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Abstract—Terahertz (THz) integrated sensing and communi-
cation (ISAC) is a promising interdisciplinary technology that
realizes simultaneously transmitting Terabit-per-second (Tbps)
and millimeter-level accurate environment or human activity
sensing. However, both communication performance and sensing
accuracy are influenced by the Doppler effects, which are
especially severe in the THz band. Moreover, peak-to-average
power ratio (PAPR) degrades the THz power amplifier (PA)
efficiency. In this paper, a discrete Fourier transform spread
orthogonal time frequency space (DFT-s-OTFS) system with
superimposed pilots is proposed to improve the robustness to
Doppler effects and reduce PAPR for THz ISAC. Then, a two-
phase sensing parameter estimation algorithm is developed to
integrate sensing functionality into the DFT-s-OTFS waveform.
Meanwhile, a low-complexity iterative channel estimation and
data detection method with a conjugate gradient based equalizer
is proposed to recover the data symbols of DFT-s-OTFS. The
proposed DFT-s-OTFS waveform can improve the PA efficiency
by 10% on average compared to OTFS. Simulation results
demonstrate that the proposed two-phase sensing estimation algo-
rithm for THz DFT-s-OTFS systems is able to realize millimeter-
level range estimation accuracy and decimeter-per-second-level
velocity estimation accuracy. Moreover, the effectiveness of the
iterative method for data detection aided by superimposed pilots
in DFT-s-OTFS systems is validated by the simulations and the
bit error rate performance is not degraded by the Doppler effects.

Index Terms—Terahertz integrated sensing and communica-
tion (ISAC), orthogonal orthogonal time frequency space (OTFS),
superimposed pilots.

I. INTRODUCTION

RECENTLY, with the exhaustion of spectrum resource
in the microwave band and rapid growth of wireless

data rates, higher and wider spectrum is demanded to satisfy
the key performance metrics of the sixth generation (6G)
wireless systems. Along with the trend of moving up to higher
frequencies, the Terahertz (THz) band (0.1-10 THz) is viewed
as one of the key technologies to realize the promising 6G
blueprint: all things are sensing, connected, and intelligent [2].
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On one hand, wireless Terabit-per-second (Tbps) links will
become a reality in the 2030 and beyond intelligent infor-
mation society, thanks to the ultra-broad bandwidth in the
THz band. On the other hand, ultra-accurate sensing, e.g.,
millimeter-level range estimation and millidegree-level angle
estimation can be realized. Furthermore, the system design
aims at Terahertz integrated sensing and communication (THz
ISAC), which opens up new applications, e.g., vehicle-to-
vehicle networks and THz Internet-of-Things (Tera-IoT) [2].
Moreover, by sharing the spectrum, hardware and waveform,
THz ISAC can reduce the hardware cost, and improve the
spectral and energy efficiency [3].

While enabling ultra-accurate sensing and faster connec-
tions, THz ISAC encounters two critical challenges on the
waveform design. First, towards higher carrier frequencies, the
Doppler spread effect becomes severer in the THz band, espe-
cially in high-mobility scenarios [4]. Fast time-varying chan-
nels with high Doppler spread may cause inter-carrier interfer-
ence (ICI) in the time-frequency (TF) domain. Waveforms that
work in the TF domain, such as orthogonal frequency division
multiplexing (OFDM) and discrete Fourier transform (DFT)
spread OFDM (DFT-s-OFDM, aka SC-FDMA), meet trouble
in equalizing multiple Doppler shifts along each path. As a
result, the link performance would be seriously deteriorated
in terms of the bit error rate (BER) and data rate performance
if maintaining current waveform and numerology. Meanwhile,
sensing parameter estimation in OFDM radar receiver usually
utilizes the signal model without considering the ICI, which
causes estimation error in the presence of high-speed targets.
In this case, the sensing accuracy using OFDM waveform
would be degraded.

The second challenge is that with the huge amount of
wireless devices, energy efficiency is expected to be improved
by 100 times in 6G wireless systems. Nevertheless, when mov-
ing up to higher operational frequencies, the saturated output
power of power amplifiers (PAs) rapid decreases in spite of
the integrated circuit technology [5]. In order to maximize
the transmit power and energy efficiency of PAs in the THz
band, the peak-to-average power ratio (PAPR) requirement
on the transmit signal tends even stricter compared with the
microwave band. Therefore, when designing the THz ISAC
transmit waveform that is commonly used by sensing and
communication, we need to address the aforementioned issues.
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A. Related Work

In this section, we first investigate the ISAC systems in
the microwave band and then elaborate that they are unable
to satisfy requirements of THz ISAC. In the literature, ISAC
systems are implemented in different ways. In addition to
some resource-sharing schemes, such as dividing time re-
sources into either sensing or communication [6], existing
works on integrated sensing and communication consider
using a common waveform [7], which includes embedding
message into radar waveforms and realizing sensing parameter
estimation based on the standard communication waveforms.
For example, authors in [8] propose an OFDM ISAC frame-
work with the two-dimensional (2D) fast Fourier transform
(FFT) method and a multiple signal classification method
(MUSIC). A correlation-based radar processing approach is
used to estimate radar sensing parameters based on the OFDM
baseband signals in [9]. Nevertheless, OFDM-based ISAC
systems suffers from a high PAPR and thus is not energy-
efficient, especially for THz systems. Authors in [10] exploit
the preamble of a single-carrier physical layer frame and make
it suitable for sensing. Due to lower PAPR, single-carrier
waveforms have advantages over multi-carrier modulations in
terms of the energy-efficiency. However, both conventional
single-carrier and multi-carrier waveforms meet challenges in
Doppler effects when it comes to the THz band.

Along with the increase of carrier frequencies, the Doppler
shift, which is proportional to the carrier frequency, becomes
larger and thus causes stronger Doppler effect. For instance,
the Doppler shift is enlarged by 100 times when the frequency
is increased from 3 GHz to 0.3 THz. The severe Doppler
spread destroys the orthogonality of subcarriers in OFDM and
cause ICI in the frequency domain, and thus, the Doppler shift
are difficult to estimate and equalize in OFDM systems. Re-
cently, an orthogonal time frequency space (OTFS) modulation
scheme is proposed to deal with high Doppler spread in doubly
selective channels [11]. OTFS modulates information in the
delay-Doppler (DD) domain and conveniently accommodates
the channel dynamics, which shows significant advantages
over OFDM in the presence of severe Doppler effects [12].
A time-varying multipath channel can be transformed into
a near-stationary channel in the delay-Doppler domain [13].
Meanwhile, the effectiveness of OTFS for ISAC is validated
in [14]. Nevertheless, the time domain transmit samples of
OTFS are equivalent to the output of inverse DFT (IDFT) of
the information symbols in the delay-Doppler domain [15],
which behaves like OFDM with a relatively high PAPR
value. The PAPR of OTFS is lower than OFDM but still not
satisfactory for THz PAs. Thus, since OTFS has similar PAPR
problem to OFDM, a PAPR reduction scheme is required
to improve the THz PA efficiency. In this paper, the DFT
spreading operation is leveraged for OTFS to spread the input
signal with DFT, which can effectively reduce the PAPR of
OTFS signal by about 3 dB. This reduction makes the PAPR
of the resulting DFT-s-OTFS at the same level of single-carrier
transmission, while maintaining the robustness against severe
Doppler effects in the THz band.

Till date, most studies working on OTFS modulation as-

sume that the delay and Doppler shifts of channel impulse
response are integer multiples of delay and Doppler resolution,
respectively. While the delay resolution is sufficiently large for
communication systems, the presence of fractional Doppler
may cause channel spreading across the Doppler indices and
breaks the channel sparsity in the delay-Doppler domain [12].
A Dolph-Chebyshev (DC) window design is proposed in [16]
to suppress the channel spreading and improved the channel
estimation accuracy. Channel estimation and data detection
with fractional delay and Doppler have also been investigated
in some work, such as [17]–[19]. A sparse Bayesian learning
method is proposed in [17] to perform off-grid channel esti-
mation for OTFS, while it applies an ideal pulse shaping filter.
[18] proposes an iterative rake decision feedback equalizer for
the zero-padded OTFS system. An efficient unitary approx-
imate message passing based detector is developed in [19]
for OTFS with fractional Doppler, but it appends a cyclic
prefix (CP) for each symbol when using rectangular pulse.
To achieve high-accuracy sensing in THz ISAC systems, the
channel delay and Doppler parameters should not be limited
to integer values of delay and Doppler resolution. Although
the OTFS channel matrix for continuous-valued delay and
Doppler shift is derived in [14], the derived result is obtained
by using the assumption of rectangular transmit pulse and the
approximation of the integral with a discrete sum. Hence, an
exact channel matrix model for continuous-valued delay and
Doppler is still needed for THz ISAC systems.

