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Abstract—In this study, we propose an over-the-air compu-
tation (OAC) scheme to calculate the majority vote (MV) for
federated edge learning (FEEL). With the proposed approach,
edge devices (EDs) transmit the signs of local stochastic gradients,
i.e., votes, by activating one of two orthogonal resources. The
MVs at the edge server (ES) are obtained with non-coherent
detectors by exploiting the accumulations on the resources.
Hence, the proposed scheme eliminates the need for channel state
information (CSI) at the EDs and ES. In this study, we analyze
various gradient-encoding strategies through the weight functions
and waveform configurations over orthogonal frequency division
multiplexing (OFDM). We show that specific weight functions
that enable absentee EDs (i.e., hard-coded participation with
absentees (HPA)) or weighted votes (i.e., soft-coded participation
(SP)) can substantially reduce the probability of detecting the
incorrect MV. By taking path loss, power control, cell size,
and fading channel into account, we prove the convergence of
the distributed learning for a non-convex function for HPA.
Through simulations, we show that the proposed scheme with
HPA and SP can provide high test accuracy even when the
time-synchronization and the power control are not ideal under
heterogeneous data distribution scenarios.

Index Terms—Distributed learning, federated edge learning,
FSK, OFDM, over-the-air computation, PMEPR, PPM.

I. INTRODUCTION

Over-the-air computation (OAC) exploits the signal-
superposition property of wireless multiple access channels to
compute a mathematical function [3]. It was initially proposed
for reliable communications in the interference channel [4] and
wireless sensor networks [5]. It has recently been applied to
wireless distributed learning [6] and wireless control systems
[7] to address the latency issues occurring when a larger
number of edge devices (EDs) or Internet-of-Things (IoT)
devices access the limited wireless spectrum. In this study, we
particularly consider OAC for federated edge learning (FEEL)
[8], [9], i.e., one of the promising frameworks for wireless
distributed learning.

FEEL implements federated learning (FL) [10] in a wireless
network to train a model such as a neural network [11]. With
FEEL, to promote the data privacy, a large number of model
parameters (or gradients) are communicated between many
EDs and the edge server (ES) over a wireless channel for
aggregation, instead of local data samples. However, typical
user multiplexing methods such as orthogonal frequency di-
vision multiple access (OFDMA) can be inefficient in this
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scenario since the ES is not interested in local information
of the EDs but only in a function of them, that is often an
arithmetic sum [12]. Hence, OAC is a prominent solution to
address the per-round communication latency in FEEL [13] via
snap-shot calculations. Nevertheless, ensuring the robustness
of an OAC scheme is a challenging task due to the wireless
channel, imperfect power control, and time-synchronization
errors in practice. Also, the state-of-the-art solutions often
require channel state information (CSI) to be available at the
EDs or the ES. In this study, we propose an OAC scheme to
address these challenges by relying on distributed training by
the majority vote (MV) [14].

A. Related Work
A reliable superposition in a wireless channel is one of the

major challenges for OAC. To address this issue, a majority of
the solutions in the literature adopt pre-equalization techniques
[8], [9], [15]–[20]. For example, in [8], broadband analog
aggregation (BAA) over orthogonal frequency division mul-
tiplexing (OFDM) is investigated. It is proposed to modulate
the OFDM subcarriers with the model parameters at the EDs.
To achieve a coherent superposition at the ES, the symbols
on the OFDM subcarriers are multiplied with the inverse
of the channel coefficients and the subcarriers that fade are
excluded from the transmissions, which is known as truncated-
channel inversion (TCI) in the literature. In [16], the gradient
estimates are sparsified and the sparse vectors are projected
into a low-dimensional space to reduce the bandwidth. The
compressed data is transmitted with BAA. In [17], BAA
is investigated with power control and re-transmissions over
static channels. In [15], a time-varying precoder is used
along with TCI. In [18], time diversity is exploited with a
multi-slot OAC framework to mitigate the impact of fading
channel on OAC. In [19], instead of TCI, the parameters are
multiplied with the conjugate of the channel coefficients to
address the power instability due to the channel inversion. In
[20], the channel inversion is optimized with a sum-power
constraint to avoid potential interference issues. In [9], one-bit
broadband digital aggregation (OBDA) is proposed to facilitate
the implementation of FEEL. In this method, by considering
distributed training by MV with the sign stochastic gradient
descent (signSGD) [14], the EDs transmit quadrature phase-
shift keying (QPSK) symbols over OFDM subcarriers along
with TCI, where the signs of the stochastic gradients, i.e.,
votes, are mapped to the real and imaginary parts of the QPSK
symbols. At the ES, the signs of the real and imaginary parts
of the superposed received symbols are calculated to obtain
the MV. However, OBDA still relies on TCI as in BAA.
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A pre-equalizer can impose stringent requirements on un-
derlying mechanisms to achieve sample-level time synchro-
nization and accurate channel estimation, which can be hard
to be met in practice [21], [22]. It can also cause power insta-
bilities due to the inversion in frequency-selective channels.
To eliminate the pre-equalization, one potential approach is
to employ a large number of antennas at the ES and mitigate
the impact of the wireless channel on OAC with beamforming
[23], [24]. Although CSI is not used at the EDs, the sum of
the superposed channel, needs to be available at the ES. To
the best of our knowledge, the state-of-the-art OAC schemes
for FEEL do not address the case where CSI is unavailable to
both EDs and ES.

B. Contributions
In this study, we introduce an OAC scheme to calculate the

MV for FEEL. By extending our work in [1] and [2], our
contributions can be listed as follows:

Non-coherent MV computation: Instead of forming QPSK
symbols based on the signs of the local stochastic gradients
as in OBDA, we dedicate two sets of orthogonal resources
to transmit the signs of local gradients. Thus, the votes from
different EDs accumulate on the resources non-coherently in
fading channel and the ES obtains the MV with an energy
detector. Hence, CSI is not needed at the EDs and ES with
the proposed method. Also, it eliminates the information loss
and power instabilities due to the TCI and channel estimation
overhead.

Robustness against impairments: The proposed approach
provides robustness against time-synchronization errors as it
does not to encode the sign of local stochastic gradients into
the phase of the transmitted symbols. Considering the random-
ness in fading channel, path loss, and imperfect power control
in a cell, we prove the convergence of FEEL in the presence
of the proposed scheme for a non-convex loss function. We
also show that it can be used with well-known peak-to-mean
envelope power ratio (PMEPR) reduction techniques.

Gradient-encoding with various weight functions: We
extend our initial work in [1] and [2] by generalizing the
sign operation with weight functions, which leads to vari-
ous gradient-encoding strategies, i.e., hard-coded participation
(HP), hard-coded participation with absentees (HPA), and soft-
coded participation (SP). We show that both the probability of
detecting the correct MV and the convergence rate improve
by reducing the impacts of EDs that have smaller absolute
local stochastic gradients on the MV. We demonstrate that
this strategy can lead to high test accuracy under imperfect
power control and heterogeneous data distribution.

Compatible waveform configurations: We show that
the proposed scheme can be configured as frequency-shift
keying (FSK) over OFDM and pulse-position modulation
(PPM) over discrete Fourier transform (DFT)-spread OFDM
(DFT-s-OFDM) used in Fourth Generation (4G) Long Term
Evolution (LTE) and Fifth Generation (5G) New Radio (NR).
We evaluate their performances through comprehensive simu-
lations.

The rest of the paper is organized as follows. In Section II,
we provide our system model. In Section III, we discuss the

proposed scheme in detail. In Section V, we present numerical
results and compare it with OBDA. We conclude the paper in
Section VI.

Notation: The complex and real numbers are denoted by C
and R, respectively. E𝑥 [·] is the expectation of its argument
over 𝑥. E [·] denotes the expectation over all random variables.
The function sign (·) results in 1, −1, or ±1 at random for a
positive, a negative, or a zero-valued argument, respectively.
The 𝑁-dimensional all zero vector and the 𝑁 × 𝑁 identity
matrix are 0𝑁 and I𝑁 , respectively. The notation (a) 𝑗

𝑖
denotes

the vector [𝑎𝑖 , 𝑎𝑖+1, . . ., 𝑎 𝑗 ]T. The function I [·] results in 1 if
its argument holds, otherwise it is 0. Pr (·) is the probability of
an event. The zero-mean multivariate complex Gaussian dis-
tribution with the covariance matrix C𝑀 of an 𝑀-dimensional
random vector x ∈ C𝑀×1 is denoted by x ∼ CN(0𝑀 ,C𝑀 ).
N(𝜇, 𝜎2) is the normal distribution with the mean 𝜇 and
the variance 𝜎2. The distribution function of the standard
normal distribution is Φ (𝑥). Ordinary hypergeometric function
is 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧).

II. SYSTEM MODEL

A. Deployment and Power Control
Consider a wireless network with 𝐾 EDs that are connected

to an ES, where each ED and the ES are equipped with a
single antenna. To model power control in the network, let
the signal-to-noise ratio (SNR) of an ED at the ES be 𝑃ref/𝜎2

n
when the link distance between an ED and the ES is equal to
the reference distance 𝑅ref . We set the received signal power
of the 𝑘th ED at the ES as

𝑃𝑘 =

(
𝑟𝑘

𝑅ref

)−(𝛼−𝛽)
𝑃ref , (1)

where 𝑃ref is the received signal power for the link distance
𝑅ref , 𝑟𝑘 is the link distance between the 𝑘th ED and the ES, 𝛼
is the path loss exponent, and 𝛽 ∈ [0, 𝛼] is a coefficient that
determines the amount of the path loss compensated. While
𝛽 = 0 means that there is no power control in the network,
𝛽 = 𝛼 leads to a system with perfect power control. We define
the effective path loss exponent 𝛼eff as 𝛼eff , 𝛼 − 𝛽. Without
loss of generality, we assume 𝑃ref = 1 Watt.

We assume that the EDs are deployed uniformly in a circular
cell, where the cell radius is 𝑅max meters and the minimum
distance between the ES and the EDs is 𝑅min meters for
𝑅min ≥ 𝑅ref . We do not consider the impact of multiple cells
(e.g., inter-cell interference) or a more complicated large-scale
channel model (e.g., shadowing) on learning in this work to
provide insights into the proposed scheme with a tractable
analysis. We refer the reader to [25] for our preliminary results
on multi-cell non-coherent MV computation.

