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Abstract—A simultaneously transmitting and reflecting surface
(STARS) enabled integrated sensing and communications (ISAC)
framework is proposed, where the entire space is partitioned by
STARS into a sensing space and a communication space. A novel
sensing-at-STARS structure is proposed, where dedicated sensors
are mounted at STARS to address the significant path loss and
clutter interference of sensing. The Cramér-Rao bound (CRB) of
the two-dimensional (2D) direction-of-arrivals (DOAs) estimation
of the sensing target is derived, which is then minimized subject
to the minimum communication requirement. A novel approach
is proposed to transform the complicated CRB minimization
problem into a trackable modified Fisher information matrix
(FIM) optimization problem. Both independent and coupled
phase-shift models of STARS are investigated: 1) For the in-
dependent phase-shift model, to address the coupling problem
of ISAC waveform and STARS coefficient, an efficient double-
loop iterative algorithm based on the penalty dual decomposition
(PDD) framework is conceived; 2) For the coupled phase-
shift model, based on the PDD framework, a low complexity
alternating optimization algorithm is proposed to tackle the
coupled phase-shift constraint by alternately optimizing the
amplitude and phase-shift coefficients of STARS with closed-
form expressions. Finally, the numerical results demonstrate
that: 1) STARS significantly outperforms conventional RIS in
terms of CRB under the communication constraints; 2) The
coupled phase-shift model achieves comparable performance to
the independent one for low communication requirements or
sufficient STARS elements; 3) It is more efficient to increase the
number of passive elements of STARS than the active elements
of the sensor; 4) Higher sensing accuracy can be achieved by
STARS using the practical 2D maximum likelihood estimator
compared with the conventional RIS.

Index Terms—Cramér-Rao bound, integrated sensing and com-
munication (ISAC), simultaneously transmitting and reflecting
intelligent surface (STARS).

I. INTRODUCTION

Integrated sensing and communications (ISAC) technique
has been recognized as an important enabler of next-generation
wireless networks [2]. The goal of ISAC is to integrate sensing
function and communication function in a single platform
to share the same resources, hardware facilities, and signal-
processing modules. In addition to obvious advantages such
as high spectrum, energy, and hardware efficiency, ISAC also
enables wireless networks to be aware of the surrounding
environment, thereby establishing ubiquitous intelligence in
the future smart world [3]. This presents exciting opportunities
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for developing environment-aware technologies, including but
not limited to augmented reality (AR), virtual reality (VR), and
vehicle-to-everything (V2X). In addition, by replicating the
physical world through sensing and exchanging information
through communication, ISAC can connect the virtual world
and the physical world, and build the foundation of the
Metaverse [4].

Reconfigurable intelligent surface (RIS) is another promis-
ing technique to enable smart radio environment for next-
generation wireless networks [5]. On the one hand, RIS
is able to dynamically adjust its passive beamforming to
enhance communication performance. On the other hand, RIS
can also establish a line-of-sight (LoS) link with the target
to facilitate sensing performance. However, the conventional
transmitting/reflecting-only RIS requires sensing targets or
communication users to be located on the same side of
the RIS as the base station (BS), which can only achieve
half-space coverage. To address this challenge, a promising
simultaneous transmitting and reflecting surface (STARS) was
recently proposed to realize 360◦ full-space coverage [6]. As
a consequence, STARS is capable of providing new degrees of
freedom (DoFs), i.e., both transmission and reflection beam-
forming [7], for enhancing both sensing and communication
performance.

A. Prior Works
In recent years, there have been growing research interests

in the ISAC from various perspectives. With the rapid de-
velopment of multiple-input multiple-out (MIMO) techniques,
multi-antenna arrays can provide higher DoFs to construct
highly directional beams pointing to communication users and
sensing targets, which motivates many works to investigate
ISAC from the perspective of transmit beamforming [8]–[11].
Specifically, the authors of [8] jointly designed the transmit
beamforming to approach the desired sensing beampattern
while guaranteeing the minimum communication signal-to-
interference-plus-noise-ratio (SINR) requirement. As a further
advance, authors of [9] proposed to introduce an additional
dedicated sensing signal to compensate for the DoF degrada-
tion caused by the limited number of communication users.
To enhance the design flexibility between communication and
sensing subsystems, several transmit beamforming designs
were proposed in [10] for guaranteeing the user-prescribed
sensing and communication performance levels. Furthermore,
in [11], an ISAC system based on metamaterial antennas was
conceived, which is capable of supporting ultra-dense radiation
elements and realizing holographic beamforming.

Although the aforementioned transmit beamforming designs
are capable of realizing a favorable tradeoff between sensing
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and communication, the sensing performance is not fully
considered. It should be noted that the sensing function is
carried out by transmitting a signal to the target and then an-
alyzing the received echo signal reflected by the target, which
indicates that the sensing performance is mainly characterized
at the receiver, and it is not enough to only consider the
beamforming of the transmitter. As a remedy, by considering
the echo signals, some works adopted general sensing SINR
[12] or general sensing mutual information (MI) [13] as
the performance metric, leading to joint transceiver designs.
Meanwhile, from the perspective of estimation accuracy, the
fundamental Cramér-Rao bound (CRB), which characterizes
the minimum achievable variance of the unbiased estimators
at the receiver, has been considered in some recent works [14],
[15]. In particular, the optimization framework for minimizing
the CRB of the point target and the extended target was
proposed in [14]. Furthermore, the authors of [15] investigated
the optimal rate-CRB tradeoff region in ISAC systems.

Recently, motivated by the capability of RIS to adjust
the signal propagation environment and significantly improve
the performance of wireless communication [16]–[18], RIS-
assisted wireless sensing technique has received growing at-
tention [19]–[22]. In [19], the authors employed RIS to facil-
itate multi-target detection by jointly optimizing the sensing
waveform and the RIS phase shifts. However, since the paths
between BS, RIS, and targets have long round-trip distances
and multiple hops, the performance of the RIS-assisted sensing
system is limited by the significant path loss. Hence, the
authors of [20] proposed a RIS-self-sensing scheme, where
the probing signal is sent by the co-located RIS controller
and the echo signal is analyzed at the low-cost active sensors
installed on the RIS. Furthermore, the authors of [21] studied
the RIS-assisted sensing from the CRB perspective, where the
CRB for estimating the azimuth direction-of-arrival (DOA) of
one target is derived and then minimized by jointly designing
active and passive beamforming. As a further advance, a multi-
RIS-aided sensing framework was proposed in [22], where the
CRB of the estimated Doppler phase shift is minimized. There
also have been extensive research contributions to RIS-assisted
ISAC techniques. For example, a pair of joint active and
passive beamforming designs were proposed in [23] for ISAC
systems assisted by single RIS and dual RISs, respectively.
The authors of [24] jointly optimized the transmit waveform
and passive beamforming to maximize the sensing SINR at the
BS subject to different communication constraints. Moreover,
RIS was exploited in [25] to enhance communication SINR
and sensing detection resolution. To guarantee the estimation
accuracy, the authors of [26] proposed to minimize the multi-
user interference of communication under the minimum CRB
requirement.

B. Motivations and Challenges

The motivations of this paper can be summarized in four
folds. Firstly, in contrast to conventional RIS, STARS does not
require the sensing target and the communicating user to be
on the same side. Moreover, STARS can split a signal into two
separate signals, which is a good match for the dual function

in ISAC. Driven by the above observations, in this paper,
we naturally propose adopting STARS to divide the whole
space into two half-spaces, namely the sensing space and the
communication space. Therefore, the signal from the BS is
split at the STARS to carry out target sensing in the sensing
space and serve communication users in the communication
space, that is, ISAC is enabled by the STARS.

Secondly, the sensing function is typically carried out
at the BS by analyzing the echo signals from the tar-
get. However, the following challenges need to be ad-
dressed when utilizing STARS. On the one hand, the sens-
ing signal has significant path loss over multiple hops, i.e.,
BS→STARS→target→STARS→BS, especially when the di-
rect BS-target link is blocked and the STARS is deployed
in the vicinity of the target. On the other hand, due to the
transmission and reflection properties of STARS, the BS can
also receive clutter signals from the communication space,
which are difficult to distinguish from the desired echo signals
from the sensing space. To address these challenges, we pro-
pose to install dedicated low-cost sensors on STARS following
an idea similar to [20]. Therefore, the sensing function can
be carried out at these sensors, namely sensing-at-STARS,
rather than at the BS, thereby reducing the number of hops
and path loss. Furthermore, to avoid clutter interference from
the communication space, the side of the sensor facing the
communication space can be physically blocked to achieve
unidirectional reception of echo signals.

Thirdly, most existing works assumed that the transmission
and reflection phase shifts of STARS can be adjusted indepen-
dently. However, this may be non-trivial to realize in practice
since the active elements are required. Recently, a coupled
phase-shift model is proposed for the STARS with purely
passive lossless elements [27]. Thus, to unveil the full potential
of STARS in ISAC systems, we considered both independent
and coupled phase-shift models of STARS.

