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Abstract—IoT devices recently are utilized to detect the state
transition in the surrounding environment and then transmit the
status updates to the base station for future system operations. To
satisfy the stringent timeliness requirement of the status updates
for the accurate system control, age of information (AoI) is
introduced to quantify the freshness of the sensory data. Due
to the limited computing resources, the status update can be
offloaded to the mobile edge computing (MEC) server for execu-
tion to ensure the information freshness. Since the status updates
generated by insufficient sensing operations may be invalid and
cause additional processing time, the data sensing and processing
operations need to be considered simultaneously. In this work,
we formulate the joint data sensing and processing optimization
problem to ensure the freshness of the status updates and reduce
the energy consumption of IoT devices. Then, the formulated
NP-hard problem is decomposed into the sampling, sensing
and computation offloading optimization problems. Afterwards,
we propose a multi-variable iterative system cost minimization
algorithm to optimize the system overhead. Simulation results
show the efficiency of our method in decreasing the system
cost and dominance of sensing and processing under different
scenarios.

Index Terms—Age of information, mobile edge computing,
computation offloading, status update.

I. INTRODUCTION

A. Background and Motivation

With the development of Internet of Things (IoT) Infrastruc-
ture, ubiquitous connection of billions of IoT devices ranging
from tiny IoT sensors to the more powerful smarts phones
is enabled to be realistic [1]. To emerge the various IoT
applications like object recognition, traffic monitoring and
autonomous driving, vast information from the physical world
should be extracted and transformed into status updates to
realize the intelligent control for IoT devices [2]. Considering
the processing operations of the status update are commonly
time-consuming and computation-intensive, it is a tough task
to process the sensory data in a timely manner for IoT
devices with limited storage and computation capacity. Mobile
edge computing (MEC) has been regarded as a promising
technology to overcome the resource constraints of IoT devices
by yielding cloud-like computing resources [3], [4]. In this
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case, IoT devices are able to offload the computing tasks to the
nearby MEC server for further execution. Through deploying
powerful computing resources in proximity to IoT devices
and executing computing tasks on behalf of IoT devices,
the computing and storage pressure of IoT devices can be
relieved [5], [6].

Moreover, the accurate monitoring of the IoT system has
a strict requirement on the freshness of the collected infor-
mation. Recently, age of information (AoI) which is defined
as the time elapsed since the generation of the last status
update is adopted as a performance metric to quantify the
freshness of generated status information [7]. When an IoT
device generates and receives a status update successfully,
its value of AoI is reset to 0. The AoI of the status update
increases linearly with time until the next status update is
successfully received. The average value of the AoI during
the continuous sensing periods reflects the freshness of the
sensory data [8]. By introducing the concept of AoI, the
abstract information freshness problem can be transformed
into a concrete mathematical optimization problem.

The typical IoT system can be constructed as a three-layered
structure including the sensing layer, the network layer and
the application layer [9]. In the sensing layer, the IoT devices
will keep sensing the state transition process and generate
state updates when deemed necessary. Then, the sensory data
are transmitted through the network layer for processing and
future system control. By repeatedly receiving the valid status
update from different IoT devices, the AoI at the BS can be
reduced during the system control process [10]. To clarify
our work in this paper, sensing and processing are explicitly
defined in this paper as follows.

Definition 1: Sensing of the IoT device is defined as the
process that the IoT device observes the environment transition
and generates the status update when necessary.

Definition 2: Processing is defined as determining whether
a status update is valid and extracting the information from
the status update necessary to perform system control.

However, in the sensing layer, in order to ensure the
information freshness on the BS side, IoT devices should
perform the sampling operations and generate status updates
at as high a frequency as possible. With the short sampling
interval, the BS can achieve a low value of AoI due to the
frequent status updates [11]. But sampling the state transition
frequently brings additional energy consumption, which is
not negligible for IoT devices with limited battery capacity.
Moreover, successfully sensing the state updates may be a
random event for IoT devices, due to the possible state tracking
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Fig. 1. Example of the sensing-processing procedure.

error rate [12], [13]. Longer sensing time can significantly
improve the sensing successful rate, at the cost of additional
time overhead and freshness of status updates. In addition, if
the sensing time is insufficient, multiple sensing failures can
lead to multiple unnecessary repetitions of sensing process.
As the data sensing-processing procedure shown in Fig. 1, the
IoT device that performs sensing operations three times will
receive a longer sensing time and a short total task duration
time. Nevertheless, the IoT device only performs a single
sensing operation generates the invalid update unfortunately
and has to execute the extra sensing-processing procedure until
the sensing operation is successful. Thus, the sensing time of
the IoT device should be considered to obtain the minimum
time overhead.