Despite the promising communication and sensing abilities,
the implementation complexity of OTFS is a pivotal issue,
specifically, the complexity of OTFS channel estimation and
data detection. The requirement of computational complexity
is more stringent in the THz band to realize high-speed
baseband digital processing. Low complexity channel esti-
mation and detection of OTFS signals have been studied in
[11], [20]–[31]. An embedded pilot (EP) based OTFS frame
structure is proposed in [20], where the guard symbols are
arranged to preserve the pilot symbol from the interference
data symbols. In this case, the insertion of guard symbols
results in non-negligible DD resource overhead and reduces
the spectral efficiency. Schemes of superimposed pilot design
are developed in [21], [22], while [21] still uses EP frame
to estimate delay and Doppler parameters and [22] does not
consider fractional delay and Doppler. Channel estimation
approaches for MIMO-OTFS system are developed in [23],
[24], while they add cyclic prefix for each symbol and only
consider integer delay. Message passing based methods are
proposed to estimate channel parameters and design a data de-
tector in [20], [25]. A variational Bayes approach is developed
in [26] to reduce the receiver complexity of the OTFS receiver.
Nevertheless, when the information symbols are transformed
with a DFT precoding rather than being directly mapped on
the DD domain, these maximum a posterior probability (MAP)
detection approaches can not exploit the sparsity of the delay-
Doppler domain channel, which influences the computational
complexity. Low complexity minimum mean square error
(MMSE) channel equalizers for OTFS are proposed under
the assumption of integer delay and Doppler in the literature,
which exploit the quasi banded structure of matrices for a prac-
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tical rectangular pulse [27] and the block-circulant property of
channel matrix for an ideal bi-orthogonal pulse [28], but these
properties becomes invalid when considering non-integer delay
and Doppler. By utilizing the block-circulant structure, low
complexity zero-forcing (ZF) and MMSE receivers have been
developed for MIMO-OTFS systems in [29], [30]. In summary,
to satisfy the requirements of THz ISAC, OTFS needs to
overcome the problems, including PAPR, pilot design with
reduced overhead, low-complexity channel estimation and data
detection with fractional delay and Doppler.

In light of the aforementioned challenges of THz ISAC, the
THz waveform needs to be well designed in terms of the PA
efficiency, bit error rate (BER), robustness to Doppler effects,
sensing accuracy and implementation complexity, which moti-
vates this study. In our preliminary and shorter version [1], we
propose a sensing parameter estimation method by employing
the data signals of DFT-s-OTFS. In this paper, we further
design a sensing integrated DFT-spread OTFS (SI-DFT-s-
OTFS) system with superimposed pilots, and develop low-
complexity sensing parameter estimation and data detection
approaches. In contrast with existing works on OTFS with su-
perimposed pilots [21], [22], which only consider integer delay
and Doppler, we propose a high-accuracy estimation method
for fractional parameters. Moreover, message passing based
data detector and MAP symbol detection are respectively used
in [21] and [22], but they are not able to make use of channel
sparsity in the delay-Doppler domain for DFT-s-OTFS.

B. Our Contributions

The contributions of this work are summarized as follows:
• We propose a DFT-s-OTFS system framework for

THz ISAC by developing a DFT precoding operation
and designing a scheme of superimposed pilots in the
delay-Doppler domain. We design an optimal power
allocation scheme between pilot and data by deriving
the effective signal-to-interference-plus-noise (SINR) of
received signal. The average pilot power that optimizes
the BER performance depends on the signal-to-noise ratio
(SNR), which is validated by the simulation results.

• We propose a two-phase sensing parameter estimation
algorithm for multiple target estimation in DFT-s-
OTFS ISAC systems. Meanwhile, to achieve super-
resolution sensing accuracy, we also derive a continuous-
delay-and-Doppler-shift (CDDS) channel matrix model
for the developed sensing integrated DFT-s-OTFS sys-
tems. Based on the CDDS channel matrix, the two-
phase estimation (TPE) method incorporates coarse on-
grid search with low complexity in the first phase and
refined off-grid search in the second phase.

• We develop a low-complexity iterative channel esti-
mation and data detection method with a conjugate
gradient based equalizer for DFT-s-OTFS systems.
The proposed iterative method initializes the channel
estimates aided by the pilot and then iteratively per-
forms data detection and data-aided channel estimation
to refine the estimation accuracy and detection perfor-
mance. The developed conjugate gradient based channel

equalization implements the computation complexity of
O(MN log(MN)) by employing the partial Fourier form
of CDDS channel matrix.

• We conduct extensive simulation results of DFT-s-
OTFS with superimposed pilots for THz ISAC. The
transmit signal of the proposed DFT-s-OTFS is able to
improve the PA efficiency by 10% compared with OTFS
due to the reduction of PAPR. The simulation results
validate the effectiveness of the proposed iterative method
and the robustness of DFT-s-OTFS to strong Doppler ef-
fects. With the proposed TPE method, simulation results
indicate that the THz SI-DFT-s-OTFS systems are able
to realize millimeter-level range estimation accuracy and
decimeter-per-second-level velocity estimation accuracy.

The structure of this paper is as follows. The system frame-
work of DFT-s-OTFS for THz ISAC is elaborated in Sec. II.
The sensing parameter estimation algorithm is proposed in
Sec. III. In Sec. IV, the iterative channel estimation and data
detection is developed. Sec. V delineates the optimal power
allocation between pilot and data. Extensive simulation results
are described in Sec. VI. Finally, Sec. VII concludes the paper.

Notations: C, R and R+ denote the set of complex
numbers, real numbers and positive numbers, respectively.
E{·} defines the expectation operation. The superscripts (·)T
and (·)H stand for the transpose and Hermitian transpose
operations. diag{·} denotes a diagonal matrix. The notation
⊗ refers to Kronecker product. The vectorization of a M ×N
matrix X, denoted by vec(X), is the MN × 1 column vector
x by stacking the columns of the matrix X on top of one
another. The operator vec−1(x) is the inverse opration of the
vectorization and vec−1(x) reshapes the MN × 1 column
vector x into a M × N matrix X. The notations IM and
0M×N represent M ×M identity and M ×N zero matrices,
respectively.

II. SYSTEM FRAMEWORK

As shown in Fig. 1, we propose a sensing integrated DFT-
spread OTFS system aided by superimposed pilots. At the
transmitter, an ISAC waveform is generated and used for
communication and sensing. For active sensing, it bounces off
the radar sensing targets and forms the back-scattered signal.
The co-located receiver related to the transmitter captures
the signal and estimates the target parameters with the full
information of transmitted signal. For passive sensing, the
transmitted signal propagates through a LoS path and several
NLoS paths reflected by the sensing targets and conveys
messages to the communication receiver, which performs joint
passive sensing and data detection based on the knowledge of
superimposed pilots.

A. Transmitter Design and Processing

First, the ISAC system maps the transmitted bit streams to
a large amount of data frames, each of which contains M×N
information symbols from a Q-ary quadrature amplitude mod-
ulation (QAM) alphabet A, Xd ∈ CM×N . Here M and N
stand for the number of delay and Doppler bins in the delay-
Doppler domain. Equivalently, M and N denote the number
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Fig. 1. DFT-s-OTFS system model with superimposed pilot design for THz integrated sensing and communication.

of subcarriers and symbols in the time-frequency domain.
The data symbols are zero-mean independent and identically
distributed (i.i.d.) with the signal power E{|Xd[m,n]|2} = σ2

d,
where Xd[m,n] is the element of Xd at the mth row and the
nth column, m = 0, 1, · · · ,M − 1, n = 0, 1, · · · , N − 1.