Fourthly, since the effectiveness of optimizing CRB has
been widely demonstrated, we also considered it as the per-
formance metric for sensing. However, in the existing works
[14], [20], [21], [26], only the estimation of the azimuth DOA
of the target is studied. Note that the RIS or STARS are
usually equipped with a uniform planar array (UPA), which is
capable of estimating both azimuth and elevation DOAs. This
motivates us to investigate the CRB for the two-dimensional
(2D) DOA estimation in this paper.

C. Contributions

The primary contributions of our paper are summarized as
follows:
• We propose a novel STARS-enabled ISAC system with

a sensing-at-STARS structure, where the entire space is
divided into a sensing space with a single target and a
communication space with multiple users. Based on this
setup, we derive the CRB for estimating the 2D DOAs
of the target. Considering both independent and coupled
phase-shift models of STARS, we formulate the CRB
minimization problem under the communication SINR
constraint.
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• For the independent phase-shift model, instead of directly
minimizing the complicated CRB, we propose an equiv-
alent optimization for a more trackable modified Fisher
information matrix (FIM). Furthermore, we propose an
iterative algorithm based on penalty dual decomposition
(PDD) to address the coupling of the optimization vari-
ables in the modified FIM.

• For the coupled phase-shift model, to tackle the additional
complicated non-convex coupled phase-shift constraints,
we conceive a low-complexity algorithm by iteratively
optimizing the amplitude and phase-shift coefficients of
STARS, where the optimal closed-form solutions are
obtained in each iteration.

• Our numerical results verify the effectiveness of the
proposed algorithms and reveal the superiority of the
STARS over the conventional RIS in terms of ISAC
performance both theoretically and practically. Some
insights are also obtained from the numerical results.
Firstly, the two phase-shift models of the STARS have
similar performance in the cases of low communication
requirements or sufficient STARS elements. Secondly,
increasing the number of passive elements of STARS is
more appealing than the number of sensor elements.

D. Organization and Notations

The rest of this paper is organized as follows. In Section
II, the proposed STARS-enabled ISAC framework with the
sensing-at-STARS structure is presented. Then, the CRB for
the 2D DOA estimation is derived. In Section III, a PDD-
based algorithm is conceived to solve the CRB minimization
problem with the independent phase-shift model, where a
novel CRB simplification approach is proposed. In Section IV,
considering the coupled phase-shift model, another PDD-based
algorithm is proposed to solve the corresponding CRB min-
imization problem, where the coupled phase-shift constraints
are addressed in an alternating manner based on the optimal
closed-form solutions. In Section V, the numerical results are
provided to verify the effectiveness of the proposed framework
and algorithms. Finally, this paper is concluded in Section VI

Notations: Scalars, vectors, and matrices are denoted by
the lower-case, bold-face lower-case, and bold-face upper-
case letters, respectively; CN×M and RN×M denotes the
space of N ×M complex and real matrices, respectively; a∗

and |a| denote the conjugate and magnitude of scalar a; aH

denotes the conjugate transpose of vector a; diag(a) denotes
a diagonal matrix with same value as the vector a on the
diagonal; A � 0 means that matrix A is positive semidefinite;
rank(A) and tr(A) denote the rank and trace of matrix A,
respectively; E[·] denotes the statistical expectation; Re{·}
denotes the real component of a complex number; CN (µ, σ2)
denotes the distribution of a circularly symmetric complex
Gaussian (CSCG) random variable with mean µ and variance
σ2.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a narrowband STARS-
enabled ISAC system, where the BS is equipped with a
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Fig. 1: Illustration of the STARS-enabled ISAC system.

uniform linear array (ULA) consisting of M antennas and
the STARS is equipped with a uniform planar array (UPA)
consisting of N passive transmission-reflection (T-R) elements
denoted by the set N . The whole space is divided into two
half-spaces by STARS, namely the sensing space and the
communication space. Without loss of generality, we assume
that the sensing space is on the reflection side and the com-
munication space is on the transmission side. There is a single
sensing target of interest in the sensing space and K single-
antenna communication users, whose indices are collected in
K, in the communication space. The direct links between BS
and target/users are assumed to be blocked. To tackle the
severe path-loss, we propose a sensing-at-STARS structure,
where a dedicated low-cost sensor with a ULA consisting of
Ns elements is mounted on STARS. The side of the sensor
facing the communication space is physically blocked to avoid
the clutter signal from the communication space. Furthermore,
we consider a coherent time block of length L, during which
the communication channels and sensing target parameters
remain approximately constant.

A. STARS Model

The energy splitting model is exploited to support simulta-
neous transmission and reflection of the STARS. In particular,
the incident signal at the STARS from the BS is split into the
sensing signal in the sensing space and the communication
signal in the communication space. Denote Θt ∈ CN×N and
Θr ∈ CN×N as the matrices of the transmission coefficients
(TCs) and reflection coefficients (RCs), respectively, which can
be modeled as

Θi = diag
(
βi,1e

jϕi,1 , . . . , βi,Ne
jϕi,N

)
,∀i ∈ {t, r}. (1)

In the above expression, βi,n ∈ [0, 1] and ϕi,n ∈ [0, 2π]
denote the amplitude and phase-shift response of the n-th
element. The exact value of βi,n and ϕi,n is determined by the
resistance and reactance of the STARS elements. In general,
assuming that the phase shifts of TC and RC can be adjusted
independently, the amplitudes need to satisfy the law of energy
conservation as follows:

β2
t,n + β2

r,n = 1,∀n ∈ N , (2)

which is termed as independent T&R phase-shift model.
The independent T&R phase-shift model requires the STARS
elements to be active or lossy [27], which may result in
higher manufacturing costs. As such, the STARS with low-
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cost passive and lossless elements has been studied in [27],
where the electric and magnetic impedance of each element
should be pure imaginary numbers. In this case, TCs and RCs
also need to meet the following conditions [27]:

cos(ϕt,n − ϕr,n) = 0,∀n ∈ N . (3)

Under the above constraints, the phase shifts of TCs and RCs
are coupled, which is referred to as the coupled T&R phase-
shift model. To fully investigate the role of STARS in the
proposed system, both independent and coupled T&R phase-
shift models are considered in this paper.

B. Signal Model
To carry out sensing and communication simultaneously, the

BS transmits the following joint signal at the time index t:

x(t) = Pc(t) + s(t) =
∑
k∈K

pkck(t) + s(t), (4)

where P = [p1, . . . ,pK ] ∈ CM×K denotes the transmit
beamforming matrix for delivering the information streams
c(t) = [c1(t), . . . , cK(t)]T ∈ CK×1 to the K communication
users. The signal, s(t) ∈ CM×1, is the dedicated sensing signal
to achieve the full DoFs for target sensing [9]. The multiple
beam transmission is exploited by the dedicated sensing signal.
Thus, the covariance matrix of it, i.e., Rs = E[s(t)sH(t)], has
a general rank. Furthermore, the communication signals are
modeled as independent Gaussian random signals with zero
mean and unit power, and the dedicated sensing signal is gen-
erated by pseudo-random coding, so that E[c(t)c(t)H ] = IK
and E[c(t)s(t)H ] = 0K×M . Thus, the covariance matrix of
the transmit signal x(t) is given by

Rx = E[x(t)x(t)H ] = PPH + Rs. (5)

In practice, Rx can be calculated by averaging over L time
indexes as follows:

Rx ≈
1

L
XXH , (6)

where X = [x(1), . . . ,x(L)]. The above approximation is
accurate when L is large. Thus, we assume the accurate
equality of (6) is achieved throughout this paper.

Given the transmit signal at the BS, the received signal at
the k-th communication user in the communication space can
be modeled as1

yc,k(t) = hHk ΘtGpkck(t)︸ ︷︷ ︸
desired signal

+
∑
i∈K\k

hHk ΘtGpici(t)︸ ︷︷ ︸
inter-user interference

+ hHk ΘtGs(t)︸ ︷︷ ︸
sensing interference

+nk(t), (7)

where G ∈ CN×M denotes the baseband channel matrix
between the BS and the STARS, hk ∈ CN×1 denotes the
baseband channel vector between the STARS and user k, and
nk ∼ CN (0, σ2

k) denotes the additive white Gaussian noise
(AWGN) at user k with the variance σ2

k.

1Here, we omit the interference caused by the echo signal from the sensing
space because its power at the communication user is negligible.

Then, in the sensing space, the received echo signal from
the target over a coherent time block of length L at the sensors
can be modeled as

Ys = αb(φh, φv)a
T (φh, φv)ΘrGX + Ns, (8)

where α ∈ C is the complex amplitude determined by the
round-trip path-loss and the complex reflection factor of the
target, φh and φv denotes azimuth and elevation DOAs of the
target with respect to the STARS, respectively, a(φh, φv) ∈
CN×1 denotes the steering vector of the STARS, b(φh, φv) ∈
CNs×1 denotes the steering vector of the sensors, and Ns

denotes the AWGN noise with each entry obeying CN (0, σ2
s).

