize ‖ŨH
r,0H̄S‖2 with the constraint

ŨH
r,0Ũr,0 = I. By substituting (62) and Ũr,0 = Ur,0 + ∆Ur,0 into the problem, then discarding

the term Ur,0
HH̄S,p = 0 and the second-order perturbation ∆Ur,0

HWtr, we can obtain

‖ŨH
r,0H̄S‖2

.
= ∆Ur,0

HH̄S,p + Ur,0
HWtr. (65)

Using the LS method and substituting (63) into (65), we can obtain ∆Ur,0 as

∆Ur,0 = −Ur,sΣr,s
−1VH

r,s(Wtr)
HUr,0. (66)



Next, we derive the expression for the perturbation of range estimation, i.e., ∆r = r − rk,

where rk is the actual value of range, and r is the estimation value.

Apply Taylor series decomposition to (29) at rk, and keep the first three terms. Applying the

first-order derivative to the truncated series with respect to r, we obtain the range perturbation

as
∂fr(r; Ũr,0)

∂r
=
∂fr(rk; Ũr,0)

∂r
+
∂2fr(rk; Ũr,0)

∂2r
∆r. (67)

Because the Newton descent method identifies the optimal point with ∂fr(r;Ũr,0)

∂r
=0, the range

perturbation can be expressed as

∆r = −[Hr(rk; Ũr,0)]−1Gr(rk; Ũr,0), (68)

where

Gr(r; U) =
∂fr(rk; U)

∂r
= 2Re[a(1)

r (r)HUUHar(r)], (69)

and

Hr(r; U) =
∂2fr(r; U)

∂2r
= 2Re

[
a

(2)
r (r)HUUHar (r) + a

(1)
r (r)HUUHa

(1)
r (r)

]
. (70)

Using the perturbation form to express Gr(rk; Ũr,0) and Hr(rk; Ũr,0), we have

Gr(rk; Ũr,0) = Gr(rk; Ur,0) + ∆Gr, (71)

and

Hr(rk; Ũr,0) = Hr(rk; Ur,0) + ∆Hr. (72)

Because Ur,0
HAr = 0, we have

Gr(rk; Ur,0) = 0, (73)

and

Hr(rk; Ur,0)=2Re[a(1)
r (rk)

HUr,0(Ur,0)Ha(1)
r (rk)]=Hr0, (74)

By substituting (73) and (74) into (71) and (72), respectively, (68) becomes

∆rk = −{Hr0[1 + (Hr0)−1∆Hr]}−1∆Gr
.
= −(Hr0)−1∆Gr, (75)

where the last equation is obtained by discarding the second-order perturbation terms.

The perturbation expression of ∆Gr is derived in Appendix D, given by

∆Gr = 2Re[a(1)
r (r)H(Ur,0∆Ur,0

H)ar(r)], (76)



By substituting (74), (76), and (66) into (75), we obtain

∆rk=
Re[a

(1)
r (rk)

HUr,0Ur,0
HWtrVr,sΣr,s

−1Ur,s
Har(rk)]

Re[a
(1)
r (rk)

HUr,0(Ur,0)Ha
(1)
r (rk)]

, (77)

where ar(rk) is given in (20), and a
(1)
r (rk) is given in (39).

The MSE of the MUSIC-based JCS range estimation can be expressed as

MSE(r) = E[∆r2
k]. (78)

2) Analysis of Doppler Detection MSE: Similar to the range estimation, the perturbation of

Doppler estimation can be derived as

∆fd=
Re[a

(1)
f (fk)

HUf,0Uf,0
HWtfVf,sΣf,s

−1Uf,s
Haf(fk)]

Re[a
(1)
f (fk)

HUf,0(Uf,0)Ha
(1)
f (fk)]

, (79)

where fk is the real Doppler value, af (fk) is given in (21), and a
(1)
f (fk) is given in (39).

