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Abstract—This paper proposes a paradigm of uncertainty
injection for training deep learning model to solve robust op-
timization problems. The majority of existing studies on deep
learning focus on the model learning capability, while assuming
the quality and accuracy of the inputs data can be guaranteed.
However, in realistic applications of deep learning for solving
optimization problems, the accuracy of inputs, which are the
problem parameters in this case, plays a large role. This is
because, in many situations, it is often costly or sometime
impossible to obtain the problem parameters accurately, and cor-
respondingly, it is highly desirable to develop learning algorithms
that can account for the uncertainties in the input and produce
solutions that are robust against these uncertainties. This paper
presents a novel uncertainty injection scheme for training machine
learning models that are capable of implicitly accounting for
the uncertainties and producing statistically robust solutions. We
further identify the wireless communications as an application
field where uncertainties are prevalent in problem parameters
such as the channel coefficients. We show the effectiveness of the
proposed training scheme in two applications: the robust power
loading for multiuser multiple-input-multiple-output (MIMO)
downlink transmissions; and the robust power control for device-
to-device (D2D) networks.

Index Terms—Robust optimization, deep learning, wire-
less communications, power control, multiuser multiple-input
multiple-output (MIMO), device-to-device network

I. INTRODUCTION

EEP learning has achieved excellent results in a variety
of different optimization tasks, such as the inference
problems [2]-[4] and the generative modeling problems [5[]—
[7]]. Although the traditional domain of deep learning has been
for applications in which the optimization problems do not
admit explicit mathematical models, several recent advances
have also shown the promise of deep learning in solving non-
convex optimization problems for which explicit mathematical
formulations are available, e.g., [8]-[10]. This paper focuses
on this latter class of problems in which a deep learning
model is trained to take the parameters of the mathematical
optimization problem as the input and to output the optimized
solution of the problem. Specifically, we focus on how to
train the model to achieve robustness against uncertainty in
the problem parameters.
While most of the deep learning literature focuses on the
learning performance of the neural network on a given dataset
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where the availability of high-quality input data is assumed,
in many realistic applications, the uncertainties are inevitably
part of the input (or the label data). When uncertainties are
present, the performance of a solution under the uncertain
input realizations is often of importance, and this is commonly
referred to as the robustness of the solution [[11], [[12].

Specifically, several research directions on the robustness of
deep learning have been investigated in the literature. In [13]-
[16], the performances of supervised learning when trained
with uncertainty in the targets are investigated. Meanwhile,
the robustness of deep learning models on data distribution
changes has also been explored, often referred to as distribu-
tional robustness, as in [[17]-[20]. In [21]]-[24]], the input clean-
ing procedure is utilized for deep learning models given ini-
tially noisy inputs. Besides the above-mentioned approaches,
researchers have also explored training deep learning models
with noise actively added at the inputs [25]—[29], into the
neural network parameters [30]], into the activation functions
[31], [32]], and into the gradients [33]], [34]. These classes of
techniques have been shown to improve the robustness of the
deep learning models against small perturbations or adversarial
attacks in testing inputs, and to encourage the models to
produce better generalization results.

Despite the large number of robust deep learning research
works as mentioned above, most of them deal with problems
for which explicit mathematical models do not exist, and
none specifically target towards solving mathematical non-
convex robust optimization problems. For example, although
elaborated non-convex optimization techniques and analysis
have been used for obtaining robust deep learning models
in works such as [12], [27], they are not designed to obtain
deep learning models specifically to take the uncertain problem
parameters as the input and to produce robust solutions to a
mathematical non-convex optimization problem as the output.

Robust optimization has been extensively studied in the
traditional mathematical programming literature. For example,
in the area of wireless communication network utility maxi-
mization, the optimization of network operations typically in-
volves first obtaining wireless network parameters such as the
channel state information (CSI), then formulating a network
utility objective as a function of these network parameters,
and finally optimizing the objective function assuming these
fixed parameters [35]-[42[]. This deterministic optimization
framework may not always produce the best solution in
realistic situations, because it inherently ignores the channel
uncertainties, which can significantly affect the quality of
the solutions. On the other hand, researchers have explored
mathematical robust optimization techniques that incorporate
these uncertainties. The classical approaches for dealing with



wireless channel uncertainty within the optimization process
either assume bounded uncertainty regions [43[]-[46], or in-
corporate statistical models of channel uncertainty [47]-[54].
Although fitting reality better than deterministic optimization,
these robust optimization approaches rely on the mathematical
models of the uncertainty in the parameters, which are often
ad-hoc. Further, the parameters of these models are not easy
to estimate. Finally, even if the model and its parameters are
known exactly, the resulting optimization problem is often
difficult to solve. We note that there has been several work on
using deep learning for obtaining robust solutions to wireless
communication problems [55]—[57]], however these work only
focus on the expectation of the achievable rates under channel
uncertainty and do not fully capture the notion of robustness
from statistical distribution point of view.

This paper proposes a novel deep neural network training
strategy for maximizing a statistical robustness measure for
non-convex utility optimization problems, addressing gaps in
both deep learning and wireless communication research. We
advocate statistical uncertainty models rather than bounded-
region uncertainty models due to the fact that realistic un-
certainties are generally not guaranteed to be bounded. But
instead of relying on the mathematical representations of the
statistical distribution of the uncertainties, we pursue a data-
driven approach to robust optimization, because it is usually
much more practical to obtain samples of the uncertainty
realizations rather their mathematical representations.