According to [28], the steering vectors under the planar wave
assumption can be modeled as

a(φh, φv) = exp(−j[rX , rY , rZ ]k(φh, φv)), (9)
b(φh, φv) = exp(−j[r̄X , r̄Y , r̄Z ]k(φh, φv)), (10)

where [rX , rY , rZ ] ∈ RN×3 and [r̄X , r̄Y , r̄Z ] ∈ RNs×3 have
rows representing the Cartesian coordinates of the STARS
elements and the sensors. The vector k(φh, φv) ∈ R3×1 is
the wavenumber vector defined as follows:

k(φh, φv) =
2π

λc
[cosφh cosφv, sinφh cosφv, sinφv]

T , (11)

where λc denotes the wavelength of the carrier signal. Without
loss of generality, we assume that the ULA array of the sensors
is deployed along the X-axis and the UPA array of the STARS
is deployed within the (X,Z) plane, i.e., r̄Y = r̄Z = 0
and rY = 0. As a consequence, the steering vectors can be
simplified as follows:

a(φh, φv) = exp
(
− j 2π

λc
(rX cosφh cosφv + rZ sinφv)

)
,

(12)

b(φh, φv) = exp
(
− j 2π

λc
r̄X cosφh cosφv

)
. (13)

The echo signal model in (8) is assumed to be acquired in
a specific range-Doppler bin. Thus, the range and Doppler
parameters are omitted. Furthermore, in addition to the echo
signal from the target, the sensors also receive the interference
signal through the direct BS-sensor link. However, in practice,
such interference can be effectively eliminated by the offline
training [20] and thereby is also omitted.

C. Performance Metrics for Communication and 2D Sensing

A common measure of multi-user communication is the
SINR, which determines the achievable rate. Therefore, we
focus on optimizing the SINR for each communication user.
According to (7), the SINR for decoding the desired signal at
user k is given by

γk =
|hHk ΘtGpk|2∑

i∈K\k |hHk ΘtGpi|2+hHk ΘtGRsGHΘH
t hk+σ2

k

.

(14)
For target sensing, we are interested in estimating the 2D

DOAs φh and φv based on the observations Ys over a coherent
time block, which can be achieved by the classic maximum
likelihood estimation (MLE) presented in Appendix A. After
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obtaining the estimated φ̂h and φ̂v , the mean square error
(MSE), i.e., ε2h = E[|φh − φ̂h|2] and ε2v = E[|φv − φ̂v|2],
is commonly used to evaluate the estimation performance.
However, the optimization of MSE is intractable since it is
difficult to obtain closed-form expressions. Therefore, we are
interested in optimizing the CRB for estimating the 2D DOAs
φh and φv , which provides a lower bound for the MSE and
has the closed-form expression. To derive the CRB, we first
vectorize the matrix Ys as follows:

ys = vec(Ys) = u + ns, (15)

where u = vec(αb(φh, φv)a
T (φh, φv)ΘrGX) and ns =

vec(Ns). Denote ξ = [φT , α̃T ]T , where φ = [φh, φv]
T and

α̃ = [Re(α), Im(α)]T , as the unknown parameters to estimate.
Then, the FIM for estimating the vector ξ can be partitioned
as

Jξ =

[
Jφφ Jφα̃

JTφα̃ Jα̃α̃

]
. (16)

Then, the CRB matrix for estimating φ is given by [29]

CRB(φ) =
[
Jφφ − Jφα̃J−1α̃α̃JTφα̃

]−1
, (17)

where the expressions of the matrices Jφφ, Jφα̃, and Jα̃α̃
are derived in Appendix B. It can be observed that CRB(φ)
depends on the target DOAs φ. The knowledge of φ is
thus required to design the joint waveform at the BS and
the TCs/RCs at the STARS. Note that in practice, the target
DOAs typically do not change significantly between two
adjacent coherent time blocks. Therefore, the estimated or
predicted DOAs from estimation results in previous coherent
time blocks are sufficient for system design [14]. Based on
the above analysis, we assume that the DOAs φ are fixed
for the optimization problem. Furthermore, it is assumed
that the communication channels of both independent and
coupled T&R phase-shifted STARS have been obtained by
the advanced channel estimation method [30].

III. CRB OPTIMIZATION DESIGN WITH INDEPENDENT
T&R PHASE-SHIFT

In this section, based on the proposed framework, we focus
on the minimization of CRB in the case of STARS with
independent T&R phase shifts, which can be simplified to
the optimization of a modified FIM. We then propose to
solve the resulting optimization problem by invoking the PDD
framework.

A. Problem Formulation

The diagonal elements of the CRB matrix represent the
minimum variance of each target parameter estimated by the
unbiased estimator [31]. Therefore, we aim to minimize the
trace of the CRB matrix, while guaranteeing the minimum
SINR level at each communication user. To optimize the
complicated CRB matrix CRB(φ), we first transform it into
a more trackable form according to the following proposition.

Proposition 1. Minimizing the trace of CRB matrix CRB(φ)
is equivalent to solving the following optimization problem

min
U,Ω

tr(U−1) (18a)

s.t.

[
Jφφ −U Jφα̃

JTφα̃ Jα̃α̃

]
� 0, (18b)

U � 0, (18c)

where U ∈ C2×2 is an auxiliary matrix and Ω denotes the
original optimization variables.

Proof. Firstly, we have that the FIM Jφφ − Jφα̃J−1α̃α̃JTφα̃
is a positive semidefinite matrix. According to [32, Exam-
ple 3.46], the function tr(A−1) is matrix decreasing on
the positive semidefinite matrix space. Therefore, minimiz-
ing tr

(
[Jφφ − Jφα̃J−1α̃α̃JTφα̃]−1

)
is equivalent to minimizing

tr(U−1), where U � 0, subject to the constraint

Jφφ − Jφα̃J−1α̃α̃JTφα̃ � U. (19)

Then, based on the Schur complement condition [33], the
constraint (18b) with a modified FIM can be obtained. �

Remark 1. Proposition 1 can be easily extended to the cases
of multiple targets. For example, consider a system with Q
targets. Denote αq , φq,h, and φq,v as the complex amplitude,
the azimuth DOA, and the elevation DOA of the q-th target,
respectively. The unknown parameters become ξ̄ = [φ̄

T
, ¯̃αT ],

where φ̄ = [φ1,h, φ1,v, . . . , φQ,h, φQ,v]
T ∈ R2Q×1 and ¯̃α =

[Re(α1), Im(α1), . . . ,Re(αQ), Im(αQ)] ∈ R2Q×1. Following
the same path in Appendix B, it can be shown that the
corresponding CRB matrix of DOA estimation is in the same
form as (17) but with a different dimension of 2Q × 2Q.
Therefore, by defining a new auxiliary semidefinite matrix
Ū ∈ C2Q×2Q, the corresponding CRB minimization problem
for multiple targets can be converted into the same form as
problem (18).

Based on Proposition 1, the optimization problem for
minimizing CRB(φ) can be formulated as follows:

P : min
U,P,Rs,
θt,θr

tr
(
U−1

)
, (20a)

s.t.

[
Jφφ −U Jφα̃

JTφα̃ Jα̃α̃

]
� 0, (20b)

γk ≥ γk,∀k (20c)

tr(PPH + Rs) ≤ P, (20d)

β2
t,n + β2

r,n = 1, 0 ≤ βt,n, βr,n ≤ 1,∀n,
(20e)

Rs � 0,U � 0, (20f)

where θi = [βi,1e
jϕi,1 , . . . , βi,Ne

jϕi,N ]T ,∀i ∈ {t, r}, is the
vector comprised by the entries on the diagonal of the matrix
Θi,∀i ∈ {t, r}, γk ≥ 0 in constraint (20c) denotes the
minimum SINR threshold of user k, and P ≥ 0 in constraint
(20d) denotes the total power budget at the BS. Constraint
(20e) characterizes the amplitude relationships between TCs
and RCs of the STARS. Finally, constraint (20f) ensures the
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matrices Rs and U to be positive semidefinite. The main chal-
lenges for solving problem P is the highly coupled transmit
waveform matrices, i.e., P and Rs, and the STARS coefficient
vectors, i.e., θt and θr, in the non-convex constraints (20b) and
(20c). As a consequence, it is challenging to find the global
optimum of problem P . To the best of the authors’ knowledge,
there is no existing algorithm for solving the unique coupling
problem in CRB minimization. Therefore, in the following
subsections, we develop an efficient PDD-based algorithm to
obtain a high-quality solution to problem P .