Furthermore, the perturbation of the radial velocity estimation is

∆v = λ∆fd. (80)

C. Analysis of Location MSE

The location of the target can be obtained after the AoA, pk = (ϕk, θk), and the range, rk,

are detected. The expression for the actual location is given by

ploc(rk, ϕk, θk)=(xk, yk, zk)=(rk sin θk cosϕk, rk sin θk sinϕk, rk cos θk). (81)

With the AoA and range estimation perturbation, ∆pk = (∆ϕk,∆θk) and ∆rk, the location of

the target is

ploc(rk + ∆rk, ϕk + ∆ϕk, θk + ∆θk) =


(rk + ∆rk) sin(θk + ∆θk) cos(ϕk + ∆ϕk),

(rk + ∆rk) sin(θk + ∆θk) sin(ϕk + ∆ϕk),

(rk + ∆rk) cos(θk + ∆θk)

 , (82)

Comparing (81) with (82) and discarding the second-order perturbation, we can represent the

perturbation of x, y, and z axes coordinates as

∆x
.
= ∆rk sin θk cosϕk + rk

(
∆θk cos θk cosϕk −∆ϕk sin θk sinϕk

)
, (83)

∆y
.
= ∆rk sin θk sinϕk + rk

(
∆ϕk sin θk cosϕk + ∆θk cos θk sinϕk

)
, (84)



and

∆z
.
= ∆rk cos θk − rk∆θk sin θk. (85)

Finally, the location error can be expressed as

E{‖∆ploc‖2
2} = E{(∆x)2 + (∆y)2 + (∆z)2}. (86)

D. Cramer–Rao bound of JCS Sensing

We further derive the Cramer–Rao bound (CRB) to characterize the minimum lower bound

for sensing. Based on the signal model presented in Section II-D2, the echo signal of the lth

target received by the (p, q)th antenna element at the nth subcarrier of the mth OFDM symbol

is

yp,qS,n,m,l=
√
Ptdn,mαS,n,m,lχTX,lap,q(pl) + np,qS,n,m + xp,qS,n,m, (87)

where αS,n,m,l = bS,le
j2πmTs2vs,l/λe−j2πn∆f2rs,l/c is given as (6), vs,l = vr,l,1 and rs,l = dl,1 are the

radial relative velocity and distance between BS and the lth target, respectively; ap,q (pl) is given

in (1), pl = pTX,l = (ϕl, θl) is the 2D AoA of the lth target; χTX,l is the transmitting BF gain;

np,qS,n,m and xp,qS,n,m are the noise and interference at the (p, q)th antenna element. Let nX,p,qS,n,m ,

np,qS,n,m + xp,qS,n,m, then nX,p,qS,n,m is independent and identically distributed, following CN (0, σ2
W ),

where σ2
W = PIS + σ2

N .

Let ψ = (rs,l, vs,l, ϕl, θl) be the set of estimation parameters. Then, the distribution of yp,qS,n,m,l
is

p(y;ψ)=
1

πσ2
W

e−‖y−
√
Ptdn,mαS,n,m,lχTX,lap,q(pl)‖22/σ2

W , (88)

Because there are NcMsPtQt independent symbols used for estimation, the joint distribution of

these symbols is

p (y;ψ) = ρe
−

NcMsPtQt∑
(n,m,p,q)

‖yp,qn,m−sn,mαS,n,m,lap,q(pl)‖22/σ2
W

, (89)

where ρ = ( 1
πσ2

W
)NcMsPtQt , and sn,m =

√
Ptdn,mχTX,l. Note that dn,m is independent and

identically distributed with E(‖dn,m‖2
2) = 1. According to [16], [17], the CRB of ψi, ψi ∈

(rs,l, vs,l, ϕl, θl), is given by

Cψi
= −

{
E

[
∂2 ln p (y;ψ)

∂2ψi

]}−1

. (90)
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Fig. 4: Detection spectra of schemes 1, 2 and 3.