The key innovation of this paper is that we take full advan-
tage of the fact that we are solving an explicitly formulated
mathematical programming problem by feeding an estimate of
the problem parameters as input, then obtaining the optimized
solution as the output of the neural network. In this case, the
optimized solution at the output can be further evaluated under
the parameter uncertainties. This allows us to propose a novel
training strategy for deep learning of directly injecting the
parameter uncertainty samples after the output layer of the
neural network to obtain the robust objective, then optimizing
the neural network weights using the gradients computed
from the robust objective. Because neural networks are uni-
versal and highly flexible function approximators, a neural
network trained under these parameter uncertainty samples
can implicitly infer the uncertainty distribution, thus producing
optimized solutions that are robust against the uncertainties in
the problem parameters.

To illustrate the effectiveness of the proposed training
scheme, we focus on two wireless network optimization prob-
lems under the robust minimum-rate maximization objective:
power loading for the multiuser multiple-input-multiple-output
(MIMO) downlink channel, and power control for wireless
device-to-device (D2D) networks. The sources of parameter
uncertainties are channel estimation error and the fading in
wireless channels. Under the statistical uncertainty model,
similar to that of [47]], [48]], we adopt an outage-based notion
of robustness in the optimization formulation. The minimum-
rate is adopted as the objective for both problems due to its
emphasis on the fairness among the transmission links. We
show in this paper that uncertainty injection at the output can
significantly improve the robustness of the power allocation.

To summarize, the main contributions of the paper are as
follows:

o We recognize the difficulties in the state-of-the-art robust
optimization studies in terms of the uncertainty modeling
and algorithmic complexity.

« We advocate a sample-based parameter uncertainty char-
acterization for greater generalization ability, higher ex-
pressive power, and simplicity.

e« We propose a novel deep learning based robust opti-
mization scheme by uncertainty injection at the neural
network’s output layer, through which the neural network
can be trained to perform robust optimization using only
samples of the parameter uncertainties.

o We illustrate the effectiveness of the proposed approach
for two important wireless communication applications:
robust power loading in MIMO downlink networks, and
robust power control in D2D networks.

The rest of this paper is organized as follows. Sections|II|and
formulate the general robust optimization framework with
deep learning, along with two wireless network optimization
problem settings. Section proposes a novel sample-based
uncertainty-injection training scheme for deep learning to
produce statistically robust solutions. The application of the
proposed method to wireless communications is described in
Section and its performance is analyzed in Section
Finally, conclusions are drawn in Section

II. ROBUST OPTIMIZATION FORMULATION

We first present the general mathematical formulation of
non-convex utility optimization problem, in which the notion
of robustness is defined under the statistical distribution of the
parameter uncertainties.

A. Problem Setup

Consider a general optimization problem P, consisting of
the following components:

o True problem parameters p summarizing all the informa-
tion about the environment (but not perfectly known);

¢ Measurements q about the problem parameters;

o Optimization variables x;

o Scalar utility function up(x) of the optimization problem,
as computed at the optimization variables x, assuming
that the problem parameters are p. Here, up(x) is as-
sumed to be differentiable in x almost everywhere.

The goal of robust optimization is to find an optimized x,
based on q, that maximizes a robust objective of the utility
function under some joint statistical distribution of the problem
parameters p and the measurements q.

B. Statistical Distribution of Problem Parameters

In the existing robust optimization literature, there are two
main parameter uncertainty models:

1) The uncertain parameters are confined within some

closed sets, with ellipsoids being the most popular
choice. The corresponding notion of robust objective is



typically the worst-case utility value over the parameters
in the uncertainty sets.

2) Parameter uncertainties follow some statistical distri-
bution, with well-studied distributions (e.g. exponential
family) being the most popular choices due to feasi-
bility of the ensuing mathematical optimization. The
corresponding robust objective is typically a statistical
measure of the resultant utility, e.g., the Sth-percentile
outage value.

The bounded uncertainty model is mathematically more
tractable, but less well justified in practice. Its associated
worst-case performance also tends to be over-conservative,
since the worst-case scenario may occur only with very low
probability. For this reason, this paper adopts the statistical
model for the parameter uncertainties. The statistical uncer-
tainty model lends well to data-driven approaches in which
samples of the uncertain parameters can be generated and
the corresponding optimization objective can be estimated
empirically under these samples.

We note that there are existing works in the literature such
as [44], [46] that assume a bounded uncertainty model, while
defining the robust objective probabilistically. These works
rely on bounding the statistical quantities using often complex
and mathematically involved derivations and approximations.
The point of this paper is that instead of attempting to
approximate these statistical quantities analytically, we use a
data-driven approach to evaluate the desired robust objective
empirically.

Toward this end, we define the following statistical model
on the problem parameter p given the measurements of the
environment q as follows:

P ~ fpla(PlQ) (1)

We emphasize that in the proposed data-driven approach,
the above uncertainty distributions need not be expressed in
analytic closed form. As we shall see later, the proposed
method can be applied as long as we can obtain offline samples
from the above distribution.

C. Robust Objective under Statistical Uncertainty Distribution

Given the measurement q and the corresponding distribution
of the problem parameters p ~ fyq(P|q), the value of the
utility function up(x) for any given x would also follow some
distribution. We define the robust objective of the optimization
problem by the percentile value of the resulting distribution
of up(x). Specifically, define the ~-th percentile value of the
utility as the largest u” for which

Prlup(x) < u’[q] < 4%. 2
The robust optimization problem P can now be formulated as
(3a)
(3b)

maximize u”
X
subject to  Prlup(x) < u”|q] <%

where the probability is taken under p ~ fyq(P|q). The value
~ can be interpreted as an outage probability.

D. Data-Driven Approach to Robust Optimization

This paper aims to solve the the robust optimization problem
(3) above based on the measurements g of the unknown prob-
lem parameters p by producing an optimized variable x that
maximizes the robust objective under the outage constraint.