B. Signal Model
For OAC, the EDs access the wireless channel on the same

time-frequency resources simultaneously with 𝑆 OFDM-based
symbols consisting of 𝑀 active subcarriers. We express the
𝑚th transmitted baseband precoded OFDM symbol for the 𝑘th
ED as

t(𝑡)
𝑘,𝑚

= FH
𝑁MfT𝑀d(𝑡)

𝑘,𝑚
, (2)



3

where FH
𝑁 ∈ C𝑁×𝑁 is the normalized 𝑁-point inverse DFT

(IDFT) matrix (i.e., FH
𝑁F𝑁 = I𝑁 ), T𝑀 ∈ C𝑀×𝑀 is an

orthonormal linear precoder, Mf ∈ R𝑁×𝑀 is the mapping
matrix that maps the precoder output to a set of contiguous
subcarriers, and d(𝑡)

𝑘,𝑚
∈ C𝑀 contains the symbols on 𝑀 bins

for 𝑚 ∈ {0, 1, . . ., 𝑆 − 1}. For T𝑀 = I𝑀 , the vector t(𝑡)
𝑘,𝑚

is an OFDM symbol. If the precoder is the normalized 𝑀-
point DFT matrix, i.e., T𝑀 = D𝑀 , the vector t(𝑡)

𝑘,𝑚
becomes

a DFT-s-OFDM symbol. Note that DFT-s-OFDM is a special
single-carrier (SC) waveform using circular convolution [26],
where the symbol spacing in time is 𝑇spacing = 𝑁𝑇sample/𝑀 sec-
onds, the pulse shape is Dirichlet sinc [27], and 𝑇sample is the
sample period.

In this study, we assume that the cyclic prefix (CP) du-
ration is larger than the maximum-excess delay denoted by
𝑇chn seconds and the multipath channels between the ES and
the EDs are independent from each other. Assuming that the
transmissions from the EDs arrive at the ES within the CP
duration, the 𝑚th received baseband signal in discrete-time
can be written as

r(𝑡)𝑚 =

𝐾∑︁
𝑘=1

√︁
𝑃𝑘H(𝑡)

𝑘
t(𝑡)
𝑘,𝑚

+ n(𝑡)
𝑚 , (3)

where H(𝑡)
𝑘

∈ C𝑁×𝑁 is a circular-convolution matrix based on
the channel impulse response (CIR) between the 𝑘th ED and
the ES, i.e., h(𝑡)

𝑘
, and n(𝑡)

𝑚 ∼ CN(0𝑁 , 𝜎2
n I𝑁 ) is the additive

white Gaussian noise (AWGN). At the ES, we calculate the
aggregated symbols on the bins for the 𝑚th precoded OFDM
symbol as

d̃(𝑡)
𝑚 = TH

𝑀MH
f F𝑁 r(𝑡)𝑚 =

𝐾∑︁
𝑘=1

√︁
𝑃𝑘TH

𝑀𝚲(𝑡)
𝑘

T𝑀d(𝑡)
𝑘,𝑚

+ ñ(𝑡)
𝑚 , (4)

where 𝚲(𝑡)
𝑘

= diag
(√
𝑁MH

f F𝑁h(𝑡)
𝑘

)
∈ C𝑀×𝑀 is a diagonal

matrix based on channel frequency response (CFR) [28, Chap-
ter 12.4] and ñ(𝑡)

𝑚 ∼ CN(0𝑀 , 𝜎2
n I𝑀 ). Note that we do not use

frequency-domain equalization (FDE) in (4) as we use OFDM
framework for the OAC in this study.

1) Time-Synchronization Errors: In this study, we consider
two different time synchronization errors described as follows:

a) Time of arrivals: In practice, the time of transmissions
of an EDs may not be precise, which can cause random time
of arrivals at the ES. To model this impairment, the time of
arrivals of the EDs’ signals at the ES location is a random
variable with uniform distribution between 0 and 𝑇sync seconds,
where 𝑇sync is the maximum difference among time of arrivals
and it is equal to the reciprocal to the signal bandwidth.

b) Frame synchronization: The time synchronization at
the ES may also not be precise in practice. To model this, we
assume that the point where the DFT starts is backed off by
𝑁err samples within the CP window, i.e., 𝑇lock = 𝑁err𝑇sample.
Note that the uncertainty of the synchronization point within
the CP window is often not an issue for traditional communi-
cations due to the channel estimation. However, it can cause a
non-negligible impact on OAC since equalization is often not
used at the receiver for an OAC scheme.

We embed aforementioned time-synchronization errors into
the CFR, i.e., the diagonal elements of 𝚲(𝑡)

𝑘
, with additional

phase rotations since a translation in the time domain results
in phase rotations in the frequency domain.

2) Frequency-Synchronization Errors: We assume that the
frequency synchronization in the network is handled with a
control mechanism as done in 3GPP 4G LTE and/or 5G NR
with random-access channel (RACH) and/or physical uplink
control channel (PUCCH) [29].

C. Learning Model

Let D𝑘 denote the local data containing labeled data sam-
ples at the 𝑘th ED as {(xℓ , 𝑦ℓ)} ∈ D𝑘 , ∀𝑘 , where xℓ and 𝑦ℓ
are ℓth data sample and its associated label, respectively. The
centralized learning problem can be expressed as

w∗ = arg min
w
𝐹 (w) = arg min

w

1
|D|

∑︁
∀(x ,𝑦) ∈D

𝑓 (w, x, 𝑦) , (5)

where D = D1 ∪D2 ∪ · · · ∪ D𝐾 and 𝑓 (w, x, 𝑦) is the sample
loss function that measures the labeling error for (x, 𝑦) for the
parameters w , [𝑤1, . . ., 𝑤𝑄]T ∈ R𝑄, and 𝑄 is the number of
parameters. With full-batch gradient descent, a local optimum
point can be obtained as

w(𝑡+1) = w(𝑡) − 𝜂g(𝑡) , (6)

where 𝜂 is the learning rate and

g(𝑡) = ∇𝐹 (w(𝑡) ) = 1
|D|

∑︁
∀(x ,𝑦) ∈D

∇ 𝑓 (w(𝑡) , x, 𝑦) , (7)

where the 𝑖th element of g(𝑡) , [𝑔 (𝑡)1 , . . ., 𝑔 (𝑡)
𝑄

]T is the gradient

of 𝐹 (w(𝑡) ) with respect to 𝑤 (𝑡)
𝑖

.
In [14], in the context of parallel processing, distributed

training by MV with signSGD is investigated to solve (5). In
this method, for the 𝑡th communication round, the 𝑘th ED first
calculates the local stochastic gradient g̃(𝑡)

𝑘
, [𝑔̃ (𝑡)

𝑘,1, . . ., 𝑔̃
(𝑡)
𝑘,𝑄

]T

as

g̃(𝑡)
𝑘

= ∇𝐹𝑘 (w(𝑡) ) = 1
𝑛b

∑︁
∀(x ,𝑦) ∈D̃𝑘

∇ 𝑓 (w(𝑡) , x, 𝑦) , (8)

where D̃𝑘 ⊂ D𝑘 is the selected data batch from the local data
set and 𝑛b = |D̃𝑘 | as the batch size. Afterwards, instead of the
actual values of local stochastic gradients, the 𝑘th ED sends
their signs, i.e., ḡ(𝑡)

𝑘
, [𝑔̄ (𝑡)

𝑘,1, . . ., 𝑔̄ (𝑡)
𝑘,𝑄

]T, ∀𝑘 , to the ES, where

the 𝑖th element of the vector ḡ(𝑡)
𝑘

is 𝑔̄ (𝑡)
𝑘,𝑖

= sign(𝑔̃ (𝑡)
𝑘,𝑖
). The ES

obtains the MV for the 𝑖th gradient as

𝑣
(𝑡)
𝑖
, sign

(
𝐾∑︁
𝑘=1

𝑔̄
(𝑡)
𝑘,𝑖

)
. (9)

Subsequently, the ES sends v(𝑡) = [𝑣 (𝑡)1 , . . ., 𝑣 (𝑡)
𝑄
]T back to

the EDs and the models at the EDs are updated as w(𝑡+1) =

w(𝑡) − 𝜂v(𝑡) . This procedure is repeated consecutively until a
predetermined convergence criterion is achieved.

For FEEL, the optimization problem can also be expressed
as (5) for a scenario where the local data samples and their
labels are not available at the ES and the link between an ED
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and the ES experiences a wireless channel. To solve (5) under
these constraints, we adopt the same procedure summarized for
the distributed training by the MV with two major differences:
1) We calculate the MV for each gradient with the proposed
OAC scheme, leading a different expression from (9). 2) We
investigate various gradient-encoding operations that are dif-
ferent from the sign operation, which improves the learning
performance, as discussed in Section III.

III. MAJORITY VOTE WITH NON-COHERENT DETECTION

A. Edge Device - Transmitter

With the proposed OAC scheme, the EDs perform a low-
complexity operation to transmit the signs of the gradi-
ents given in (8): Let 𝑓 be a mapping function that maps
𝑖 ∈ {1, 2, . . ., 𝑄} to a distinct pair of (𝑚+, 𝑙+) and (𝑚−, 𝑙−)
that indicate the resources for 𝑚+, 𝑚− ∈ {0, 1, . . ., 𝑆 − 1},
𝑙+, 𝑙− ∈ {0, 1, . . ., 2𝑀vote − 1}, and 𝑄 = 𝑆𝑀vote. For all 𝑖, we
determine the elements of the symbol vector based on 𝑔̃ (𝑡)

𝑘,𝑖
as

(d(𝑡)
𝑘,𝑚+ )

𝑙+ (𝑀seq+𝑀gap)+𝑀seq
𝑙+ (𝑀seq+𝑀gap)+1

=
√︁
𝐸sp𝑠 (𝑡)𝑘,𝑖𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
I
[
sign

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= 1

]
, (10)

and

(d(𝑡)
𝑘,𝑚− )

𝑙− (𝑀seq+𝑀gap)+𝑀seq
𝑙− (𝑀seq+𝑀gap)+1

=
√︁
𝐸sp𝑠 (𝑡)𝑘,𝑖𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
I
[
sign

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= −1

]
, (11)

where 𝜔(·) is an even-symmetric weight function that ranges
from 0 to 1, p ∈ C𝑀seq×1 is a sequence with ‖p‖2

2 = 𝑀seq, 𝑠 (𝑡)
𝑘,𝑖

is a randomization symbol on the unit-circle, 𝐸s = 2(𝑀seq +
𝑀gap)/𝑀seq is an energy normalization factor, and 𝑀seq ≥ 1
and 𝑀gap ≥ 0 are the parameters that determine the sequence
length for each gradient and the gap between the sequences,
respectively.

With (10) and (11), two sets of orthogonal resources are
allocated for the 𝑖th gradient at the 𝑘th ED and either of two
resources is activated, i.e., orthogonal signaling, based on the
sign of the gradient, where the activation is expressed via the
function I [·]. Since 2(𝑀seq+𝑀gap) resources are allocated for
each gradient, the maximum number of gradients that can be
carried for each precoded-OFDM symbol can be calculated as

𝑀vote =

⌊
𝑀

2(𝑀seq + 𝑀gap)

⌋
. (12)

The proposed scheme can used with various weight func-
tions and waveform configurations. While the weight function
in (10) and (11) primarily addresses heterogeneous data distri-
bution scenarios, the randomization symbols and the sequence
p along with the precoder T𝑀 determine the waveform char-
acteristics as discussed in Section III-A1 and Section III-A2
in detail.