With (89) and (90), the sensing CRBs are derived as

Crs,l = c2

32π2γSMsPtQt

Nc−1∑
n=0

n2(∆f)2
, Cvs,l = λ2

32π2γSNcPtQt

Ms−1∑
m=0

m2(T )2
,

Cϕl
= λ2

8π2d2aγSNcMs
∑
p,q

(q cosϕl sin θl−p sinϕl sin θl)
2 , Cθl = λ2

8π2d2aγSNcMs
∑
p,q

(p cosϕl cos θl+q sinϕl cos θl)
2 ,

(91)

where γS is the S-SINR as given in (11).

E. Complexity Analysis and Comparison

In this section, we analyze and compare the complexity of the proposed MUSIC-based JCS

method with the conventional FFT-based methods. We consider three schemes: Scheme 1 is the

proposed MUSIC-based method; Scheme 2 is the original FFT-based method in [6]; and Scheme

3 is the Code-division OFDM (CD-OFDM) FFT-based method in [8].

Scheme 1: The main complexity is associated with the eigenvalue decomposition of RX,r and

RX,f and the derivation of detection spectra. Therefore, for range and Doppler estimation, the

computation complexities are O[(Nc)
3] and O[(Ms)

3], respectively. Because the MUSIC-based

JCS method can work in parallel, the total complexity is O
(
max

{
Ms

3, Nc
3
})

.

Scheme 2: The complexity is mainly from two serial FFT operations for the Nc ×Ms echo

sensing channel matrix. Therefore, the complexity of Scheme 2 is O (MsNc log (MsNc)).



Scheme 3: The complexity is mainly from code-division multiplex demodulation and two

serial FFT operations for the Nc ×Ms echo sensing channel matrix. Therefore, the complexity

of Scheme 3 is O[(Nc)
2Ms +MsNc log(MsNc)].

It can be seen that Scheme 2 has the lowest complexity. The complexity of Scheme 3 in-

creases due to the additional code-division multiplex processing. The complexity of our proposed

MUSIC-based JCS method has the highest complexity to achieve super-resolution detection.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we present extensive simulation results for the proposed MUSIC-based JCS

processing method, with comparison to the Schemes 2 and 3 as described in Section IV-E, and

verify them against the analytical performance bounds derived in Section IV. We also compare

the BER results of communication demodulation for the proposed JCS CSI enhancement method

with those in conventional communication systems.

A. System Setup

The system setup largely follows the specification in the 3GPP Vehicles-to-Everything (V2X)

applications [18]. The carrier frequency is 63 GHz, the antenna interval, da, is half of the

wavelength, the sizes of antenna arrays of BS and MUE are Pt×Qt = 8×8 and Pr×Qr = 1×1,

respectively. The subcarrier interval is ∆f = 480 kHz, the subcarrier number is set to Nc = 256,

and the number of consecutive OFDM symbols is Ms = 64. Therefore, the bandwidth for JCAS

is B =Nc∆f = 122.88 MHz. The range and radial velocity resolutions are ∆r = c
2B

= 1.22

m and ∆v = λ∆f
2Ms

= 17.8571 m/s, respectively [6]. The variance of the Gaussian noise is

σ2
N = kFTB = 4.9177× 10−12 W, where k = 1.38× 10−23 J/K is the Boltzmann constant, F =

10 is the noise factor, and T = 290 K is the standard temperature. The INRs for communication

and sensing signals are γINC = γINS = 3 dB.

