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Two-Way Full-Duplex Communication Systems

Christos N. Efrem and Ioannis Krikidis, Fellow, IEEE

Abstract—Intelligent reflecting surfaces (IRSs) have emerged
as a promising wireless technology for the dynamic configuration
and control of electromagnetic waves, thus creating a smart
(programmable) radio environment. In this context, we study
a multi-IRS assisted two-way communication system consisting
of two users that employ full-duplex (FD) technology. More
specifically, we deal with the joint IRS location and size (i.e.,
the number of reflecting elements) optimization in order to
minimize an upper bound of system outage probability under
various constraints: minimum and maximum number of re-
flecting elements per IRS, maximum number of installed IRSs,
maximum total number of reflecting elements (implicit bound
on the signaling overhead) as well as maximum total IRS
installation cost. First, the problem is formulated as a discrete
optimization problem and, then, a theoretical proof of its NP-
hardness is given. Moreover, we provide a lower bound on
the optimum value by solving a linear-programming relaxation
(LPR) problem. Subsequently, we design two polynomial-time
algorithms, a deterministic greedy algorithm and a randomized
approximation algorithm, based on the LPR solution. The former
is a heuristic method that always computes a feasible solution
for which (a posteriori) performance guarantee can be provided.
The latter achieves an approximate solution, using randomized
rounding, with provable (a priori) probabilistic guarantees on
the performance. Furthermore, extensive numerical simulations
demonstrate the superiority of the proposed algorithms compared
to the baseline schemes. Finally, useful conclusions regarding
the comparison between FD and conventional half-duplex (HD)
systems are also drawn.

Index Terms—Intelligent reflecting surface, IRS deployment,
full-duplex communication, discrete optimization, NP-hardness,
linear-programming relaxation, randomized rounding, approxi-
mation algorithm.

I. INTRODUCTION

Intelligent reflecting surface (IRS), also known as recon-

figurable intelligent surface, has been considered as one of

the most effective techniques to cope with the signal block-

age in communication networks operating in millimeter-wave

(mmWave) frequency bands. IRS is a planar surface which

is installed on the walls or ceilings of buildings so as to

create virtual line-of-sight (LoS) links between the transmitters

and receivers, thus overcoming the physical obstacles between
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them. In particular, IRS consists of (mostly) passive reflecting

elements that can independently induce a controllable phase

shift on the incident electromagnetic wave [2]–[4].

Moreover, IRSs are not expected to perform any sophisti-

cated signal processing operations that require radio-frequency

(RF) chains, but only the necessary amplitude attenuation and

phase rotation of signals via low-power electronic circuits. In

other words, high-cost active components (e.g., power ampli-

fiers) are not required, thus leading to low energy consumption

and implementation cost. For this reason, IRSs are usually

referred to as “nearly-passive” devices. In addition, they

have much lower implementation cost than conventional tech-

nologies of active transceivers, such as amplify-and-forward,

decode-and-forward relays and multiple-input-multiple-output

systems [5], [6].

On the other hand, full-duplex (FD) wireless technology

has the potential to double the spectral efficiency, compared

to its half-duplex (HD) counterpart, by allowing simultaneous

transmission and reception within the same frequency band.

This can be achieved at the expense of higher implementation

complexity due to the required loop-interference cancellation

techniques [7]–[9]. Recently, there is a growing interest of the

research community in combining IRSs with FD systems in

order to exploit their benefits and advantages [10]–[16].

A. Related Work

To begin with, [17] presents an aerial-IRS (AIRS) system

architecture in order to enhance the system performance,

compared to the conventional terrestrial IRS, by exploiting

the high altitude of AIRS. In particular, the authors study the

joint optimization of the transmit beamforming of the ground

source-node as well as the placement and passive beamforming

of the AIRS. In addition, the single-IRS deployment problem

(inside a 3-dimensional box), where an access point communi-

cates with multiple users via the IRS, has been investigated in

[18]. Specifically, the weighted sum rate maximization prob-

lem has been formulated for three multiple access schemes:

non-orthogonal multiple access (NOMA), frequency division

multiple access (FDMA), and time division multiple access

(TDMA). In order to deal with these problems, the authors

have used several methods, namely, monotonic optimization,

semidefinite relaxation, alternating optimization and succes-

sive convex approximation. The capacity region of an IRS-

aided communication system with two users has been studied

in [19], for centralized and distributed (in two locations) IRS

deployments. In millimeter-wave networks assisted by a single

IRS, the optimal system performance is achieved when the IRS

is placed closer to the receiver than the transmitter [20].

http://arxiv.org/abs/2202.11602v2
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Furthermore, the problem of joint IRS deployment, phase-

shift design as well as power allocation for maximizing the

energy efficiency of a NOMA network has been recently

formulated and solved using machine learning methods [21].

As concerns the coverage of an IRS-assisted network with

one base station and one user equipment, [22] has examined

the IRS placement problem to maximize the cell coverage

by optimizing the IRS orientation and horizontal distance

from the base station. Also, the optimal number of reflecting

elements for an IRS, assisting the communication between

a transmitter and a receiver, has been proposed in [23]. In

particular, the system rate, energy efficiency, and their tradeoff

are maximized by taking into consideration the signaling

overhead required for the channel estimation and IRS phase-

shift configuration.

Moreover, the (single) FD relay location and power opti-

mization problem in a point-to-point (P2P) communication

system has already been addressed in [24]–[26]. Finally, [27]–

[30] have developed efficient optimization algorithms for the

deployment of ground stations in RF and optical satellite

networks with site diversity.

B. Main Contributions

In the majority of existing works, the IRS positions are

assumed to be known in advance. However, IRS locations

have a great impact on the overall system performance. As a

result, their optimization is extremely important and deserves

its own study. In this paper, we design efficient (polynomial-

time) algorithms to jointly optimize the location and size (i.e.,

the number of reflecting elements) of multiple distributed IRSs

in a two-way FD communication network. Specifically, the

major contributions of this work are the following:

• Extension of the IRS system model introduced in [11] to

multi-IRS systems, including not only small-scale fading

but also large-scale path loss. In this way, we exploit

the geometric characteristics (i.e., the distances between

users and IRSs) of the wireless network. Specifically, the

deployment of multiple IRSs has two attractive features:

i) small-scale diversity between the reflecting elements

of the same IRS, and ii) large-scale diversity between

the reflecting elements of distinct IRSs. In addition, the

channel coefficients of a given user-to-IRS or IRS-to-user

link can follow an arbitrary probability distribution (not

necessarily Rayleigh fading as in [11]), while distinct

IRSs may have different channel distributions.

• Recent works dealing with the IRS deployment often

assume a continuous (bounded/unbounded) area for in-

stalling an IRS (for example, [18], [20], and [22]). Unlike

previous research, in this article we consider a predeter-

mined and finite set of available IRS locations, thus taking

into account physical constraints for the IRS positions.

This is of great practical interest, since IRSs are usually

installed on the facades, walls or ceilings of existing

buildings. Nevertheless, if we are interested in installing

IRSs within a bounded continuous area, then this region

can be divided into a sufficiently large finite number of

distinct points (this method is known as discretization).

Therefore, the proposed methodology is still applicable.

• Mathematical formulation of a discrete optimization

problem in order to minimize an upper bound of system

outage probability, which is subject to several constraints:

minimum and maximum number of reflecting elements

for each IRS, maximum number of installed IRSs, max-

imum total number of reflecting elements and maximum

total IRS installation cost. In addition, a theoretical proof

of its computational complexity (NP-hardness) is given.

• Furthermore, we construct a linear-programming re-

laxation (LPR) so as to lower bound the optimum

value. Then, we develop two polynomial-time algorithms,

namely, a deterministic greedy algorithm and a random-

ized approximation algorithm, whose key ingredient is

the LPR solution. The first is a heuristic method which

always finds a feasible solution to the problem, while the

second achieves an approximate solution via randomized

rounding. For the randomized algorithm, we also provide

probabilistic performance guarantees using concentration

inequalities (in particular, Hoeffding’s bound).

• Finally, numerical results show the superiority of the

proposed algorithms compared to the benchmarks, while

useful comparisons between FD and HD schemes are

provided as well.

C. Outline and Notation

The remainder of this paper is organized as follows. Section

II describes the system model, while Section III formulates the

optimization problem and studies its computational complex-

ity. Afterwards, Section IV develops and analyzes the proposed

optimization algorithms. In addition, numerical results are

provided in Section V. Finally, useful conclusions and future

research directions are given in Section VI, while Appendices

A, B and C contain the proofs of theorems.

Mathematical notation: Italic letters denote (real/complex)

scalars, boldface letters represent vectors and matrices, while

calligraphic letters stand for sets and events. |z| denotes the

absolute value (or magnitude) of a complex number z and

j =
√
−1 is the imaginary unit. In addition, |A| and Bc

represent the cardinality of a set A and the complement

of an event B, respectively. The Cartesian product of the

sets {An}n∈N = {A1, . . . ,AN} is denoted by ×n∈NAn =
A1×· · ·×AN . Moreover, 0N is the N -dimensional zero vector

and [·]⊤ stands for the matrix transpose. The symbols , and ∼
mean “equal by definition” and “distributed as”, respectively.

Also, log(·) represents the natural logarithm (i.e., with base

e) and
(
n
m

)
= n!

m!(n−m)! is the binomial coefficient. Θ(·),
O(·), Ω(·) and o(·) are respectively the big-theta, big-oh, big-

omega and little-oh asymptotic notation. Furthermore, the floor

and ceiling functions are denoted by ⌊·⌋ and ⌈·⌉, respectively.

For every x ≥ 0, frac(x) = x − ⌊x⌋ is the fractional part

of x, with frac(x) ∈ [0, 1), and round(x) = ⌊x+ 0.5⌋. In

addition, Pr (·) and E (·) denote probability and expectation

(or expected value), respectively. Finally, Uniform (D) stands

for the continuous/discrete uniform distribution on the set D.