In the processing part, since some information embedded in
the sensory data requires further processing before it can be
utilized for further system control, the execution time of the
sensing task of the IoT device also has a significant impact
on the freshness of the status update. Due to the computation
capacity limitations of the IoT devices themselves, they would
prefer to offload the tasks to the MEC server for execution
to obtain shorter processing time. But selfish IoT devices
will compete for limited computational and communication
resources, which may create utility conflicts and increase the
system overhead during the computation offloading decision-
making process [14], [15].

B. Contribution

In view of these challenges mentioned above, we further
analyze the joint optimization problem of sensing and process-
ing in MEC system. By investigating the effects of sampling,
sensing, and processing on system overhead independently, we
seek to realize the IoT device sensing and processing trade-off
in terms of the information freshness and energy consumption
for IoT devices. The main contributions of the paper can be
summarized as follows.
• We first introduce a MEC-assisted IoT system, where the

IoT devices keep generating status update periodically.
Then, the state sensing, data transmission and task pro-
cessing are modeled separately and the AoI of the sensory
data during the status updating process is formulated.

• We formulate a joint sensing and processing optimization
problem for status updates to minimize the system over-
head including the energy consumption and the informa-
tion freshness. Then, the NP-hard problem is transformed
into three subproblems to optimize the sampling interval,
sensing time and computation offloading decision indi-
vidually.

• We solve the sensing and sampling subproblems with
extremum principles, and solve the computation of-
floading decision-making problem with a game-theoretic
approach. Then, a multi-variable iteration system cost
optimization algorithm (MISCO) is proposed to minimize
the system overhead.

• We conduct the simulation experiments to prove the
effectiveness of our proposed optimization algorithm.
Numerical results illustrates the connection between the
data sensing and processing.

C. Organization

The rest of this paper is organized as follows. In Section
II, we discuss the related works. In Section III, we present
the MEC-assist IoT system model and formulate the sensing,
transmission and processing models during the status update
process. In Section IV, we analyze the AoI in the considered
system. In Section V, we propose the system overhead opti-
mization problem and decompose the problem into sensing,
sampling and processing subproblems. In Section VI, the
joint sensing and processing optimization algorithm MISCO is
proposed. In Section VII, we show the numerical results of the
simulation experiment. Finally in Section VIII, we conclude
our paper.

II. RELATED WORK

Freshness of the status update has emerged as a recent
highlight in the field of network research, which leads to
the increasing research interest in AoI served as the metrics
to measure the freshness of information [16]–[21]. Yates et
al. in [16] investigate real-time status updates generated by
multiple independent sources sending to a single monitor with
an AoI timeliness metric and derive the general values of AoI
suitable for various multi-source service system. Kadota et al.
in [18] study a single-hop wireless network where multiple
nodes transmits time-sensitive information to the base station
while minimizing the expected weighted total AoI of the
network and satisfying the just-in-time throughput at the same
time. Feng et al. in [19] design an optimal strategy for the
energy harvesting sensor to generate status updates with the
purpose of minimizing the long-term average AoI and satisfy-
ing the energy constraint in the different cases of whether the
system has updating feedback. Zhou et al. in [20] study a time-
intensive IoT monitoring system where IoT devices continuous
generate and transmit the status updates with updating cost.
Through simultaneously optimizing the sampling and updating
process, the minimum average AoI of the destination node is
derived under the upper bound of the updating cost. Chen et al.
in [21] investigate the AoI-aware radio resource management
problem in a Manhattan Grid vehicle-to-vehicle network to
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realize the optimal frequency allocation and packet scheduling
decision-making.

Several relative works have been conducted in the context of
the optimization of data sensing [2], [10], [22]–[24]. Peng et
al. in [2] propose a joint sensing and communication schedul-
ing framework for status update in the multi-access network
to minimize the average status error. The trade-off between
the data sensing and data transmission are investigated to
minimize the long-term average AoI during multiple sensing
cycles in [10], [22]. In [23], [24], UAV trajectory optimization
problem where UAV performs the sensing tasks to collect
the time-intensive data are studied to satisfy the system AoI
threshold.

In addition to the issues mentioned above, the collected
data should be offloaded to the MEC server for low-latency
processing. Due to the resource competition among IoT de-
vices, computation offloading optimization problem need to be
considered. Computation offloading decision-making problem
has been widely investigated to address the computation
capacity constraint and communication interference. Game-
theoretic method has been introduced to address the computa-
tion offloading decision-making problem [25]–[28]. Chen et al.
in [25] first utilize the concept of the potential game to achieve
the Nash equilibrium of the computation offloading game.
Yang et al. in [26] propose a computation offloading game
including multiple computation offloading schemes which take
advantage of the available resources of the idle mobile devices.