Before mapping the information symbols onto the delay-
Doppler plane, we perform a N -point DFT operation on the
data symbols along the Doppler axis, as

XDD
d [l, k] =

1√
N

N−1∑
n=0

Xd[l, n]e−j2π
nk
N , (1)

for l = 0, 1, · · · ,M − 1, k = 0, 1, · · · , N − 1. Then the pilot
symbols Xp are superimposed onto the data symbols XDD

d in
the delay-Doppler domain, as

X = XDD
d + Xp, (2)

where the pilot symbols are arranged as

Xp[l, k] =

{ √
MNσ2

p, (l, k) = (lp, kp),

0, otherwise.
(3)

where 0 ≤ lp ≤ M − 1, 0 ≤ kp ≤ N − 1 represent the pilot
placement location in the delay-Doppler plane. The average
pilot symbol power is defined as E{|Xp[l, k]|2} = σ2

p.
As shown in Fig. 2(a), the data symbols are arranged

onto the whole delay-Doppler plane, while the non-zero pilot
symbol is placed at only one delay-Doppler grid, i.e., (lp, kp),
which is superimposed onto the data symbol XDD

d [lp, kp].
Zero-padding is performed for pilots at other delay-Doppler
grids. Compared to the EP scheme that arranges a guard region
around the EP with the insertion of zeros [20], there is no
dedicated grid for the pilot arrangement in the superimposed
pilot scheme. Thus, the superimposed pilot design in this work
reduces the pilot overhead and is able to improve the spectral
efficiency of DFT-s-OTFS. As shown in Fig. 2(b) and Fig. 2(c),
the pilot symbol has stronger power than data symbols and
performs like a flag. Thus, the pilots in the received delay-
Doppler domain signal can be used to estimate the channel
parameters. Furthermore, we can develop an optimal allocation
scheme between pilot and data. Since it is influenced by the
data detection, the derivation is detailed in Sec. V.

Next, the transmitter transforms the superimposed delay-
Doppler domain symbols to the transmit signal XTF in the
time-frequency domain by applying the inverse symplectic
finite Fourier transform (ISFFT) [11],

XTF[m,n] =
1√
MN

N−1∑
k=0

M−1∑
l=0

X[l, k]ej2π(nkN −
ml
M ), (4)

for m = 0, 1, · · · ,M − 1, n = 0, 1, · · · , N − 1. We denote
the subcarrier spacing and the symbol duration of the time-
frequency data frame as ∆f and T , where T∆f = 1. In this
case, each data frame occupies a frame duration of Ts = NT
and a bandwidth of B = M∆f .

Then, we use the Heisenberg transform to transform the 2D
time-frequency domain symbols to the baseband time-domain
transmitted signal, as

s(t) =
1√
M

N−1∑
n=0

M−1∑
m=0

XTF[m,n]gtx(t− nT )ej2πm∆f(t−nT ),

(5)
where gtx(t) stands for the transmit pulse shape that is limited
to [0, T ]. We consider to use practical rectangular transmit
and receive pulses, which are compatible with the OFDM
modulation. Finally, one CP is inserted into the time-domain
signal for each data frame, denoted by,

sCP(t) =

{
s(t), 0 6 t 6 Ts,

s(t+ Ts), −Tcp 6 t < 0,
(6)

where Tcp denotes the CP duration. The transmit signal
s(t) can be expressed in matrix form as, S = FHMXTF =
FHM (FMXFHN ) = XFHN , with a sampling rate of M

T . More-
over, FM ∈ CM×M and FN ∈ CN×N refer to the normalized
DFT matrices. Thus, the time-domain transmit vector s is
given by

s = vec(S) =
(
FHN ⊗ IM

)
x, (7)

where x = vec(X) = xDD
d + xp, xDD

d and xp are data and
pilot vectors in the DD domain.

B. Continuous-Delay-and-Doppler-Shift Channel Impulse Re-
sponse

The DD domain channel response is characterized by sens-
ing targets for a sensing channel or by transmission paths for



5

Data Pilot

0  ! 1

0

" ! 1

#$

%$

(a) Design of pilot placement in delay-
Doppler domain.

(b) Transmit signal in delay-Doppler domain. (c) Received signal in delay-Doppler domain with
the 2-tap channel.

Fig. 2. Illustration of proposed frame structure with superimposed pilot and data symbols in DFT-s-OTFS systems.

a communication channel, which has a unified form for these
two applications. We suppose that there exist P multipath
components, where ith path is associated with complex path
gain αi, delay τi and Doppler shift νi. Here τi ∈ [0, 1

∆f ),
νi ∈ [− 1

2T ,
1

2T ), and any two paths are resolvable in the delay-
Doppler domain (i.e., |τi−τj | ≥ 1

M∆f or |νi−νj | ≥ 1
NT ). The

impulse response of the wireless channel in the DD domain
is thus given by

h(τ, ν) =

P∑
i=1

αiδ(τ − τi)δ(ν − νi). (8)

For joint passive sensing and communication, the delay and
Doppler shifts are calculated by τi = ri

c0
and νi = fcvi

c0
, where

ri and vi refer to the distance and velocity along the ith path.
fc stands for the carrier frequency and c0 represents the speed
of light. For active sensing, the round-trip delay and Doppler
shift lead to an extra multiplier of 2 in the above calculations.

When the path delay and Doppler shift are integer mul-
tiples of the delay and Doppler resolution, i.e., τi = li

M∆f

and νi = ki
NT , the discrete baseband received signal vector

r ∈ CMN×1 is given by r = Hs+w, where the channel H =∑P
i=1 αi∆

kiΠli
MN [32]. The matrix ΠMN ∈ CMN×MN

denotes the forward cyclic-shift (permutation) matrix and
∆ = diag{ej2π 0

MN , ej2π
1

MN ,

· · · , ej2πMN−1
MN } characterizes the Doppler shift. w ∈ CMN×1

stands for the additive white Gaussian noise (AWGN) with
zero mean and variance σ2

w. While the integer case of delay
and Doppler shift is well investigated in the literature [25],
[27], low-complexity channel estimation and data detection
with fractional channel and a rectangular pulse are still chal-
lenging for DFT-s-OTFS systems. Thus, we consider the path
delay and Doppler shift to be continuous-valued and derive a
continuous-delay-and-Doppler-shift (CDDS) channel matrix.

The baseband received signal vector r is the sampling signal
of the time-domain continuous signal r(t) at t = m T

M for
m = 0, 1, · · · ,MN − 1, where r(t) is given by

r(t) =

P∑
i=1

αie
j2πνitsCP(t− τi) + w(t)

=

P∑
i=1

αie
j2πνits([t− τi]NT ) + w(t),

(9)

where [·]T denotes modulo T operation, w(t) represents the
AWGN.

Let Sτi [l, k] be the sampling signal of s([t− τi]NT ) at t =
kT + l

M T for l = 0, 1, · · · ,M − 1, k = 0, 1, · · · , N − 1, we
obtain

Sτi [l, k] =
1√
M

N−1∑
n=0

M−1∑
m=0

XTF[m,n]gtx([kT +
l

M
T − τi]NT

− nT )ej2πm∆f([kT+ l
M T−τi]

NT
−nT)

=
1√
M

N−1∑
n=0

M−1∑
m=0

XTF[m,n]gtx(([k +
l

M
− τi
T

]N

− n)T )ej2πm([k+ l
M−

τi
T ]N−n).

(10)

When l < li = d τiT
M

e (d·e stands for the ceiling function),

Sτi [l, k] = 1√
M

∑M−1
m=0 X

TF[m, [k−1]N ]ej2πm( l
M−

τi
T ). When

l > li, Sτi [l, k] = 1√
M

∑M−1
m=0 X

TF[m, k]ej2πm( l
M−

τi
T ). Thus,

we can derive its vector form as,

sτi = Πli
MNvec

(
Π−liM FHMbτiX

TF
)

(11)

where bτi = diag{e−j2π0
τi
T , · · · , e−j2π(M−1)

τi
T }. Follow-

ing the eigendecomposition Π−liM = FHMΛFM with Λ =

diag{ej2π0
li
M , · · · , ej2π(M−1)

li
M }, we can obtain the relation

between sτi and s as

sτi = Πli
MNvec

(
FHMΛFMFHMbτiFMS

)
= Πli

MNvec
(
FHMBτiFMS

)
= Πli

MN

(
IN ⊗

(
FHMBτiFM

))
s,

(12)

where Bτi = diag{b0, b1, · · · , bM−1} with b = e
j2π

(
li
M−

τi
T

)
.