In this end, this paper proposes to utilize a deep learning
approach to map the measurement of the optimization problem
parameters to a robust optimized solution. The deep neural net-
work is chosen for its computation capacity and representation
ability. Using a neural network, the optimization algorithm can
be represented as:

x = Fo(q) “4)

where O is the collection of the neural network model pa-
rameters and hyper-parameters. The optimization problem P
then translates to finding a set of high-quality neural network
parameters ©. The overall optimization process is shown in

Fig. [1}

III. ROBUST OPTIMIZATION IN WIRELESS
COMMUNICATIONS AND NETWORKING

We now present two applications of the above general
robust optimization framework in wireless network utility
maximization: the robust power loading problem for multiuser
MIMO transmissions and the robust power control problem for
D2D networks. Wireless network utility optimization problems
naturally fit into the robust optimization framework, since the
wireless channels (i.e. the problem parameters p) are difficult
to measure accurately, and the channel estimation process
always produces measurement uncertainties.

A. Robust Beamforming for Minimum Rate Maximization in
Multiuser MIMO Downlink

Consider a MIMO transmission scenario with one base
station equipped with M antennas serving K single-antenna
users. The base station serves all K users through multiuser
MIMO downlink transmission in the same time-frequency
resource block. We use H = [hy,...,hy, ..., hg| € CM*K
to denote the channel matrix, with its k-th column h;, € CMx!
denoting the channels from the base station antennas to the
k-th user. In practical wireless communication scenarios, H
is often not known perfectly. The goal is to design robust
downlink beamforming vectors against the uncertainties in H.
A diagram illustrating the downlink multiuser MIMO channel
is shown in Fig. [

In a dense urban environment, there are often no line-of-
sight (LoS) paths from the base station to the users, and
the wireless channels in the multiuser MIMO networks can
be modeled as a Rayleigh fading channel [58]. To estimate
the channel, pilot signals need to be used. For time-division
duplex (TDD) systems, uplink pilots from the users to the base
station can be used to estimate the uplink channel. Then, based
on the uplink-downlink reciprocity, the downlink channel can
be inferred. For frequency-division duplex (FDD) systems,
downlink pilots from the base station to the users need to
be used. In this case, each user estimates its own channel,
then feeds back a quantized version of the channels to the
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Fig. 1. The robust optimization problem for maximizing a ~y-percentile outage utility based on a measurement of the problem parameters.

Fig. 2. Multiuser MIMO Downlink Channel

base station in order to enable the base station to design the
downlink beamformers based on the estimated channels from
all the users.

In either case, the accuracy of the estimated channels H
depends on the pilot length, the background noise level, and
in the FDD case is also a function of feedback rate. A common
way to model the channel estimation error is to assume that for
the wireless channel from the j-th base station antenna to the
k-th user, the relationship between the real channel coefficient
hi; and the estimated channel coefficient ﬁkj can be modeled
as the following:

hij = hij + ey, enj ~ CN(0,02) Vi, k )

where the estimation error e; is independent and identically
distributed (i.i.d.) across all the channels.

The robust beamforming problem for the multiuser MIMO
system is that of designing the beamformers at the base station,
along with the power loading for each beamformer, in order
to achieve a robust objective. In this paper, we treat the
optimization objective of maximizing the minimum rate in
order to provide fairness across all the users. Although ideally,
one could conceivably design both the beamformers and the
power loadings jointly to account for the channel uncertainty,
such an approach would have been too challenging due to its
analytic complexity. In the existing literature, only the robust
optimization for the simpler objective of power minimization
has been shown to be possible to solve analytically over both
the beamformers and the power allocation variables [49]—[51]].
In contrast, this paper adopts a different approach: we fix the
beamformers and assume that the design of the beamformers

can be done based on H only, then rely on the subsequent
power allocation to ensure robustness. This design approach
can be an effective one due to that it significantly simplifies
the overall design process, while still achieving competitive
robust performances as shown in [52], [53].

More specifically, based on the estimated channels ﬂ the
base station can apply any one of the well-established beam-
forming techniques, such as zero-forcing (ZF) or regularized
zero-forcing (RZF) [59]], to design a fixed set of precoders
B € CM*XK for downlink transmission. We use the notation
B = [by,...,bg,...,bg], with the k-th column by, € CM*!
with unit norm ||bg|l2 = 1 being the beamformer from the
base station to transmit information to the k-th user.

The robust optimization variables are now the set of power
loading variables x = {x }e1... k], Where 2 € [0, 1] denotes
the proportion of total power the base station should allocate
for transmitting to the k-th user for optimizing a network-wide
utility up(z). In this paper, we use the minimum rate across
all the users as the utility. Note that for given x, the achievable
rate for the k-th user is computed as

P‘thbkka

1+ ,
P32 1hifbj|2a; + o2

(6)

rr = wlog

where P denotes the total power constraint, w denotes the
bandwidth, o2 denotes the background noise level, and (-)
denotes Hermitian transpose.

For any x, the statistical channel uncertainties induce a
distribution on the achievable rates of each user, and conse-
quentially, a distribution on 7, the minimum rate among
all the users. We can compute the percentile value 7. of the

distribution for r,;, as the maximum value for which:

Pr[rmin < 77 [H] < 7%. (7)

min

With these notations established, the multiuser MIMO ro-
bust beamforming problem is now readily formulated as an in-
stance of the robust optimization problem P as in Section [[I-B]
with the following correspondence:

p+<H
q«H
Up(X) ¢ T'min

w1’

min
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Fig. 3. D2D Interfering Network

The robust power loading problem for maximizing the
minimum-rate in a multiuser MIMO downlink, which we
denote by Pwvmmo, is then formulated as follows:

maximize 77 (8a)

min
x

Pr[rmin < 7. [H] < 7%

min

Tmin S Tk, vk

(8b)
(80

subject to

K
Zxkgl, .%kZO, Vk

k=1
and (B)), (6).