II. SYSTEM MODEL

In this paper, we deal with a multi-IRS system assisting a

two-way P2P communication link, as shown in Fig. 1, where
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Fig. 1. Multi-IRS system assisting two-way FD communication with recipro-
cal channels and negligible direct link. The set of available IRS locations, N ,
and the set of finally installed IRSs, I , are illustrated by the dashed-outline and
solid-outline rectangles, respectively. In each time-slot, the central controller
activates only one IRS form the set I , while the remaining IRSs are idle (i.e.,
non-reflective).

the locations of users are fixed (i.e., the two users do not

move). In particular, each user equipment (UE) operates in FD

mode and therefore is equipped with either a single shared-

antenna or a pair of separate antennas for signal transmission

and reception, depending on the FD implementation [7]. In

addition, N = {1, . . . , N} represents the set of available

locations for installing an IRS (with N ≥ 1), while I =
{i1, . . . , iI} ⊆ N (where I = |I|) stands for the set of finally

installed IRSs. In each time-slot, we assume that exactly one

IRS from the set I is active and the remaining IRSs are

idle (i.e., non-reflective). UE-1 transmits its data to UE-2,

through the active IRS, and UE-2 transmits its data to UE-1,

through the same IRS, simultaneously (i.e., within the same

time-slot) by using the same frequency band. Note that FD

technology is actually applied at both UEs, whereas IRSs

are treated as passive devices that inherently operate in FD

[11]. The transmit power of each UE is considered fixed

for all time-slots; power control is outside the scope of this

paper. Since both UEs suffer from strong loop-interference

(LI) due to the FD operation, they employ the same LI-

cancellation techniques (e.g., passive and active suppression

in the analog/digital domain [7]–[9]), resulting in residual LI.

Moreover, the total UE-to-IRS and IRS-to-UE transmission

time is within a coherence interval of the wireless channel. As

a result, the forward and backward channels between a UE and

an IRS can be regarded almost identical (reciprocal channels)

[11]. Also, the direct link between UEs is considered strongly

attenuated (high path-loss) due to the long distance, high

carrier-frequency, or severe blockage by physical obstacles

(no direct link). All IRSs are assumed to be passive (i.e.,

performing only phase shifts without amplification) and they

have negligible delay regarding the reflection of incident

electromagnetic waves. We assume perfect channel state in-

formation (CSI), i.e., without estimation errors, and global

CSI knowledge, i.e., available to both UEs [11].1 Furthermore,

there is a central controller that performs the IRS activation,

adjusts the IRS phase-shifts and communicates the necessary

CSI knowledge between UEs via separate low-latency wire-

less/wired backhaul links (illustrated by dash-dotted lines in

Fig. 1).

Let Ln be the number of reflecting elements of the nth IRS.

The channel coefficient from UE-1 (UE-2) to the ℓth reflecting

element of the nth IRS is denoted by hn,ℓ = |hn,ℓ| ejϑn,ℓ

(respectively, gn,ℓ = |gn,ℓ| ejψn,ℓ), for every n ∈ N and

ℓ ∈ Ln = {1, . . . , Ln}. Also, the channel coefficients remain

constant during one time-slot, but they change independently

between distinct time-slots. For notational convenience, the

channel coefficients corresponding to the nth IRS can be

grouped in vector form, i.e., hn = [hn,1, . . . , hn,Ln
]⊤ and

gn = [gn,1, . . . , gn,Ln
]⊤. All channel coefficients are assumed

to be mutually independent [11], while, for a given n ∈ N , hn
and gn are individually independent and identically distributed

(i.i.d.) with possibly different probability distributions (e.g.,

Rice and Rayleigh distributions, respectively). The diagonal

(Ln × Ln) phase-shift matrix of the nth IRS is given by

Φn = diag(ejφn,1 , . . . , ejφn,Ln ), i.e., we consider only phase-

shifts and not amplitude attenuation.2

Under the above assumptions and following a similar ap-

proach with [11], the received signals at UE-1 and UE-2 in

time-slot t (after the LI mitigation), when only the nth IRS is

active, are expressed as follows

y1(t) =
√
P2

√
δn,2δn,1g

⊤
nΦnhns2(t)

+
√
P1δn,1h

⊤
nΦnhns1(t) + ξ1(t) + w1(t),

(1)

y2(t) =
√
P1

√
δn,1δn,2h

⊤
nΦngns1(t)

+
√
P2δn,2g

⊤
nΦngns2(t) + ξ2(t) + w2(t),

(2)

where Pk, sk(t), ξk(t) and wk(t) are the transmit power,

information symbol, residual LI and additive white Gaussian

noise (AWGN) of UE-k, respectively, for k ∈ {1, 2}. In

addition, δn,k = A0d
−α
n,k accounts for the large-scale path loss

between the nth IRS and UE-k, where A0 is a positive constant

that depends on the carrier frequency, dn,k is their Euclidean

distance, and α is the path-loss exponent which depends on

the wireless propagation environment. Note that, in the above

equations, the first term represents the desired signal, while the

second term is the self-interference (SI) induced by the IRS

reflection of users’ own transmitted symbols. Given that UE-k
has knowledge of Pk, sk(t), δn,k, hn (required for k = 1), gn
(needed for k = 2), and Φn, it can completely remove the SI.

Moreover, the residual LI ξk(t) and AWGN wk(t) are modeled

1IRS-assisted systems with imperfect CSI have been studied in [31]. The
extension of our methodology to such a case deserves further investigation.

2There are practical models where the amplitude and phase-shift of IRS
elements are dependent on each other, e.g., [32]. However, these models are
beyond the scope of this paper.
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as independent zero-mean complex Gaussian random variables

with variances σ2
LIk

and σ2
wk

, respectively. The variance of

ξk(t) can be further expressed as σ2
LIk

= ωP νk , where the

constants ω > 0 and ν ∈ [0, 1] depend on the LI cancellation

technique applied at the UEs [11].

For the sake of simplicity, we assume the following:

P1 = P2 = P (the same transmit power), E(|s1(t)|2) =
E(|s2(t)|2) = 1 (unit-power information symbols), σ2

w1
=

σ2
w2

= σ2
w and σ2

LI1
= σ2

LI2
= σ2

LI(= ωP ν) (equal noise and

residual-LI power). Consequently, the instantaneous signal-to-

interference-plus-noise ratio (SINR) at both UEs, after the SI

elimination, when communicating via the nth IRS is given by3

γn = ρn

∣∣∣∣∣
∑

ℓ∈Ln

|hn,ℓ| |gn,ℓ| ej(φn,ℓ+ϑn,ℓ+ψn,ℓ)

∣∣∣∣∣

2

, (3)

where

ρn =
Pδn

σ2
LI + σ2

w

, (4)

with δn = δn,1δn,2 being the overall path-loss between the two

UEs through the nth IRS. This SINR formula is quite similar

to that in [11], except for the total path-loss term δn that is

explicitly included in ρn instead of being incorporated in the

channel coefficients hn,ℓ and gn,ℓ.
4

Furthermore, the IRS phase-shifts are optimally designed in

order to maximize the instantaneous SINR, that is,

φ⋆n,ℓ = −ϑn,ℓ − ψn,ℓ, ∀ℓ ∈ Ln = {1, . . . , Ln}. (5)

Note that the IRS phase-shifts are adjusted by the central con-

troller after obtaining the necessary CSI knowledge (channel

coefficients’ phases) from the UE that performs the channel

estimation. Also, we assume IRS phase-shifts without quan-

tization errors, i.e., the IRS phase-shift resolution is infinite;

in practice, if the number of bits, B, used for controlling the

phase of a reflecting element is very large (resulting in 2B

possible discrete values), then the quantization error can be

considered insignificant.

Therefore, the maximum SINR at both UEs (when commu-

nicating via the nth IRS) is written as follows

γ⋆n = ρn

(
∑

ℓ∈Ln

|hn,ℓ| |gn,ℓ|
)2

= ρnζ
2
n , (6)

where ζn =
∑

ℓ∈Ln
ζn,ℓ, with ζn,ℓ = |hn,ℓ| |gn,ℓ| ≥ 0,

∀ℓ ∈ Ln. Observe that the random variables {ζn,ℓ}ℓ∈Ln

are i.i.d., because hn and gn are mutually independent and

individually i.i.d.. Next, we denote the cumulative distribution

function (CDF) of each ζn,ℓ by Fn : [0,+∞) → [0, 1], i.e.,5

Fn(u) , Pr(ζn,ℓ ≤ u), ∀ℓ ∈ Ln. (7)

3In order to derive the SINR formula, observe that g⊤
nΦnhn =

(g⊤
nΦnhn)⊤ = h⊤

nΦngn =
∑
ℓ∈Ln

hn,ℓe
jφn,ℓgn,ℓ =∑

ℓ∈Ln

∣∣hn,ℓ
∣∣ ∣∣gn,ℓ

∣∣ ej(φn,ℓ+ϑn,ℓ+ψn,ℓ) .
4Herein, however, we study a generalization of the system configuration

presented in [11], including multiple IRSs and exploiting their geometric
characteristics. In addition, the channel coefficients can follow any probability
distribution, not necessarily Rayleigh fading.

5If it is difficult to obtain an exact formula of Fn(·), we can use the moment

matching technique to derive an approximation by equating the mean and
variance of the two distributions. For instance, the Gamma distribution can
approximate several complicated distributions by tuning its shape and scale
parameters [11].

Remark 1 (Rayleigh fading): If hn and gn are i.i.d. complex

normal/Gaussian random variables with zero mean and vari-

ance σ2, then |hn,ℓ| , |gn,ℓ| ∼ Rayleigh(σ/
√
2). In addition,

according to [11], the CDF of each Rayleigh-product random

variable ζn,ℓ is given by

FR
n (u) = 1− 2u

σ2
K1

(
2u

σ2

)
, (8)

where K1(·) is the modified Bessel function of the second

kind of the first order.

Given an SINR threshold γth, the out-

age probability of each UE is defined as

Pout,n(Ln) , Pr(γ⋆n ≤ γth) = Pr(ζn ≤
√
γth/ρn).