Meanwhile, by sampling at t = m T
M for m = 0, 1, · · · ,MN−

1, we obtain the received vector r, which is given by,

r =

P∑
i=1

αi∆
(νi)sτi + w, (13)
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where ∆(νi) = diag{δ0, δ1, · · · , δMN−1} with δ = ej2πνp
T
M .

Finally, we derive the baseband time-domain input-output
relation for the CDDS channel as,

r = Hs + w

=

P∑
i=1

αiΘis + w,
(14)

where Θi
4
= ∆(νi)Πli

MN

(
IN ⊗

(
FHMBτiFM

))
.

C. Receiver Design and Processing

At the receiver, the received signal is transformed to the
time-frequency domain signal by applying the Wigner trans-
form, which is equivalent to DFT when using rectangular
pulse, expressed in matrix form as, YTF = FMR with
R = vec−1(r) ∈ CM×N . Then the symplectic finite Fourier
transform (SFFT) transforms YTF back to the delay-Doppler
domain, given by

Y = FHMYTFFN

= RFN .
(15)

The received vector in the delay-Doppler domain y = vec(Y)
is derived as,

y = Ax + w̃

= AxDD
d + Axp + w̃,

(16)

where the noise vector w̃ = (FN ⊗ IM ) w, and the effective
delay-Doppler domain channel matrix A ∈ CMN×MN is
expressed as

A = (FN ⊗ IM ) H
(
FHN ⊗ IM

)
=

P∑
i=1

αiΓi(τi, νi),
(17)

where Γi(τi, νi)
4
= (FN ⊗ IM ) Θi

(
FHN ⊗ IM

)
. The channel

matrix A depends on the channel parameters (α, τ ,ν), where
α = [α1, α2, · · · , αP ]T ∈ CP×1, τ = [τ1, τ2, · · · , τP ]T ∈
RP×1

+ , ν = [ν1, ν2, · · · , νP ]T ∈ RP×1.
After the receiver processing, we are able to conduct two

modes for the ISAC applications, i.e., active sensing, joint
passive sensing and data detection. The tasks of these two
modes are described as follows:
• Active sensing: The objective is to estimate the channel

delay τ and the Doppler shifts ν, given the transmit
vector x and the received vector y.

• Joint passive sensing and data detection: The objective is
to estimate the channel parameters (α, τ ,ν) and recover
Xd (or xDD

d ), given the pilot vector xp and the received
vector y.

III. ACTIVE SENSING PARAMETER ESTIMATION

In this section, we propose the sensing parameter estimation
algorithm. For active sensing receivers, e.g., a radar sensing
receiver, the transmit vector x is known and the sensing pa-
rameters can be estimated with full knowledge of the transmit
signal, including the data vector xDD

d and pilot vector xp [14].

Specifically, we develop a two-phase search method based on
the maximum likelihood estimator (MLE), where in the first
phase we perform on-grid search with coarse estimation and
in the second phase we conduct off-grid search to refine the
estimation result.

A. Maximum Likelihood Estimator

Based on the CDDS channel model in Sec. II-B with P
targets, we aim to obtain the estimation results for the set of
3 unknown vectors with 3P parameters, (α, τ ,ν), which are
used to calculate the target range and velocity. By minimizing
the log-likelihood function, the maximum likelihood estimator
of these parameters is given by

(α̂, τ̂ , ν̂) = arg min
(α,τ ,ν)

∥∥∥∥∥
P∑
i=1

αiΓix− y

∥∥∥∥∥
2

(18)

A direct search for these parameters in a 3P -dimensional
continuous domain CP × RP+ × RP requires high complexity
and becomes intractable in multi-target sensing. Thus, we
transform the MLE into P estimators, each of which performs
one search in a 2-dimensional domain. Meanwhile, we propose
the following two-phase method with super-resolution estima-
tion accuracy and low complexity.

B. Two-Phase Sensing Parameter Estimation Method

For the ith target, αiΓix and
∑
j 6=i αjΓjx denote the useful

signal and interference signal. Thus, we need to perform
interference cancellation mechanism, i.e., when estimating the
parameters of ith target, eliminating the interference signal
from the (i−1) targets that have been estimated. To be specific,
for the first target with parameters (α1, τ1, ν1), the estimator
is given by

(α̂1, τ̂1, ν̂1) = arg min
(α1,τ1,ν1)

‖α1Γ1x− y‖2 . (19)

Next, this minimization problem boils down to the maximiza-
tion problem,

(τ̂1, ν̂1) = arg max
(τ1,ν1)

∣∣(Γ1x)Hy
∣∣2 , (20)

and the channel coefficient α1 is calculated by α̂1 =
xHΓH1 (τ̂1,ν̂1)Γ1(τ̂1,ν̂1)x

(Γ1(τ̂1,ν̂1)x)Hy
. For the remaining (P − 1) targets,

e.g., the ith target, i = 2, 3, · · · , P , the interference can-
cellation is performed by subtracting the interference signal∑i−1
j=1 α̂jΓj(τ̂j , ν̂j)x from the received vector y. In this case,

the estimator for the ith target becomes

(τ̂i, ν̂i) = arg max
(τi,νi)

∣∣∣∣∣∣(Γix)H

y −
i−1∑
j=1

α̂jΓj(τ̂j , ν̂j)x

∣∣∣∣∣∣
2

,

(21)
and the estimated channel coefficient αi is derived as

α̂i =
xHΓHi (τ̂i, ν̂i)Γi(τ̂i, ν̂i)x

(Γi(τ̂1, ν̂1)x)H
(
y −

∑i−1
j=1 α̂jΓj(τ̂j , ν̂j)x

) . (22)

To interpret, the 2D search problem in (21) is to find (τi, νi)
in the region [0, 1

∆f ) × [− 1
2T ,

1
2T ) at which the objective
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function of (21) has a maximum. In order to reduce the
searching complexity, we consider to use interval-reducing
methods and narrow the region of uncertainty that contains
the true values of τi and νi. As an overview, in the first phase,
initial bracketing of the maximum is performed by searching
using a uniform grid. In the second phase, we evaluate the
points in the established region in Phase I. We describe the
proposed two-phase estimator in the following.

1) Phase I: To reduce the region of uncertainty, we pro-
pose on-grid parameter search on the discretized grid Λ ={(

l
M∆f ,

k
NT

)
, l = 0, · · · ,M − 1, k = −N2 , · · · ,

N
2 − 1

}
in

the delay-Doppler plane. When the delay and Doppler are
integer multiples of the delay and Doppler resolution, τi =
li

M∆f , νi = ki
NT , the received symbols in the delay-Doppler

domain can be approximately expressed as the 2D circular
shift of the transmitted symbols [11], as

Y [l, k] ≈
P∑
i=1

αie
j2π

(
l−li
M

)
ki
N βi(l, k)X[[l − li]M , [k − ki]N ]

+ W̃ [l, k],
(23)

where βi(l, k) =

1 li ≤ l < M,

N−1
N e

−j2π
(

[k−ki]N
N

)
0 ≤ l < li.

and

W̃ [l, k] represents the noise. Then we obtain the modified
maximization estimator of (21) as,

(l̂i, k̂i) = arg max
(li,ki)∈Λ

∣∣∣∣vec
(
Πli
MXΠ−kiN

)H
yni

∣∣∣∣2 , (24)

where yni
4
= y−

∑i−1
j=1 α̂jΓj(τ̂j , ν̂j)x. We take the estimated

delay τ̂i to lie between the points l̂i−1
M∆f and l̂i+1

M∆f , and the

estimated Doppler ν̂i to lie between k̂i−1
NT and k̂i+1

NT . Thus,
lower and upper limits for the region of uncertainty are
established and the search region for Phase II becomes,

Λi =

{
(τ, ν),

l̂i − 1

M∆f
6 τ 6

l̂i + 1

M∆f
,
k̂i − 1

NT
6 ν 6

k̂i + 1

NT

}
.