(8d)

B. Robust Power Control for Minimum Rate Maximization in
D2D Wireless Networks

Consider a wireless ad-hoc network with /N independent
D2D links with full frequency reuse in a two-dimensional
region as illustrated in Fig. The goal is to find a set
of power setting at each transmitter so as to be able to
mutually accommodate the simultaneous transmissions for all
links. In this application, we again use the minimum rate
across all the users as the network utility function, in order
to ensure fairness. This is a challenging task, because due
to the aggressive frequency reuse in the shared medium, the
aggregate interference from the neighboring links pose as
significant impairments to each of the transmission pairs.

In the setting considered in this paper, we assume that
the transmitters and the receivers are equipped with mul-
tiple antennas, further the links operate in the millimeter
wave (mmWave) frequency and there is a dominant LoS
path between each transmitter and receiver pair. Moreover,
we assume that in the network deployment phase, a beam
alignment procedure has taken place between each transmitter-
receiver pair, so that all the direct channels can benefit from a
substantial array gain. Then, an additional power optimization
step across all the users is performed to ensure that the
aggregated interference is under control for each transmission
pair. Here, we focus on the power optimization step.

To formulate and to solve a power optimization problem
across N transmitting and receiving nodes using traditional
mathematical programming technique, one would need to esti-
mate not only all the direct channels, but also all the interfering
channels between every transmitter and every receiver. In a
network of N transmission pairs, one would need a dedicated

pilot phase of duration at least O(NN?) in order to estimate all
of the N? channel coefficients. This is often infeasible.

In this part of the paper, we explore the possibility of
performing power control purely based on the geographic
location information of all the transmitters and the receivers.
The geographic location information already provides the
pathloss component of the overall channel. The idea is to
formulate a robust optimization problem, so that a reasonable
minimum rate across all the users can still be achieved with
high probability, even if the power control is based only on
the pathloss information.

Another benefit of utilizing geographic location information
is that such information can also be readily used for computing
the beamformers at the transmitters and the receivers based
on the angles of arrival and departure of the intended signal
transmission to align the beams of the transmitter and the
receiver towards each other in the initial deployment phase.

In the ensuing channel model, we use GF™ to denote the
path-losses of all the channels, including the beamforming
gains at both the transmitters and the receivers. In addition,
we assume a log-normal shadowing component and a fast-
fading component that contribute towards the uncertainties
in the channel model. Specifically, we assume a log-normal
distribution for the shadowing G, and a circularly symmetric
complex Gaussian distribution for the fast fading coefficients
that lead to a fast fading component G¥. Then, the overall
channel G has its (¢, j)-th component distributed as:

9ij = 0L a5 95 9)
with the log-normal shadowing component as
4548
gisj =101, gl-sz ~ N(0,0%), Vi, j
and the Rayleigh fading component as
gi; ~ X*(2),

where o is the standard deviation of the shadowing in the dB
scale, while the standard deviation of the circularly symmetric
complex Gaussian distribution for the fast fading coefficients
is assumed to be 1. Here, x?(2) denotes the chi-squared
distribution with 2 degrees of freedom.

The robust optimization variables are the set of power
control variables x = {x;};c[1..n]. Where z; € [0, 1] denotes
the proportion of total p; the i-th transmitter should transmit.
Given x, the achievable rate for the ¢-th link is computed as

Vi, j

9iiDiLq
> i 9iipiTj + 0?

where w is the bandwidth, p; is the power budget of link ¢,
and o2 is the background noise power.

Under a fixed power allocation x, the statistical variations
of the channel result in statistical variations in the achievable
rate of each link. As a result, the minimum rate among all the
links, i.e.,

ri=wlog | 1+ , (10)

(an

min 7;
=1,

Tmin =

also follows a distribution induced by the channel uncertain-
ties. As in Section [[I-B] we adopt the -th percentile value
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is the largest value for which

|GPY] < 4%.

of the minimum rate distribution, r
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as the objective value,

Pr[rmin < 77

min (12)
This corresponds to the notion of outage capacity. Note that
here we consider the outage in minimum rate over the entire
network instead of over individual links. Instead of computing
the outage rate of each link, as in the earlier work [47], [48§]]
and the conference version of this paper [1]], the percentile rate
is taken after the network utility is computed.

The robust optimization problem for the D2D network can
now be formulated as follows. We assume that a central
controller has access to only the path-loss components and
the beamforming gains of all the channels, and seeks to find
a set of robust power allocations that work well over different
realizations of the shadowing and fast fading components. This
D2D wireless network power control problem is therefore one
instance of the robust optimization problem P in Section [[[-B
We have the following correspondence:

p+< G
q« GFF
Up (X) < Tmin
(A rr’zlin
The robust power control for minimum-rate maximization
problem in D2D wireless networks, which we denote by Ppp,
is then

maximize r. (13a)
subject o Prlrmin < 7. |GPY] < 1% (13b)
Tmin S T, Vi (]3C)
0<z; <1, Vi (13d)

and @,.

IV. UNCERTAINTY INJECTION: A DEEP LEARNING
TRAINING SCHEME FOR ROBUST OPTIMIZATION

This section presents a novel uncertainty injection scheme
for training deep learning models for solving robust optimiza-
tion problems. The goal is to train a model to produce solutions
that maximize a utility subject to an outage constraint. The
proposed training scheme is applicable to a wide variety of
problems and different neural network architectures, requiring
only the assumption that the utility can be easily evaluated
under different problem parameters.