Unfortunately, an exact closed-form expression of Pout,n(Ln)
is usually not available in general (or hard to compute even

if it exists). Nevertheless, to circumvent this difficulty, we

resort to an upper bound of outage probability, i.e.,

Pout,n(Ln) = Pr

(
∑

ℓ∈Ln

ζn,ℓ ≤
√
γth/ρn

)

(a)

≤ Pr

(
max
ℓ∈Ln

{ζn,ℓ} ≤
√
γth/ρn

)

= Pr

(
⋂

ℓ∈Ln

{ζn,ℓ ≤
√
γth/ρn}

)

(b)
=
∏

ℓ∈Ln

Pr(ζn,ℓ ≤
√
γth/ρn)

(c)
=
[
Fn(
√
γth/ρn)

]Ln

, P out,n(Ln),

(9)

where inequality (a) is due to the fact that
∑
ℓ∈Ln

ζn,ℓ ≥
maxℓ∈Ln

{ζn,ℓ}, while equalities (b) and (c) follows from the

independence of random variables {ζn,ℓ}ℓ∈Ln
and equation

(7), respectively. It is interesting to observe that the upper

bound holds for any (arbitrary) CDF Fn(·), while Pout,n(Ln)
and P out,n(Ln) are both nonincreasing functions of Ln. In

addition, limLn→∞Pout,n(Ln) = limLn→∞P out,n(Ln) = 0,

provided that Fn(
√
γth/ρn) < 1.

A. IRS Activation Policy

As we mentioned earlier, exactly one IRS is activated in

each time-slot by the central controller, while the remaining

IRSs are inactive (i.e., non-reflective).6 In particular, the

central controller activates the IRS that achieves the highest

(instantaneous) SINR among the installed IRSs [33], i.e.,

i⋆ ∈ argmax
i∈I

{γ⋆i } ⇔ γ⋆i⋆ = max
i∈I

{γ⋆i }, (10)

where γ⋆i is given by (6).

6The activation of multiple IRSs within the same time-slot would cause
inter-IRS/secondary reflections of the transmitted signal (i.e., between the
active IRSs) as well as additional IRS-to-user SI links due to the FD
operation. If IRSs are located close to each other, then secondary reflections
are significant and might degrade the system performance due to increased
interference. Moreover, SI elimination at each user would require extra
signaling overhead and processing delay. As a result, the activation of a
single IRS per time-slot does not impose any restrictions on the distances
between IRSs (to ensure negligible secondary reflections), and also maintains
the communication overhead and delay for SI cancellation as low as possible.
Finally, synchronization issues related to various path-loss distances are more
critical in multi-IRS activation scenarios.
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B. Upper Bound of System Outage Probability

Based on the aforementioned IRS activation strategy, the

system outage probability can be computed as follows

Pout(I,L) , Pr(γ⋆i⋆ ≤ γth)
(d)
= Pr

(
max
i∈I

{γ⋆i } ≤ γth

)

= Pr

(
⋂

i∈I
{γ⋆i ≤ γth}

)
(e)
=
∏

i∈I
Pr(γ⋆i ≤ γth)

(f)
=
∏

i∈I
Pout,i(Li),

(11)

where L = [L1, . . . , LN ]
⊤ and γth is the SINR threshold.

Equalities (d), (e) and (f) follow from (10), the independence

of {γ⋆i }i∈I (due to the independence of {ζi}i∈I) and the

definition of Pout,i(Li) , Pr(γ⋆i ≤ γth), respectively.

Afterwards, by combining (11) with (9), we obtain the

following upper bound of system outage probability7

Pout(I,L) ≤
∏

i∈I

[
Fi(
√
γth/ρi)

]Li

, P out(I,L). (12)

C. IRS Installation Cost Model

In this paper, we model the installation cost of IRS n ∈ N
as an affine function of the number of reflecting elements, i.e.,

Cn(Ln) = cn + λnLn, (13)

where cn ≥ 0 is the fixed deployment cost and λn ≥ 0
is the cost rate (measured in cost-units per element) of the

corresponding IRS.8 In addition, the total installation cost is

defined as the sum of the costs of all IRSs in the set I, i.e.,

Ctot(I,L) =
∑

i∈I
Ci(Li) =

∑

i∈I
(ci + λiLi). (14)

Remark 2: In general, the IRS installation cost can be

any nondecreasing function of the number of reflecting el-

ements. In this case, we can approximate the installation

cost by an affine function given by (13). In particular, the

7In optimization theory, it is a standard approach to derive and minimize
an upper bound (in case of minimization problems) when the original
objective function is hard to compute (e.g., in closed form). In addition,
the proposed bound is suitable for constructing a relaxation problem that is
solvable in polynomial time (see Section IV-B), thus achieving mathematical
tractability. At this point, we would like to emphasize that the tightness of
the upper bound (which depends on the probability distribution of channel
coefficients) is not the main concern here. Instead, from the optimization
perspective, the upper bound should satisfy a weaker condition: if (I⋆,L⋆) ∈
argmin(I,L)∈C P out(I,L), then Pout(I⋆,L⋆) ≈ min(I,L)∈C Pout(I,L),
where C is the constraint set. In other words, any solution that minimizes
the upper bound should also (approximately) minimize the exact outage
probability, without necessarily requiring P out(I⋆,L⋆) ≈ Pout(I⋆,L⋆).
Although it is quite difficult to check such a condition, the following example
provides some evidence about the suitability of the upper bound. Given
any fixed I ⊆ N , it holds that Lmax ∈ {argminL∈CL

P out(I,L)} ∩
{argminL∈CL

Pout(I,L)}, where Lmax = [Lmax
1 , . . . , Lmax

N
]⊤ and

CL = {L : Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N}, since P out(I,L)
and Pout(I,L) are nonincreasing in each Ln. The physical interpretation is
that, under only individual size constraints, the minimization of exact outage
probability (and its upper bound) is achieved when the number of reflecting
elements is the maximum possible.

8Note that cn includes the rent of IRS location for a specific period of
time, while λn can be obtained from IRS manufacturers and is expected to
be the same for all IRSs (in general, it may be different for distinct IRSs).

coefficients {cn, λn} can be adjusted so as to minimize

the error between the two functions (a procedure known as

curve fitting) within a given interval of interest, e.g., for

Ln ∈ {Lmin
n , . . . , Lmax

n }.

D. Implementation Issues

First of all, the central controller is responsible for the

synchronization of the following operations: 1) channel es-

timation for all the installed IRSs, 2) transfer of the total CSI

knowledge from UE-2, that performs the channel estimation,

to the central controller, 3) IRS activation and phase-shift

adjustments (performed by the central controller, according to

equations (5), (6) and (10)) plus notification of these decisions

to both UEs, and 4) transfer of CSI corresponding to the

activated IRS from the central controller to UE-1. It is very

important for UEs to know which IRS is active, in each time-

slot, together with the corresponding channel coefficients and

phase-shift matrix in order to achieve complete cancellation of

the SI. Consequently, the overall required overhead is Θ(Ltot),
where Ltot is the total number of reflecting elements.

Regarding the channel estimation of the (installed) IRSs, we

can utilize I = |I| distinct orthogonal resource-blocks (e.g.,

frequency bands or time-slots), one for each IRS. Suppose

that we want to estimate the channels between the IRS

i ∈ I and UEs. In the corresponding resource-block, all the

remaining IRSs are kept inactive (i.e., non-reflective), UE-1

acts only as a transmitter and UE-2 acts only as a receiver.

In particular, UE-2 estimates the pair of channel coefficients

{{δi,1,hi}, {δi,2,gi}} based on the received signal (observa-

tion), assuming that the transmitted symbols of UE-1 and IRS

phase-shifts (pilot signals) are known to the receiver (UE-2);

more details about the channel estimation procedure can be

found in [34].

E. Half-Duplex (HD) Scheme

If the system operates in half-duplex (HD) mode, then the

UEs transmit their data in two distinct time-slots: time-slot 1

is allocated for UE-1 transmission and time-slot 2 for UE-2

transmission. As a result, each UE is equipped with a single

antenna, utilizes the same frequency band, and there is no

interference at all (neither self nor loop interference).

In this case, we can study the performance of HD scheme by

appropriately modifying the previous equations of FD scheme.

In particular, we should replace ρn in (4) with ρHD
n = Pδn/σ

2
w

(since σ2
LI = 0) and also γth with γHD

th = (1 + γth)
2 − 1,

which is obtained by equating the spectral efficiencies of the

two schemes, i.e., log(1 + γth) = 1
2 log(1 + γHD

th ). The latter

replacement is made for fair comparison between FD and HD

scenarios in terms of outage probability.

III. OPTIMIZATION PROBLEM FORMULATION AND

COMPUTATIONAL COMPLEXITY

In this section, we study the minimization of the upper

bound of system outage probability P out(I,L), given by (12),

under various constraints. In particular, the IRS deployment

problem consists of two components, namely, the selection of
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locations for installing IRSs and the determination of IRS sizes

(that is, the number of reflecting elements).

Herein, we consider a predetermined and finite set of

available IRS locations, thus taking into account physical

constraints for the IRS positions. This is of great practical

interest, since IRSs are usually installed on the facades, walls

or ceilings of existing buildings. However, if we are interested

in installing IRSs within a bounded continuous area, then this

region can be divided into a sufficiently large finite number of

distinct points (this technique is known as discretization). As

a result, the proposed approach is still applicable.

As reported in Section II, the IRSs in the set I are installed

only once, during the initial design of the system. After the

installation phase, the central controller performs, in each

time-slot, the IRS activation between the installed IRSs.

In this context, the joint IRS location and size optimization

problem is formulated as follows

min
I,L

P out(I,L) ,
∏

i∈I

[
Fi(
√
γth/ρi)

]Li

(15a)

s.t. I ⊆ N (15b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (15c)

|I| ≤M (15d)

Ltot(I,L) ,
∑

i∈I
Li ≤ Lmax

tot (15e)

Ctot(I,L) ,
∑

i∈I
(ci + λiLi) ≤ Cmax

tot , (15f)

where Lmin
n , Lmax

n ≥ 0 are the minimum and maximum num-

ber of reflecting elements of the nth IRS, respectively (with

Lmin
n ≤ Lmax

n ). For example, IRS manufacturers may have

some restrictions on the production process, while there are

space limitations on the area (dimensions) that an IRS can oc-

cupy in a specific location/building.9 Also, M ∈ {0, 1, . . . , N}
is the maximum number of installed IRSs, resulting in an

IRS-cardinality constraint. Finally, Lmax
tot , Cmax

tot ≥ 0 denote

the maximum total number of reflecting elements and the

maximum total IRS installation cost, respectively. Note that

constraint (15e) implicitly imposes an upper bound on the

overall signaling overhead (channel estimation and feedback),

which is required for IRS activation and phase adjustments

(see Section II-D). In addition, for a given I ⊆ N , the

values of {Ln}n∈N\I are ultimately meaningless, since no

IRS is installed at these locations. For convenience, Table I

summarizes the mathematical symbols used in optimization

throughout the paper.