B. PDD Framework for Solving Problem P

As shown in [34], the standard PDD optimization frame-
work is developed in a double-loop structure, where the
augmented Lagrangian (AL) problem of the original problem
is optimized in a block coordinate descent (BCD) manner in
the inner loop, while the Lagrangian dual variables and penalty
factors are updated in the outer loop. Therefore, the key idea
of applying the PDD method for solving P is to construct
an AL problem of it that has a simple or even closed-form
solution at each step of the BCD. To this end, we first define
auxiliary variables as follows:

F = ΘrGRxG
HΘH

r , (21)

Then, problem P can be reformulated as

min
χ

tr(U−1) (22a)

s.t. F = ΘrGRxG
HΘH

r , (22b)[
Jφφ(F)−U Jφα̃(F)

JTφα̃(F) Jα̃α̃(F)

]
� 0, (22c)

(20c)− (20f), (22d)

where χ , {U,P,Rs,F,θt,θr} represents all optimization
variables. The entries of the matrix in the left-hand side of
constant (22c) are given by

Jφφ(F) =
2|α|2L
σ2
s

Re

([
tr(Ḃφh

FḂH
φh

) tr(Ḃφh
FḂH

φv
)

tr(Ḃφh
FḂH

φv
) tr(Ḃφv

FḂH
φv

)

])
,

(23)

Jφα̃(F) =
2L

σ2
s

Re

α∗tr(BFḂH
φh

)
α∗tr

(
BFḂH

φv

) [1, j]

 , (24)

Jα̃α̃(F) =
2L

σ2
s

I2tr
(
BFBH

)
. (25)

By introducing the Lagrangian dual variable Υ ∈ CN×N and
the penalty factor ρ > 0 for the equality constraints (22b), the
following AL problem of (22) can be obtained:

PAL(ρ,Υ) : min
χ

tr(U−1) + Pρ(χ,Υ) (26a)

s.t. (20c)− (20f), (22c), (26b)

where

Pρ(χ,Υ) =
1

2ρ
‖F−ΘrGRxG

HΘH
r + ρΥ‖2. (27)

Algorithm 1 PDD-based algorithm for solving problem P .

1: Initialize feasible χ[0], Υ[0], ρ[0] ≥ 0, and set 0 < c < 1,
n = 1.

2: repeat
3: χ[n+1] = optimize

(
PAL(ρ[n],Υ[n])

)
4: if h(χ[n+1]) ≤ η[n] then
5: Υ[n+1] = Υ[n] + 1

ρ (F[n+1] − Θ
[n+1]
r GR

[n+1]
x

×GH(Θ
[n+1]
r )H).

6: ρ[n+1] = ρ[n].
7: else
8: Υ[n+1] = Υ[n], ρ[n+1] = cρ[n].
9: end if

10: n = n+ 1.
11: until the constraint violation h(χ) falls below a predefined

threshold.

According to [34], the PDD-based algorithm for solving
problem P is summarized in Algorithm 1, where h(χ) is
the constraint violation function defined as follows:

h(χ) = ‖F−ΘrGRxG
HΘH

r ‖∞ (28)

Moreover, {η[n]}∞n=1 is a sequence that converges to zero,
which can be set empirically. In this paper, we set η[n] =
0.99h(χ[n−1]). It can be observed that when the penalty
factor ρ is sufficiently small, the penalty term Pρ(χ) and
the constraint violation h(χ) will reduce to zero. In other
words, the equality constraint (22b) is satisfied. The detailed
discussion of the convergence and optimality of the PDD
framework can be found in [34].

C. Proposed BCD Algorithm for Solving AL Problem (26)

The key step of the proposed PDD-based algorithm is
to solve the AL problem (26). In particular, we divide the
set of the optimal variables χ into two blocks, namely
{U,F,P,Rs} and {θt,θr}. Then, the BCD algorithm is
invoked to solve each block iteratively while fixing the others,
which leads to the following two subproblems.

1) Subproblem with respect to {U,F,P,Rs}: The sub-
problem with respect to {U,F,P,Rs} is givn by

min
U,F,P,Rs

tr(U−1) +
1

2ρ
‖F−ΘrGRxG

HΘH
r + ρΥ‖2

(29a)

s.t.

[
Jφφ(F)−U Jφα̃(F)

JTφα̃(F) Jα̃α̃(F)

]
� 0, (29b)

1

γk
|uHk pk|2 ≥

∑
i∈K\k

|uHk pi|2 + uHk Rsuk + σ2
k,∀k,

(29c)

tr(PPH + Rs) ≤ P, (29d)
Rs � 0,U � 0, (29e)

where uk = GHΘH
t hk denotes the effective channel vector

for user k. Constraint (29c) is transformed from the com-
munication SINR constraint (20c). Although problem (29) is
apparently non-convex due to the constraint (29c), we now
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show that the global optimum of it can be obtained via
semidefinite relaxation (SDR) approach.

Lemma 1. Given P = [p1, . . . ,pK ]T , there exists Rx and
Rs that satisfy Rx = PPH + Rs if and only if

Rx � PPH =
∑
k∈K

pkp
H
k (30)

Proof. The necessity and sufficiency of this condition can be
readily proved. �

By applying Lemma 1 and defining the auxiliary variables
Pk = pkp

H
k ,∀k ∈ K, that satisfy Pk � 0 and rank(Pk) = 1,

we can formulate the SDR problem of (29) as follows:

min
U,F,Rx,
{Pk}k∈K

tr(U−1) +
1

2ρ
‖F−ΘrGRxG

HΘH
r + ρΥ‖2

(31a)

s.t. (1 +
1

γk
)uHk Pkuk ≥ uHk Rxuk + σ2

k,∀k, (31b)

tr(Rx) ≤ P, (31c)

Rx �
∑
k∈K

Pk,Rs � 0,U � 0,Pk � 0,∀k, (31d)

where the non-convex rank-one constraints rank(Pk) =
1,∀k ∈ K, are relaxed. The relaxed problem (31) is con-
vex semidefinite programming (SDP), the global optimum of
which can be efficiently obtained by the existing convex opti-
mization solvers. However, due to the omission of the rank-one
constraints, the global optimum of problem (31) may have a
higher rank, which may not be a solution to the original non-
convex problem (29). Fortunately, in the following proposition,
we show that the rank-one global optimum of problem (29)
can always be constructed from an arbitrary global optimum
of problem (31).

Proposition 2. Given an arbitrary global optimum
R̃x, {P̃k}k∈K of problem (31), the following solution
is a global optimum of problem (29):

R?
x = R̃x, p?k = (uHk P̃kuk)−1/2P̃kuk. (32)

Proof. Please refer to [9, Theorem 1] �

According to Proposition 2, a global optimum of problem
(29) can be obtained by solving problem (31). Then, the
optimal Rs can be calculated as

R?
s = R?

x −
∑
k∈K

p?k(p?k)H . (33)

2) Subproblem with respect to {θt,θr}: The subproblem
with respect to {θt,θr} is given by

min
θt,θr

‖F−ΘrGRxG
HΘH

r + ρΥ‖2 (34a)

s.t. γk ≥ γk,∀k, (34b)

β2
t,n + β2

r,n ≤ 1, 0 ≤ βt,n, βr,n ≤ 1,∀n. (34c)

To facilitate the optimization of θt and θr, we first trans-
form the objective function and the communication SINR
γk into the more trackable forms. In particular, we define

R̄x = GRxG
H . The eigenvalue decomposition of the matrix

R̄x is given by

R̄x =

R∑
j=1

%jvjv
H
j =

R∑
j=1

v̄jv̄
H
j , (35)

where v̄j =
√
%jvj with %j and vj denoting the eigenvalue

and the corresponding eigenvector, respectively, and R denotes
the rank of the matrix R̄x. As such, the objective function can
be reformulated as∥∥F− R∑

j=1

Θrv̄jv̄
H
j ΘH

r + ρΥ
∥∥2

=
∥∥F̄− R∑

j=1

diag(v̄j)θrθ
H
r diag(v̄j)

H + ρΥ
∥∥2. (36)

Next, we define the following variables:

Φk,i = diag(hHk )Gpip
H
i GHdiag(hk), (37)

Ψk = diag(hHk )GRsG
Hdiag(hk), (38)

V̄j = diag(v̄j), F̄ = F + ρΥ. (39)

As a consequence, problem (34) can be rewritten as

min
θt,θr

∥∥F̄− R∑
j=1

V̄jθrθ
H
r V̄H

j

∥∥2 (40a)

s.t.
1

γk
θHt Φ∗k,kθt ≥

∑
i∈K\k

θHt Φ∗k,iθt + θHt Ψ∗kθt + σ2
k,∀k,

(40b)

|[θt]n|2 + |[θr]n|2 = 1,∀n. (40c)

By observing that the objective function and all the constraints
of problem (40) are in quadratic form with respect to the
optimization variables, we also exploit the SDR approach
to approximately solve it. By defining the auxiliary vari-
ables Qi = θiθ

H
i ,∀i ∈ {t, r}, that satisfies Qi � 0 and

rank(Qi) = 1, the SDR problem of problem (40) is given by

min
Qt,Qr

∥∥F̄− R∑
k=1

ṼkQrṼ
H
k

∥∥2 (41a)

s.t.
1

γk
tr(Φ∗k,kQt) ≥

∑
i∈K\k

tr(Φ∗k,iQt)

+ tr(Ψ∗kQt) + σ2
k,∀k, (41b)

[Qt]n,n + [Qr]n,n = 1,∀n, (41c)
Qt � 0,Qr � 0. (41d)

The above problem is also a convex SDP and thereby the
global optimum of it can be efficiently obtained via the
existing convex optimization solvers. While the SDR may
result in the solution with the general rank, the eigenvalue
decomposition or Gaussian randomization [35] can be applied
to construct a feasible rank-one solution to problem (40).
Note that a sufficient number of Gaussian randomization can
achieve at least π4 -approximation of the optimal objective value
of problem (40). However, the slight performance loss caused
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Algorithm 2 BCD algorithm for solving problem (26).