A. Sample-based Uncertainty Distribution Characterization

Natural phenomena often induce uncertainties that are diffi-
cult to characterize accurately. Their distributions can have
unbounded support, and are often not easily expressed by
tractable mathematical expressions. Traditional robust opti-
mization algorithms rely on building mathematical models
for the distributions of the uncertainties, then performing
optimization based on these models. Imposing mathemati-
cal models has two major drawbacks: the models may not
fully characterize the true uncertainty distributions; further the

subsequent optimizations are often not analytically tractable,
may require extra simplifications, and may result in significant
computational complexities for obtaining the final solution.

In this paper, we advocate characterizing parameter un-
certainties via sampling. Samples of the uncertainty can be
straightforward to generate for many realistic applications.
With sufficient number of samples, we can estimate the statisti-
cal objective numerically, thus eliminating the need for mathe-
matical models and the associated analysis. Sampling has been
widely used in many machine learning algorithms, such as
stochastic gradient descent [60]], evolutionary algorithm [[61]],
variational inference [5]], and so on. In this paper, we use a
sampling strategy to develop robust optimization algorithms
that are more flexible and more computationally efficient than
traditional mathematical optimization algorithms.

B. Uncertainty Injection Scheme

We propose an approach of training a neural network to
solve the robust optimization problem P. The neural network
takes measurements of the problem parameters as input, i.e.,
g, and computes a robust solution x. The mapping from q to x
can be modeled by any neural network structure. The key for
our training scheme is the injection of uncertainty realizations
of the problem parameters into the training process, after x is
computed.

Specifically, during the training stage, after the neural
network computes the solutions x based on q, we in-
ject a large number of L problem parameters realizations
{P1,pP2,P3,...,pL}, sampled from f;4(p|q), at the output
layer by computing the objective values of the optimization
problem for each of these samples of problem parameters,
ie., up, (X),up,(X),...,up, (x). From these set of objective
values, we can obtain @”, an empirical estimate of u”, by rank-
ing the L objective values and take the (L+)-th lowest value
(with linear interpolation if L~ is not an integer). Based on
the gradients derived from @”, we update the neural network
weights © to improve the robust objective performance in an
unsupervised learning fashion. The idea is that during testing,
the neural network can compute x based only on q, but can
nevertheless achieve statistical robustness against the unseen
uncertainties in p.

The overall neural network structure is shown in Fig.
During training, the computation flows all the way towards the
end for computing 47; while during testing or for applications,
the computation stops at the output layer for the optimization
variables x.

We emphasize that the proposed method of training with
uncertainty realizations injection is fundamentally different
from the idea of data augmentation, in which various trans-
formations or noises are applied to the training data before
feeding to the model [4], [[62]]. Our method is also fundamen-
tally different from existing literature on noise injection for
robust deep learning, in which noises are injected to the inputs
[25]-[29], the neural network parameters [30], the activation
functions [31]], [32]], and the gradients [33]], [34], as already
mentioned earlier. In contrast, the proposed strategy injects
uncertainties after the neural network output layer, and updates
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Fig. 4. Uncertainty injection scheme for training a neural network for robust optimization

the neural network model in an unsupervised fashion, based
on an objective which is a stochastic function of the input
(i.e., optimizing the ~-th percentile of up(x) when the neural
network input provided is q). This is a sensible strategy in
the robust optimization setting because the task at hand is
an explicitly formulated mathematical optimization problem,
and the output of the neural network is a solution to this
problem, for which we can readily evaluate its robustness
under the uncertain problem parameters. The proposed strategy
uses injected uncertainty realizations to compute an robust
objective, then trains the neural network to maximize this
objective. This training scheme allows the neural network
to implicitly learn the underlying uncertainty distribution for
achieving robustness in its solutions, which is impossible to do
under data augmentation or existing noise injection methods
in the literature.

C. Gradient Computation for Back-Propagation

We now elaborate on the mathematical details of the gradi-
ent back-propagation under the uncertainty injection training
scheme. With x computed by a usual neural network, the
learned x is a differentiable function of the neural network
parameters ©. In the meanwhile, the objective function up(x)
is assumed to be differentiable (almost everywhere) over x
for fixed problem parameters p. Lastly, the sample-based
empirical percentile value 47, even with possible linear in-
terpolation between two points, is differentiable with respect
to the sampled objective values {up, (X), up,(X), ..., up, (X)}
in a local neighborhood. This is because the percentile value
does not depend on most of the sampled objective values,
except one or two closest to the target percentile. When L is
finite, the rankings of the sampled objective values closest to

the target percentile do not change in the local neighborhood,
so differentiability can be ensured locally almost surely.

We emphasize that the uncertainty injection scheme is not
restricted to the percentile function as the notion of robustness.
As long as robustness is defined by a function whose sample-
based approximation is differentiable over the samples, we can
train a deep learning model for this robustness objective using
the uncertainty injection scheme.

Taken together, we have that the empirical robust objec-
tive @7 is a differentiable function over the neural network
model parameters ©. Therefore, the neural network can be
optimized with the stochastic gradient descent method when
being trained with the uncertainty injection scheme.

To compute the gradients, let p; be the uncertainty realiza-
tion (among the set of L injected uncertainty samples) whose
corresponding objective up, (x) is the empirical y-th percentile
value of the set of sample objectives, i.e., @”. The gradient of
47 with respect to the neural network parameters © can be
obtained by the chain-rule of differentiatiorﬂ

00 Oup,(x) 0x 00  Ox 00’
where the ter 81?;2.&) is 1; the term % can be com-

puted’| based on the uncertainty realization p;; and lastly, the
term depends on the number of activation layers and the
values of © themselves in the neural network. In other words,
the gradient of ~-th percentile robust objective is just the

UIf linear interpolation is needed for the empirical percentile, the expression
for the gradients would involve a linear combination of two of realizations.