A. Transformation into Discrete Optimization Problem

Now, let us introduce a vector of binary (0/1) variables

x = [x1, . . . , xN ]⊤ such that, for all n ∈ N , xn = 1 if and

only if (iff) n ∈ I. Subsequently, the set I is replaced by the

9In addition, Lmax
n can be appropriately chosen to ensure that the spatial

correlation among the IRS elements is negligible, i.e., d ≥ λ/2, where d is
their separation distance and λ is the wavelength. For example, let Sn be
the maximum rectangular area of the nth IRS. Assuming uniform rectangular
deployment of IRS elements (with Ln = LxnL

y
n and dx = dy = λ/2), we

should guarantee that (Lxn − 1)(Lyn − 1)(λ/2)2 ≤ Sn. This inequality is
satisfied if Lmax

n = 4Sn/λ2, because (Lxn − 1)(Lyn − 1) ≤ Ln ≤ Lmax
n .

vector x in all functions that contained it with a slight abuse

of notation. In particular, I and x are interchangeable because

the one can be derived from the other by exploiting their

iff-relation. With these in mind, we can make the following

observations:10 1) P out(I,L) =
∏
n∈N

[
Fn(
√
γth/ρn)

]xnLn

,

2) |I| =
∑
n∈N xn, 3) Ltot(I,L) =

∑
n∈N xnLn and 4)

Ctot(I,L) =
∑
n∈N (cn + λnLn)xn. Therefore, problem (15)

can be written as follows

min
x,L

P out(x,L) ,
∏

n∈N

[
Fn(
√
γth/ρn)

]xnLn

(16a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (16b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (16c)
∑

n∈N
xn ≤M (16d)

Ltot(x,L) ,
∑

n∈N
xnLn ≤ Lmax

tot (16e)

Ctot(x,L) ,
∑

n∈N
(cn + λnLn)xn ≤ Cmax

tot , (16f)

where x, L are the decision/optimization variables.

Since log(·) is a monotonically increasing function, we can

replace P out(x,L) with its logarithm, without altering the set

of optimal solutions. Hence, we obtain the equivalent discrete

optimization problem

min
x,L

G(x,L) , log
(
P out(x,L)

)
=
∑

n∈N
βn(xnLn) (17a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (17b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (17c)
∑

n∈N
xn ≤M (17d)

∑

n∈N
xnLn ≤ Lmax

tot (17e)

∑

n∈N
cnxn +

∑

n∈N
λn(xnLn) ≤ Cmax

tot , (17f)

where βn = log
(
Fn(
√
γth/ρn)

)
≤ 0 for all n ∈ N .

Throughout the paper, (x⋆,L⋆) and G⋆ = G(x⋆,L⋆) denote

an optimal solution and the global minimum of problem

(17), respectively. As we will see later, this problem is rather

unlikely to be globally solved in polynomial time due to its

discrete (and, thus, nonconvex) structure.

Remark 3 (Feasibility): Optimization problem (17) is always

feasible, since the solution (x,L) = (0N ,L
min), where

Lmin = [Lmin
1 , . . . , Lmin

N ]⊤, satisfies all constraints.

B. NP-Hardness

Afterwards, we examine the computational complexity of

finding a (globally) optimal solution to problem (17).

Theorem 1 (NP-hardness): Assume that the functions

{Fn(·)}n∈N , defined in (7), are continuous and (strictly)

10In order to avoid the undefined quantity 00, we assume that

Fn(
√

γth/ρn) > 0, for all n ∈ N .
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TABLE I
LIST OF MATHEMATICAL SYMBOLS USED IN OPTIMIZATION

Symbol Description Symbol Description

N = {1, . . . , N} Set of available locations for installing an IRS Lmax
tot Maximum total number of reflecting elements

I = {i1, . . . , iI} Set of finally installed IRSs
Ctot(I,L) or
Ctot(x,L)

Total IRS installation cost

xn
Binary (0/1) variable indicating whether an IRS is

finally installed at the nth location (xn = 1 iff n ∈ I)
Cmax

tot Maximum total IRS installation cost

x = [x1, . . . , xN ]⊤ Vector of binary (0/1) variables {xn}n∈N cn Fixed deployment cost of the nth IRS

Ln Number of reflecting elements of the nth IRS λn Cost rate (cost-units/element) of the nth IRS

L = [L1, . . . , LN ]⊤ Vector of integer variables {Ln}n∈N G(x,L) Objective function of discrete problem (17)

P out(I,L) or

P out(x,L)
Upper bound of system outage probability G⋆ Global minimum of discrete problem (17)

Lmin
n , Lmax

n

Minimum and maximum number of reflecting

elements of the nth IRS, respectively
G† Global minimum of LPR problem (20), G† ≤ G⋆

M
Maximum number of finally
installed IRSs, 0 ≤ M ≤ N

G′ Objective value obtained from LPR-GA, G⋆ ≤ G′

Ltot(I,L) or
Ltot(x,L)

Total number of reflecting elements G̃ Objective value achieved by LPR-RA

increasing. Then, the discrete optimization problem (17) is

NP-hard.

Proof: See Appendix A.

IV. OPTIMIZATION ALGORITHMS

Subsequently, we present the exhaustive-search (or brute-

force) technique, a linear-programming relaxation (LPR), a

greedy method as well as a randomized algorithm with com-

plexity analysis for each one. The solution of LPR plays a cen-

tral role in the design of greedy and randomized algorithms.

A. Exhaustive-Enumeration Algorithm

The exhaustive-enumeration method checks all possible so-

lutions and selects that with the minimum objective value satis-

fying all constraints. In particular, for all subsets I of N with

cardinality at most M , the algorithm examines all arrange-

ments of reflecting elements. More specifically, for a given

subset I, the number of arrangements of reflecting elements

is
∏
i∈I (Lmax

i − Lmin
i + 1), because the decision variable Li

can take (Lmax
i −Lmin

i +1) distinct values. In addition, for each

arrangement, the algorithm requires Θ(|I|) time to compute

the objective value, G(I,L) =∑i∈I βiLi, and check the fea-

sibility of constraints Ltot(I,L) ≤ Lmax
tot , Ctot(I,L) ≤ Cmax

tot .

Therefore, its overall runtime is Θ

(∑
I⊆N
|I|≤M

|I|∏i∈I Ri

)
,

where Rn = Lmax
n − Lmin

n + 1 for all n ∈ N .

It is not difficult to conclude that the algorithm has

exponential complexity in terms of the size of the problem.

Let us suppose that Rn = R ≥ 1 for all n ∈ N . In

this case, the algorithm requires Θ

(∑
I⊆N
|I|≤M

|I|R|I|
)

=

Ω

(∑
I⊆N
|I|=M

|I|R|I|
)

= Ω
((

N
M

)
MRM

)
arithmetic opera-

tions to find the global minimum. Furthermore, if M =

⌈N/2⌉, then its complexity becomes Ω
(
2N

√
NRN/2

)
, since

(
N

⌈N/2⌉
)
= Θ

(
2N√
N

)
and ⌈N/2⌉ ≥ N/2.

Ultimately, albeit achieving a globally optimal solution, the

exhaustive-enumeration algorithm has extremely high com-

plexity and is therefore impractical.

B. Lower Bound Using Linear-Programming Relaxation

Despite the difficulty of computing the global minimum,

we will show how to efficiently compute (in polynomial-time)

a lower bound of the optimum value G⋆. Firstly, by using

auxiliary decision variables z = [z1, . . . , zN ]
⊤, problem (17)

can be equivalently written in the following form

min
x,L,z

∑

n∈N
βnzn (18a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (18b)

Ln ∈ {Lmin
n , . . . , Lmax

n }, ∀n ∈ N (18c)

zn = xnLn, ∀n ∈ N (18d)
∑

n∈N
xn ≤M (18e)

∑

n∈N
zn ≤ Lmax

tot (18f)

∑

n∈N
cnxn +

∑

n∈N
λnzn ≤ Cmax

tot . (18g)

Secondly, by relaxing the integer/discrete constraints,

xn ∈ {0, 1} and Ln ∈ {Lmin
n , . . . , Lmax

n }, we have

min
x,L,z

∑

n∈N
βnzn (19a)

s.t. 0 ≤ xn ≤ 1, ∀n ∈ N (19b)

Lmin
n ≤ Ln ≤ Lmax

n , ∀n ∈ N (19c)

zn = xnLn, ∀n ∈ N (19d)
∑

n∈N
xn ≤M (19e)

∑

n∈N
zn ≤ Lmax

tot (19f)
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∑

n∈N
cnxn +

∑

n∈N
λnzn ≤ Cmax

tot . (19g)

Notice that this problem is nonlinear due to the equality

constraints zn = xnLn. In order to obtain a linear problem,

we apply further relaxation by replacing the set of constraints

Lmin
n ≤ Ln ≤ Lmax

n and zn = xnLn with the linear

constraints Lmin
n xn ≤ zn ≤ Lmax

n xn. In this way, we can

remove the decision variable L and formulate the following

linear-programming relaxation (LPR) problem

min
x,z

∑

n∈N
βnzn (20a)

s.t. 0 ≤ xn ≤ 1, ∀n ∈ N (20b)

Lmin
n xn ≤ zn ≤ Lmax

n xn, ∀n ∈ N (20c)
∑

n∈N
xn ≤M (20d)

∑

n∈N
zn ≤ Lmax

tot (20e)

∑

n∈N
cnxn +

∑

n∈N
λnzn ≤ Cmax

tot . (20f)

Note that the guaranteed feasibility of problem (17) (see

Remark 3) implies the feasibility of problems (18), (19) and

(20). In what follows, (x†, z†) and G† =
∑

n∈N βnz
†
n denote

an optimal solution and the global minimum of the LPR

problem (20), respectively. Obviously, G† ≤ G⋆, that is, G†

is a lower bound of G⋆.