(25)
2) Phase II: In this phase, we need to conduct off-grid

search over the established region Λi in Phase I, as

(τ̂i, ν̂i) = arg max
(τi,νi)∈Λi

∣∣(Γix)Hyni
∣∣2 . (26)

To solve this 2D maximization, we propose a 2D golden
section method, which reduces the interval of uncertainty by
the golden ratio for each step. With the estimated delay and
Doppler, the target range and velocity can be calculated as,
r̂i = τ̂ic0

2 , v̂i = ν̂ic0
2fc

, respectively.
The two-phase method is summarized in Algorithm 1.

For multi-target estimation, we eliminate the interference
signal from the previous (i − 1) targets when estimating
the parameters of ith target. The estimation of each target
includes two phases. At the first phase, the integer parts of
delay and Doppler parameters are estimated by solving (24),
which reduces the search region of the second phase. At the
second phase, the fractional delay and Doppler parameters are

Algorithm 1: Proposed Two-Phase Estimation Algo-
rithm for Active Sensing
Input: Received vector y, transmit vector x.
Output: Estimated channel parameters, (α̂, τ̂ , ν̂).

1 Initialization: yni = y, η =
√

5−1
2 ;

2 for i = 1 : P do
3 Solve (24) and obtain (l̂i, k̂i);
4 au = l̂i−1

M∆f , al = l̂i+1
M∆f , bl = k̂i−1

NT , bu = k̂i+1
NT ;

5 repeat
6 Ia = au − al, Ib = bu − bl;
7 a1 = al + (1− η)Ia, a2 = al + ηIa;
8 b1 = bl + (1− η)Ib, b2 = bl + ηIb;
9 f11 = |(Γi(a1, b1)x)Hyni|2, f12 =

|(Γi(a1, b2)x)Hyni|2, f21 =
|(Γi(a2, b1)x)Hyni|2, f22 =
|(Γi(a2, b2)x)Hyni|2;

10 switch max{f11, f12, f21, f22} do
11 case f11, au = a2, bu = b2;
12 case f12, au = a2, bl = b1;
13 case f21, al = a1, bu = b2;
14 case f22, al = a1, bl = b1;
15 end
16 until Stopping criteria;
17 τ̂i = al+au

2 , ν̂i = bl+bu
2 ;

18 Calculate α̂i according to (22);
19 Update yni ← yni − α̂iΓi(τ̂i, ν̂i)x;
20 end
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Fig. 3. Normalized range profile of on-grid search in Phase I and off-grid
search in Phase II with a sensing target at r = 10 m.

estimated by solving (26) with a 2D golden section search
method and the channel coefficient parameters are calculated
according to (22).

We provide an example to illustrate the proposed two-phase
sensing parameter estimation algorithm. We consider a target
with the range of 10 meters. The radar range profiles using
on-grid search in Phase I and off-grid search in Phase II are
plotted in Fig. 3. The mathematical expressions to compute
normalized profile are given by the objective functions of (24)
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for coarse estimation and (26) for super-resolution estimation
with normalization. We demonstrate that the profile of coarse
estimation in Phase I has a flat “peak” around the ground truth,
while the curve of super-resolution estimation in Phase II has
a steep peak at the ground truth. Therefore, we can first use
coarse estimation in Phase I to reduce the search region with
low computational complexity, and then apply super-resolution
estimation in Phase II to obtain significantly improved results.

C. Complexity Analysis

We here analyze the complexity of the proposed two-
phase estimation method. In Phase I, we need to compute
vec
(
Πli
MXΠ−kiN

)
, which is performed by a 2D circular shift

operation with low complexity. In Phase II, the key step is
the computation of Γix. Direct multiplication of the matrix
and the vector is not computationally efficient, which has
complexity of O(M2N2). Instead, we can calculate Γix as,

vec
(

vec−1
(
∆(νi)Πli

MNvec
(
FHMBτiFMXFHN

))
FN

)
.

(27)
The above calculation only requires the multiplication opera-
tion with diagonal matrices ∆(νi),Bτi , cyclic-shift operation
and DFT/IDFT operation. The multiplication operation with
a diagonal matrix uses MN complex multiplications. The
N -point DFT/IDFT operation on an M × N matrix has
implementation complexity of O (MN log(N)) by using the
fast Fourier transform (FFT) algorithm, while the M -point
DFT/IDFT has complexity of O(MN log(M)). Therefore, the
overall computation complexity of the two-phase estimation
method is O (MN log(MN)).

In an existing sensing algorithm for OTFS [14], a direct
off-grid search in the whole continuous delay-Doppler domain
requires high computational complexity. Our method performs
on-grid estimation at the first phase by exploiting the input-
output relation of 2D circular shift in the delay-Doppler
domain, which significantly reduces the search region with low
complexity. We conduct the off-grid search at the second phase
by using the FFT algorithm, which can improve the compu-
tational efficiency compared with the off-grid method in [14]
that directly calculates the multiplication of the MN ×MN
channel matrix and the MN × 1 vector.

IV. JOINT PASSIVE SENSING AND DATA DETECTION

In this section, we focus on the joint passive sensing and
data detection, where the communication receiver also serves
as the sensing receiver. We aim at estimating the channel
parameters based on the received signal and the information
of transmit pilot vector, which are used for signal recovery
and passive sensing. First, we employ the sensing parameter
estimation method in Sec. III aided by the pilot signal, to
obtain the coarse estimation results of channel parameters.
Then, we propose an iterative channel estimation and data
detection to refine the estimation accuracy and detection
performance.

Pilot-aided 

channel estimation

,

, ,

Pilot/Data-aided 

channel estimation

Equalization and 

detection

, ,

( )

, ,

Passive sensing parameters Recovered data

Iterative

Coarse estimation

Fig. 4. Block diagram for the joint passive sensing and data detection.

A. Coarse Channel Estimation using Superimposed Pilots

Since the pilot signal is known and the data signal is
unknown at the communication receiver, we use superimposed
pilots to estimate the channel parameters, by treating the
received signal induced by data symbols as interference. The
coarse estimator is formulated as

(α̂(0), τ̂ (0), ν̂(0)) = arg min
(α,τ ,ν)

∥∥∥∥∥
P∑
i=1

αiΓixp − y

∥∥∥∥∥
2

, (28)

which can be solved by using Algorithm 1. Since only super-
imposed pilots are used for channel estimation, the estimation
results are coarse and the estimation accuracy is worse than
that by using full information of data and pilot symbols. Nev-
ertheless, the estimated channel parameters (α̂(0), τ̂ (0), ν̂(0))
can still be used to equalize the received data signal and obtain
approximate recovered data symbols.

B. Iterative Channel Estimation and Data Detection

With the detected data and superimposed pilots, more ac-
curate channel estimation can be realized to further refine the
performance of data detection. As shown in Fig. 4, we develop
an iterative channel estimation and data detection method. At
each iteration, we first equalize the received signal, detect the
data symbols X̂

(t)
d and obtain the estimated delay-Doppler

domain signal X̂
DD(t)
d based on the estimation results of last

iteration (α̂(t−1), τ̂ (t−1), ν̂(t−1)). Next, we design a pilot- and
data-aided channel estimator with the estimated transmit data
symbols,

(α̂(t), τ̂ (t), ν̂(t)) = arg min
(α,τ ,ν)

∥∥∥∥∥
P∑
i=1

αiΓix̂
(t) − y

∥∥∥∥∥
2

, (29)

where x̂(t) = xp + x̂
DD(t)
d , x̂

DD(t)
d = vec

(
X̂
DD(t)
d

)
denotes

the estimated DD domain data vector.
Recalling (16), the channel equalization is to recover x from

the received vector y by employing the channel matrix A
(or channel parameters α, τ ,ν). The channel equalization is
developed by solving the l2-regularized least squares program
(LSP) problem as

min
x
‖Ax− y‖22 + λ‖x‖2, (30)
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Algorithm 2: The conjugate gradient method for the
channel equalizer of DFT-s-OTFS

Input: Time-domain received vector r, channel
parameters α, τ ,ν, inverse of SNR λ.

Output: Estimated baseband time-domain transmit
vector ŝ.