1) Gradient-encoding strategies: We analyze two different
weight functions to map the local gradients to the dedicated
resources, i.e., HP and HPA. We discuss a generalization of
the weight function in Section IV-D.

a) HP: With this strategy, the 𝑘th ED always activates
one of two dedicated resources for the 𝑖th gradient and the
weight is constant, i.e.,

𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= 1 .

Thus, the EDs always participate in the MV calculation even
when the local gradient is close to zero or equal to zero.

b) HPA: This strategy allows an ED to be absent in the
MV calculation if the absolute of the 𝑖th local gradient is less
than or equal to a pre-determined threshold 𝓉 as

𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
=

{
1, |𝑔̃ (𝑡)

𝑘,𝑖
| > 𝓉

0, |𝑔̃ (𝑡)
𝑘,𝑖

| ≤ 𝓉
,

where 𝓉 is a non-negative constant. Therefore, if the magnitude
of the local gradient is less than or equal to 𝓉, neither of
the two resources are activated with HPA. If the threshold is
set to 0 and Pr

(
𝑔̃
(𝑡)
𝑘,𝑖

= 0
)
= 0 hold, HPA corresponds to HP.

HPA allows the MV computation to consider only the EDs
with large gradient magnitudes by eliminating the EDs that
have weaker positions (i.e., converging EDs) on the correct
gradient direction (i.e., sign

(
𝑔
(𝑡)
𝑖

)
). Hence, HPA can improve

the probability of detecting the correct gradient direction as
elaborated theoretically in Section IV-B.

2) Waveform configurations: To transmit the encoded gra-
dients, we configure the precoder T𝑀 to obtain two modu-
lation schemes that also lead to fundamentally different time
and frequency characteristics discussed as follows:

a) FSK configuration: For the FSK configuration, the
precoder T𝑀 is set to I𝑀 , i.e., the transmitted signals from
EDs consist of OFDM symbols and the resources for the
encoded gradients are the subcarriers. This configuration
provides robustness against time-synchronization errors since
the time-synchronization errors within the CP duration cause
merely phase rotations in the frequency domain and the
proposed OAC scheme does not carry the information on the
phase. To maximize 𝑀vote, we set p = [1], 𝑀seq = 1, and
𝑀gap = 0. Under this specific configuration, two subcarriers
are dedicated with (10) and (11). As a special case of the
mapping function 𝑓 , if 𝑚− = 𝑚+ and 𝑙− = 𝑙+ + 1 hold for
all 𝑖, the adjacent subcarriers of 𝑚+th OFDM symbol are
used for the 𝑖th gradient, which corresponds to FSK over
OFDM subcarriers. We refer to the proposed scheme under
this specific mapping as FSK-based MV (FSK-MV).

It is well-known that the entries of a stochastic gradient vec-
tor can be highly correlated due to the over-parameterization
of neural networks [30]. Hence, without any precaution, the
entries of d(𝑡)

𝑘,𝑚
can be correlated and the resulting signal can

have large power fluctuations. To decrease the correlation in
the frequency domain, we use random QPSK symbols [31] for
𝑠
(𝑡)
𝑘,𝑖

.
b) PPM configuration: For the PPM configuration, the

precoder T𝑀 is set to DH
𝑀 . Hence, the transmitted signals from

EDs are based on DFT-s-OFDM symbols and the resources
utilized for the encoded gradients are wide-band pulses. We
synthesize the pulse in a PPM symbol by activating consecu-
tive 𝑀seq bins of DFT-s-OFDM, which effectively corresponds
to a pulse with the duration of 𝑇pulse ≈ 𝑀seq𝑇spacing seconds by
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Fig. 1. Transmitter and receiver diagrams for the proposed OAC scheme.

combining 𝑀seq shifted versions of the Dirichlet sinc functions
in time. In this study, we choose p as [1,−1, 1,−1, · · · ]T

since this sequence yields a rectangular-like pulse in the time
domain for DFT-s-OFDM, as illustrated in Section V. It is
worth noting that the proposed framework allows one to design
p for various pulse shapes, which can be considered for
further optimization of the proposed scheme. If 𝑚+ = 𝑚−

and 𝑙+ = 𝑙− + 1 for all 𝑖, the adjacent resources of the 𝑚+th
precoded OFDM symbol are used for voting and we refer to
this configuration as PPM-based MV (PPM-MV).

As compared to the FSK-MV, the PPM-MV configuration
requires a guard period between the adjacent pulses to accom-
modate the time-synchronization errors and the delay spread.
To address this issue, we deactivate the following 𝑀gap bins
after 𝑀seq active bins, which results in a guard period with
the duration of 𝑇g ≈ 𝑀gap𝑇spacing seconds, where the condition
given by

𝑀gap ≥
⌈
𝑇chn + 𝑇sync + 𝑇lock

𝑇spacing

⌉
, (13)

must hold. Under the condition (13), 𝑀vote with the PPM-MV
is smaller than the one with the FSK-MV, as can be deduced
from (12). Nevertheless, the PPM-MV brings two distinct
features: 1) It leads to a trade-off between the PMEPR and
the resource utilization. For a given 𝑀gap, the pulse energy
distributes more evenly in time with increasing 𝑀seq. Hence,
the amplitude of the baseband signal decreases as less votes
are carried. This results in a decreasing PMEPR, but at the
expense of more resource consumption. 2) The multi-path
channel affects all of the encoded local gradients of an ED
similarly with the PPM-MV, whereas it amplifies or attenuates
them in the frequency domain with the FSK-MV due to the
frequency selectivity. On the other hand, the orthogonality of
the PPM symbols within a DFT-s-OFDM symbol is lost in a
frequency-selective channel, while the FSK-MV ensures the
orthogonality of FSK symbols. Nevertheless, the interference
among PPM symbols due to the multi-path channel can be
maintained negligibly low under the condition (13).

B. Edge Server - Receiver

At the ES, we first identify the pairs (𝑚+, 𝑙+) and (𝑚−, 𝑙−)
based on 𝑓 for a given 𝑖. We then obtain the MV for the 𝑖th
gradient with an energy detector as

𝑣̃
(𝑡)
𝑖

= sign
(
Δ
(𝑡)
𝑖

)
, (14)

where Δ
(𝑡)
𝑖
, 𝑒+

𝑖
− 𝑒−

𝑖
for 𝑒+

𝑖
, ‖C𝑙+ d̃(𝑡)

𝑚+ ‖2
2 and 𝑒−

𝑖
,

‖C𝑙− d̃(𝑡)
𝑚− ‖2

2, where C𝑙 ∈ R𝑀seq+𝑀gap×𝑀 is a de-mapping ma-
trix that takes the corresponding symbols from the received
precoded OFDM symbol for a given 𝑙 ∈ {𝑙−, 𝑙+}. After the
detection, the ES broadcasts ṽ(𝑡) = [𝑣̃ (𝑡)1 , . . ., 𝑣̃ (𝑡)

𝑄
]T and the

models at the EDs are updated as

w(𝑡+1) = w(𝑡) − 𝜂ṽ(𝑡) . (15)

The non-coherent MV detection in (14) is valid for all
gradient encoders and waveform configurations, discussed in
Section III-A1 and Section III-A2, respectively. For FSK-MV,
𝑒+
𝑖

and 𝑒−
𝑖

are the energies of the superposed symbols on
adjacent subcarriers as 𝑀seq = 1 and 𝑀gap = 0. For PPM-MV,
since the multipath channel disperses the pulses in the time
domain and the synchronization error changes the position
of the pulse in time, the calculations of 𝑒+

𝑖
and 𝑒−

𝑖
consider

𝑀seq + 𝑀gap bins through C𝑙 after the DFT-s-OFDM receive
processing is completed.

The transmitter and receiver block diagrams based on the
aforementioned discussions are provided in Fig. 1.

IV. WHY DOES IT WORK WITHOUT CSI?
The proposed scheme leads to a fundamentally different

training strategy since the MV is determined in a probabilistic
manner by comparing 𝑒+

𝑖
and 𝑒−

𝑖
in (14). To elaborate this dif-

ference, we analyze the proposed scheme from three different
perspectives: average received signal power, error probability,
and convergence rate.

A. Average Received Signal Power

Let 𝐾+
𝑖

and 𝐾−
𝑖

be the number of EDs with 𝑔̃
(𝑡)
𝑘,𝑖

> 0 and

𝑔̃
(𝑡)
𝑘,𝑖
< 0, respectively, such that 𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0 holds. We define

the average received signal power as 𝜇+
𝑖
, E

𝑟𝑘 ,H
(𝑡 )
𝑘
,n(𝑡 )

𝑚 ,D̃𝑘

[
𝑒+
𝑖

]
and 𝜇−

𝑖
, E

𝑟𝑘 ,H
(𝑡 )
𝑘
,n(𝑡 )

𝑚 ,D̃𝑘

[
𝑒−
𝑖

]
. We obtain the expressions of

𝜇+
𝑖

and 𝜇−
𝑖

with the following lemma:

Lemma 1 (Average received signal power). For given 𝐾+
𝑖

and
𝐾−
𝑖

, 𝜇+
𝑖

and 𝜇−
𝑖

are

𝜇+𝑖 ≈ 𝑀seq𝐸s𝐾
+
𝑖 𝛾𝜁

+
𝑖 + (𝑀seq + 𝑀gap)𝜎2

n , (16)

and

𝜇−𝑖 ≈ 𝑀seq𝐸s𝐾
−
𝑖 𝛾𝜁

−
𝑖 + (𝑀seq + 𝑀gap)𝜎2

n , (17)

respectively, where 𝜁+
𝑖
, 𝜁−
𝑖
∈ [0, 1] and 𝛾 ∈ [0, 1] are given by

𝜁+𝑖 , ED̃𝑘

[
|𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
|2 |𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0, 𝑔̃ (𝑡)

𝑘,𝑖
> 0

]
, (18)
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Fig. 2. The impact of cell size and effective path loss exponent on the factor
𝛾.

𝜁−𝑖 , ED̃𝑘

[
|𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
|2 |𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0, 𝑔̃ (𝑡)

𝑘,𝑖
< 0

]
, (19)

and

𝛾 ,


2𝑅𝛼eff

ref 𝑃ref

𝑅2
max−𝑅2

min

𝑅
2−𝛼eff
min −𝑅2−𝛼eff

max
𝛼eff−2 , 𝛼eff ≠ 2

2𝑅𝛼eff
ref 𝑃ref

𝑅2
max−𝑅2

min
ln 𝑅max

𝑅min
, 𝛼eff = 2

. (20)

The proof is given in Appendix A.
Note that while 𝜁−

𝑖
and 𝜁+

𝑖
are less than or equal to 1 for a

general weight function, they are equal to 1 for HP and HPA.
Also, under perfect power control, the coefficient 𝛾 is equal
to 1.

Based on Lemma 1, (14) is likely to obtain the MV because
𝜇+
𝑖

and 𝜇−
𝑖

are linear functions of 𝐾+
𝑖

and 𝐾−
𝑖

, respectively.
However, the detection performance depends on the parameter
𝛾 ∈ [0, 1] that captures the impacts of power control, path loss,
and cell size on 𝑒+

𝑖
and 𝑒−

𝑖
.