1: Initialize feasible χ.
2: repeat
3: update {U,F,P,Rs} by solving problem (31).
4: update {θt,θr} by solving problem (41).
5: until the fractional reduction of the objective value falls

below a predefined threshold.

by constructing the rank-one solution cannot theoretically
guarantee the monotonicity of the objective value during
the BCD iteration process. In this case, the penalty-based
alternating minimization (AltMin) algorithm proposed in [18]
with the provable convergence to the stationary point can be
exploited, where the rank-one constraints are transformed as a
penalty term in the objective function. Nevertheless, it is worth
mentioning that the eigenvalue decomposition or Gaussian
randomization can generally guarantees the convergence of the
proposed algorithm in practice.

The overall BCD algorithm for solving problem (26) is sum-
marized in Algorithm 2. Typically, when the AltMin algorithm
is exploited for updating the block {θt,θr}, Algorithm 2 is
guaranteed to converge to a stationary point of problem (26) in
polynomial time [36]. The main complexity of Algorithm 2
arises from solving problems (31) and (41). Given the solution
accuracy ε, the corresponding complexity via the interior-point
method is in order of O((K6.5M6.5 + N6.5) log(1/ε)) and
O((K +N)6.5N6.5 log(1/ε)), respectively [9], [37].

IV. CRB OPTIMIZATION DESIGN WITH COUPLED T&R
PHASE-SHIFT

In this section, we turn our attention to CRB optimization in
the case of STARS with coupled T&R phase shifts. Following
a similar path in Section IV, the PDD framework is also
invoked. Regarding the coupled T&R phase-shift constraints,
a low-complexity iterative algorithm is proposed, where the
amplitude and phase-shift coefficients of SATRS are updated
alternately by the closed-form solutions.

A. Problem Formulation

According to Proposition 1, the optimization problem for
minimizing CRB(φ) with the coupled phase-shift constraints
of STARS can be formulated as follows:

P̃ : min
U,P,Rs,θt,θr

tr
(
U−1

)
, (42a)

s.t. cos(ϕt,n − ϕr,n) = 0,∀n, (42b)
(20b)− (20f), (42c)

where the coupled phase-shift constraint (42b) can be refor-
mulate as follows:

|ϕt,n − ϕr,n| =
1

2
π or

3

2
π,∀n (43)

Compared to the independent T&R phase-shift model, the
coupled T&R phase-shift model imposed in (42b) makes the
problem even more complex. In particular, the optimization
subject to this constraint requires hybrid continuous and
discrete control. For example, the phase shift ϕt,n can be

selected as any value in a continuous region [0, 2π], while
the phase shift can only be selected from a discrete set
{ϕt,n ± 1

2π, ϕt,n ±
3
2π}, which cannot be solved by existing

methods. As a consequence, in the following subsections, we
develop a new efficient PDD-based algorithm to solve the
coupled T&R phase-shift constraints.

B. PDD Framework for Solving Problem P̃
In Section III, we have proposed a PDD-based algorithm

for the independent T&R phase-shift model. In this case, we
aim to obtain an equivalent form of problem (42) where the
coupled T&R phased shifts are relaxed to the independent
ones. Toward this idea, in addition to F = ΘrGRxG

HΘH
r ,

we define another set of auxiliary variables as follows:

θ̃i = θi,∀i ∈ {t, r}, (44)

where θ̃i = [β̃i,1e
jϕ̃i,1 , . . . , β̃i,Ne

jϕ̃i,N ]T ,∀i ∈ {t, r}. Then,
problem P̃ can be reformulated as

min
χ̃

tr(U−1) (45a)

s.t. θ̃r = θr, θ̃t = θt, (45b)

β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1,∀n, (45c)

|ϕ̃t,n − ϕ̃r,n| =
1

2
π or

3

2
π,∀n, (45d)

β2
t,n + β2

r,n = 1, 0 ≤ βt,n, βr,n ≤ 1,∀n, (45e)

(20c)− (20f), (22b), (22c) (45f)

where χ̃ , {U,P,Rs,F,θt,θr, θ̃t, θ̃r} represents all op-
timization variables. Note that in problem (45), the phase-
shift constraints of the original optimization variables θt and
θr have been relaxed to be independent, and the coupled
T&R phase-shift constraints are only related to the auxiliary
variables θ̃t and θ̃r. By introducing the Lagrangian dual
variable λi ∈ CN×1,∀i ∈ {t, r}, for the additional equality
constraints (45b), the following AL problem of (45) can be
obtained:

P̃AL(ρ,Υ,λi) : min
χ̃

tr(U−1) + P̃ρ(χ̃,Υ,λi) (46a)

s.t. (20c)− (20f), (22b), (22c), (45b)− (45e), (46b)

where

P̃ρ(χ̃,Υ,λi) =
1

2ρ

(
‖F−ΘrGRxG

HΘH
r + ρΥ‖2

+
∑

i∈{t,r}

‖θ̃i − θi + ρλi‖2
)

(47)

Thus, the PDD-based algorithm for solving problem P̃ is
summarized in Algorithm 3 and the constraint violation
function is defined as

h̃(χ̃) = max
{
‖F−ΘrGRxG

HΘH
r ‖∞,

‖θ̃t − θt‖∞, ‖θ̃r − θr‖∞
}
. (48)

C. Proposed BCD Algorithm for Solving AL Problem (46)
Similar to Section III-C, the BCD is exploited to solve the

AL problem (46), where the set of optimization variables χ̃



9

Algorithm 3 PDD-based algorithm for solving problem P̃ .

1: Initialize feasible χ̃[0], Υ[0], λ[0]
i ,∀i ∈ {t, r}, ρ[0] ≥ 0,

and set 0 < c < 1, n = 1.
2: repeat
3: χ̃[n+1] = optimize

(
P̃AL(ρ[n],Υ[n],λ

[n]
i )
)

4: if h(χ̃[n+1]) ≤ η[n] then
5: Υ[n+1] = Υ[n] + 1

ρ (F[n+1] − Θ
[n+1]
r GR

[n+1]
x

×GH(Θ
[n+1]
r )H).

6: λ
[n+1]
i = λ

[n]
i + 1

ρ (θ̃
[n+1]

i − θ[n+1]
i ),∀i ∈ {t, r}.

7: ρ[n+1] = ρ[n].
8: else
9: Υ[n+1] = Υ[n], λ[n+1]

i = λ
[n]
i ,∀i ∈ {t, r}.

10: ρ[n+1] = cρ[n].
11: end if
12: n = n+ 1.
13: until the constraint violation h̃(χ̃) falls below a predefined

threshold.

is divided into three blocks, namely {U,F,P,Rs}, {θt,θr},
and {θ̃t, θ̃r}. The solutions of the corresponding subproblems
are given as follows.

1) Subproblem with respect to {U,F,P,Rs}: The sub-
problem with respect to {U,F,P,Rs} for the coupled T&R
phase-shift model is the same as that for the independent T&R
phase-shift model. Thus, it can be solved following the same
path in Section III-C1.