20r, it is a linear combination of two constants if interpolation is needed
to compute the empirical percentile.

3 At points of non-differentiability, we can take a supergradient.



gradient of the objective corresponding of the v-th percentile
realization p;.

While the exact expressions for these gradients depend on
the neural network structure and the objective function up(x),
all of these differentiations are readily computed by popular
deep learning frameworks such as Pytorch [63]] or Tensorflow
[64]. Therefore, the uncertainty injection scheme adds very
little complexity to the training of deep neural networks, and
no extra complexity at testing.

D. Sample-Based Gradient Estimator

The previous section establishes the gradient computation
for optimizing the robust objective and shows that the pro-
posed robust optimization process can be easily implemented
in the usual deep learning computation frameworks. We now
show that the sample-based gradient in (I4) is an asymptoti-
cally unbiased estimator of the true desired gradient.

Let u” be the true v-th percentile of «P(x) under p ~
Ipla(Pla), ie., the population statistic. Let 4" be the v-th
percentile of the samples {up, (x), up,(X),... up, (x)}, ie.
the sample statistic. Let % be the true gradient for updating
the neural network parameters assuming that the gradient
exists, (or a supergradient if the gradient does not exist).

We now examine the sample-based gradient in (14) un-
der the expectation. As described in Section [[V-B| and Sec-
tion the sample statistic 4" is obtained by sorting the
sample objective values then finding the index corresponding
to the percentile in the samples, (i.e., with sample size being
L, we find the value ranked the (L+)-th lowest, with linear
interpolation if necessary). As shown in [65], [66], under fairly
general conditions, this sample statistic is an asymptotically
unbiased estimator to the true population statistic «”. There-
fore, we have:

lim E[@"] = u”.
L—oo

(15)

It can be seen that the expectation of the gradient (14), in the
asymptotic limit of large sample size, is just %:

. 007 ]  Olimp_,o E[a7]
A [8@] - e (16)
ou”
=50 17

where follows from the linearity of both the limit and
the expectation operators, and the fact that the interchange of
the limit, the expectation and the derivatives is allowed under
certain regularity conditions. Assuming that such regularity
conditions hold for the distribution up(x), we have that in the
uncertainty injection scheme, the gradients used in updating
the neural network weights are asymptotically unbiased esti-
mators of the true gradients, which is a desirable property for
the convergence of the training of deep learning models. We
note that this analysis resembles the proof that the gradient
estimator of the stochastic gradient descent (SGD) algorithm
[60] is unbiased.

V. APPLICATIONS OF UNCERTAINTY INJECTION IN
WIRELESS COMMUNICATIONS

In this section, we describe the application of the uncertainty
injection training scheme for solving robust optimization in
wireless communication problems as described in Section
Further, we describe the benchmarks that the proposed training
method would be compared with in the numerical evaluation.

A. Neural Network Architecture and Uncertainty Injection

For the two applications as described in Section [II-A]
and Section given the inputs as the estimated MIMO
wireless channels or the path-loss components in a D2D wire-
less network, the neural network computes robust maximum
minimum-rate solutions for power loading at the base station
or power control among D2D links.

Robustness is achieved using the uncertainty injection train-
ing scheme, in which a large set of wireless channel real-
izations are sampled and injected at the output of the neural
network. A set of minimum rates can then be computed, with
one minimum rate for each of the channel realization. This set
of rates provides an empirical distribution of the minimum rate
over the uncertain channels. We then take the -th percentile
value of this set of rates 7. ~as the empirical estimation for
r). . Through computing gradient and performing gradient
ascent on 7). . the neural network is trained towards the
direction of improving the robust minimum rate.

To explore the full potential of the training scheme with
deep learning, we design the neural network based on the
most general architecture: the fully connected neural networks.
Following an input layer which takes channel measurement
values q, we adopt fully connected hidden layers each with
ReLu non-linearity activations. In the output layer that com-
putes the solutions for optimization variables x, proper non-
linear activations are used to account for the constraints on
the variable x.

During the training for each single input, we sample and
inject L = 1000 uncertainty realizations. Correspondingly, at
any point of training, following each neural network forward
path, we compute 1000 u,(x) objective values based on the x
computed by the neural network. The ~y-th percentile objective
among these 1000 up,(x) objective values is then selected for
computing the gradient and performing gradient ascent on the
neural network parameters O.

B. Robust Objective vs. Nominal Objective

We show two types of objectives in the numerical simu-
lations: the robust objective and the nominal objective. The
robust objective is as specified by the robust optimization
formulation P, i.e., the v percentile value of the objective
distribution achieved by the solution x, as induced by the
uncertainty distribution.

On the other hand, the nominal objective is the objective
value achieved by the solution x, under the measured (or esti-
mated) input values as if they are the true channel parameter
values. Under our notation, the nominal objective is denoted
as uq(x).



We show the results for the nominal objective, because
it is the objective that deterministic optimization algorithms
(i.e. the non-robust optimization algorithms) would optimize,
assuming that the measured or estimated problem parameters
are entirely accurate. The relative performances of all the
methods in terms of their nominal objective and the robust
objective reveal the effectiveness of actively accounting for
the channel uncertainties during optimization.

C. Deep Learning without Uncertainty Injection

To fully illustrate the benefits of the proposed the training
scheme, we include a benchmark method where an identical
neural network is trained with the same dataset and hyper-
parameters, but without uncertainty injection. Specifically, we
train the neural network with the same unsupervised learning
procedure, except that we do not implement any uncertainty
injection. Instead, during training the gradient is derived from
the nominal objective uq(x), computed directly based on the
measured or estimated channel parameters q.

We note that to the best of the authors knowledge, there
are no efficient analytic mathematical optimization methods
that can account for channel uncertainties in these problem
settings.