In Fig. 2, we plot 𝛾 for different cell sizes for a given 𝛼eff .
As can be seen from Fig. 2, for a better power control or a
smaller cell size, 𝛾 increases to 1. Heuristically, both of these
cases imply a better detection performance under noise, which
leads to a lower error probability and a better convergence rate
as discussed in Section IV-B and Section IV-C, respectively.

B. Error Probability

We define the error probability 𝑃err
𝑖

as the probability of
misidentifying the correct gradient sign for the 𝑖th gradient,
i.e.,

𝑃err
𝑖 , Pr

(
sign

(
Δ
(𝑡)
𝑖

)
≠ sign

(
𝑔
(𝑡)
𝑖

))
. (21)

To obtain an analytical expression for the error probability, we
make the following assumptions:

Assumption 1 (Exponentially-distributed received signal
power). For given 𝐾+

𝑖
and 𝐾−

𝑖
, 𝑒+
𝑖

and 𝑒−
𝑖

are exponential ran-
dom variables, where their means are 𝜇+

𝑖
and 𝜇−

𝑖
, respectively.

Assumption 2 (Independent, identical, and unbiased gradients
[14]). The local stochastic gradient estimates are independent
and unbiased, i.e., ED̃𝑘

[
𝑔̃
(𝑡)
𝑘,𝑖

]
= 𝑔

(𝑡)
𝑖
, ∀𝑘, 𝑖.

Assumption 1 holds true when the power control is ideal un-
der Rayleigh fading. It is a weak assumption under imperfect
power control due to the central limit theorem.

Let 𝑝𝑖 , 𝑧𝑖 , and 𝑞𝑖 be the probabilities defined by

𝑝𝑖 , Pr
(
sign

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= sign

(
𝑔
(𝑡)
𝑖

)
|𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0

)
, ∀𝑘, (22)

𝑧𝑖 , Pr
(
𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= 0

)
, ∀𝑘, (23)

𝑞𝑖 , Pr
(
sign

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ sign

(
𝑔
(𝑡)
𝑖

)
|𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0

)
, ∀𝑘, (24)

where 𝑝𝑖+𝑧𝑖+𝑞𝑖 = 1. 𝑃err
𝑖

for HPA can be obtained as follows:

Lemma 2 (Error probability for HPA). Suppose that the
gradient encoder is HPA and Assumption 1 and Assumption 2
hold. The error probability in Rayleigh fading channel is

𝑃err
𝑖 =

𝐾∑︁
𝑛=0

𝑛
𝑞𝑖

1−𝑧𝑖 +
𝜎2

n
2𝛾

𝑛 + 𝜎2
n
𝛾

(
𝐾

𝑛

)
𝑧𝑖
𝐾−𝑛 (1 − 𝑧𝑖)𝑛

=
𝑞𝑖

1 − 𝑧𝑖
(1 − 𝐴(𝑧𝑖)) +

1
2
𝐴(𝑧𝑖) , (25)

where 𝐴(𝑧) ∈ [0, 1] is defined by

𝐴(𝑧) ,
𝐾∑︁
𝑛=0

𝜎2
n
𝛾

𝑛 + 𝜎2
n
𝛾

(
𝐾

𝑛

)
𝑧𝐾−𝑛 (1 − 𝑧)𝑛

=


𝑧𝐾 2𝐹1

(
𝜎2

n
𝛾
,−𝐾; 𝜎

2
n
𝛾

+ 1; 1 − 1
𝑧

)
, 𝑧 ≠ 0

𝜎2
n

𝜎2
n+𝛾𝐾

, 𝑧 = 0
. (26)

The proof is given in Appendix B.
Lemma 2 implies the following results:

Corollary 1 (Legitimate EDs). For 𝑞𝑖 < 𝑝𝑖 , 𝑞𝑖/(1 − 𝑧𝑖) =

𝑞𝑖/(𝑞𝑖 + 𝑝𝑖) ≤ 𝑃err
𝑖
< 1/2 holds.

HPA with 𝓉 = 0 and 𝑧𝑖 = 0 corresponds to HP. Hence,
Lemma 2 can also be used for obtaining the error probability
for HP as follows:

Corollary 2 (Error probability for HP). Suppose that the gra-
dient encoder is HP. Under Assumption 1 and Assumption 2,
the error probability is given by

𝑃err
𝑖 = 𝑞𝑖

𝛾𝐾

𝜎2
n + 𝛾𝐾

+ 1
2

𝜎2
n

𝜎2
n + 𝛾𝐾

, (27)

where 𝛾 ∈ [0, 1] is given in (20).

Corollary 3 (Large zero-weight probability). For 𝑧 = 1 − 𝜖
for 𝜖 � 1, 𝐴(𝑧) ≈ 𝑧𝐾 , implying 𝑃err

𝑖
≈ 𝑞𝑖 (1 − 𝑧𝐾

𝑖
)/(1 − 𝑧𝑖) +

𝑧𝐾
𝑖
/2.

1) The impacts of the number of EDs and power control
on the error probability: To understand how the error prob-
ability 𝑃err

𝑖
changes with 𝐾 and 𝛾, let 𝑅1 and 𝑅2 be the

scaling rules defined by 𝑅1 , 𝑃err
𝑖
(𝐾 + 1, 𝛾)/𝑃err

𝑖
(𝐾, 𝛾) and

𝑅2 , 𝑃
err
𝑖
(𝐾, 𝛾𝑎)/𝑃err

𝑖
(𝐾, 𝛾), respectively. By using Lemma 2
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𝐴𝐴(𝑧𝑧) =
𝑧𝑧𝐾𝐾𝐹𝐹1

𝜎𝜎𝑛𝑛2

𝛾𝛾 ,−𝐾𝐾;
𝜎𝜎𝑛𝑛2

𝛾𝛾 + 1; 1 −
1
𝑧𝑧 , 𝑧𝑧 ≠ 0

𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛2 + 𝛾𝛾𝐾𝐾
, 𝑧𝑧 = 0

𝑃𝑃𝑖𝑖err ≜
1
2𝐴𝐴 𝑧𝑧𝑖𝑖 + 𝑞𝑞𝑖𝑖

1 − 𝐴𝐴 𝑧𝑧𝑖𝑖
1 − 𝑧𝑧𝑖𝑖

𝑝𝑝 ≔ Pr sgn �𝑔𝑔𝑖𝑖
𝑡𝑡 = sgn 𝑔𝑔𝑖𝑖

𝑡𝑡 |𝜔𝜔 �𝑔𝑔𝑖𝑖
𝑡𝑡 ≠ 0

𝑓𝑓(𝑥𝑥)

𝑥𝑥𝓉𝓉−𝓉𝓉

𝑞𝑞 ≔ Pr 𝜔𝜔 �𝑔𝑔𝑖𝑖
𝑡𝑡 ≠ 0

𝑧𝑧 ≔ Pr sgn �𝑔𝑔𝑖𝑖
𝑡𝑡 ≠ sgn 𝑔𝑔𝑖𝑖

𝑡𝑡 |𝜔𝜔 �𝑔𝑔𝑖𝑖
𝑡𝑡 ≠ 0

𝜇𝜇 = 𝑔𝑔𝑖𝑖
𝑡𝑡

𝑝𝑝(𝓉𝓉) ≔ Pr �𝑔𝑔𝑖𝑖
𝑡𝑡 > 𝓉𝓉 = 1 − 𝐹𝐹𝑥𝑥(𝓉𝓉)

𝑧𝑧(𝓉𝓉) ≔ Pr �𝑔𝑔𝑖𝑖
𝑡𝑡 ≤ 𝓉𝓉 = 𝐹𝐹𝑥𝑥(𝓉𝓉) − 𝐹𝐹𝑥𝑥(−𝓉𝓉)

𝑞𝑞(𝓉𝓉) ≔ Pr �𝑔𝑔𝑖𝑖
𝑡𝑡 < −𝓉𝓉 = 𝐹𝐹𝑥𝑥(−𝓉𝓉)

�𝑔𝑔𝑖𝑖
𝑡𝑡 ~𝑓𝑓𝑥𝑥 𝑥𝑥 ,𝑔𝑔𝑖𝑖

𝑡𝑡 > 0 ⇒

𝑝𝑝(𝓉𝓉)𝑞𝑞(𝓉𝓉)
𝑧𝑧(𝓉𝓉)

arg min
𝓉𝓉
𝑃𝑃𝑖𝑖err 𝓉𝓉 = arg min

𝓉𝓉
𝐴𝐴 𝑧𝑧𝑖𝑖 + 1 − 𝐴𝐴 𝑧𝑧𝑖𝑖

2𝐹𝐹𝑥𝑥(−𝓉𝓉)
1 − 𝐹𝐹𝑥𝑥 𝓉𝓉 + 𝐹𝐹𝑥𝑥(−𝓉𝓉)

𝑑𝑑
𝑑𝑑𝓉𝓉 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 + 1 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 𝐵𝐵 𝓉𝓉 =

𝑑𝑑
𝑑𝑑𝓉𝓉 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 + 𝐵𝐵 𝓉𝓉 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 𝐵𝐵 𝓉𝓉 =

𝑑𝑑𝑧𝑧𝑖𝑖 𝓉𝓉
𝑑𝑑𝓉𝓉

𝑑𝑑𝑑𝑑 𝑧𝑧
𝑑𝑑𝑧𝑧 +

𝑑𝑑𝑑𝑑 𝓉𝓉
𝑑𝑑𝓉𝓉 −

𝑑𝑑𝑧𝑧𝑖𝑖 𝓉𝓉
𝑑𝑑𝓉𝓉

𝑑𝑑𝑑𝑑 𝑧𝑧
𝑑𝑑𝑧𝑧 𝐵𝐵 𝓉𝓉 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉

𝑑𝑑𝑑𝑑 𝓉𝓉
𝑑𝑑𝓉𝓉

=
𝑑𝑑𝑧𝑧𝑖𝑖 𝓉𝓉
𝑑𝑑𝓉𝓉

𝑑𝑑𝑑𝑑 𝑧𝑧
𝑑𝑑𝑧𝑧 1 − 𝐵𝐵 𝓉𝓉 +

𝑑𝑑𝑑𝑑 𝓉𝓉
𝑑𝑑𝓉𝓉 1 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉

= 𝑧𝑧𝑖𝑖′ 𝓉𝓉 𝐴𝐴′ 𝑧𝑧 1 − 𝐵𝐵 𝓉𝓉 + 𝐵𝐵′ 𝓉𝓉 1 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉

𝑧𝑧𝑖𝑖′ 𝓉𝓉 𝐴𝐴′ 𝑧𝑧 1 − 𝐵𝐵 𝓉𝓉 + 𝐵𝐵′ 𝓉𝓉 1 − 𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 = 0

𝐴𝐴′ 𝑧𝑧 =
𝐵𝐵′ 𝓉𝓉

𝑧𝑧𝑖𝑖′ 𝓉𝓉 1 − 𝐵𝐵 𝓉𝓉
𝐴𝐴 𝑧𝑧𝑖𝑖 𝓉𝓉 − 1

𝐴𝐴′ 𝑧𝑧 =

𝜎𝜎𝑛𝑛2
𝛾𝛾 − 𝜎𝜎𝑛𝑛2

𝛾𝛾 − 𝐾𝐾𝐾𝐾 + 𝐾𝐾 𝐴𝐴 𝑧𝑧

𝑧𝑧 − 1 𝑧𝑧

Fig. 3. The definitions of 𝑝𝑖 (𝓉) , 𝑧𝑖 (𝓉) , and 𝑞𝑖 (𝓉) for HPA when 𝑔 (𝑡 )
𝑖
> 0.