1 Initialization: s0 = 0MN×1, r0 = r−Hs0,
x0 = p0 = HHr0, γ0 = ‖x0‖2, t = 0;

2 repeat
3 qt = Hpt, βt = γt

‖qt‖2+λ‖pt‖2 ;
4 st+1 = st + βtpt, rt+1 = rt − βtqt;
5 xt+1 = HHrt+1 − λst+1;
6 γt+1 = ‖xt+1‖2;
7 pt+1 = xt+1 + γt+1

γt
pt;

8 t = t+ 1;
9 until Stopping criteria;

10 return ŝ = st.;

where λ equals to the inverse of the signal-to-noise ratio
(SNR). Alternatively, a time-domain equalizer can be devel-
oped and expressed as a l2-regularized LSP problem,

min
s
‖Hs− r‖22 + λ‖s‖2. (31)

Since the time-domain transmit signal S and the data signal
Xd have the relation S = Xd+XpF

H
N , the performance using

the formulation with respect to S is indeed identical to that
with respect to Xd. The minimum mean square error (MMSE)
equalization methods can be employed to solve these two LSPs
and have the analytical solutions, given by

x̂MMSE =
(
AHA + λI

)−1
AHy, (32)

ŝMMSE =
(
HHH + λI

)−1
HHr. (33)

When the solutions to the above LSPs are computed by direct
methods of matrix inversion, the computation complexity of
O((MN)3) is required. These analytical solutions are com-
putationally inefficient, since the channel matrices A and H
have a large size of MN ×MN . When the path delay and
Doppler shift are integer multiples of the delay and Doppler
resolution, the channel matrices become block-circulant. In
this case, the matrix-decomposition techniques are employed
to develop a MMSE receiver for OTFS with the implemen-
tation complexity of O(MN log(MN)). Nevertheless, for
CDDS channels with fractional delay and Doppler, the block-
circulant property of the channel matrices is not satisfied and
the matrix-decomposition methods cannot be applied. Instead,
several detection algorithms based on message passing (MP)
are proposed in [11], [14], [25] to reduce the complexity of
OTFS data detection by calculating the posterior probability
and directly making decisions on transmitted symbols. Since
the information symbols of DFT-s-OTFS are not mapped on
the delay-Doppler domain, the MP algorithms can not exploit
the sparsity of delay-Doppler domain channel for DFT-s-
OTFS.

Large-scale l2-regularized least squares problem in (30)
and (31) has been well investigated in mathematics and data

Algorithm 3: The iterative channel estimation and data
detection method of DFT-s-OTFS
Input: Received vectors y and r, transmit pilot vector

xp, the inverse of SNR λ.
Output: Detected data symbols X̂d, estimated channel

parameters (α̂, τ̂ , ν̂).
1 Initialization: t = 0;
2 Solve (28) and obtain (α̂(0), τ̂ (0), ν̂(0));
3 repeat
4 t = t+ 1;
5 Solve (31) using Algorithm 2 based on the received

vector r and the estimated channel parameters
(α̂(t−1), τ̂ (t−1), ν̂(t−1)) and obtain ŝ(t);

6 Calculate x̂(t) according to (34), (35) and (36);
7 Solve (29) and obtain (α̂(t), τ̂ (t), ν̂(t));
8 until Stopping criteria;
9 return X̂d = X̂

(t)
d , (α̂, τ̂ , ν̂) = (α̂(t), τ̂ (t), ν̂(t)).

analysis [33]. When the direct methods do not work well for
the channel matrix with large size, iterative methods can be uti-
lized to solve the linear system of equations

(
HHH + λI

)
s =

HHr. Iterative methods are computationally efficient, espe-
cially when fast algorithms can be employed for the matrix-
vector multiplications Hr and HHr. At the proposed DFT-
s-OTFS receiver, the channel matrix has a special form, i.e.,
partial Fourier and cyclic-shift matrices. The matrix H is used
only to compute the matrix-vector multiplications of the form
Hs and HHs. Thus, we can regard the matrix H as an operator
and employ the FFT algorithm to reduce the complexity when
calculating Hs, as analyzed in Sec. III-C.

In this work, we develop a conjugate gradients (CG) based
time-domain channel equalizer, which is an iterative method
by using the efficient algorithms for the computation of Hs
and reducing the computation complexity than the analytical
solution of the LSP. The procedure of the CG method for the
time-domain channel equalizer is described in Algorithm 2.

With the estimated baseband time-domain transmit vector
ŝ using Algorithm 2, we are able to calculate the estimated
information symbols as,

X′d =
(
vec−1 (ŝ) FN −Xp

)
FHN . (34)

Then the detected data symbols are obtained by solving the
following demodulation problem, as

X̂d = arg min
Xd∈AM×N

‖Xd −X′d‖2F . (35)

Thus, the estimated delay-Doppler domain transmit vector is
updated as,

x̂ = vec
(
X̂dFN

)
+ xp. (36)

Based on the updated transmit vector, we are able to it-
erate channel estimation in (29). The overall procedure of
the iterative channel estimation and data detection for the
joint passive sensing is illustrated in Algorithm 3. When the
detected data symbols at tth iteration are the same as those at
(t−1)th iteration, we can stop the iteration. In our simulations,
we observe that the iterative channel estimation and data
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detection algorithm converge within 2 to 5 iterations. The main
calculation steps lie in the CG based channel equalization, the
complexity of which is O(MN log(MN)) with the usage of
FFT algorithm to compute Hs and HHs.

V. OPTIMAL POWER ALLOCATION BETWEEN PILOT AND
DATA SYMBOLS

In the design of pilot placement, a non-zero pilot symbol
is only located at one delay-Doppler grid point, while other
pilot symbols are set as zero. Then the pilots are superimposed
on the data symbols in the delay-Doppler domain. When the
total power of the pilot and data symbols are constrained,
it is necessary to optimally allocate the power of pilot. The
tradeoff is elaborated as follows. On one hand, if we allocate
more power to the non-zero pilot symbol, the channel esti-
mation using superimposed pilots can become more accurate.
However, in this case, less power is allocated to data symbols
and may degrade the performance of data detection. On the
other hand, if the pilot power is not sufficient, the pilot-aided
channel estimation may become extremely inaccurate, which
does not ensure the convergence of the iterative method. In this
section, we optimize the power allocation between pilot and
data to maximize the SINR by using the pilot- and data-aided
channel estimation, which minimizes the BER.

Now we derive the effective SINR of the received data
signal. The received vector in (16) can be written as,

y = Ωpα + Ωdα + w̃ (37)

where Ωp and Ωd are the concatenated matrices, given by

Ωp =
[

Γ1xp Γ2xp · · · ΓPxp
]
, (38)

Ωd =
[

Γ1x
DD
d Γ2x

DD
d · · · ΓPxDD

d

]
. (39)

The average path gain is defined as E{αHα} = σ2
h. The

estimated received data vector with pilot elimination using
pilot- and data-aided channel estimation is derived as

ŷd = y −Ωpα̂

= Ωdα̂ + (Ωp + Ωd)(α− α̂) + w̃.
(40)

Thus, the SINR with the data-aided channel estimation is
derived as,

SINR =
E
{
‖Ωdα̂‖2

}
E
{∥∥∥(Ωp + Ωd)(α− α̂) + Ω̃

∥∥∥2
}

=
σ2
d(σ2

h − σ2
e)

(σ2
d + σ2

p)σ2
e + σ2

w

,

(41)

where the error of the estimated channel coefficients σ2
e =

E
{
‖α− α̂‖2

}
, given by

σ2
e =

P (σ2
hσ

2
xe + σ2

w)

MN(σ2
p + σ2

d − σ2
xe)

, (42)

where σ2
xe = E

{∥∥xDD
d − x̂DD

d

∥∥2
}

denotes the error of equal-
ized data symbols with the estimated channel parameters using
pilot-aided channel estimation, expressed as

σ2
xe =

P

1
σ2
d

+
σ2
h−σ

2
0

σ2
0(σ2

d+σ2
p)+σ2

w

. (43)

TABLE I
SIMULATION PARAMETERS

Notation Definition Value
f Carrier frequency 140 GHz, 0.3 THz

∆f Subcarrier spacing 1.92 MHz
T Symbol duration 1.04 µs
M Number of subcarriers 64, 128
N Number of symbols for one frame 16, 32

Here σ2
0 denotes the error of the estimated channel coefficients

E
{∥∥α− α̂(0)

∥∥2
}

by using pilot-aided channel estimation,
which is calculated as,

σ2
0 =

P (σ2
hσ

2
d + σ2

w)

MNσ2
p

. (44)

The proof of the above derivations is relegated to Appendix A.
With the derived effective SINR in (41), we can formulate

the optimal power allocation scheme between pilot and data,
given by

σ̂2
p = arg max

σ2
p∈(0,1)

σ2
d(σ2

h − σ2
e)

(σ2
d + σ2

p)σ2
e + σ2

w

, (45)

where the constraint of average transmit power is imposed,
σ2
p + σ2

d = 1, and the SNR of received signal becomes σ2
h

σ2
w

.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of DFT-s-
OTFS with superimposed pilots for THz integrated sensing
and communication, including the PAPR, BER and sensing
accuracy. We further compare it with other potential candi-
date waveforms, including OFDM, DFT-s-OFDM and OTFS.
The simulation parameters are described in Table I. The
parameters are designed for THz and compatible with 5G
numerology [34].