2) Subproblem with respect to {θt,θr}: The subproblem
with respect to {θt,θr} can be optimized with the relaxed
independent T&R phase-shift constraints, which is given by

min
θr,θt

‖F−ΘrGRxG
HΘH

r + ρΥ‖2

+
∑

i∈{t,r}

‖θ̃i − θi + ρλi‖2 (49a)

s.t. γk ≥ γk,∀k (49b)

β2
t,n + β2

r,n = 1, 0 ≤ βt,n, βr,n ≤ 1,∀n. (49c)

Then, by defining υ̃i = −(θ̃i + ρλi),∀i ∈ {t, r}, and
following a similar path in Section III-C, the objective function
can be reformulated as∥∥F̄− R∑

j=1

V̄jθrθ
H
r V̄H

j

∥∥2 +
∑

i∈{t,r}

‖υ̃i + θi‖2

=
∥∥F̄− R∑

j=1

V̂jϑrϑ
H
r V̂H

j

∥∥2 +
∑

i∈{t,r}

(
ϑHi Ξiϑi + υ̃Hi υ̃i

)
,

(50)

where

V̂j =
[
V̄j 0N

]
,Ξi =

[
IN υ̃i

υ̃Hi 0

]
,ϑi =

[
κiθi

κi

]
, (51)

and |κi|2 = 1. Similarly, the minimum communication SINR
can be reformulated as

1

γk
ϑHt Φ̂∗k,kϑt ≥

∑
i∈K\k

ϑHt Φ̂∗k,iϑt + ϑHt Ψ̂∗kϑt + σ2
k,∀k,

(52)

where

Φ̂k,i =

[
Φk,i 0N

0TN 0

]
, Ψ̂k =

[
Ψk 0N

0TN 0

]
(53)

It can be observed that the objective function and all the
constraints of problem (49) have been transformed into the
homogeneous quadratic form. Thus, we also exploit the SDR
approach to approximately solve it. In particular, by defining
the auxiliary variables Q̂i = ϑiϑ

H
i ,∀i ∈ {t, r}, which

satisfies Q̂i � 0 and rank(Q̂i) = 1, the SDR problem of
(49) is given by

min
Q̂t,Q̂r

∥∥F̄− R∑
j=1

V̂jQ̂tV̂
H
j

∥∥2 +
∑

i∈{t,r}

tr(ΞiQ̂i) (54a)

s.t.
1

γk
tr(Φ̂∗k,kQ̂t) ≥

∑
i∈K\k

tr(Φ̂∗k,iQ̂t)

+ tr(Ψ̂∗kQ̂t) + σ2
k,∀k, (54b)

[Q̂t]n,n + [Q̂r]n,n = 1,∀n, (54c)

[Q̂t]N+1,N+1 = [Q̂r]N+1,N+1 = 1, (54d)

Q̂t � 0, Q̂r � 0, (54e)

which is a convex SDP. Denote ϑ?i ,∀i ∈ {t, r}, as the approx-
imated rank-one solution. Then, the corresponding solution of
problem (49) is given by

θ?i =
1

|[ϑ?i ]N+1|
[ϑ?i ]1:N ,∀i ∈ {t, r}. (55)

Similarly, the penalty-based AltMin method in [18] can be
employed to guarantee the theoretical convergence of the
BCD.

3) Subproblem with respect to {θ̃t, θ̃r}: The optimization
variables {θ̃t, θ̃r} only appear in the penalty term in the
objective function as well as the coupled amplitude and
phase-shift constraints. Thus, the subproblem with respect to
{θ̃t, θ̃r} is given by

min
θ̃t,θ̃r

∑
i∈{t,r}

‖θ̃i − θi + ρλi‖2 (56a)

s.t. β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1,∀n, (56b)

|ϕ̃t,n − ϕ̃r,n| =
1

2
π or

3

2
π,∀n. (56c)

In this problem, both constraints are non-convex and the
second constraint even requires a binary decision, which is
challenging to solve. However, in the following, we show that
the amplitude coefficients and the phase shift coefficients can
be optimized alternately using the closed-form solutions. To
this end, we reformulate θ̃i as

θ̃i = diag(β̃i)q̃i,∀i ∈ {t, r}, (58)
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∑
i∈{t,r}

‖θ̃i − θi + ρλi‖2 =
∑

i∈{t,r}

‖diag(β̃i)q̃i + υi‖2

=
∑

i∈{t,r}

2Re(υHi diag(β̃i)q̃i) +
∑

i∈{t,r}

q̃Hi diag(β̃i)diag(β̃i)q̃i +
∑

i∈{t,r}

υHi υi

(a)
=

∑
i∈{t,r}

2Re(υHi diag(β̃i)q̃i) +
∑

i∈{t,r}

∑
n∈N

β̃2
i,n +

∑
i∈{t,r}

υHi υi

(b)
=

∑
i∈{t,r}

2Re(υHi diag(β̃i)q̃i) +N +
∑

i∈{t,r}

υHi υi︸ ︷︷ ︸
constant

. (57)

where β̃i = [β̃i,1, . . . , β̃i,N ]T and q̃i = [ejϕ̃i,1 , . . . , ejϕ̃i,N ]T .
By defining υi = −θi + ρλi,∀i ∈ {t, r}, the objective
function of (56) can be reformulated into (57), as shown at
the top of the page. In (57), the equality (a) is due to the
property |[q̃i]n|2 = |ejϕ̃i,n |2 = 1, and the equality (b) stems
from the property β̃2

t,n + β̃2
r,n = 1. By removing the constant

term in the objective function, problem (56) can be simplified
as

min
β̃t,β̃r,q̃t,q̃r

∑
i∈{t,r}

Re(υHi diag(β̃i)q̃i) (59a)

s.t. (56b), (56c). (59b)

To solve it, we first give the following two propositions.

Proposition 3. (Closed-form solution for coupled T&R phase-
shift) With the coupled T&R phase-shift constraint (56c), for
any given β̃t and β̃r, the optimal solution for the n-th entries
q̃t,n, q̃r,n of q̃t, q̃r are chosen from the following two pairs
of solutions{

q̃t,n = ej(π−∠ψ
+
n ), q̃r,n = ej(

3
2π−∠ψ

+
n ),

q̃t,n = ej(π−∠ψ
−
n ), q̃r,n = ej(

1
2π−∠ψ

−
n ),

(60)

where ψ+
n = υ̃∗t,n+jυ̃∗r,n and ψ−n = υ̃∗t,n−jυ̃∗r,n, such that the

value of Re(υ̃∗t,nq̃t,n) + Re(υ̃∗r,nq̃r,n) is minimized. Here, υ̃∗i,n
denotes the n-th entry of the vector υ̃Hi = υHi diag(β̃i),∀i ∈
{t, r}.

Proof. Please refer to Appendix C. �

Proposition 4. (Closed-form solution for amplitude) For any
given q̃t and q̃r, the optimal solution of the n-th entries β̃t,n,
β̃r,n of β̃t, β̃r are given by

β̃t,n = sinωn, β̃r,n = cosωn, (61)

ωn =

−
1
2π − ψn, if ψn ∈ [−π,− 1

2π),
0, if ψn ∈ [− 1

2π,
1
4π),

1
2π, otherwise,

(62)

where ψn = sgn(bn) arccos( an√
a2n+b

2
n

) ∈ [−π, π], an =

|ῠ∗t,n| cos(∠ῠ∗t,n), bn = |ῠ∗r,n| cos(∠ῠ∗r,n), and ῠ∗i,n is the n-th
entry of the vector ῠHi = υHi diag(q̃i),∀i ∈ {t, r}.

Proof. Please refer to Appendix D. �

According to Proposition 3 and Proposition 4, by fixing

Algorithm 4 AO algorithm for solving problem (56).

1: Initialize feasible q̃t, q̃r, β̃t, and β̃r.
2: repeat
3: update each entry of q̃t and q̃r by (60)
4: update each entry of β̃t and β̃r by (61).
5: until the fractional reduction of the objective value falls

below a predefined threshold.

Algorithm 5 BCD algorithm for solving problem (46).

1: Initialize feasible χ̃ such that F = ΘrGRxG
HΘH

r and
θ̃i = θi,∀i ∈ {t, r}.

2: repeat
3: update {U,F,P,Rs} by solving problem (31).
4: update {θt,θr} by solving problem (54).
5: update {θ̃t, θ̃r} by solving problem (56) through Algo-

rithm 4.
6: until the fractional reduction of the objective value falls

below a predefined threshold.

the amplitude (phase-shift) coefficients, the phase-shift (am-
plitude) coefficients have the optimal closed-form solutions.
Consequently, problem (56) can also be solved iteratively,
the detail of which is given in Algorithm 4. Since the
optimal solution is obtained at each step, the convergence of
Algorithm 4 to the stationary points is guaranteed [36].

The overall BCD algorithm for solving problem (46) is
summarized in Algorithm 5. Similarly, when the AltMin
method is adopted for optimizing the block {θt,θr}, the
convergence of Algorithm 5 to the stationary point can be
theoretically guaranteed [36]. The complexity of this algo-
rithm is summarized as follows. Firstly, the complexities of
using the interior-point method to solve problem (31) and
(54) are in order of O((K6.5M6.5 + N6.5) log(1/ε)) and
O((K + N + 2)6.5(N + 1)6.5 log(1/ε)), respectively [9],
[37]. Moreover, in Algorithm 4, the complexities of updating
{q̃t, q̃r} and {β̃t, β̃r} are in order of O(4N) and O(2N),
respectively.