Finally, given that the linear problem (20) has V = 2N =
Θ(N) decision variables and U = 4N + 3 = Θ(N)
constraints, a globally optimal solution can be computed in

O((U + V )1.5V 2) = O(N3.5) time using an interior-point

method [35].

C. Deterministic Greedy Algorithm

Now, we are ready to develop a heuristic algorithm of

polynomial complexity to obtain a feasible solution for the

discrete problem (17). This procedure is given in Algorithm 1

and is called LPR-based greedy algorithm (LPR-GA).

First, the proposed algorithm applies deterministic rounding,

using the solution of LPR (step 1), in order to compute the

decision variable L′ (steps 3–9):

L′
n =

{
round

(
z†n/x

†
n

)
, if x†n 6= 0

round
(
1
2 (L

min
n + Lmax

n )
)
, otherwise

, ∀n ∈ N .

(21)

Observe that, if x†n 6= 0, then Lmin
n ≤ z†n/x

†
n ≤ Lmax

n

(due to the feasibility of LPR problem) and therefore

round
(
z†n/x

†
n

)
∈ {Lmin

n , . . . , Lmax
n }. Also, the same holds

for round
(
1
2 (L

min
n + Lmax

n )
)

in case of x†n = 0. In other

words, the above deterministic rounding guarantees that L′
n ∈

{Lmin
n , . . . , Lmax

n } for all n ∈ N .

Concerning the computation of x′, the proposed algorithm

sorts the entries of x† = [x†1, . . . , x
†
N ]⊤ ∈ [0, 1]N in de-

scending order (step 11). Then, by starting from the zero

vector, it successively selects IRS locations (based on their

sorting) until the violation of at least one of the constraints:∑
n∈N xn ≤ M , Ltot(x,L) ≤ Lmax

tot and Ctot(x,L) ≤ Cmax
tot

Algorithm 1 LPR-based Greedy Algorithm (LPR-GA)

Input: N , β = [β1, . . . , βN ]⊤, Lmin = [Lmin
1 , . . . , Lmin

N ]⊤,

L
max = [Lmax

1 , . . . , Lmax
N ]⊤, M , Lmax

tot , c = [c1, . . . , cN ]⊤,

λ = [λ1, . . . , λN ]⊤, Cmax
tot

Output: A feasible solution (x′,L′) of discrete problem (17)
1: Solve the LPR problem (20) to obtain an optimal

solution (x†, z†).
2: ⊲ Computation of L

′ = [L′
1, . . . , L

′
N ]⊤

3: for all n ∈ N do
4: if x†

n 6= 0 then
5: L′

n := round
(
z†n/x

†
n

)

6: else
7: L′

n := round
(
1
2
(Lmin

n + Lmax
n )

)

8: end if
9: end for

10: ⊲ Computation of x
′ = [x′

1, . . . , x
′
N ]⊤

11: Sort the entries of x
† in descending order. Let

(σ1, . . . , σN) ∈ ΣN be their order after sorting, where
ΣN is the set of all permutations of N , therefore
x†
σ1

≥ · · · ≥ x†
σN

.
12: m := 1, Ltot := 0, Ctot := 0, x′ := 0N

13: while (m ≤ M) ∧ (Ltot ≤ Lmax
tot ) ∧ (Ctot ≤ Cmax

tot ) do
14: i := σm, x′

i := 1
15: Ltot := Ltot + L′

i, Ctot := Ctot + ci + λiL
′
i

16: m := m+ 1
17: end while
18: if (Ltot > Lmax

tot ) ∨ (Ctot > Cmax
tot ) then

19: x′
i := 0

20: end if
21: return (x′,L′)

(steps 12–17). Finally, it removes the last selected IRS location

if Ltot > Lmax
tot or Ctot > Cmax

tot (steps 18–20); note that the

IRS-cardinality constraint is automatically satisfied due to the

construction of the while-loop, so there is no need to check it

in step 18.

Obviously, the solution (x′,L′) returned by Algorithm 1 is

guaranteed to be feasible for problem (17), thus G⋆ ≤ G′ ,
G(x′,L′), i.e., G′ is an upper bound of G⋆.

Remark 4 (A posteriori performance guarantee): It is pos-

sible to provide an approximation guarantee after the termi-

nation of Algorithm 1 using the already obtained solution of

LPR, that is, 0 ≤ G′ −G⋆ ≤ G′ −G†.

Regarding the complexity of Algorithm 1, the LPR prob-

lem can be solved in O(N3.5) time, the computation of L′

requires Θ(N) time, while the computation of x′ requires

O(N logN + N) = O(N logN) arithmetic operations in

total. Hence, the overall complexity of LPR-GA is O(N3.5 +
N + N logN) = O(N3.5). In other words, it has the same

asymptotic complexity (up to a constant) as the LPR problem.

D. Randomized Approximation Algorithm

Since problem (17) is NP-hard, a polynomial-time algorithm

for computing its global optimum cannot exist, unless P=NP.

However, we can use randomized rounding, a powerful tech-

nique, in order to achieve an approximate solution with high

probability.

Afterwards, we present an efficient (i.e., polynomial-time)

approximation algorithm that finds provably near-optimal so-
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Algorithm 2 LPR-based Randomized Algorithm (LPR-RA)

Input: N , β = [β1, . . . , βN ]⊤, Lmin = [Lmin
1 , . . . , Lmin

N ]⊤,

L
max = [Lmax

1 , . . . , Lmax
N ]⊤, M , Lmax

tot , c = [c1, . . . , cN ]⊤,

λ = [λ1, . . . , λN ]⊤, Cmax
tot

Output: An approximate solution (x̃, L̃) of discrete problem (17)
1: Solve the LPR problem (20) to obtain an optimal

solution (x†, z†).
2: for all n ∈ N do
3: ⊲ Computation of x̃n
4: r := rand(0, 1)
5: if r ≤ x†

n then ⊲ with probability x†
n

6: x̃n := 1
7: else ⊲ with probability 1− x†

n

8: x̃n := 0
9: end if

10: ⊲ Computation of L̃n
11: if x†

n 6= 0 then
12: s := rand(0, 1), L†

n := z†n/x
†
n

13: if s ≤ frac(L†
n) then ⊲ with probability frac(L†

n)
14: L̃n :=

⌊
L†
n

⌋
+ 1

15: else ⊲ with probability 1− frac(L†
n)

16: L̃n :=
⌊
L†
n

⌋

17: end if
18: else
19: L̃n := randi(Lmin

n , Lmax
n )

20: end if
21: end for
22: return (x̃, L̃)

lutions. This method is shown in Algorithm 2 and is referred

to as LPR-based randomized algorithm (LPR-RA).11

First of all, Algorithm 2 finds an optimal solution (x†, z†)
to the LPR problem in step 1, and then employs randomiza-

tion (steps 2–21) to compute an approximate solution (x̃, L̃)
according to the following probabilistic rules, for all n ∈ N ,

x̃n =

{
1, with probability x†n
0, with probability 1− x†n

(22)

and

L̃n =

{⌊
L†
n

⌋
+ 1, with probability frac(L†

n)⌊
L†
n

⌋
, with probability 1− frac(L†

n)
, if x†n 6= 0

(23)

or

L̃n ∼ Uniform
(
{Lmin

n , . . . , Lmax
n }

)
, if x†n = 0, (24)

where L†
n = z†n/x

†
n defined whenever x†n 6= 0. For a given

LPR solution (x†, z†), the random variables {x̃n, L̃n}n∈N are

independent. Also, we define the random variable z̃n = x̃nL̃n
for all n ∈ N .

In case x†n 6= 0, observe that Lmin
n ≤ L†

n ≤ Lmax
n (because

Lmin
n x†n ≤ z†n ≤ Lmax

n x†n), therefore rule (23) implies that

L̃n ∈ {Lmin
n , . . . , Lmax

n }. Also, the same holds when x†n = 0
due to (24). Hence, the probabilistic rules (22)–(24) ensure that

the approximate solution returned by LPR-RA, (x̃, L̃), satisfies

11Note that the function rand(0, 1) in steps 4 and 12 returns a ran-
dom number uniformly distributed in the interval [0, 1]. Also, the function
randi(Lmin

n , Lmax
n ) in step 19 returns a random integer uniformly distributed

in the set {Lmin
n , . . . , Lmax

n }. The outputs of different function calls are
independent.

the integer/discrete constraints automatically, i.e., x̃n ∈ {0, 1}
and L̃n ∈ {Lmin

n , . . . , Lmax
n } for every n ∈ N .

Now, it remains to answer how close is the achieved

objective value G̃ , G(x̃, L̃) to the global minimum G⋆, and

whether or not the last three constraints, (17d), (17e) and (17f),

are satisfied. Of course, there is no absolute/deterministic

answer to these type of questions since x̃ and L̃ are random

variables. Nevertheless, we can provide some (a priori) prob-

abilistic guarantees on the algorithm’s performance.

Theorem 2 (Expectation guarantees): The solution (x̃, L̃)
of LPR-RA has the following properties:

E

(
G(x̃, L̃)

)
= G†, (25)

E

(
∑

n∈N
x̃n

)
=
∑

n∈N
x†n ≤M, (26)

E

(
Ltot(x̃, L̃)

)
=
∑

n∈N
z†n ≤ Lmax

tot , (27)

E

(
Ctot(x̃, L̃)

)
=
∑

n∈N
cnx

†
n +

∑

n∈N
λnz

†
n ≤ Cmax

tot . (28)

Proof: See Appendix B.

In other words, the solution (x̃, L̃) satisfies in expectation

the three constraints (17d)–(17f) and its objective value is in

expectation equal to that of LPR.