𝑓 (𝑥) denotes the PDF of 𝑔̃ (𝑡 )
𝑘,𝑖

and the recurrence relation of binomial coefficients, we can
then express 𝑅1 and 𝑅2 as

𝑅1 =𝑧𝑖 + (1 − 𝑧𝑖)

∑𝐾
𝑛=0

(𝑛+1) 𝑞𝑖
1−𝑧𝑖

+ 𝜎2
n

2𝛾

𝑛+1+ 𝜎2
n
𝛾

(𝐾
𝑛

)
𝑧𝑖
𝐾−𝑛 (1 − 𝑧𝑖)𝑛

∑𝐾
𝑛=0

𝑛
𝑞𝑖

1−𝑧𝑖
+ 𝜎2

n
2𝛾

𝑛+ 𝜎2
n
𝛾

(𝐾
𝑛

)
𝑧𝑖
𝐾−𝑛 (1 − 𝑧𝑖)𝑛

, (28)

𝑅2 =

∑𝐾
𝑛=0

𝑛
𝑞𝑖

1−𝑧𝑖
+ 𝜎2

n
2𝛾𝑎

𝑛+ 𝜎2
n

𝛾𝑎

(𝐾
𝑛

)
𝑧𝑖
𝐾−𝑛 (1 − 𝑧𝑖)𝑛

∑𝐾
𝑛=0

𝑛
𝑞𝑖

1−𝑧𝑖
+ 𝜎2

n
2𝛾

𝑛+ 𝜎2
n
𝛾

(𝐾
𝑛

)
𝑧𝑖
𝐾−𝑛 (1 − 𝑧𝑖)𝑛

. (29)

If a larger 𝐾 (i.e., more participants) or a larger 𝛾 (i.e., better
power control) decrease the error probability, we need to show
𝑅1 < 1 and 𝑅2 < 1, respectively. By comparing the weights
of the summands on the numerators and denominators in (28)
and (29), the required conditions are obtained as 𝑞𝑖 < 𝑝𝑖 (i.e.,
Corollary 1) and 𝑎 > 1 (i.e., better power control), respectively

2) Threshold optimization for HPA: Suppose that the
global gradient 𝑔 (𝑡)

𝑖
is a positive value. Let 𝐹 (𝑥) denote the

cummulative distribution function (CDF) of 𝑔̃ (𝑡)
𝑘,𝑖

. For HPA,
we can then express 𝑝𝑖 , 𝑧𝑖 , and 𝑞𝑖 as functions of 𝓉 as
𝑝𝑖 (𝓉) = Pr

(
𝑔̃
(𝑡)
𝑘,𝑖
> 𝓉

)
= 1 − 𝐹 (𝓉), 𝑧𝑖 (𝓉) = Pr

(
|𝑔̃ (𝑡)
𝑘,𝑖

| ≤ 𝓉

)
=

𝐹 (𝓉) − 𝐹 (−𝓉), 𝑞𝑖 (𝓉) = Pr
(
𝑔̃
(𝑡)
𝑘,𝑖
< −𝓉

)
= 𝐹 (−𝓉), ∀𝑘 , re-

spectively (see Fig. 3). Hence, the optimal threshold can be
obtained as

𝓉 = arg min
𝓉

𝑞𝑖 (𝓉)
1 − 𝑧𝑖 (𝓉)

(1 − 𝐴(𝑧𝑖 (𝓉))) +
1
2
𝐴(𝑧𝑖 (𝓉)). (30)

Due to the hypergeometric function in 𝐴(𝑧𝑖 (𝓉)), in general, it
is not tractable to obtain 𝓉 in closed form. Nevertheless, 𝓉 can
be obtained numerically by simply sweeping 𝓉. We discuss
a numerical example in Section V-A, which demonstrates
that 𝑃err

𝑖
is not a monotonically increasing function over the

range of threshold 𝓉 (i.e., a non-zero 𝓉 exists) and the error
probability for HPA can be much lower than that of HP.

It is worth noting that distribution of 𝑔̃ (𝑡)
𝑘,𝑖

, i.e., 𝐹 (𝑥), is
unknown and changes over the communication rounds in
practice [32]. Hence, solving (30) for HPA or obtaining the
optimum weight function for the general case are currently
difficult problems without making strong assumptions.

C. Convergence Rate

For the convergence analysis, we make several assumptions
given as follows:

Assumption 3 (Bounded loss function [14]). There exists a
constant 𝐹∗ such that 𝐹 (w) ≥ 𝐹∗,∀w.

Assumption 4 (Smoothness [14], [33, Lemma 1.2.3]). Let g
be the gradient of 𝐹 (w) evaluated at w. For all w and w′, the
expression given by��𝐹 (w′) − (𝐹 (w) + gT (w′ − w))

�� ≤ 1
2

𝑄∑︁
𝑖=1

𝐿𝑖 (𝑤′
𝑖 − 𝑤𝑖)2 ,

holds for a non-negative constant vector L = [𝐿1, . . ., 𝐿𝑄]T.

Assumption 5 (Variance bound [14]). A local stochastic
gradient estimate has a coordinate bounded variance, i.e.,
ED̃𝑘

[
(𝑔̃ (𝑡)
𝑘,𝑖

− 𝑔 (𝑡)
𝑖

)2
]
≤ 𝜎2

𝑖
/𝑛b, ∀𝑘, 𝑖, where σ = [𝜎1, . . ., 𝜎𝑄]T

is a non-negative constant vector.

Assumption 6 (Unimodal, symmetric gradient noise [14]).
For any given w(𝑡) , 𝑔̃ (𝑡)

𝑘,𝑖
, ∀𝑘, 𝑖, has a unimodal distribution

that is also symmetric around its mean.

Assumption 7 (Bounded zero-weight probability). There ex-
ists a constant 𝑧max ∈ [0, 1] such that Pr

(
𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= 0

)
≤

𝑧max, ∀𝑘, 𝑖.

Assumption 8 (Maximum absolute). The magnitude of the
local stochastic gradient estimates are less than or equal to
the non-negative constant 𝑔max, i.e., |𝑔̃ (𝑡)

𝑘,𝑖
| ≤ 𝑔max, ∀𝑘, 𝑖 .

With the considerations of path loss, power control, and
cell size, the convergence rate in the presence of the proposed
scheme with HPA in Rayleigh fading channel can obtained as
follows:

Theorem 1 (Convergence rate for HPA). Suppose Assump-
tions 1-8 hold true and the gradient encoder is based on HPA.
The convergence rate of the distributed training by the MV
based on the proposed scheme in Rayleigh fading channel is

E

[
1
𝑇

𝑇 −1∑︁
𝑡=0

‖g(𝑡) ‖1

]
≤ 𝐹 (w(0) ) − 𝐹∗

𝜂𝑇 (1 − 𝐴(𝑧max))
+ 𝜂‖L‖1

2(1 − 𝐴(𝑧max))

+
√

3
√
𝑛b

1
1 − 𝑧max

𝑔max

𝓉 + 𝑔max
‖σ‖1 . (31)

where 𝐴(𝑧) ∈ [0, 1] is given in (26).

The proof is given in Appendix C.
Since HPA with 𝓉 = 0 under the condition of 𝑧max = 0

corresponds to HP, Theorem 1 also be used for obtaining the
convergence rate for HP:

Corollary 4 (Convergence rate for HP). Under Assump-
tions Assumptions 1-8, the convergence rate of the distributed
training by the MV based on the proposed scheme with HP
in Rayleigh fading channel is equal to (31) for 𝓉 = 0 and
𝑧max = 0, i.e.,

E

[
1
𝑇

𝑇 −1∑︁
𝑡=0

‖g(𝑡) ‖1

]
≤ 𝐹 (w(0) ) − 𝐹∗

𝜂𝑇
𝐾𝛾

𝐾𝛾+𝜎2
n

+ 𝜂‖L‖1

2 𝐾𝛾

𝐾𝛾+𝜎2
n

+
√

3‖σ‖1√
𝑛b

.

(32)

Based on Theorem 1, we can infer the followings:
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• For a larger SNR (i.e., a larger 𝑃ref/𝜎2
n ) and a large

number of EDs (i.e., a larger 𝐾), the convergence rate
improves.

• The power control improves the convergence rate since
𝛾 increases with a lower 𝛼eff . Another way of improving
the convergence rate is to reduce the cell size, yielding
a larger 𝛾 as illustrated in Fig. 2. This leads a practical
trade-off: While the number of EDs may be larger for a
larger cell, the power control becomes a harder task.

• Both 𝐴(𝑧max) and 𝑧max tend to increase with 𝓉, as
exemplified in Section V-A for HPA. Therefore, for a
larger 𝓉, the first two terms of the right-hand side of
(31) become larger. On the other hand, the last term of
the right-hand side of (31) is not a monotonic function
over the range of threshold 𝓉, which is similar to the
error probability in (25). This implies that the threshold
𝓉 can be non-zero to minimize the right-hand side of (31).
Hence, HPA with the optimum threshold can improve the
convergence rate.

• If 𝜂 = 1/
√
𝑇 and 𝑛b = 𝑇 , the convergence rate is similar to

the one with signSGD in an ideal channel [14, Theorem 1]
where the training requires O(

√
𝑇) iterations.

D. Extensions
As a generalization, the weight function 𝜔(𝑥) can be chosen

as a continuous function to achieve a soft participation. For
example, consider the weight function given by

𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
=


1, |𝑔̃ (𝑡)

𝑘,𝑖
| > 𝓉(1 + 𝜌)

0, |𝑔̃ (𝑡)
𝑘,𝑖

| ≤ 𝓉(1 − 𝜌)
1
2 + 1

2 cos
(
𝜋 ( |𝑔̃ (𝑡 )

𝑘,𝑖
|−𝓉 (1+𝜌))

2𝜌𝓉

)
, otherwise

,

(33)

where 𝜌 ∈ [0, 1] is a factor that determines the steepness
of weight function. With this weight function, all EDs can
participate in the MV calculation (e.g., for 𝜌 = 1), but their
impacts on the MV is proportional to the magnitude of the
local gradients, i.e., weighted votes. Note that the SP with (33)
for 𝜌 = 0 is identical to HPA. As demonstrated in Section V-A,
a smoother weight function can lower the error probability
further as compared to the weight function for HPA.