V. NUMERICAL RESULTS

In this section, the numerical results obtained through Monte
Carlo simulations are provided to evaluate the performance of
the proposed STARS-enabled ISAC system. We assume that
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TABLE I: System Parameters

M The number of antennas at the BS 10 N The number of passive elements at the STARS 6 ∼ 18
Ns The number of sensor elements 2 ∼ 24 P Transmit power at the BS 30 dBm
K The number of communication users 4 or 6 σ2

k, σ
2
s The noise power −110 dBm

αBR, αRU Path loss exponents 2 L The length of a coherent time block 100
ρ0 The path loss at 1 m 30 dB φh, φv Azimuth and elevation DOAs of the target 120◦, 30◦

ε Rician factor 3 dB

the BS is 40 m away from the STARS. The communication
users are randomly distributed within 20 ∼ 50 m from the
transmission side of STARS, and the sensing target is 30 m
away from the reflection side of the STARS. We assume the
Rician channel model for all communication channels. Thus,
the channels G and hk,∀k ∈ K, are given by

G =

√
ρ0
dαBR

BR

(√
ε

1 + ε
GLoS +

√
1

1 + ε
GNLoS

)
, (63)

hk =

√
ρ0

dαRU

RU,k

(√
ε

1 + ε
hLoS
k +

√
1

1 + ε
hNLoS
k

)
, (64)

where dBR and dRU,k denote the BS-STARS distance and the
STARS-user-k distance, respectively, αBR and αRU denotes
the corresponding path loss exponents, ρ0 denotes the path loss
at the reference distance of 1 m, ε denotes the Rician factor,
GLoS and hLoS

k are the deterministic LoS component, and
GNLoS and hNLoS

k are the random non-LoS component mod-
eled as Rayleigh fading. The main adopted system parameters
are given in Table I. The CVX toolbox [38] is used to solve
all convex problems involved in the proposed algorithms. The
convergence threshold of the PDD-based algorithms and the
BCD-based algorithms are set as 10−4 and 10−3, respectively.
Without loss of generality, we assume that all communication
users have the same SINR requirement, i.e., γk = γ,∀k ∈ K.

To verify the efficiency of the proposed framework, we
compared it with a baseline that employs one conventional
reflecting-only RIS and one conventional transmitting-only
RIS, both with N/2 elements and adjacent to each other
at the same location as the STARS. This baseline is es-
sentially a special case of STARS where the amplitudes of
the TCs and RCs are fixed to βt = [11×N/2,01×N/2]T

and βr = [01×N/2,11×N/2]T . Therefore, the resultant opti-
mization problem can also be solved by the proposed PDD-
based algorithm. All following numerical results are obtained
by averaging over 50 random channel realizations unless
otherwise specified.

A. Convergence Performance of the Proposed Algorithms
In Fig. 2 and Fig. 3, we examine the convergence per-

formance of the proposed algorithms over a random channel
realization. In particular, the initialization point of Algorithm
1 is randomly selected while that of Algorithm 3 is selected
as the output of Algorithm 1. Note that the original unit of the
root CRB is radians, which is difficult to intuitively match the
accuracy of actual DOA estimates. Therefore, we convert the
unit of the root CRB from radians to degrees. In terms of the
root CRB and the constraint violation, it can be observed that
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Fig. 2: The convergence behavior of Algorithm 1.
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Fig. 3: The convergence behavior of Algorithm 3.

by using Algorithm 1 and Algorithm 3, they can converge
well for both independent and coupled phase-shift models.
Moreover, when the SINR threshold is low, namely γ = 0dB,
the Algorithm 3 almost converges at the first PDD iteration.
This is because, with the low SINR threshold, the coupled
phase-shift model is almost identical to the independent phase-
shift model. Consequently, when Algorithm 3 is initialized
as the output of Algorithm 1, the optimal solution is almost
reached at the beginning. This phenomenon will be further
explained in the following numerical results.

B. Root CRB Versus Communication SINR Threshold

In Fig. 4, we studied the achieved root CRB versus the
communication SINR threshold considering different user
numbers. As can be observed, there is a tradeoff between the
sensing and communication performance. This is because the
higher communication performance requires more resources
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Fig. 4: Root CRB versus the communication SINR threshold γ for
N = 10 and Ns = 5.
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Fig. 5: Root CRB versus the number of passive elements N for
Ns = 5 and K = 4.

such as power and DoFs in the communication space, re-
sulting in lower sensing performance. It can also be seen
that independent of the phase shift model, STARS always
outperforms conventional RIS in achieving a lower CRB. The
conventional RIS almost becomes infeasible when K = 6
and γ > 5dB. This is indeed expected since conventional
RIS utilizes a limited number of elements for sensing and
communication spaces and therefore cannot achieve the same
DoFs as STARS. Furthermore, the performance gap between
coupled and independent phase shifts of the STARS is small
when the communication SINR threshold γ is weak. However,
as γ increases, the transmission phase shifts for the commu-
nication space become more stringent, which also limits the
reflection phase shifts for the sensing space when the phase
shifts are coupled, leading to a larger performance gap with
the independent phase shifts.

C. Root CRB Versus Number of Passive Elements

In Fig. 5, we illustrate the impact of the number of passive
elements N of STARS when Ns = 5 and K = 4. It can be
observed that as the number of passive elements increases, the
root CRB decreases and the communication SINR threshold
γ has less influence on the CRB performance. This is because
more passive elements introduce more DoFs to construct a
more directional sensing beam and achieve a more flexible
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Fig. 6: Root CRB versus the number of sensor elements Ns for
N = 10 and K = 4.
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Fig. 7: Tradeoff between the number of passive and sensor elements
for N +Ns = 20 and K = 4.

communication channel tuning capability. Due to the same
reason, when γ = 15dB, the root CRB achieved by the two
phase-shift models finally converges to the same value as N
increases. However, when γ = 0dB, the performance of the
coupled phase-shift model is always comparable to that of the
independent phase-shift model.

D. Root CRB Versus Number of Sensor Elements

In Fig. 6, we further studied the impact of the number of
active sensor elements Ns when N = 10. We can see that all
schemes are capable of achieving higher estimation accuracy
when more sensor elements are installed. Similarly, the supe-
rior performance gain of STARS compared with conventional
RIS is also demonstrated. When γ = 0dB, the coupled phase-
shift model achieves almost the same performance as the
independent phase-shift model. When γ = 15dB, there is an
obvious performance gap between the two phase-shift models,
which is gradually reduced as the number of sensor elements
increases.

E. Tradeoff Between Passive and Sensor Elements

In Fig. 7, to obtain more insights, we plot the root CRB ver-
sus the number of passive elements when the total number of
the passive and sensor elements is fixed to be N+Ns = 20. As
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(a) STARS, independent, γ = 0dB. (b) STARS, coupled, γ = 0dB. (c) Conventional RIS, γ = 0dB. (d) STARS, random, γ = 0dB.

(e) STARS, independent, γ = 20dB. (f) STARS, coupled, γ = 20dB. (g) Conventional RIS, γ = 20dB. (h) STARS, random, γ = 20dB.

Fig. 8: Normalized spectrum of MLE by different schemes for N = 10, Ns = 5, and K = 4.

can be observed, the more passive elements do not necessarily
lead to lower root CRB in this case, which implies that there
is a tradeoff between the number of passive elements and the
number of sensor elements. Furthermore, for both cases with
γ = 0 dB and γ = 15 dB, the best sensing performance is
achieved when N = 14 and Ns = 6. In other words, installing
more passive elements can improve system performance more
effectively than installing more sensor elements. This is be-
cause more passive elements provide more full-space DoFs for
both communication and sensing, while more sensor elements
only increase the dimension of the signals used for sensing.

F. Spectrum of MLE

To verify the effectiveness of optimizing the CRB, the
practical MLE of DOAs φh and φv are investigated. Fig.
8 demonstrates the normalized spectrum of MLE obtained
via the 2D search over a predefined fine angle grid. In the
spectrum, the point with the highest value (the brightest
point) is corresponding to the estimated DOAs. As can be
observed, when γ = 0dB, both independent and coupled
phase-shift STARSs can achieve a point-like brightest region
around (120◦, 30◦) in the spectrum, which indicates the high
accuracy of estimating DOAs. When γ increases to 20dB, the
brightest region achieved by STARS is still relatively small.
However, when the conventional RIS is exploited, the brightest
region becomes very large regardless of the value of γ, which
implies a low sensing resolution. Finally, we also demonstrate
the spectrum obtained by the STARS with random reflection
phase shifts. In this case, we can see that the estimation of
DOAs is almost infeasible, which verifies the effectiveness of
optimizing the CRB.

VI. CONCLUSION

A STARS-enabled ISAC system was investigated, where a
novel sensing-at-STARS structure and a pair of efficient CRB

optimization frameworks for both independent and coupled
T&R phase-shift models were proposed. Numerical results
revealed the significant performance gain of CRB and 2D
DOAs estimation achieved by the STARS over the con-
ventional RIS, and the slight performance gap between the
independent and coupled T&R phase-shift models in the cases
of low communication requirements and sufficient STARS
elements. Moreover, compared with employing more sensor
elements, installing more passive elements is more efficient
in practice to enhance performance and reduce cost. This
paper confirmed the effectiveness of employing STARS to
simultaneously support high-quality sensing on one side and
high-quality communication on the other. Consequently, in
practical design, STARS is capable of breaking the physical
blockage such as walls and windows, extending the legacy
communication or sensing system, and carrying out the other
function in a separate space. Finally, the potential of STARS
to support dual functions on both sides is also foreseeable,
which can be a promising direction for future research.