Afterwards, we give some deviation guarantees using con-

centration inequalities, that is, probability bounds on how

close a random variable is from some value (typically, its

expectation).

Theorem 3 (Deviation guarantees): Let ∆0 =∑
n∈N (βnL

max
n )2, ∆1 = N (≥ 1), ∆2 =

∑
n∈N (Lmax

n )2

and ∆3 =
∑
n∈N (cn + λnL

max
n )

2
with ∆0,∆2,∆3 > 0.

Then, the solution (x̃, L̃) achieved by Algorithm 2 satisfies

the following probabilistic conditions:

Pr(Ek) ≥ 1− ξ, ∀k ∈ {0, 1, 2, 3}, (29)

where ξ = (N + 1)−2 ∈ (0, 1/4] and the events {Ek}3k=0 are

defined by

E0 =
{
G(x̃, L̃) ≤ G⋆ + ǫ0

}
, (30)

E1 =

{
∑

n∈N
x̃n ≤M + ǫ1

}
, (31)

E2 =
{
Ltot(x̃, L̃) ≤ Lmax

tot + ǫ2

}
, (32)

E3 =
{
Ctot(x̃, L̃) ≤ Cmax

tot + ǫ3

}
, (33)

with ǫk =
√
∆k log(N + 1) > 0 for all k ∈ {0, 1, 2, 3}.

Furthermore, the approximate solution (x̃, L̃) satisfies the

following inequalities (which are called overall deviation

guarantees):

Pr

(
3⋂

k=1

Ek
)

≥ 1− ξ′, (34)
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Pr

(
3⋂

k=0

Ek
)

≥ 1− ξ′′, (35)

where ξ′ = 3ξ = 3(N + 1)−2 ∈ (0, 3/4] and ξ′′ = 4ξ =
4(N + 1)−2 ∈ (0, 1].

Proof: See Appendix C.

In essence, ǫ0 quantifies the deviation from the global

optimum, while {ǫk}3k=1 express the violation tolerance for

each constraint. Moreover, (34) has to do with the satisfiabil-

ity of the three constraints (17d)–(17f), while (35) includes

additionally the objective value.

Notice that ξ = ξ(N) = o(1), ξ′ = ξ′(N) = o(1)
and ξ′′ = ξ′′(N) = o(1).12 Therefore, an approximate

solution satisfying any nonempty subset of {Ek}3k=0 can be

found with high probability, i.e., with probability 1 − o(1).
However, observe that there is an inherent tradeoff between

the probability bound 1− ξ and a deviation tolerance ǫk, that

is, both of them increase with N but with different growth

rates.

Remark 5 (Performance improvement): In order to enhance

the algorithm’s performance (i.e., achieve better probability

bounds), we can use multiple i.i.d. rounding trials at the cost of

increased computational complexity. For example, let T be the

number of rounding trials and (x̃(t), L̃(t)) be the approximate

solution obtained in rounding trial t ∈ {1, . . . , T }. Also, for

every k ∈ {1, 2, 3}, let E(t)
k be the event Ek (see (31)–(33))

with (x̃, L̃) replaced by (x̃(t), L̃(t)). Then, the probability of

finding at least one approximate solution (x̃(t), L̃(t)) satisfying

all the events {E(t)
k }3k=1, within T rounding trials, is lower

bounded by

Pr

(
T⋃

t=1

(
3⋂

k=1

E(t)
k

))
= 1− Pr

(
T⋂

t=1

(
3⋃

k=1

(E(t)
k )

c

))

= 1−
T∏

t=1

Pr

(
3⋃

k=1

(E(t)
k )

c

)

= 1−
[
Pr

(
3⋃

k=1

Ec

k

)]T

= 1−
[
1− Pr

(
3⋂

k=1

Ek
)]T

≥ 1− ξ′
T
,

(36)

where the first and fourth equalities are because of De Mor-

gan’s law, the second and third equalities follows from the

i.i.d. assumption of rounding trials, while the last inequality

is due to (34). It is not hard to see that, given ξ′ ∈ (0, 3/4],
this probability tends to 1 as T → ∞.13

Concerning the complexity of Algorithm 2, the LPR prob-

lem requires O(N3.5) time, while the computation of (x̃, L̃)

12Here, the asymptotic term o(1) is defined for N → ∞, for example,
ξ = ξ(N) = o(1) means that limN→∞ξ = 0.

13In practice, if Algorithm 2 fails to find a feasible solution despite
performing a relatively large number of rounding trials, then we can use
Algorithm 1 that is guaranteed to find a feasible solution.

TABLE II
COMPLEXITY & PERFORMANCE OF OPTIMIZATION ALGORITHMS

Optimization

algorithm

Computational

complexity

Performance

guarantee

Exhaustive
Enumeration

Θ




∑
I⊆N
|I|≤M

|I|
∏
i∈I

Ri


,

where, for all n ∈ N ,

Rn = Lmax
n − Lmin

n + 1

Globally optimal
solution

LPR O(N3.5) Lower bound

LPR-GA
(Algorithm 1)

O(N3.5) Feasible solution

LPR-RA
(Algorithm 2)

O(N3.5) or

O(N3.5 +NT ),
where T is the number
of i.i.d. rounding trials

Approximate solution
with probabilistic

performance guarantees
(see Theorems 2 and 3
as well as Remark 5)

AEGA*

(Benchmark I)
O(N logN) Feasible solution

MEGA*

(Benchmark II)
O(N logN) Feasible solution

* These heuristic algorithms are described in Section V-B.

takes Θ(N) time. As a result, the total complexity of LPR-

RA is O(N3.5 + N) = O(N3.5), that is, asymptotically the

same (up to a constant) as that of LPR and LPR-GA. In

case of T i.i.d. rounding trials (see Remark 5), the compu-

tational complexity increases to O(N3.5 + NT ). Finally, the

complexity and performance of all optimization algorithms are

summarized in Table II.14

V. NUMERICAL RESULTS AND DISCUSSION

The main objective of this section is twofold: the first is

to compare the performance of optimization algorithms (in

terms of the upper bound of system outage probability) and

the second is the comparison between FD and HD schemes.

A. Simulation Setup

We generate random system configurations, where UE-

1 and UE-2 are constantly located at (0, 0) and (100, 0),
respectively, while each IRS location is uniformly distributed

either inside the rectangle [30, 70] × [20, 40] or [30, 70] ×
[−40,−20], with probability 1/2 of being in each rectangle.15

All channel coefficients are generated according to Remark

1 (i.e., Rayleigh fading). Unless otherwise stated, the system

parameters are presented in Table III; the positions of UEs and

IRSs are on the x-y plane and all coordinates are expressed

in meters. Note that, for a given problem, the IRS locations

and {cn, λn}n∈N are all fixed (the randomization is only

used for problem generation). Since there are no established

values of IRS cost parameters yet, the simulations are just

indicative to evaluate algorithms’ performance. In addition, all

figures present average values obtained from 103 independent

14The convergence of Algorithms 1 and 2 is theoretically guaranteed, since
the number of for/while-loop iterations is finite for any given N (recall that
M ≤ N ).

15Here, the IRSs are distributed in the 2D-space for the sake of simplicity.
Nevertheless, the proposed methodology is straightforwardly applicable to
3D-space scenarios, where the IRSs may be located at different heights.
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TABLE III
SIMULATION PARAMETERS

Parameter Value

Positions of UEs (0, 0), (100, 0)

Transmit power of UEs, P 25 dBm

Channel variance, σ2 1

Residual-LI power, σ2
LI −70 dBm

Noise power, σ2
w −80 dBm

SINR threshold, γth 8 dB

Path-loss model parameters (where
the distance is measured in meters)

A0 = 1, α = 2.7

IRS location

Uniform([30, 70]× [20, 40]) or
Uniform ([30, 70]× [−40,−20])

with probability 1/2
Number of available

IRS locations, N
25

Maximum number of
installed IRSs, M

7

Minimum number of reflecting
elements for each IRS,

Lmin
n = Lmin, ∀n ∈ N

5

Maximum number of reflecting
elements for each IRS,

Lmax
n = Lmax, ∀n ∈ N

40

Maximum total number of
reflecting elements, Lmax

tot
250

Maximum total IRS
installation cost, Cmax

tot
75

IRS fixed deployment cost, cn Uniform ([1, 5])

IRS cost rate, λn Uniform ([0.1, 0.5])

Maximum number of i.i.d. rounding
trials for LPR-RA, Tmax

50

simulation scenarios. Also, the LPR problem (20) is solved

using CVX software [36] with SDPT3 solver [37].

Moreover, for every problem instance, LPR-RA performs

a maximum number of i.i.d. rounding trials, Tmax, in order

to increase the probability of achieving a feasible solution.

In particular, Algorithm 2 generates independent approximate

solutions successively and terminates either when a feasible

solution is found or when the maximum number of trials is

reached. In all figure captions, we have included the percentage

of problems for which LPR-RA returned a feasible solution,

within the maximum number of rounding trials.

Despite the fact that a comparison with the optimum

value would have been useful, this does not appear in the

numerical results (except Fig. 6) because the complexity

of the exhaustive-enumeration algorithm is extremely high.

For example, consider a problem with N = 25, M = 7,

Lmin = 5 and Lmax = 40 (as shown in Table III). In this

case, the exhaustive-enumeration algorithm would require at

least
(
N
M

)
MRM ≈ 2.637× 1017 arithmetic operations, where

R = Lmax − Lmin + 1 (cf. Section IV-A). If each operation

takes approximately 1 µs, then the algorithm’s runtime (for a

single problem) is roughly 7.325× 107 hr ≈ 3.052× 106 d ≈
8.362× 103 yr, which is obviously prohibitive.

Nevertheless, we definitely know that the minimum value

always lies between LPR (lower bound) and LPR-GA (upper

bound, since its solution is guaranteed to be feasible), that

is, G† ≤ G⋆ ≤ G′. Similar inequalities also hold for the

upper bound of system outage probability, P out(·), due to

the monotonicity of exponential function; recall that G(·) =
log
(
P out(·)

)
.