VI. EXPERIMENTAL VALIDATION

This section provides numerical results for the proposed
uncertainty injection scheme on two wireless network appli-
cations, namely, the robust power loading problem for the
multiuser MIMO downlink, and the robust power control
problem for D2D wireless networks.

A. Multiuser MIMO Downlink Environment

Consider a base station equipped with M/ = 4 antennas and
serving K = 4 users. We assume the i.i.d. Rayleigh fading
model for the MIMO channel H, with each channel entry fol-
lowing a circularly symmetric complex Gaussian distribution
hij ~ CN(0,1), Vk, j. We assume that the channel estimation
error ey; as in has a variance of o2 = 0.075. During
data transmission, we assume the total power constraint P of
1W over a bandwidth of 10MHz, and an effective background
noise level of -75dBm/Hz (e.g., after accounting for pathloss
and out-of-cell interference).

Prior to the power loading optimization, based on the
estimated channels H using minimum mean-square estimation
(MMSE) [67]], we utilize the RZF beamformers, which have
a better performance than the ZF beamformers. Specifically,
we compute the unnormalized RZF beamformers as follows:

B' = HMH"H + ol)~! (18)

To choose an appropriate value for o, we make the following
observation (which is verified by numerical simulations): as
« approaches zero, the beamformers become more aggressive
on nulling the interference, but also become more sensitive
with respect to channel uncertainty. As a result, the nominal
objective (as defined in Section[V-B]) increases while the robust
objective degrades. To achieve a reasonable trade-off on the

regularization factor, we select the value of « that results
in the highest medium r.;, under the channel uncertainty
distribution (assuming equal power allocation across the users
for simplicity). This leads to a value of & = 0.2 in our setting.

We then normalize the beamformers across each column of
B/, i.e., the beamformers for each user, to unit norm, to obtain
the normalized beamformers B.

For the inputs to the neural network, we compute the
effective channels I:Ieff based on H and B as:

Heyr = H'B (19)
and flatten the resultant matrix into a length-(K x K) vector.
We note that this information is the measurement of the
channel, i.e., playing the role of q in the robust optimization
problem P as in Section [[I-B}

Provided with this input, the fully-connected neural network
then computes the output x € [0,1]% as the power loading
solution. We use the softmax activation at the final output layer
to enforce the power constraint ZzK:1 z; < 1.

Lastly, to train the neural network with uncertainty injection
scheme for robust minimum-rate optimization, we randomly
generate 1000 channel realizations of H according to ()
and inject them into the neural network training flow. With
a specific solution x computed by the neural network, we
compute then take the minimum of the K user rates achieved
for each of the 1000 channel realizations. We then take the
v-th percentile of those 1000 minimum rates to obtain the
empirical estimation @”. The gradient to update the neural
network weights is computed based on the channel realization
corresponding to 4.

During training, we use a minibatch size of 1000 distinct
MIMO networks, with each training epoch including 50 mini-
batches. We train for a total of 500 epochs, with early stopping
based on validation at the end of each epoch. We note that
instead of having a fixed training set, we continuously generate
new MIMO network wireless channels and their estimations,
which is easy to do because of the readily available Rayleigh
fading channel model.

B. Multiuser MIMO Downlink Results

We adopt a structure for the neural network with 4 fully-
connected layers, each with 200 hidden neurons and the ReLU
non-linearity, except for the output layer with the softmax non-
linearity to ensure that > x; = 1. (In the low-interference
regime after RZF, the optimized x is likely to be a one that
uses up all the total power, i.e., is satisfied with equality.)
This same structure is also use in the deep learning without
uncertainty injection benchmark as described in Section [V-C|

We also compare with a geometric programming bench-
mark, which finds the global optimal solution for the
minimum-rate maximization problem by representing the in-
verse of the signal-to-inference-and-noise ratio (SINR) terms
as posynomials [[68]]. Note that the formulation required by
geometric programming cannot incorporate channel uncertain-
ties, because the statistical robustness of the objective cannot
be expressed by posynomials.



TABLE I

MULTIUSER MIMO DOWNLINK 5-PERCENTILE ROBUST MINIMUM-RATE PERFORMANCE

Methods Nominal Minimum Rate ~ Robust Minimum Rate
Geometric Programming 40.18Mbps 5.41Mbps
Deep Learning without
p Learning with 39.51Mbps 6.52Mbps
Uncertainty Injection
Deep Learning with
p earning wl 37.40Mbps 8.03Mbps
Uncertainty Injection
Uniform Power 29.70Mbps 5.88Mbps
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Fig. 5. Cumulative distribution of Sth-percentile robust minimum-rates in
MIMO wireless networks over 2000 test channel layouts.

In the simulations, we set v = 5, i.e., we use the robust
minimum rate at the Sth-percentile across the distribution in-
duced by the channel uncertainties as the robust objective. We
evaluate the robust minimum rate and the nominal minimum
rate performances over 2000 testing layouts. For evaluation
of the robust objective, we also use 1000 randomly sampled
channel realizations on each of the 2000 testing layouts to
empirically estimate the Sth-percentile value of the minimum
rates. The results are presented in Table [ﬂ Furthermore, the
cumulative distribution function (CDF) of these robust 5th-
percentile minimum-rates over all 2000 testing layouts are
shown in Fig. 5]

As the numerical results show, the neural network trained
with the uncertainty injection scheme achieves 23% improve-
ment on the robust minimum rate over the same neural
network trained without uncertainty injection. This shows that
the uncertainty injection scheme indeed encourages the deep
learning model to learn and to produce solutions that are
significantly more robust against the channel uncertainties than
the state-of-the-art algorithms.