A. PAPR and PA Efficiency

In our preliminary work [35], we study the PAPR for
discrete-time baseband signal. The PAPR of the discrete-time
samples of DFT-s-OTFS frame transmit signal is defined as

PAPR =
Pmax

Pavg
=

max
{
|s[m]|2

}
1

MN

∑MN−1
m=0 |s[m]|2

, (46)

where s[m] denotes the mth element of s. Nevertheless, it
is noticeably lower than the PAPR of the continuous-time
baseband signal s(t). We conduct L-times oversampling to
obtain almost the same PAPR as s(t). The oversampled signal
can be generated by setting proper values of τi in (12).

In Fig. 5, we demonstrate that PAPR for DFT-s-OTFS
continuous-time baseband signal can be approximately re-
duced by 3 dB, in contrast with OTFS. Meanwhile, when the
DFT precoding size equals to N , DFT-s-OTFS has almost the
same PAPR as DFT-s-OFDM. Moreover, the theoretical PA
efficiency limits are calculated by η = G exp (−gγdB), where
η refers to the efficiency in % and γdB denotes the PAPR in
dB. G and g have different values for class A and class B
power amplifiers [36]. We evaluate the PA efficiency limits
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Fig. 5. PAPR comparison for continuous-time baseband signal of OFDM,
DFT-s-OFDM, OTFS and DFT-s-OTFS. The modulation scheme is 4-QAM.
The subcarrier number M = 64 and the symbol number N = 16.
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Fig. 6. Comparison of theoretical efficiency limits for class A and class B
power amplifiers when using different waveforms.

for class A and class B power amplifiers in Fig. 6. For class
A PA, the mean value of PA efficiency for DFT-s-OTFS can
be improved by 7%, compared with that for OTFS. For class B
PA, the PA efficiency for DFT-s-OTFS is approximately 10%
higher than that for OTFS on average.

Next, we evaluate the influence of the superimposed pilots
on the PAPR for DFT-s-OTFS. As shown in Fig. 5, we set
the signal power of the superimposed pilots in DFT-s-OTFS
systems, σ2

p, as different values, e.g., 0.01 and 0.02. We
observe that as the signal power of pilots σ2

p increases, the
PAPR of transmit signal for DFT-s-OTFS becomes higher,
while it is still lower than that for OFDM and OTFS.

B. Out-of-Band Emission

A significant factor for the transmit waveform is the out-of-
band power leakage. Large out-of-band power can incur adja-
cent channel interference (ACI). In this case, a guard band is
required to reduce the effect of ACI, which causes the decrease
of the spectral efficiency. Therefore, we investigate the out-of-
band emission performance of OFDM, DFT-s-OFDM, OTFS
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Fig. 7. Comparison of out-of-band emission among OFDM, DFT-s-OFDM,
OTFS and DFT-s-OTFS.

and DFT-s-OTFS. The normalize power spectral density is
compared in Fig. 7. Here the number of used subcarriers is 128
and the number of symbols for a frame is 32. We demonstrate
that the power leakage at both ends of the transmission band
in OTFS and DFT-s-OTFS systems is approximately 10 dB
lower than that in OFDM and DFT-s-OFDM systems.

C. BER Performance

This section evaluates the BER performance of the proposed
DFT-s-OTFS with the superimposed pilots. First, we consider
an indoor time-invariant multi-path channel with a LoS path
and two first-order reflected paths at 140 GHz [37]. In Fig. 8(a)
and Fig. 8(b), we plot the BER of DFT-s-OTFS with superim-
posed pilots when using the iterative channel estimation data
detection method in Sec. IV. The modulation schemes are 4-
QAM for Fig. 8(a) and 16-QAM for Fig. 8(b), respectively.
As shown in Fig. 8(a), we set four values for the average
pilot symbol power σ2

p, e.g., 0.02, 0.06, 0.14 and 0.18. At low
SNR regime, these four cases have similar BER values. When
the SNR is increased to 15 dB, we demonstrate that the BER
performance for σ2

p = 0.06 is the best among the four values
of σ2

p. In addition, we learn that the BER for σ2
p = 0.02 is high

at SNR of 15 dB, since the signal power allocated to pilots
is small and causes inaccurate pilot-aided channel estimation
and failure of iterative channel estimation and data detection.

In Fig. 8(b), since higher-order modulation scheme requires
higher SNR to achieve good BER performance, we evaluate
the BER from 6 dB to 21 dB, when the modulation scheme
is 16-QAM. We observe that σ2

p = 0.04 has the best BER
performance at SNR of 15 dB, while σ2

p = 0.08 achieves
the lowest BER value at SNR of 21 dB. Meanwhile, we
are able to use the optimal power allocation scheme between
pilot and data in (45) to calculate the optimal value of σ2

p.
The optimal solutions are σ̂2

p = 0.0403 at SNR of 15 dB
and σ̂2

p = 0.0633 at SNR of 21 dB, which agree well with
the simulation results in Fig. 8(a) and Fig. 8(b). Moreover,
by solving the optimization problem in (45), we are able
to plot the optimal solution of allocated average pilot power
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Fig. 8. BER performance of DFT-s-OTFS with superimposed pilots for
different values of pilot power in a time-invariant channel at 140 GHz.

versus SNR in Fig. 9. We learn that the optimal solution of
σ2
p decreases with the increase of SNR at low SNR regime,

while this optimal value increases as the SNR improves at
high SNR regime. At low SNRs, the performance of the
pilot-aided channel estimation is noise-limited. Thus, when
the noise power becomes stronger, more power should be
allocated to the pilot for accurate channel estimation. At high
SNRs, since the data signal is unknown at the communication
receiver and regarded as interference when estimating the
channel parameters based on the pilot, the channel estimation
performance is primarily limited by the data signal power. In
this case, we need to improve the pilot power with the increase
of SNR. Therefore, it generates a saddle point at about 10 dB.

Next, we consider a doubly-selective channel at 0.3 THz,
where the maximum velocity equals to 500 km/hr [1]. As
shown in Fig. 10, we plot the BER performance of DFT-s-
OTFS with superimposed pilots. With the proposed iterative
channel estimation and data detection method, the simulation
results indicate that the BER performance of DFT-s-OTFS
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Fig. 9. Optimal solution of power allocation between pilot and data versus
SNR.
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Fig. 10. BER performance of DFT-s-OTFS with superimposed pilots for
different values of pilot power in presence of strong Doppler effect at 0.3
THz. The modulation scheme is 4-QAM.

is not degraded by the Doppler effect in such high-mobility
channels. Thus, the proposed SI-DFT-s-OTFS system shows
the same strong robustness to Doppler effects as OTFS.
In addition, we learn that the BER performance with the
optimal power allocation scheme is near optimal. At low
SNRs, the pilot power by solving (45) performs worse than
σ2
p = 0.06, 0.14, 0.18, since the derivation of (41) invokes

some approximations.

D. Sensing Accuracy

We further investigate the sensing accuracy of DFT-s-
OTFS using the proposed two-phase estimation algorithm in
Sec. III. The performance metric is the root mean square error
(RMSE). The range RMSE metric is given by RMSE(r) =√
Er∈D

[
1
P

∑P
i=1 (ri − r̂i)2

]
, where r = [r1, · · · , rP ] and

r̂ = [r̂1, · · · , r̂P ] denote the real values and the estimated
values of target range, respectively. D stands for the set of sim-
ulated samples. The velocity RMSE is given by RMSE(v) =
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Fig. 11. Range estimation accuracy of active sensing in DFT-s-OTFS by
using the two-phase estimation method for different numbers of targets.
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Fig. 12. Velocity estimation accuracy of active sensing in DFT-s-OTFS by
using the two-phase estimation method for different numbers of targets.