Another way extending the proposed scheme is to change
the weight function over the communication rounds. For
example, for HPA, the threshold 𝓉 can be reduced as function
of 𝑡 or chosen as a function of the local stochastic gradients
by exploiting fact that the gradients tend to decrease over the
communication rounds. In certain cases, it may be desirable to
consider the cardinality of the datasets in the MV calculation
in (9) (e.g., scaling with the sign information with |D𝑘 |). To
address this case, designing the weight function for each ED as
a function of the cardinality of the local dataset is a potential
extension. While these adaptations potentially improve the
performance, we leave the analyses of such cases as future
study.

E. Comparisons
1) Robustness against time-varying fading channel: As

opposed to the approaches in [8] and [9], the proposed scheme

does not utilize the CSI for TCI at the EDs. Hence, it is
compatible with time-varying channels (e.g., as in mobile
networks [34]) and does not lose the gradient information
due to the TCI. As a trade-off, it increases the number of
time-frequency resources for OAC as compared to OBDA. As
compared to the approaches in [35] and [24], the proposed
scheme also does not require CSI at the ES or multiple
antennas.

2) Robustness against synchronization errors: FSK-MV
and PPM-MV are more robust against time-synchronization
errors as compared to OBDA because the time misalignment
among the EDs or the uncertainty on the receiver synchro-
nization within the CP window cause phase rotations in the
frequency domain and FSK-MV or PPM-MV do not encode
gradient information on the amplitude or phase. Also, the
proposed scheme does not use any channel-related information
at the EDs and the ES.

3) Robustness against imperfect power control and data
heterogeneity: Our results in Section V shows that the pro-
posed scheme with HPA and SP can improve the convergence
rate in the case of imperfect power control and/or hetero-
geneous data distribution. This is because the HPA and SP
gradually reduce the impact of converging EDs on the MV
calculation. For example, consider a scenario where there is no
power control. Without any weight function (i.e., HP), the MV
is highly biased towards the decisions of the nearby EDs as
their received signal powers are much larger than the ones far
from the ES. Hence, under a heterogeneous data distribution
scenario, the model is more likely to learn to classify the labels
of the nearby EDs. On the other hand, with HPA and SP, the
model initially learns the nearby EDs’ labels. However, since
the absolute value of the gradients of the converging nearby
EDs tend to be smaller in the later stages of the communication
rounds, the impacts of the nearby EDs on the MV are reduced
with HPA and SP, which allows the model to learn the labels
at the far EDs. In another scenario, some of the labels may be
available in a small number of EDs. In this case, these labels
may not be learned well as the other EDs aggressively vote
even if the magnitudes of their gradients are so small. With
HPA, the EDs that have the common labels do not cast votes
in the later stages of the learning process, which allows the
neural network to learn the labels that are available at few
EDs.

4) Robustness against power-amplifier non-linearity: As
shown in Section V, OBDA can suffer from high PMEPR due
to the correlated gradients. The proposed scheme addresses
this issue with simple techniques regardless of the correlation
of gradients. For FSK-MV, we use random QPSK symbols for
𝑠
(𝑡)
𝑘,𝑖

to improve the waveform characteristics. The PMEPR for
PPM-MV is lowered by increasing the pulse duration.

V. NUMERICAL RESULTS

In this section, we first analyze error probability with
different weight functions numerically. Afterwards, we eval-
uate the performance of FEEL with the proposed scheme
with the consideration of path loss, imperfect power control,
and time-synchronization errors for both homogeneous and
heterogeneous data distribution scenarios.
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Fig. 4. The error probability can decrease considerably with HPA and SP
as compared to HP (HPA with 𝓉 = 0 is HP).

A. Error Probability for HP, HPA, and SP

To demonstrate the impact of the weight function on the
error probability, we assume that 𝑔̃ (𝑡)

𝑘,𝑖
∼ N(𝜇, 𝜎2), ∀𝑘 (i.e.,

𝑔
(𝑡)
𝑖

= 𝜇), and compare HP, HPA, and SP with the weight
function in (33) in Rayleigh channel for 𝐾 = 20 EDs,
𝜎2

n = 0.01, 𝜎 = 0.001, 𝜇 = 0.001. First, consider HPA.
The probabilities 𝑞𝑖 and 𝑧𝑖 a function of threshold 𝓉 can
be expressed as 𝑞𝑖 (𝓉) = Φ ((−𝓉 − |𝜇 |)/𝜎) and 𝑧𝑖 (𝓉) =

Φ ((𝓉 − |𝜇 |)/𝜎) − Φ ((−𝓉 − |𝜇 |)/𝜎), respectively. By numer-
ically evaluating expressions of 𝑞𝑖 (𝑡) and 𝑧𝑖 (𝑡), we plot the
error probability for HPA given in (25) as a function of 𝓉 in
Fig. 4. While HP (i.e., HPA with 𝓉 = 0) gives 𝑃err

𝑖
= 0.1588,

HPA with the threshold 𝓉 = 0.0017 remarkably decreases the
error to 𝑃err

𝑖
= 0.017. The results with Monte Carlo simulation

also align well with the theoretical values.
For the SP, we numerically obtain the error probability by

sweeping the factor 𝜌 from 0.1 to 1 with the step size 0.1.
As can been seen from Fig. 4, the error probability decreases
further to 0.013 for 𝜌 = 0.3 and 𝓉 = 0.019. This result
indicates there exist weight functions that can achieve a lower
error probability than the one with HPA.

B. Federated Edge Learning

We consider the learning task of handwritten-digit recog-
nition with 𝐾 = 50 EDs for 𝑅min = 10 meters and 𝑅max =

100 meters. To demonstrate the impact of the imperfect power
control on distributed learning, we choose 𝛼 = 4 and 𝛽 ∈ {2, 4}
and set the SNR, i.e., 𝑃ref/𝜎2

n , to be 20 dB at 𝑅ref = 10 meters.
The link distance between the 𝑘th ED and the ES is determined
by 𝑟𝑘 =

√︃
𝑅2

min + (𝑘 − 1) (𝑅2
max − 𝑅2

min)/(𝐾 − 1) to represent a
uniform deployment in a circular area. For the channel, we
consider ITU Extended Pedestrian A (EPA) with no mobility.
We regenerate the channels between the ES and the EDs
independently for each communication round to capture the
long-term variations. The subcarrier spacing, the sample rate,
and the IDFT size are 15 kHz, 30.72 Msps, and 𝑁 = 2048,
respectively. We use 𝑀 = 1200 subcarriers (i.e., the signal

{0,1,2,3,4,5} {1,2,3,4,5,6}

{2,3,4,5,6,7} {3,4,5,6,7,8}

{4,5,6,7,8,9}

ES
𝑅𝑅max𝑅𝑅min

{0,1,2,3,4,5,6,7,8,9}

ES

𝑅𝑅max𝑅𝑅min

𝒟𝒟𝑘𝑘 = 1241 𝒟𝒟𝑘𝑘 = 867

𝒟𝒟𝑘𝑘 = 867𝒟𝒟𝑘𝑘 = 733

𝒟𝒟𝑘𝑘 = 1242

𝒟𝒟𝑘𝑘 = 1000

(a) Homogeneous data distribution in the cell. All EDs have data samples
for 10 different digits.

{0,1,2,3,4,5} {1,2,3,4,5,6}

{2,3,4,5,6,7} {3,4,5,6,7,8}

{4,5,6,7,8,9}

ES
𝑅𝑅max𝑅𝑅min

{0,1,2,3,4,5,6,7,8,9}

ES

𝑅𝑅max𝑅𝑅min

𝒟𝒟𝑘𝑘 = 1241 𝒟𝒟𝑘𝑘 = 867

𝒟𝒟𝑘𝑘 = 867𝒟𝒟𝑘𝑘 = 733

𝒟𝒟𝑘𝑘 = 1242

𝒟𝒟𝑘𝑘 = 1000

(b) Heterogeneous data distribution in the cell. The available digits at the
EDs changes based on their locations.

Fig. 5. Homogeneous versus heterogeneous data distributions considered
for the numerical analyses. The available digits and dataset size in an
area are shown in the figure. The radius of the concentric circles are
{10, 45.6, 63.7, 77.7, 89.6, 100} meters.

bandwidth is 18 MHz). For the synchronization errors, we
assume that the maximum time difference between the arriv-
ing ED signals is 𝑇sync = 55.6 ns and the synchronization
uncertainty at the ES is 𝑁err = 3 samples, i.e., 𝑇lock = 97.6 ns.
Otherwise, these parameters are set to 0.

For the local data at the EDs, we use the MNIST database
that contains labeled handwritten-digit images size of 28× 28
from digit 0 to digit 9. We consider both homogeneous and
heterogeneous data distributions in the cell. To prepare the
data, we first choose |D| = 50000 training images from
the database, where each digit has distinct 5000 images. For
homogeneous data distribution, we assume that each ED has
100 distinct images for each digit. For heterogeneous data
distribution, we assume that the distribution of the images
depends on the ED locations to test the scheme in a more chal-
lenging scenario. To this end, we divide the cell into 5 areas
with concentric circles and the EDs located in 𝑢th area have the
data samples with the labels {𝑢−1, 𝑢, 1+𝑢, 2+𝑢, 3+𝑢, 4+𝑢} for
𝑢 ∈ {1, . . ., 5}. Hence, the availability of the labels gradually
changes based on the link distance. The areas between two
adjacent concentric circles are identical and the number of
EDs in each area is 10. Note that the labels 0, 1, 8, and 9 are
available at less number of EDs as compared to other labels.
Also, since we distribute 5000 images/digit equally based on
the number of EDs, the local dataset size changes as 1241,
867, 783, 867, and 1242, respectively, when 𝑢 increases from
1 to 5. For instance, for 𝑢 = 1, the dataset has 500, 250,
166, 125, 100 and 100 images for the digits 0, 1, 2, 3, 4,
and 5, respectively. The homogeneous and heterogeneous data
distributions in the area are illustrated in Fig. 5.

For the model, we consider a convolution neural network
(CNN) given in TABLE I. Our model has 𝑄 = 123090
learnable parameters that result in 𝑆 = 206 and 𝑆 = 52
OFDM symbols for the FSK-MV and OBDA, respectively.
The maximum-excess delay of the EPA channel is 410 ns.
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TABLE I
NEURAL NETWORK AT THE EDS.