Interestingly, the performance improvement over geometric
programming is even larger, at 48% for the robust Sth-
percentile minimum-rate. This is because the classical mathe-
matical programming techniques exploit the particular channel
realization to the fullest extent in order to maximize the
minimum-rate objective, as shown in the nominal minimum
rate result, but it does not account for robustness across the
channel uncertainties at all. Even training a neural network to
approximate the classical mathematical programming without
uncertainty injection would already achieve some robustness,
as shown in Fig. [5] Significantly better robustness is achieved
with training a deep neural network with uncertainty injection.

Angle of Incidence/Arrival

Fig. 6. D2D beamforming pattern at the transmitters and the receivers, and
its approximation used in simulations.

C. D2D Wireless Network Environment

For the D2D wireless network, we consider a number of
D2D links randomly deployed within a confined region, with
the transceiver distances following uniform distributions. We
impose a minimum of 5-meter distance between any trans-
mitter and any receiver that do not belong to the same link.
For the path-loss, we follow the short-range outdoor model
ITU-1411, with 5SMHz bandwidth at the carrier frequency of
25GHz (the mmWave range).

Every transmitter and receiver is equipped with a linear
antenna array with M = 8 antennas. We use a beamforming
pattern corresponding to a uniform linear array directly aimed
between the transmitter and the receiver. The beamforming
gains are approximated as follows: 9dB gain for the direct
links (as the transmitter and receiver pair can align with each
other precisely), 6dB gain at the main lobe direction with an
angle from —10 to +10 degrees, and —9dB gain at the side
lobe directions. In Fig.[6] the corresponding beamforming gain
pattern and its approximation are plotted for M = 8. At each
transmitter, we assume a maximum transmit power of 30dBm.
We also assume a background noise level of —169dBm/Hz.

We incorporate the following channel uncertainty models
for each direct and interfering links:

o Shadowing with log-normal distribution with 8dB stan-

dard deviation;

o Rayleigh fading with i.i.d. circularly symmetric complex

Gaussian distribution with unit variance.
Furthermore, to illustrate that the training process can be
applied to different scenarios, we test the robust performances
in three different settings with 1000 wireless networks layouts
under each setting, as in Table [[Il For each layout, we sample
1000 channel realizations during testing to obtain an empirical



TABLE II
D2D WIRELESS ENVIRONMENT

Setting Npmber of | Region Area Direct—Lir_lk }
Links (V) (m?) Distance Distribution
A 10 150 x 150 5m~15m
B 10 200 x 200 20m~30m
C 15 300 x 300 10m~30m
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Fig. 7. Cumulative distribution of robust minimum-rates in D2D wireless
networks under test setting B.

approximation of the robust minimum rate across the entire
network.

D. D2D Wireless Networks Results

We adopt a neural network structure with 5 fully-connected
layers, each with 6N 2 hidden neurons and the ReLU non-
linearity, except for the output layer, which produces x with
N output units and has a sigmoid non-linearity (to ensure that
the power control solution for the N links has a range of
[0, 1]™). This same structure is also used for the benchmark
of deep learning without uncertainty injection as described in
Section V-C

Because of the path-loss, the direct and the interfering links
are often of different orders of magnitudes, making it difficult
to obtain meaningful updates at the beginning of training.
To make training effective, we adopt input normalization on
the input path-loss values (for both training and testing),
where each of the N? inputs of the path-loss values are
normalized independently based on the statistics computed
from the training set.

For the D2D network simulations, we set v = 10, i.e.,
we use the minimum rate at the 10th percentile across the
distribution induced by the channel uncertainties as the robust
objective. We present test results on the robust minimum-rate
obtained by the neural network based only on the path-loss
and the beamforming gain values as the inputs. Similar to
Section we include two benchmarks for illustrating the
importance of robust optimization: deep learning without un-
certainty injection, and the geometric programming (which can
provide globally optimal solutions if the channel uncertainties
are not considered). Results are shown in Table [[II] Fig. [7]
presents CDF curves of the robust minimum-rates achieved
by all methods over 1000 testing wireless networks, generated
under test setting B in Table II.

As shown in these results, under various interference lev-
els, link densities, and transceiver distance distributions, the
neural network trained with uncertainty injection consistently
produces more robust solutions. The performance gain due
to the proposed uncertainty injection training is up to 9%,
as compared to a deep neural network without uncertainty
injection. The gain is much higher, in the range of 48-66%,
when compared with the geometric programming benchmark,
which is a globally optimal solution that does not account for
channel uncertainty. In fact, geometric programming does not
even perform as well as simply using full power in term of
the robust minimum rate, although as expected it does much
better in term of nominal minimum rate.

VII. CONCLUSION

This paper proposes a novel uncertainty injection training
method for deep learning models to perform robust optimiza-
tion against parameter uncertainties. We consider a robust
optimization problem that aims to compute robust solutions
based only on the measured or the estimated problem param-
eters, while can still perform well with parameter uncertainties.
Traditional robust optimization techniques addressing such
problems require complicated mathematical characterizations
of the parameter uncertainties, which are often difficult to
analyze and may not reflect realistic environments accurately.
Instead, sample-based uncertainty modeling is an attractive
alternative because of its simplicity and accuracy.

The proposed training scheme utilizes the capability of deep
neural networks to learn from samples of uncertainties. By
injecting uncertainties, an empirical estimate of the robust
objective can be obtained and used for updating the neu-
ral network model parameter during training. The proposed
uncertainty injection scheme are applicable to a variety of
robust optimization problems, while having low computational
complexity. To illustrate the effectiveness of this method, we
present promising numerical simulation results on two wireless
communication applications. We believe that the proposed
method opens up an avenue for wider application of deep
learning based robust optimization under realistic scenarios,
where uncertainties are ubiquitous and highly agnostic.
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