APPENDIX A
MAXIMUM LIKELIHOOD ESTIMATE OF DOAS

In this appendix, the MLE of DOAs is derived. To facilitate
the estimation at the sensors, we assume that the transmit
signal X and the channel G are known at the sensors, which
can be obtained by the wired control link between the BS and
the STARS. According to (15), the vectorized signal over a
coherent time block of length L at the sensor can be rewritten
as

ys = αδ(φh, φv) + ns, (65)

where δ(φh, φv) = vec(b(φh, φv)a
T (φh, φv)ΘrGX). It can

be observed that ys is a Gaussian vector with mean αδ(φh, φv)
and variance σsINSL. Given parameters ξ, the likelihood
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function of ys is

fys
(ys; ξ) =

1√
(πσs)NSL

exp

(
− 1

σ2
‖ys − αδ(φh, φv)‖2

)
.

(66)
Thus, the MLE of ξ is given by

ξ̂ = arg max
ξ

fys(ys; ξ) = arg min
ξ
‖ys − αδ(φh, φv)‖2.

(67)

According to (67), for any given φh and φv , α can be estimated
as

α̂ = arg min
α
‖ys − αδ(φh, φv)‖2 =

δH(φh, φv)

‖δ(φh, φv)‖2
ys. (68)

With α̂ at hand, we have

‖ys − α̂δ(φh, φv)‖2 = ‖ys‖2 −
|δH(φh, φv)ys|2

‖δ(φh, φv)‖2
. (69)

Thus, the MLE of φh and φv is given by

(φ̂h, φ̂v) = arg max
φh,φv

|δH(φh, φv)ys|2

‖δ(φh, φv)‖2
, (70)

which can be obtained by exhaustively searching φh and φv
on the fine grids of [0, π] and [−π2 ,

π
2 ], respectively.

APPENDIX B
DERIVATION OF THE FISHER INFORMATION MATRICES

It can be readily observed that ys is a Gaussian observation
with the distribution ys ∼ CN (u,Rn), where Rn = σ2

sINsL

represents the covariance matrix of ns. Then, following the
same path in [31, Appendix 3C], the element at the `-th row
and the p-th column of Jξ can be calculated by

[Jξ]`,p =2Re

{
∂uH

∂ξ`
R−1n

∂u

∂ξp

}
+ tr

(
R−1n

∂Rn

∂ξ`
R−1n

∂Rn

∂ξp

)
=

2

σ2
s

Re

{
∂uH

∂ξ`

∂u

∂ξp

}
, (71)

where ξ` denotes the `-th element of ξ. Thus, we first derive
the derivative of u with respect to the unknown parameters.
By defining B = b(φh, φv)a

T (φh, φv), we have

∂u

∂φ
= [αvec(Ḃφh

ΘrGX), αvec(ḂφvΘrGX)], (72)

∂u

∂α̃
= vec(BΘrGX)[1, j], (73)

where

Ḃφh
=
∂B

∂φh
=

∂b

∂φh
aT + b

∂aT

∂φh

=j
2π

λc
sinφh cosφv

(
diag(r̄X )baT + baTdiag(rX )

)
.

(74)

Ḃφv
=
∂B

∂φv
=

∂b

∂φv
aT + b

∂aT

∂φv

=j
2π

λc
cosφh sinφv

(
diag(r̄X )baT + baTdiag(rX )

)
− j 2π

λc
cosφvbaTdiag(rZ ), (75)

In the above formulas, we drop φh and φv in b(φh, φv) and
a(φh, φv) for notational convenience. Then, the matrix Jφφ
can be further partitioned as

Jφφ =

[
Jφhφh

Jφhφv

Jφhφv
Jφvφv

]
. (76)

According to (71), the entries Jφlφp
,∀l, p ∈ {h, v}, of the

matrix Jφφ can be calculated as follows:

Jφlφp =
2

σ2
s

Re
{
α∗vec(Ḃφl

ΘrGX)Hαvec(ḂφpΘrGX)
}

=
2|α|2L
σ2
s

Re
{

tr(ḂφpΘrGRxG
HΘH

r ḂH
φl

)
}
. (77)

Next, the matrices Jφα̃ and Jα̃α̃ are derived as follows:

Jφα̃ =
2

σ2
s

Re

([
α∗vec(Ḃφh

ΘrGX)H

α∗vec(Ḃφv
ΘrGX)H

]
vec(BΘrGX)[1, j]

)

=
2L

σ2
s

Re

α∗tr(BΘrGRxG
HΘH

r ḂH
φh

)
α∗tr

(
BΘrGRxG

HΘH
r ḂH

φv

) [1, j]

 ,

(78)

Jα̃α̃ =
2

σ2
s

Re
(
(vec(BΘrGX)[1, j])Hvec(BΘrGX)[1, j]

)
=

2

σ2
s

Re
(
[1, j]H [1, j]vec(BΘrGX)Hvec(BΘrGX)

)
=

2L

σ2
s

I2tr
(
BΘrGRxG

HΘH
r BH

)
. (79)

APPENDIX C
PROOF OF PROPOSITION 3

For any given β̃t and β̃r, the optimization problem with
respect to q̃t and q̃r is given by

min
q̃t,q̃r

Re(υ̃Ht q̃t) + Re(υ̃Hr q̃r) (80a)

s.t. [q̃r]n = j[q̃t]n or [q̃r]n = −j[q̃t]n,∀n, (80b)
|[q̃t]n| = 1, |[q̃r]n| = 1,∀n, (80c)

where constraint (80b) is transformed from the coupled T&R
phase-shift constraint (56c). It can be observed this problem
is a separable optimization problem. In other words, each pair
of (q̃t,n, q̃r,n) can be optimized individually, and the related
optimization problem is given by

min
q̃t,n,q̃r,n

Re(υ̃∗t,nq̃t,n) + Re(υ̃∗r,nq̃r,n) (81a)

s.t. q̃r,n = jq̃t,n or q̃r,n = −jq̃t,n, (81b)
|q̃t,n| = 1, |q̃r,n| = 1. (81c)

Substituting the constraint (81b) into the objective func-
tion, the above problem can be further simplified as
min|q̃t,n|=1 Re

(
(υ̃∗t,n ± jυ̃∗r,n)q̃t,n

)
, where the factor (υ̃∗t,n +

jυ̃∗r,n) is for the case q̃r,n = jq̃t,n and the factor (υ̃∗t,n−jυ̃∗r,n)
is for the case q̃r,n = −jq̃t,n. It is clear that the optimal q̃t,n
is given by

q̃t,n = ej(π−∠(υ̃∗t,n±jυ̃
∗
r,n)). (82)
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By matching the optimal q̃t,n with the cases of q̃r,n = jq̃t,n
and q̃r,n = −jq̃t,n, the solutions in (60) can be obtained,
which completes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

For any given q̃t and q̃r, the optimization problem with
respect to β̃t and β̃r is given by

min
β̃t,β̃r

Re(ῠHt β̃t) + Re(ῠHr β̃r) (83a)

s.t. β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1,∀n, (83b)

which is also a separable problem. The separated problem
related to β̃t,n and β̃r,n is given by

min
β̃t,n,β̃r,n

gn = Re(ῠ∗t,nβ̃t,n) + Re(ῠ∗r,nβ̃r,n) (84a)

s.t. β̃2
t,n + β̃2

r,n = 1, 0 ≤ β̃t,n, β̃r,n ≤ 1, (84b)

where υ̃i,n,∀i ∈ {t, r}, denotes the n-th entry of ῠi.
Since β̃i,n,∀i ∈ {t, r}, is real-valued, the objective function
can be further simplified as anβ̃t,n + bnβ̃r,n, where an =
|ῠ∗t,n| cos(∠ῠ∗t,n) and bn = |ῠ∗r,n| cos(∠ῠ∗r,n). In this case,
problem (84) is essentially to find the minimum value of
the real-valued function anβ̃t,n + bnβ̃r,n on the unit circle
β̃2
t,n+ β̃2

r,n = 1 in the first quadrant. To solve it, we transform
it into the polar coordinate system by setting β̃t,n = sinωn
and β̃r,n = cosωn with ωn ∈ [0, 12π]. Then, the objective
function can be rewritten as

gn = an sinωn + bn cosωn
(a)
=
√
a2n + b2n (cosψn sinωn + sinψn cosωn)

=
√
a2n + b2n sin(ωn + ψn), (85)

where the equality (a) is achieved by defining cosψn =
an√
a2n+b

2
n

and sinψn = bn√
a2n+b

2
n

. As a consequence, the

problem is to find the minimum value of sin(ωn + ψn) with
respect to ωn in the interval [0, 12π]. Thus, the optimal ωn in
(62) can be readily obtained. Based on this, the optimal β̃t,n
and β̃r,n can also be obtained, which completes the proof.
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