Layer Learnables Activations
Input
- 28 × 28 × 1 images N/A 28 × 28 × 1

Convolution 2D
- 5 × 5 × 1, 20 filters
- Stride: [1 1]
- Padding: [0 0 0 0]

Weights: 5 × 5 × 1 × 20
Bias: 1 × 1 × 20 24 × 24 × 20

Batchnorm Offset: 1 × 1 × 20
Scale: 1 × 1 × 20 24 × 24 × 20

ReLU N/A 24 × 24 × 20
Convolution 2D
- 3 × 3 × 1, 20 filters
- Stride: [1 1]
- Padding: [1 1 1 1]

Weights: 3 × 3 × 20 × 20
Bias: 1 × 1 × 20 24 × 24 × 20

Batchnorm Offset: 1 × 1 × 20
Scale: 1 × 1 × 20 24 × 24 × 20

ReLU N/A 24 × 24 × 20
Convolution 2D
- 3 × 3 × 1, 20 filters
- Stride: [1 1]
- Padding: [1 1 1 1]

Weights: 3 × 3 × 20 × 20
Bias: 1 × 1 × 20 24 × 24 × 20

Batchnorm Offset: 1 × 1 × 20
Scale: 1 × 1 × 20 24 × 24 × 20

ReLU N/A 24 × 24 × 20
Fully-connected layer
- 10 outputs

Weights: 10 × 11520
Bias: 10 × 1 1 × 1 × 10

Softmax N/A 1 × 1 × 10

Hence, for PPM-MV, we set 𝑀gap to 11 to ensure the condition
in (13) for 𝑇spacing = 55.6 ns. The number of DFT-s-OFDM
symbols for 𝑀seq = 1, 𝑀seq = 4, and 𝑀seq = 9 can then be
calculated as 2462, 3078, and 4103, respectively. For OBDA,
the TCI threshold is 0.2. The learning rate is 0.001. The batch
size 𝑛b is set to 64. For the test accuracy calculations, we
use 10000 test samples available in the MNIST database. The
simulations are performed in MATLAB.

1) Test accuracy and loss under imperfections: In Fig. 6,
we provide the test accuracy results by taking time-
synchronization errors and imperfect power control into ac-
count. While we consider the homogeneous data distribution
in Fig. 6(a) and Fig. 6(b), we evaluate the scenarios with the
heterogeneous data distribution in Fig. 6(c) and Fig. 6(d). For
the same configurations, we provide the local losses at the EDs
as a function of link distance in Fig. 7 after 𝑇 = 1000 rounds.
We only provide the local loss for FSK-MV as the results with
PPM-MV are similar to that of FSK-MV. The results in Fig. 6
and Fig. 7 can be interpreted jointly as follows:

a) Homogeneous data, perfect power control: In
Fig. 6(a), the power control is assumed to be perfect (i.e.,
𝛼eff = 0). Under this configuration, OBDA results in high
test accuracy when the time synchronization is ideal and the
CSI is available at the EDs for TCI. However, OBDA without
TCI or its utilization under imperfect time synchronization
cause drastic reductions in the performance. On the other hand,
both FSK-MV and PPM-MV provide robustness against the
time-synchronization errors and result in a high test accuracy
without using CSI at the EDs. For this case, HP and SP are
better than HPA. This is expected as both HP and SP enable
full participation for the MV calculation. The corresponding
local losses at the EDs are given in Fig. 7(a). While SP is
superior to HP and HPA, all options provide small loss values.

b) Homogeneous data, imperfect power control: In
Fig. 6(b), the received signal power at the ES is not ideal
(i.e., 𝛼eff = 2). Although the test accuracy with OBDA (with
TCI and ideal synchronization) or FSK-MV/PPM-MV (with-
out TCI and ideal synchronization) reach to 97%, Fig. 7(b)
indicates that the local losses slightly increase as compared to
the ones in Fig. 7(a). In this configuration, the FEEL exploits
the homogeneous data distribution in the cell, which also
benefits to the far EDs that have the similar data distributions
to the ones at the nearby EDs.

c) Heterogeneous data, perfect power control: In
Fig. 6(c), we observe a non-negligible impact of the hetero-
geneous data distribution on the test accuracy. Although the
power control is ideal in this case, the maximum test accuracy
reduces to 77% from 97% for the proposed scheme with HP
and OBDA. On the other hand, the proposed scheme with
HPA and SP still provide a remarkably high test accuracy. As
discussed in Section IV-E3, this is because both HPA and SP
reduce the impact of converging EDs on the MV calculation.
From Fig. 7(c), we can identify the digits that are not learned
well. We observe that the digit 0 and the digit 9 are not learned
well since these digits are available in less number of EDs as
compared to other digits. Similar issue occurs for the digit 1
and digit 8. Hence, the MV is highly biased towards the labels
that are available at large in the cell under HP and OBDA.

d) Heterogeneous data, imperfect power control: In
Fig. 6(d), in addition to the data heterogeneity, the power
control is not ideal and we observe severe degradation in
accuracy. The maximum test accuracy reduces less than 70%
for the proposed scheme with HP and OBDA, while the
test accuracy is still high with HPA and SP. Under this
configuration, the local loss tend to increase with the distance,
i.e., the cell-edge EDs’ labels are harder to learn, as shown
in Fig. 7(d). As the cell-edge EDs’ received signal powers
are weak as compared the ones for the nearby EDs, the MV
is biased toward the nearby EDs’ local data. Therefore, the
digits available at the cell-edge EDs, e.g., digits 6, 7, 8, and
9, are not learned well for HP and OBDA. On the other hand,
the loss is reasonably small for both HPA and SP as these
approaches tend to address the bias by reducing the impact of
converging ED on the MV.

2) Test accuracy for different SP parameters: In Fig. 8, we
analyze how the test accuracy over the communication rounds
changes for different steepness and thresholds for SP. For this
analysis, we assume that the data distribution is heterogeneous
and the power control is not ideal, i.e., (𝛼eff = 2). In Fig. 8(a),
we set 𝜌 to 1 and gradually increase the threshold 𝓉 from
1𝑒−6 to 0.6. As can be seen from Fig. 8(a), the test accuracy
performance improves for increasing threshold and reaches
98% for 𝓉 = 0.01 and 𝓉 = 0.1. However, it sharply reduces
to 50% for 𝓉 > 0.1. In Fig. 8(b), for 𝓉 = 0.1, we alter 𝜌
under the same configuration. The result implies that a larger 𝜌
yields a better performance, which implies that SP can improve
accuracy further by employing a smoother weight function.
This result is also in line with the one in Fig. 4.

3) Waveform characteristics: Fig. 9(a) details the temporal
characteristics of OBDA, FSK-MV, and PPM-MV. We see
that the signal can be very peaky with OBDA when all the



11

100 200 300 400 500 600 700 800 900 1000

Communication rounds

0

10

20

30

40

50

60

70

80

90

100
A

c
c
u

ra
c
y
 [

%
]

OBDA w. TCI (ideal syn.)

OBDA wo. TCI (ideal syn.)

OBDA w. TCI (syn. errs.)

FSK-MV wo. TCI (syn. errs., HP)

FSK-MV wo. TCI (syn. errs., HPA, t:0.1)

FSK-MV wo. TCI (syn. errs., SP, t:0.1, :1)

PPM-MV wo. TCI (syn. errs., HP)

PPM-MV wo. TCI (syn. errs., HPA, t:0.1)

PPM-MV wo. TCI (syn. errs., SP, t:0.1, :1)

600 700 800 900 1000
94

95

96

97

98

99

(a) Homogeneous data, ideal power control (𝛼eff = 0).
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(b) Homogeneous data, imperfect power control (𝛼eff = 2).
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(c) Heterogeneous data, ideal power control (𝛼eff = 0).
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(d) Heterogeneous data, imperfect power control (𝛼eff = 2).

Fig. 6. Test accuracy versus communication rounds. The proposed scheme with HPA and SP provides robustness against time-synchronization errors,
heterogeneous data distribution even when the power control is imperfect.

QPSK symbols can be similar to each other. For PPM-MV,
this is not an issue as the votes are represented as separated
pulses in time. For a large 𝑀seq, the shape of the magnitude
of the pulse is similar to a rectangular window. For FSK-MV,
the temporal behavior is noise-like as it is based on OFDM.

Finally, we compare the PMEPR distributions in Fig. 9(b)
for OBDA, FSK-MV, and PPM-MV, which is an important for
factor for radios equipped with non-linear power amplifiers.
Since the FSK-MV introduces randomness in the frequency
domain with the randomization symbols, it exhibits a similar
behavior to a typical OFDM transmission in terms of PMEPR.
On the other hand, the OBDA can cause substantially high
PMEPR as the gradients can be correlated. The PMEPR for
PPM-MV depends on 𝑀seq and diminishes at the expense of
more resources in time.

VI. CONCLUDING REMARKS

In this study, we propose an OAC scheme to compute the
MV for FEEL. The proposed approach uses orthogonal time-

frequency resources, i.e., subcarriers for FSK-MV and wide-
band pulses for PPM-MV, to indicate the sign of the local
stochastic gradients. Thus, it allows the ES to detect the MV
with a non-coherent detector and eliminates the need for CSI
at the EDs at the expense of a larger number of time and
frequency resources. We investigate various gradient-encoding
strategies with weight functions to reduce the impact of an
ED that has a smaller absolute local stochastic gradient on
the corresponding MV. We theoretically show that enabling
absentees via the weight function, e.g., HPA, can considerably
improve the probability of detecting the correct MV. We also
prove the convergence of the FEEL by taking path loss, power
control, and cell size into account under HP and HPA. Through
simulations, we demonstrate that the proposed method can
provide a high test accuracy in fading channel even when
the power control and the time synchronization are imperfect
while resulting in an acceptable PMEPR distribution. We also
provide insights into the scenarios where local data distribution
depends on the EDs locations. Our results indicate that the
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(d) Heterogeneous data, imperfect power control (𝛼eff = 2).

Fig. 7. Local loss versus link distance. The available labels are indicated as {· · · }.

proposed OAC scheme with SP and HPA can address the bias
in the MV under the heterogeneous data distribution and/or
imperfect power control.

The proposed scheme opens up several research directions.
We show the existence of non-zero threshold for HPA to
reduce the error probability in Lemma 2. However, deriving
an optimal (or sufficiently good) threshold is currently an
open problem due to the unknown gradient distributions.
Secondly, more theoretical results are needed to understand
the performance of the proposed scheme in heterogeneous data
distribution scenarios. Also, the weight function along with
the rule in (9) can be optimized further to address unbalanced
scenarios where EDs have non-identical dataset sizes or non-
stationary cases where EDs leave or re-join the network.

APPENDIX A
PROOF OF LEMMA 1

Proof: Due to the independent random variables, by using
(4), 𝜇+

𝑖
can be calculated as

E
𝑟𝑘 ,H

(𝑡 )
𝑘
,n(𝑡 )

𝑚 ,D̃𝑘

[
𝑒+𝑖

]
=

𝐾∑︁
𝑘=1
𝑔̃
(𝑡 )
𝑘,𝑖
>0

E𝑟𝑘 [𝑃𝑘 ]︸    ︷︷    ︸
,𝛾

EH(𝑡 )
𝑘
,D̃𝑘

[
‖C𝑙+TH

𝑀𝚲(𝑡)
𝑘

T𝑀d(𝑡)
𝑘,𝑚

‖2
2

]
︸                                        ︷︷                                        ︸

≈𝑀seq𝐸s𝜁

+ En(𝑡 )
𝑚

[
‖C𝑙+ ñ(𝑡)

𝑚 ‖2
2

]
︸                 ︷︷                 ︸

=(𝑀seq+𝑀gap)𝜎2
n

≈ 𝑀seq𝐸s𝐾
+
𝑖 𝛾𝜁 + (𝑀seq + 𝑀gap)𝜎2

n .