√
Ev∈D

[
1
P

∑P
i=1 (vi − v̂i)2

]
, where v = [v1, · · · , vP ] and

v̂ = [v̂1, · · · , v̂P ] represent the real values and the estimated
values of target velocity, respectively.

For active sensing, we consider the parameters of three
reference targets as, (10 m, 10 m/s), (30 m, 20 m/s), (50 m,
30 m/s). The used subcarriers is 128 and the symbol number
is 32. In Fig. 11, we plot the range estimation accuracy of
active sensing in DFT-s-OTFS by using the proposed two-
phase estimation method for different numbers of targets, i.e.,
P = 1, 2, 3. In presence of single target, the RMSE of range
estimation is less than 10-3 m above the SNR of 10 dB,
i.e., millimeter-level range estimation accuracy. When there
are multiple targets, i.e., P = 2, 3, the RMSE can achieve
below 10-2 m. Meanwhile, we observe that there exists a SNR
threshold for successful estimation. When the SNR is smaller
than the threshold, the RMSE becomes very large. We learn
that the threshold equals to -15, -10 and -5 dB for 1, 2 and
3 targets, respectively. This can be explained that since the
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Fig. 13. Range estimation accuracy comparison using OFDM, DFT-s-OFDM,
OTFS and DFT-s-OTFS with different target velocity (30 km/h and 300 km/h).
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Fig. 14. Velocity estimation accuracy comparison using OFDM, DFT-s-
OFDM, OTFS and DFT-s-OTFS with different target velocity (30 km/h and
300 km/h).

received signal from one target may cause interference on
estimating another target, the threshold becomes higher when
the number of targets is increased.

As shown in Fig. 12, we evaluate the RMSE of velocity esti-
mation in DFT-s-OTFS system for active sensing. We demon-
strate that the velocity estimation is able to achieve decimeter-
per-second-level accuracy. While the increased number of
targets results in larger estimation error, the simulation results
indicate that the RMSE can approach 10-1 m/s for 2 and 3 tar-
gets. The effectiveness of the proposed two-phase estimation
algorithm for the CDDS channels is validated by the accurate
range and velocity estimation. The implementation complexity
is reduced by the on-grid search in Phase I and the super-
resolution estimation accuracy is guaranteed by the off-grid
search in Phase II. Moreover, we have evaluated the range
and velocity estimation accuracy using OFDM, DFT-s-OFDM,
OTFS and DFT-s-OTFS in Fig. 13 and Fig. 14. The subcarrier
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Fig. 15. Range estimation accuracy of passive sensing in DFT-s-OTFS
with superimposed pilots by using the iterative channel estimation and data
detection method, M = 128, N = 32.

spacing is set as 480 kHz. Different target velocity values are
considered, including 30 km/h and 300 km/h. When the target
velocity is 30 km/h, these waveforms have indistinguishable
estimation accuracy. When the target velocity is increased
to 300 km/h, the estimation accuracy of OFDM and DFT-
s-OFDM is degraded, while the RMSE performance of OTFS
and DFT-s-OTFS is not influenced.

Finally, we evaluate the performance of iterative channel
estimation and data detection for passive sensing. We consider
a THz channel with a LoS path and a NLoS path reflected
by one sensing target at 0.3 THz. The 4-QAM modulation
scheme is used. To compute the distance between the receiver
and the target, we need to estimate the channel parameters
with joint passive sensing and data detection. Suppose that
the lengths of LoS path and the NLoS path are denoted by rL
and rN , respectively. Then the target distance is calculated as,
rs =

r2N−r
2
L

2rN−2rL cos θ , where θ represents the intersection angle
of the LoS path and the NLoS path. The range estimation
RMSE of passive sensing in DFT-s-OTFS with superimposed
pilots by using the iterative channel estimation and data
detection method is curved in Fig. 15. At high SNR regime,
the estimation error is below 10-2, which has similar estimation
accuracy as active sensing for multiple targets. At the SNR of 3
dB, the estimation accuracy for σ2

p = 0.02 is worse than other
values of σ2

p, since the allocated power to pilot is not high,
which causes inaccurate coarse pilot-aided channel estimation.
The simulation results show that the scheme of σ2

p = 0.14
performs well in terms of the passive sensing accuracy.

VII. CONCLUSION

In this paper, we have proposed a sensing integrated DFT-
s-OTFS system framework for THz ISAC, which is applicable
to two modes, i.e., active sensing, joint passive sensing and
data detection. We design a scheme of pilot placement in
the delay-Doppler domain, in which the pilot symbols are
superimposed onto the data symbols. Compared to embedded
pilot scheme in OTFS systems, the design of superimposed

pilots is able to improve the spectral efficiency without ar-
ranging a dedicated region for pilot placement. Furthermore,
we develop an optimal power allocation scheme between pilot
and data to optimize the performance of data recovery. Based
on the superimposed pilots, we have developed an iterative
channel estimation and data detection method to estimate the
channel parameters and recover data symbols. To realize high-
accuracy sensing, we derive a CDDS channel matrix and
then propose a two-phase estimation algorithm for range and
velocity parameter estimation.

With extensive simulations, the results indicate that DFT-s-
OTFS can improve the PA efficiency by 7% for class A PA and
10% for class B PA compared with OTFS, since the PAPR of
DFT-s-OTFS transmit signal is about 3 dB lower than OTFS.
Meanwhile, DFT-s-OTFS with the proposed superimposed
pilot-aided iterative channel estimation and data detection is
robust to Doppler effects and the BER performance is not
degraded in the high-mobility scenarios compared to time-
invariant channels. Furthermore, by using the developed two-
phase estimation algorithm, the proposed DFT-s-OTFS sys-
tems can achieve millimeter-level range estimation accuracy
and decimeter-per-second-level velocity estimation accuracy.
In a nutshell, this work proposes DFT-s-OTFS as a promising
candidate waveform for 6G sub-THz/THz communications,
which is energy-efficient and has high robustness to Doppler
shifts in the THz band. Meanwhile, it can achieve millimeter-
level sensing accuracy with low complexity.

APPENDIX A
When performing pilot-aided channel estimation, the mean

square error of channel estimate is σ2
0 = E

{
‖α− α̂0‖2

}
,

derived as

E
{∥∥∥α− α̂(0)

∥∥∥2
}

= Tr
[(

ΩH
p C−1

wd
Ωp

)−1
]

=
(
σ2
hσ

2
d + σ2

w

)
Tr
[(

ΩH
p Ωp

)−1
]

≈
(
σ2
hσ

2
d + σ2

w

) P 2

Tr
[
ΩH
p Ωp

]
=
P (σ2

hσ
2
d + σ2

w)

MNσ2
p

,

(47)

where Cwd
denotes the covariance matrix of the data in-

terference plus noise wd = Ωdα + w̃, given by Cwd
=

E
{
wdw

H
d

}
=
(
σ2
hσ

2
d + σ2

w

)
IMN .

Next, with the estimated channel coefficients using pilots,
the error of MMSE equalization is,

σ2
xe = E

{∥∥xDD
d − x̂DD

d

∥∥2
}

= Tr


( P∑

i=1

α̂
(0)
i Γi

)H
C−1

w0

(
P∑
i=1

α̂
(0)
i Γi

)
+ C−1

xd

−1


≈ P 2

Tr
[(∑P

i=1 α̂
(0)
i Γi

)H
C−1

w0

(∑P
i=1 α̂

(0)
i Γi

)
+ C−1

xd

]
=

P

1
σ2
d

+
σ2
h−σ

2
0

σ2
0(σ2

d+σ2
p)+σ2

w

, (48)
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where w0 =
∑P
i=1(αi−α(0)

i )Γi(xd+xp)+w̃. Following the
derivation in (47), we obtain the estimation error using pilot
and data, σ2

e = E
{
‖α− α̂‖2

}
=

P (σ2
hσ

2
xe+σ

2
w)

MN(σ2
p+σ2

d−σ2
xe)

.
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