Moreover, the location of the BS transmitting array is ploc,u = (50, 4.75, 7) m. MUE moves on

the x-axis and its antenna’s location is ploc,u = (x, 0, 2) m, where x follows uniform distribution

from 50 m to 155 m. The scatterer is generated uniformly in a sphere centered at BS with a radius

of 100 m. BS is static, while the velocity of MUE is (−11.11, 0, 0) m/s. The reflection factors

of the targets are σ2
Cβ,l = σ2

Sβ,l = 1. The BS array spins 45 degrees along the z-axis and has a

downtilt angle of 20 degrees. For each test, the AoAs, ranges, and radial velocities between BS

and MUE are then generated from the above parameters, and the JCS communication and echo
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Fig. 5: MSEs for sensing parameter estimation. In Fig. 5(a), the solid curves are for the MSEs

and CRBs of azimuth and elevation angles obtained in simulation, and the dashed curves are for

the numerical ones via the theoretical perturbation results; in Figs. 5(b), 5(c) and 5(d), the solid

curves are for the MSEs and CRBs computed via simulation results, and the dashed curves are

for theoretical perturbation results.

sensing channel are further generated following the expressions in Section II-C. The transmit

power of BS for each test, Pt, is determined using (11) for the given values of S-SINR and INR.

The MSEs of AoA, range, velocity, and location estimation are defined as the mean values

of the squared errors of all the estimates.



B. Sensing Performance

We first demonstrate the sensing spectra of schemes 1, 2, and 3. The normalized range spectrum

and radial velocity spectrum are shown in Figs. 4(a) and 4(b), respectively. The S-SINR is

γS,n,m = −20 dB. For range estimation as shown in Fig. 4(a), the peak to sidelobe ratio (PSLR)

of scheme 1 is about 26 dB. By contrast, the PSLRs of schemes 2 and 3 are both around 10 dB.

For radial velocity estimation as shown in Fig. 4(b), the PSLR of scheme 1 is about 33 dB, while

the PSLRs of schemes 2 and 3 are around 10 dB. The improvement of PSLR of the proposed

MUSIC-based JCAS method is credited to the eigenvalue (or singular value) decomposition

process, which separates the interference-plus-noise (IN) and signal subspace and reduces the

influence of the noise on signal detection.

Fig. 5(a) presents the AoA estimation MSE of various S-SINRs. With the increase of S-SINR,

the AoA estimation MSE decreases as the receiving signal power increases. As the S-SINR is

larger than −27 dB, the AoA estimation MSE is less than 0.5 square degrees. Since the range

of azimuth angle, ϕk, is larger than the elevation angle, θk, the MSE of ϕk is larger than θk at

first. With S-SINR becoming large enough, the MSE of ϕk approaches that of θk.

Fig. 5(b) and Fig. 5(c) demonstrate the range and radial velocity estimation MSEs for schemes

1, 2, and 3 under various S-SINRs, respectively. The range and velocity estimation MSEs of

scheme 3 outperform scheme 2 because the code-division multiplex processing in scheme 3 can

suppress the interference to a certain extent. scheme 1 achieves much lower MSEs than both

schemes 2 and 3, closer to the CRBs in the high SINR regime. This is because the resolutions

of schemes 2 and 3 are constrained by their FFT-based sensing, with (∆r)2 = 1.5 m2 and

(∆v)2 = 318 (m/s)2 in this simulation setting. In contrast, our proposed MUSIC-based method

can sample the consecutive range and velocity spectra and achieves range and velocity MSEs

lower than 10−3 m2 and 10−3 (m/s)2, respectively. The MSEs for scheme 1 is about 25 dB

lower than those for scheme 3, closer to the range and velocity CRBs. These results demonstrate

that the proposed MUSIC-based JCS method achieves super-resolution sensing. Moreover, the

theoretical MSEs are shown to be close to the simulation MSEs in the high SINR regime. The

higher QAM order results in larger MSEs for scheme 1, because the increase of QAM order

results in larger transformed noise as can be seen from (19) and (24).

Fig. 5(d) shows the location MSE versus S-SINR. With the estimated AoA and range, the

location can be determined by (81). Given the sensing SINR, the MUSIC-based JCS method



achieves better location MSE than scheme 3. The gaps between scheme 1 and scheme 3 are

not so large in the high SINR regime. This is because the AoA estimation error dominates the

location MSE. More specifically, E{(r̂s,l − rs,l)2} is smaller than 10−1 m2, while the error of

location as shown in (83), (84), and (85) can be much larger than E{(r̂s,l − rs,l)2}, because they

are related to rs,l.