The approximation given for the second expectation is exact
for the FSK-MV since T𝑀 is an identity matrix, but it
approximately holds for the PPM-MV as the interference
between the PPM symbols is negligibly low under the con-
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(a) Varying 𝓉 (𝜌 = 1).
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(b) Varying 𝜌 (𝓉 = 0.1).

Fig. 8. Test accuracy for different 𝓉 and 𝜌 for SP under imperfect power
control (𝛼eff = 2) and heterogeneous data distribution.

dition given in (13). Based on (1), 𝛾 can be expressed as
𝛾 = E𝑟𝑘 [(𝑟𝑘/𝑅ref)−𝛼eff 𝑃ref]. Due to the uniform deployment
within the cell, the link distance distribution is 𝑓 (𝑟) =

2𝑟/(𝑅2
max − 𝑅2

min). Hence, the distribution of 𝑦 , 𝑟−𝛼eff can
obtained as

𝑓 (𝑦) = 𝑓 (𝑟)
| 𝑑𝑦
𝑑𝑟

|

����
𝑟=𝑦

− 1
𝛼eff

=
2𝑦−

𝛼eff+2
𝛼eff

(𝑅2
max − 𝑅2

min)𝛼eff
. (34)

From (34), 𝛾 is equal to (20). Also, 𝜁 ≤ 1 as 𝜔(𝑥) ≤ 1. The
same analysis can be done for 𝜇−

𝑖
.

APPENDIX B
PROOF OF LEMMA 2

Let 𝑋 , 𝑍 , and 𝑌 be random variables for counting the
number of EDs that vote for the correct direction (i.e., the
sign of 𝑔 (𝑡)

𝑖
), do not cast a vote, and vote for the incorrect

(a) The waveforms in the time domain. The mean sample power is set to 1
for comparison.
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Fig. 9. Temporal waveform characteristics. While the randomization symbols
in FSK-MV lowers the PMEPR, the PMEPR depends on the pulse width for
PPM-MV. For OBDA, the PMEPR can be very high since the local gradients
are correlated.

direction (i.e., the sign of −𝑔 (𝑡)
𝑖

), respectively. We can express
the error probability 𝑃err

𝑖
as

𝑃err
𝑖 =

𝐾∑︁
𝐾 +
𝑖
=0

𝐾−𝐾 +
𝑖∑︁

𝐾−
𝑖
=0

Pr
(
sign

(
Δ
(𝑡)
𝑖

)
≠ sign

(
𝑔
(𝑡)
𝑖

)
|𝑋 = 𝐾+

𝑖 , 𝑌 = 𝐾−
𝑖

)
× Pr

(
𝑋 = 𝐾+

𝑖 , 𝑌 = 𝐾−
𝑖

)
. (35)

Based on Assumption 2, we can express the independent
probability in (35) with a binomial distribution as

Pr
(
𝑋 = 𝐾+

𝑖 , 𝑌 = 𝐾−
𝑖

)
=

(
𝐾

𝐾 + 𝐾−
𝑖

) (
𝐾 + 𝐾−

𝑖

𝐾−
𝑖

)
𝑝
𝐾 +
𝑖

𝑖
𝑞
𝐾−
𝑖

𝑖
𝑧𝑖
𝐾−𝐾 +

𝑖
−𝐾−

𝑖 . (36)

To calculate the posterior in (35), the PDF of Δ(𝑡)
𝑖

is needed
for given 𝐾+

𝑖
and 𝐾−

𝑖
, which can be calculated via the prop-
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erties of exponential random variables under Assumption 1
as

𝑓 (𝑥) =


e
− 𝑥
𝜇−
𝑖
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e
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𝜇+
𝑖

𝜇+
𝑖
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𝑖

, 𝑥 > 0
. (37)

By using the PDF in (37), it can be shown that Pr (𝑥 < 0) =
𝜇−
𝑖
/(𝜇+

𝑖
+ 𝜇−

𝑖
). Therefore, by using Lemma 1 and considering

𝜁+
𝑖
= 𝜁−

𝑖
= 1 for HPA, we can express the posterior probability

as

Pr
(
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(
Δ
(𝑡)
𝑖

)
≠ 1|𝑋 = 𝐾+
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=
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𝑖
+ 2/𝜉 , (38)

for 𝜉 , 𝑀seq𝛾𝐸s/((𝑀seq + 𝑀gap)𝜎2
n ) = 2𝛾/𝜎2

n . Let 𝑛 denote
𝐾+
𝑖
+ 𝐾−

𝑖
for simplifying the notation. We evaluate the sum in

(35) under Assumption 7, by plugging (36) and (38) into (35),
as
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𝐾−𝑛

𝑛∑︁
𝐾−
𝑖
=0

𝐾−
𝑖
+ 1/𝜉

𝑛 + 2/𝜉

(
𝑛

𝐾−
𝑖

)
𝑝
𝑛−𝐾−

𝑖

𝑖
𝑞
𝐾−
𝑖

𝑖︸                                   ︷︷                                   ︸
𝑛

𝑞𝑖
1−𝑧𝑖

+ 𝜎2
n

2𝛾

𝑛+ 𝜎2
n
𝛾

(1−𝑧𝑖)𝑛

=
1
2
𝐴(𝑧𝑖) +

𝑞𝑖

1 − 𝑧𝑖
(1 − 𝐴(𝑧𝑖)) , (39)

where 𝐴(𝑧) ∈ [0, 1] is defined in (26). To obtain (39), we use
the identity given by

𝐾∑︁
𝑛=0

𝑎𝑛 + 𝑏
𝑛 + 𝑐

(
𝐾

𝑛

)
𝑝𝑛 (1 − 𝑝)𝐾−𝑛

= 𝑎 +
(
𝑏

𝑐
− 𝑎

)
(1 − 𝑝)𝐾 2𝐹1

(
𝑐,−𝐾; 𝑐 + 1;

𝑝

𝑝 − 1

)
,

for non-negative 𝐾 , 𝑎, 𝑏, 𝑐, and 𝑝 [36].

APPENDIX C
PROOF OF THEOREM 1

Proof: By using Assumption 4 and (15), we can express
the improvement in the loss as

𝐹 (w(𝑡+1) ) − 𝐹 (w(𝑡) ) ≤ −𝜂g(𝑡)Tṽ(𝑡) + 𝜂
2

2
‖L‖1

= − 𝜂‖g(𝑡) ‖1 +
𝜂2

2
‖L‖1

+ 2𝜂
𝑄∑︁
𝑖=1

|𝑔 (𝑡)
𝑖

|I
[
sign

(
Δ
(𝑡)
𝑖

)
≠ sign

(
𝑔
(𝑡)
𝑖

)]
.

Therefore,

E[D̃𝑘 ]

[
𝐹 (w(𝑡+1) ) − 𝐹 (w(𝑡) ) |w(𝑡)

]
≤ −𝜂‖g(𝑡) ‖1 +

𝜂2

2
‖L‖1

+ 2𝜂
𝑄∑︁
𝑖=1

|𝑔 (𝑡)
𝑖

| Pr
(
sign

(
Δ
(𝑡)
𝑖

)
≠ sign

(
𝑔
(𝑡)
𝑖

))
︸                                 ︷︷                                 ︸

,𝑃err
𝑖︸                                             ︷︷                                             ︸

Error

. (40)

The main challenge is to obtain an upper bound on the error
term in (40) that is a function of the stochasticity of the
local gradients and the detection performance of the proposed
scheme.

Let us use definitions in (22), (23), and (23) for 𝑝𝑖 , 𝑧𝑖 , and
𝑞𝑖 , respectively. Based on Lemma 2 and by Assumption 7, we
can obtain a bound on 𝑃err

𝑖
as

𝑃err
𝑖 =

1
2
𝐴(𝑧𝑖) +

𝑞𝑖

1 − 𝑧𝑖
(1 − 𝐴(𝑧𝑖))

≤1
2
𝐴(𝑧max) +

𝑞𝑖

1 − 𝑧max
(1 − 𝐴(𝑧max)) . (41)

We now need to relate the bound in (41) to the learning
parameters and the channel conditions. To this end, without
loss of generality assume that 𝑔 (𝑡)

𝑖
is negative. By Assumption

5, Assumption 6 and utilizing the Gauss inequality, we can
obtain a bound on 𝑞𝑖 as

𝑞𝑖 = Pr
(
sign

(
𝑔̃
(𝑡)
𝑘,𝑖

)
= sign

(
𝑔
(𝑡)
𝑖

)
|𝜔

(
𝑔̃
(𝑡)
𝑘,𝑖

)
≠ 0

)
= Pr

(
𝑔̃
(𝑡)
𝑘,𝑖
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𝑖
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𝑖
|
)

= Pr
(
𝑔̃
(𝑡)
𝑘,𝑖
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𝑖
|
)

=
1
2

Pr
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|𝑔̃ (𝑡)
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𝑖

| > 𝓉(1 − 𝜌) + |𝑔 (𝑡)
𝑖

| |𝑔 (𝑡)
𝑖
< 0

)
≤ 1

2


4
9

𝜎2
𝑖
/𝑛b

(𝓉 (1−𝜌)+ |𝑔 (𝑡 )
𝑖

|)2
,

𝓉 (1−𝜌)+ |𝑔 (𝑡 )
𝑖

|
𝜎𝑖/

√
𝑛b

> 2√
3
,

1 − 𝓉 (1−𝜌)+ |𝑔 (𝑡 )
𝑖

|√
3𝜎𝑖/

√
𝑛b

, otherwise ,

≤ 1/2
1√
3
𝓉 (1−𝜌)+ |𝑔 (𝑡 )

𝑖
|

𝜎𝑖/
√
𝑛b

+ 1
. (42)

Hence, by using (42) in (41), an upper bound on the error
term in (40) can be obtained as

𝑄∑︁
𝑖=1

|𝑔 (𝑡)
𝑖

|𝑃err
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=
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𝑖=1

√
3𝜎𝑖√
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𝑖

|
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2
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3
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Based on Assumption 3, we perform a telescoping sum over
the iterations and calculate the expectation over the random-
ness in the trajectory as

𝐹∗ − 𝐹 (w(0) ) ≤ E
[
𝐹 (w(𝑇 ) )

]
− 𝐹 (w(0) )

= E

[
𝑇 −1∑︁
𝑡=0

𝐹 (w(𝑡+1) ) − 𝐹 (w(𝑡) )
]

≤ E
[
𝑇 −1∑︁
𝑡=0

−𝜂(1 − 𝐴(𝑧max))‖g(𝑡) ‖1 +
𝜂2

2
‖L‖1

+
√

3𝜂
√
𝑛b

1 − 𝐴(𝑧max)
1 − 𝑧max

𝑔max

𝓉(1 − 𝜌) + 𝑔max
‖σ‖1

]
.

(43)

By rearranging the terms in (43), we obtain (31).
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