B. Baseline Schemes (Benchmarks)

In order to evaluate the performance of the proposed algo-

rithms, we consider (besides the lower bound obtained from

LPR) two baseline schemes:

• Average-element greedy algorithm (AEGA): First, the

number of reflecting elements Ln is set equal to Lavg
n ,⌈

1
2 (L

min
n + Lmax

n )
⌉
∈ {Lmin

n , . . . , Lmax
n } for all n ∈ N .

Then, we sort the IRS locations in ascending order in

terms of the product βnL
avg
n (≤ 0). Let (σ1, . . . , σN ) ∈

ΣN be the order of IRS locations after sorting, where

ΣN is the set of all permutations of N , therefore

βσ1
Lavg
σ1

≤ · · · ≤ βσN
Lavg
σN . Finally, AEGA follows the

steps 12–20 of Algorithm 1 (LPR-GA) to compute the

binary vector x. In essence, this algorithm can be seen

as a greedy procedure that consecutively selects the IRS

location inducing the maximum decrease in the objective

value (i.e., the upper bound of system outage probability),

among the IRS locations not selected yet, while satisfying

all constraints.

• Maximum-element greedy algorithm (MEGA): This algo-

rithm follows the same procedure as AEGA by replacing

Lavg
n with Lmax

n , for all n ∈ N .

Both methods are heuristic algorithms (i.e., without a pri-

ori performance guarantees) with computational complexity

O(N logN) because of the sorting procedure. In addition, they

always find a feasible solution due to their design.

C. Performance Comparison of Optimization Algorithms

Subsequently, the performance of optimization algorithms is

examined by varying the maximum total IRS installation cost,

the maximum number of reflecting elements, the number of

available IRS locations, the SINR threshold as well as the

noise power.

1) Impact of the Maximum Total IRS Installation Cost:

Fig. 2 shows the upper bound of system outage probability,

against the maximum total IRS installation cost, achieved

by AEGA, MEGA, LPR, LPR-GA (Algorithm 1) and LPR-

RA (Algorithm 2). As expected, the outage probability is

a nonincreasing function of Cmax
tot for all algorithms, since

larger Cmax
tot translates to a less restricted feasible set. Fur-

thermore, the proposed algorithms, LPR-GA and LPR-RA,

achieve higher performance than the two benchmarks, AEGA

and MEGA (with AEGA having the worst performance). It

is interesting to observe that LPR-GA and LPR-RA exhibit

very similar (almost identical) performance, which is close

to the lower bound of LPR. Intuitively, we anticipate such

behavior because both algorithms rely on LPR. Finally, LPR-

RA demonstrates extremely high percentage (above 98%) of

achieving a feasible solution within Tmax = 50 rounding trials.

2) Impact of the Maximum Number of Reflecting Elements:

The effect of the maximum number of reflecting elements (for

each IRS) on the system outage probability is presented in Fig.

3. Similar conclusions with Fig. 2 can be drawn here as well.
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Fig. 2. Upper bound of system outage probability versus the maximum total
IRS installation cost. The percentage of problems for which LPR-RA has
achieved a feasible solution is [98.5, 98.4, 99.3, 98.6, 99.1, 99.2, 99.5]%
for each value of Cmax

tot , respectively.

Fig. 3. Upper bound of system outage probability versus the maximum
number of reflecting elements. The percentage of problems for which LPR-
RA has found a feasible solution is [98.7, 98.4, 98.1, 98.3, 99.6, 98.3]%
for each value of Lmax, respectively.

In addition, MEGA performs slightly worse than LPR-GA and

LPR-RA for small values of Lmax (e.g., 25 and 30), whereas

their difference in performance becomes more apparent as

Lmax increases.

3) Impact of the Number of Available IRS Locations:

Fig. 4 illustrates the system outage probability as a function

of the number of candidate locations for installing an IRS.

More specifically, we can observe that, as N increases, all

algorithms achieve lower outage probability because there are

more options available for the IRS deployment. Once again,

the proposed algorithms (LPR-GA and LPR-RA) significantly

outperform the baseline schemes, especially when N is rel-

atively large, and remain close to the lower bound (and,

thus, to the global minimum) for all values of N . The latter

demonstrates the robustness of the developed algorithms in

terms of the size of the search space (cf. Figs. 2 and 3).

4) Impact of the SINR Threshold: The upper bound of

system outage probability versus the SINR threshold is shown

Fig. 4. Upper bound of system outage probability versus the number of
available IRS locations. The percentage of problems for which LPR-RA has
returned a feasible solution is [97.7, 98.2, 98.5, 98.9, 99.1, 98.7, 99.6]%
for each value of N , respectively.

Fig. 5. Upper bound of system outage probability versus the SINR threshold.
The percentage of problems for which LPR-RA has achieved a feasible
solution is [99.1, 98.9, 98.6, 98.5, 99.2, 98.4, 98.4]% for each value
of γth , respectively.

in Fig. 5. In particular, the outage probability increases with γth

for all optimization algorithms, which is intuitively expected.

Furthermore, it is interesting to note that the distance of the

objective value achieved by AEGA, MEGA, LPR-GA, LPR-

RA from the lower bound decreases as the SINR threshold

increases. Roughly speaking, this means that the achieved

solution tends to be globally optimal, especially for LPR-GA

and LPR-RA.

5) Impact of the Noise Power and Comparison with Ex-

haustive Search: Here, we also consider the exhaustive-

enumeration algorithm under small-scale setups with the fol-

lowing parameters: γth = 3 dB, N = 7, M = 4, Lmin = 35,

Lmax = 50, Lmax
tot = 115, Cmax

tot = 30. In Fig. 6, it is clear that

the upper bound of outage probability increases with the noise

power, for all algorithms. In spite of the fact that the proposed

algorithms do not achieve the global minimum (recall that

problem (17) is NP-hard, according to Theorem 1), their
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Fig. 6. Upper bound of system outage probability versus the noise power
at each UE. The percentage of problems for which LPR-RA has returned a
feasible solution is [99, 97, 98, 96, 100, 98, 98]% for each value of σ2

w ,
respectively.

performance is again much higher than AEGA and MEGA.

Moreover, the average number of selected IRS locations, the

average total number of reflecting elements, and the average

total IRS installation cost are respectively: [1.4, 60.6, 21.2]
for AEGA, [1.2, 61.5, 20.8] for MEGA, [1.7, 86, 21.9] for

LPR-GA, [1.7, 85.9, 22] for LPR-RA, and [2.1, 92.7, 24.5] for

exhaustive enumeration. We can observe that LPR-GA/RA

selects more IRS locations and reflecting elements at the

expense of higher cost compared to AEGA/MEGA; this is also

true if we compare exhaustive enumeration with LPR-GA/RA.

D. Comparison between FD and HD Systems

Afterwards, the optimization algorithms are used in order to

make meaningful comparisons between FD and HD wireless

technologies.16

1) Impact of the Transmit Power of UEs: Firstly, let us

examine the effect of the transmit power of UEs on the

system outage probability. According to Fig. 7, the proposed

optimization algorithms perform much better than the two

benchmarks, especially for high transmit power, in both HD

and FD schemes. In addition, we can observe that FD is

superior to HD system (in terms of outage probability) when

P < 26 dBm, irrespective of the algorithm used for compar-

ison. On the other hand, FD is inferior to HD scheme when

P > 26 dBm.

2) Impact of the Residual-LI Power: Secondly, we study

how the residual-LI power affects the system outage probabil-

ity, assuming constant transmit power. Based on Fig. 8, it is

obvious that LPR-GA and LPR-RA again show better perfor-

mance compared to the baseline schemes, not only in FD but

also in HD scenario. Moreover, for the FD scheme, the upper

bound of system outage probability increases rapidly with the

residual-LI power. Finally, FD outperforms HD system when

σ2
LI is approximately less than −70.4 dBm, whereas HD is

preferable when σ2
LI is greater than −70.4 dBm (regardless

16For details on the HD scheme, see Section II-E.

Fig. 7. Upper bound of system outage probability versus the transmit power
of UEs for γth = 9 dB; σ2

LI = ωP ν in FD scheme, whereas σ2
LI = 0 in HD

scheme. The percentage of problems for which LPR-RA has found a feasible
solution is [98.3, 98.6, 98.6, 98.0, 99.1, 99.1, 98.6, 98.8, 99.2]% in
FD system and [97.7, 98.3, 98.3, 99.1, 99.1, 98.3, 98.7, 99.0, 99.4]%
in HD system for each value of P , respectively.

Fig. 8. Upper bound of system outage probability versus the residual-LI power
at each UE for γth = 9 dB; the transmit power is fixed at P = 25 dBm. The
percentage of problems for which LPR-RA has returned a feasible solution is
[99.0, 98.9, 98.7, 98.9, 98.7, 98.5, 98.9]% in FD system for each value
of σ2

LI , respectively, and 98.6% in HD system regardless of σ2
LI.

of the comparison algorithm). In other words, FD is more

beneficial than HD technology, provided that the LI at each

UE is sufficiently suppressed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with the minimization of outage

probability in a two-way FD communication system assisted

by multiple IRSs. In particular, we have transformed the joint

IRS location and size optimization problem into a discrete

problem, which turned out to be NP-hard. In order to overcome

this difficulty, two efficient (polynomial-time) algorithms have

been proposed, which are based on the solution of LPR. The

first is a deterministic greedy method, while the second is a

randomized approximation algorithm. According to the numer-

ical results, the developed algorithms have shown much higher
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performance than the benchmarks. Their achieved objective

values have also been close to the lower bound and, therefore,

to the global minimum. Moreover, we have observed that FD

outperforms HD scheme, provided that the LI at both UEs is

adequately mitigated; this is in line with our intuition.

Finally, we mention several challenging research directions:

i) extension to multiple-antenna systems with multiple users,

ii) analysis of IRS-activation schemes with lower signaling

overhead using, for example, partial CSI knowledge and iii)

investigation of IRS phase-adjustment errors due to imperfect

CSI or phase-quantization errors (finite phase-shift resolution).