C. Communication Performance

We first present the BERs of demodulating communication signals using the CSI obtained

by the JCS CSI enhancement method, compared with using the original CSI. For the simplicity

of description, we predefine 4 cases for comparison: Cases A and B are for demodulating

communication signals using the perfect CSI and original estimated CSI, respectively. Cases C

and D are for demodulating communication signals with the CSI enhanced by the MUSIC-based

JCS sensing results and the CSI processed with FFT-based JCS sensing results, respectively.

Fig. 6 shows the BER results when 64-QAM is used for communication. Note that when

the detected target is the communication user, the relation between C-SINR and S-SINR is
γC,n,m

γS,n,m
=
‖hC,n,m‖2

2

‖hS,n,m,l‖2
2

, according to (9) and (11) under the assumption γINC = γINS = 3 dB. Due to

the CSI estimation error caused by noise and interference, the BER for case B is significantly

larger than that for case A. As C-SINR increases, the BER for case C decreases rapidly and

becomes lower than that for case B after C-SINR is larger than 20 dB. This is because the

JCS CSI enhancement method exploits the accurate sensing results and improves the estimated

CSI. By comparing case D with cases B and C, we can see that the BER for case D is much

larger, which indicates that the FFT-based JCS sensing results are not helpful for improving

the CSI and for communication. Referring to the sensing MSEs of the MUSIC-based and the

FFT-based JCS in Fig. 5(b), we can see that the more accurate the sensing results are, the better

CSI enhancement performance is, as the accuracy of range estimation directly determines the

accuracy of A in Algorithm 1. This is also the reason that the BER for case C decreases rapidly

when the sensing MSE becomes sufficiently low.

VI. CONCLUSION

In this paper, we proposed a novel JCS system that can achieve accurate AoA, range, and

velocity estimation based on improved MUSIC algorithms, together with improved communi-

cation performance. Compared with the conventional FFT-based sensing method, our proposed
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MUSIC-based sensing method can achieve much higher accuracy in range and radial velocity

estimation. The proposed JCS CSI enhancement method exploits the JCS sensing results in the

design of a Kalman filter for refining the CSI estimate. It is shown to significantly improve

the communication performance at high SNRs, approaching the performance with perfect CSI.

Moreover, we derived the theoretical lower bound MSEs for the proposed range and velocity

estimators using perturbation analysis. Simulation results demonstrate that the theoretical results

match the simulation results well, particularly at higher SNRs.

APPENDIX A

DERIVATION OF αt

First, we denote the eigenvalue vector as vx = diag(Σx), where diag(X) denotes a vector

taking the diagonal values of X. The mean value of vx is denoted by mx, and vx ∈ RN×1. We

assume there are L incident signals. According to the property of the MUSIC algorithm, the ith

entry of vx can be expressed as [19]

[vx]i =

 Pi + σ2
N , i ≤ L

σ2
N , i > L

, (92)

where Pi is the power of the ith incident signal, σ2
N is the noise power. We define the differential

vector of vx as v∆, where [v∆]i=[vx]i− [vx]i+1, and v∆ ∈ R(N−1)×1, Obviously, [v∆]i ≈ 0 when

i > L, while [v∆]i � 0 when i ≤ L. Since mmWave suffers from large propagation loss, L is

typically much smaller than N . Then, we represent the mean value of the latter half of v∆ as



v̄ =
N−1∑

k=b(N−1)/2c
[v∆]k/(N − b(N − 1)/2c), and v̄ is close to 0. Therefore, the number of detected

targets is determined as

L̂ = arg max
i

[v∆]i > (1 + ε)v̄, (93)

where ε is a parameter used to avoid false detection caused by a small error. In the simulation,

we set ε = 1.

Therefore, αt is set as αt = [vx]L̂/mx. It is a key parameter and has an important impact

on sensing accuracy. When αt is too large, the selected noise subspace will include part of the

signal subspace, and thus the target may be missed; when αt is too small, the noise subspace is

not selected completely, and thus large noise may be taken into the signal space.