APPENDIX A

PROOF OF THEOREM 1

It is sufficient to show that there is a special case of

problem (17) which is NP-hard. Let us consider the following

case: Lmin
n = Lmax

n = L◦
n > 0 (hence, Ln = L◦

n) for all

n ∈ N , M = N (so, the IRS-cardinality constraint can

be omitted, because
∑

n∈N xn ≤ N for all x ∈ {0, 1}N )

and Lmax
tot =

∑
n∈N Lmax

n (therefore, the constraint of max-

imum total number of reflecting elements can be omitted,

since
∑

n∈N xnLn ≤ ∑
n∈N Ln ≤ ∑

n∈N Lmax
n for all

x ∈ {0, 1}N and L ∈ ×n∈N{Lmin
n , . . . , Lmax

n }). As a

consequence, problem (17) reduces to

min
x

∑

n∈N
(βnL

◦
n)xn (37a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (37b)
∑

n∈N
(cn + λnL

◦
n)xn ≤ Cmax

tot . (37c)

By converting it into a maximization problem, we obtain

max
x

∑

n∈N
ϕnxn (38a)

s.t. xn ∈ {0, 1}, ∀n ∈ N (38b)
∑

n∈N
θnxn ≤ Cmax

tot , (38c)

where ϕn = −βnL◦
n ≥ 0 and θn = cn + λnL

◦
n for every

n ∈ N . A crucial observation here is that each coefficient

in {ϕn, θn}n∈N can be any positive integer. To prove this,

let κn, µn > 0 be arbitrary integers. Then, we can find

a problem instance such that ρn = γth

/(
F−1
n (e−κn/L

◦

n)
)2

,

0 ≤ cn ≤ µn and λn = (µn − cn)/L
◦
n ≥ 0 for all

n ∈ N , where F−1
n (·) is the inverse function of Fn(·)

given by (7); the existence of F−1
n (·) is guaranteed, because

Fn(·) is continuous and (strictly) increasing. As a result,

βn = log
(
Fn(
√
γth/ρn)

)
= −κn/L◦

n < 0, thus ϕn = κn,

and θn = µn as well.

Furthermore, if {ϕn, θn}n∈N and Cmax
tot are all restricted

to be positive integers, then problem (38) becomes identical

to the knapsack problem which is known to be NP-hard [38];

this completes the proof.

APPENDIX B

PROOF OF THEOREM 2

First of all, due to (22)–(24), we have that

E(x̃n) = 1 · x†n + 0 · (1− x†n) = x†n , (39)

E

(
L̃n

∣∣∣ x†n 6= 0
)
=
(⌊
L†
n

⌋
+ 1
)
frac(L†

n)

+
⌊
L†
n

⌋ (
1− frac(L†

n)
)

= frac(L†
n) +

⌊
L†
n

⌋
= L†

n ,

(40)

E

(
L̃n

∣∣∣x†n = 0
)
= 1

Lmax
n −Lmin

n +1

Lmax

n∑

i=Lmin
n

i

= 1
2 (L

min
n + Lmax

n ).

(41)

Furthermore, by defining the random variable z̃n = x̃nL̃n
for all n ∈ N and exploiting the independency of x̃n and L̃n,

we get the following conditional expectations:

E
(
z̃n|x†n 6= 0

)
= E

(
x̃n|x†n 6= 0

)
E

(
L̃n

∣∣∣ x†n 6= 0
)

= x†nL
†
n = z†n ,

(42)

E
(
z̃n|x†n = 0

)
= E

(
x̃n|x†n = 0

)
E

(
L̃n

∣∣∣ x†n = 0
)

= 0 · 1
2 (L

min
n + Lmax

n ) = 0 = z†n ,
(43)

where the latter is based on the fact that: if x†n = 0, then z†n =
0 and x̃n = 0. As a result, combining the above equations,

E (z̃n) = z†n for all n ∈ N .

Because of the linearity of expectation and the feasibility

of (x†, z†), we obtain

E

(
G(x̃, L̃)

)
= E

(
∑

n∈N
βnz̃n

)
=
∑

n∈N
βnE(z̃n)

=
∑

n∈N
βnz

†
n = G†,

(44)

E

(
∑

n∈N
x̃n

)
=
∑

n∈N
E(x̃n) =

∑

n∈N
x†n ≤M, (45)

E

(
Ltot(x̃, L̃)

)
= E

(
∑

n∈N
z̃n

)
=
∑

n∈N
E(z̃n)

=
∑

n∈N
z†n ≤ Lmax

tot ,

(46)

E

(
Ctot(x̃, L̃)

)
= E

(
∑

n∈N
cnx̃n +

∑

n∈N
λnz̃n

)

=
∑

n∈N
cnE(x̃n) +

∑

n∈N
λnE(z̃n)

=
∑

n∈N
cnx

†
n +

∑

n∈N
λnz

†
n ≤ Cmax

tot .

(47)

Therefore, Theorem 2 has been proven.

APPENDIX C

PROOF OF THEOREM 3

In order to prove Theorem 3, we make use of a concentra-

tion inequality for sums of independent and bounded random

variables, namely, Hoeffding’s inequality. This is a general-

ization of the well-known Chernoff bound, which applies to

Bernoulli random variables.

Lemma 1 (Hoeffding’s inequality [39]): Let {Xn}n∈N be a

finite set of independent random variables, with Xn ∈ [an, bn]
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for all n ∈ N (where an ≤ bn), and X ,
∑
n∈N Xn. Then,

for any u > 0,

Pr (X − E(X) > u) ≤ e−2u2/∆ , (48)

where ∆ =
∑
n∈N (bn − an)

2
.

The probability of approximating the optimum value within

a given tolerance ǫ0 > 0 is lower bounded by

Pr
(
G(x̃, L̃) ≤ G⋆ + ǫ0

)
= 1− Pr

(
G(x̃, L̃) > G⋆ + ǫ0

)

≥ 1− Pr
(
G(x̃, L̃) > G† + ǫ0

)

≥ 1− e−2ǫ2
0
/∆0 ,

(49)

where ∆0 =
∑

n∈N (βnL
max
n )

2
. Here, the first inequality

is because G† ≤ G⋆, while the second inequality follows

from Lemma 1 by taking advantage of (25) and noticing

that G(x̃, L̃) =
∑
n∈N βn(x̃nL̃n) =

∑
n∈N βnz̃n is the sum

of independent random variables {βnz̃n}n∈N with βnz̃n ∈
[βnL

max
n , 0]; recall that βn ≤ 0. By assuming ∆0 > 0 and

setting ǫ0 =
√
∆0 log(N + 1) > 0, we get (29) for k = 0.

Regarding the probabilistic guarantee for the IRS-cardinality

constraint, we have for any ǫ1 > 0

Pr

(
∑

n∈N
x̃n ≤M + ǫ1

)
= 1− Pr

(
∑

n∈N
x̃n > M + ǫ1

)

≥ 1− Pr

(
∑

n∈N
x̃n >

∑

n∈N
x†n + ǫ1

)

≥ 1− e−2ǫ2
1
/∆1 ,

(50)

where ∆1 = N . The two inequalities follows from (26) and

Lemma 1. Finally, by choosing ǫ1 =
√
∆1 log(N + 1) > 0

we obtain (29) for k = 1.

Moreover, based on (27) and Lemma 1, we obtain for any

ǫ2 > 0

Pr
(
Ltot(x̃, L̃) ≤ Lmax

tot + ǫ2

)
= 1− Pr

(
Ltot(x̃, L̃) > Lmax

tot + ǫ2

)

≥ 1− Pr

(
Ltot(x̃, L̃) >

∑

n∈N
z†n + ǫ2

)

≥ 1− e−2ǫ2
2
/∆2 ,

(51)

where ∆2 =
∑

n∈N (Lmax
n )

2
. Note that Ltot(x̃, L̃) =∑

n∈N x̃nL̃n =
∑
n∈N z̃n is the sum of independent random

variables {z̃n}n∈N with z̃n ∈ [0, Lmax
n ]. Inequality (29) for

k = 2 can be easily derived, assuming ∆2 > 0 and setting

ǫ2 =
√
∆2 log(N + 1) > 0.

Although x̃n and z̃n = x̃nL̃n are not indepen-

dent random variables, Ctot(x̃, L̃) =
∑
n∈N cnx̃n +∑

n∈N λn(x̃nL̃n) can be written as the sum of independent

random variables {(cn + λnL̃n)x̃n}n∈N , i.e., Ctot(x̃, L̃) =∑
n∈N (cn + λnL̃n)x̃n, with (cn + λnL̃n)x̃n ∈ [0, cn +

λnL
max
n ]. As a consequence, for any ǫ3 > 0, the probability

of the event E3 can be lower bounded by

Pr
(
Ctot(x̃, L̃) ≤ Cmax

tot + ǫ3

)
= 1− Pr

(
Ctot(x̃, L̃) > Cmax

tot + ǫ3

)

≥ 1− Pr

(
Ctot(x̃, L̃) >

∑

n∈N
cnx

†
n

+
∑

n∈N
λnz

†
n + ǫ3

)

≥ 1− e−2ǫ2
3
/∆3 ,

(52)

where ∆3 =
∑
n∈N (cn + λnL

max
n )

2
, while the two inequal-

ities result from the combination of (28) with Lemma 1.

Assuming ∆3 > 0 and choosing ǫ3 =
√
∆3 log(N + 1) > 0,

we have (29) for k = 3. Hence, (29) has been proven for all

k ∈ {0, 1, 2, 3}.

Now, let us consider inequality (34). By applying De

Morgan’s law and the union bound theorem, we obtain

Pr

(
3⋂

k=1

Ek
)

= 1− Pr

((
3⋂

k=1

Ek
)c)

= 1− Pr

(
3⋃

k=1

Ec

k

)
,

(53)

Pr

(
3⋃

k=1

Ec

k

)
≤

3∑

k=1

Pr(Ec

k) =

3∑

k=1

(1 − Pr(Ek)). (54)

Subsequently, by combining the above equations and leverag-

ing (29), we deduce

Pr

(
3⋂

k=1

Ek
)

≥ 1−
3∑

k=1

(1− Pr(Ek))

≥ 1− 3ξ = 1− ξ′.

(55)

Finally, inequality (35) can be derived by following similar

steps as above, so Theorem 3 follows immediately.
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