APPENDIX B

DERIVATION OF σ2
p

We first derive the eigenvalue matrix of ĤC(ĤC)H as Σp, and obtain the eigenvalue vector as

vp = diag(Σp). When the LoS signal dominates the communication channel, i.e., L = 1, from

(92), we can estimate σ2
p as

σ̂2
p =

Nc∑
i=2

[vx]i/(Nc − 1). (94)

APPENDIX C

PROOF OF THEOREM 1

Ux,r can be divided as Ux,r = [Sx,r,Ux,rN ]. Because Ux,r is an orthogonal matrix, [Sx,r]
HUx,rN=0

and [Ux,rN ]HUx,rN=I hold.

On one hand, since Ux,rN is the noise subspace of RX,r, we have

RX,rUx,rN = σW
2Ux,rN , (95)

where σW 2 is the Gaussian noise variance.

On the other hand, we have

RX,r = E(H̄S[H̄S]
H

) = ArE{Sr,s[Sr,s]H}[Ar]
H + σW

2I (96)

Therefore,

RX,rUx,rN = ArE{Sr,s[Sr,s]H}[Ar]
HUx,rN + σW

2Ux,rN . (97)



By comparing (95) with (97), we obtain

ArE{Sr,s[Sr,s]H}[Ar]
HUx,rN = 0. (98)

Thus,

[Ux,rN ]HArE{Sr,s[Sr,s]H}[Ar]
HUx,rN = 0. (99)

Since E{Sr,s[Sr,s]H} is full-rank, [Ux,rN ]HAr = 0. Therefore, the multiplication between [Ux,rN ]H

and each column of Ar is 0, i.e., (Ux,rN)Har(rl) = 0 holds. Thus, the minimum points of

‖Ux,rN
Har(r)‖2

2 are the ranges.

Similarly, by comparing the two expressions of RX,fUx,fN , we obtain

[Ux,fN ]HAfE{Sf,s[Sf,s]H}[Af ]
HUx,fN = 0. (100)

Because E{Sf,s[Sf,s]H} is full-rank, [Ux,fN ]HAf = 0 holds. Hence, the multiplication be-

tween [Ux,fN ]H and each column of Af is 0, i.e., (Ux,fN)Haf (fs,l,1) = 0 holds. Thus, the

minimum points of ‖(Ux,fN)Haf (f)‖2
2 are the Doppler results.

The proof of Theorem 1 is completed.

APPENDIX D

1) The derivatives for ∆Gp: The expanded expression for Gp(pk; Ũ0) can be given by

Gp(pk; Ũ0)=2Re
{
a(1)
p (pk)

H(U0 + ∆U0)× (U0 + ∆U0)Ha(pk)
}
. (101)

Then, according to (51), ∆Gp can be expressed as

∆Gp = 2Re
{

a(1)
p (pk)

H
(

U0∆U0
H + ∆U0U0

H + ∆U0∆U0
H
)

a(pk)
}
. (102)

By discarding the second-order perturbation ∆U0∆U0
H and U0

Ha(pk) = 0, and substituting

(48) into (102), we obtain

∆Gp=2Re{−a(1)
p (pk)

HU0U0
H [Nt]

HVsΣs
−1Us

Ha(pk)}.

2) The derivatives for ∆Gr: The expanded expression for ∆Gr can be given by

∆Gr = Gr(r; Ũr,0)−Gr(r; Ur,0) = 2Re[a(1)
r (r)H(Ur,0+∆Ur,0)(Ur,0+∆Ur,0)Har(r)]. (103)

By discarding the second-order perturbation term, Ur,0
HAr = 0, and substituting (66) into (103),

we obtain

∆Gr=2Re[a(1)
r (rk)

HUr,0Ur,0
HWtrVr,sΣr,s

−1Ur,s
Har(rk)].
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