However, most of the studies have focused on reducing
processing latency and system energy consumption while per-
forming computation offloading decision making, ignoring the
role of information freshness in improving service quality. In
addition, the state-sensing procedure may generate invalid state
updates, resulting in extra processing time and deteriorating
the service quality. Therefore, the sensing and processing
operations need to be considered jointly to ensure the freshness
of the status update and minimize the system overhead.

III. SYSTEM MODEL

A. Network Model

We consider a typical MEC-assisted IoT system with a set
N of N IoT devices and an MEC server. The IoT devices
monitor a physical process like the traffic condition in the
autonomous driving system. When deemed necessary, the IoT
devices sample the status information and generate the status
update which need to be processed further to achieve the
accurate control. The status sampling process of each IoT
device i is independent of each other, and takes the periodic
delivery sampling policy of sensor updates which is one of
the most common approaches in practice [30]. The sampling
intervals of IoT devices are denoted as T = {τ1, τ2, ..., τN}.
The MEC server functions as a MEC server provider which is
located in proximity to the IoT devices, and can be accessed
by the IoT devices via the wireless channel. IoT devices that
transmit computing tasks to the MEC server will be associated
with clones at MEC server which execute computing tasks on
behalf of IoT devices [29]. Considering the constraint of IoT
devices’ computation capability, each IoT device can choose to

Fig. 2. Example of MEC-assisted IoT system.

process the status information locally with its own processor or
to offload the sensed data to the MEC server or more powerful
computing resources. After extracting the required information
from the raw status data, the computing results are transmitted
to the BS for future system control. To keep the freshness
of the status information and guarantee the accurate control,
the sensing, transmission and processing process needs to be
executed repeatedly. Fig. 2 shows the status offloading and
processing procedure.

B. Sensing Model

In this section, we describe the data sensing process of
generating status updates for IoT devices. Let tunit

i be the
sensing time for IoT device i to perform a whole sensing
task once. The status update processing task generated by IoT
device i can be represented as a tuple Ui = {di, ci}, where di
denotes the size of the sensory data generated in one sensing
operation and ci denotes the necessary CPU cycles to finish
the computing tasks.

To evaluate the sensing quality of IoT devices, we utilize
the probabilistic sensing model proposed in [31]. When an
IoT device executes a sensing task, the successful sensing
possibility is denoted as

%i = e−ξD
s
i , (1)

where Ds
i is the distance between the IoT device and the status

changing event and ξ is a positive parameter to evaluate the
quality of IoT device detection depending on the environmen-
tal condition. Considering one single data sensing operation
will not satisfy the sensing successful possibility requirement,
the IoT device may repeat the sensing operation to improve the
sensing successful possibility. Let S = {s1, s2, ..., sN} be the
number of sensing operations executed by the IoT devices in a
sensing operation. After finishing multiple sensing operations,
the sensing successful possibility is denoted as

Pi (si) = 1− (1− %i)si . (2)

To ensure the sensing quality, the successful sensing possibility
should be lower bounded. Let pmin be the threshold for
the successful sensing possibility of IoT devices. When IoT
devices execute sensing operations, the successful sensing
probability should satisfy:

Pi (si) ≥ pmin, ∀i ∈ N . (3)

Note that as the number of sensing operations increases, the
IoT device achieves the higher sensing successful possibility.
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However, the multiple sensing operations will lead to a longer
sensing time and larger sensing energy consumption. For IoT
device i, the sensing time T ses

i is denoted as

T ses
i (si) = tunit

i si. (4)

To process the generated status update in time, the sensing time
should not exceed the sampling frequency. Otherwise, before
the information of the status update is extracted, another new
status update is generated by the IoT device, which make the
information of the former status update outdated. Thus, the
sensing time should satisfy the constraint:

1 ≤ si ≤
⌊
τi
tunit
i

⌋
. (5)

Let ei be the energy cost for IoT device i to detect the status
information per bit sensed data, the energy consumption of
one single sensing process is

Eses
i (si) = eidisi. (6)

It is worth noticing that the IoT devices will not figure out
whether the status update is generating successfully from the
raw sensory data. Further processing operations are required to
verify the validity of the generated status update. If the sensing
process is failed, the sensory data will be removed and the
control unit will send the request of generating another new
status update to the IoT device. If the IoT device has generated
a new status update before receiving the request, the request
will not be further tackled with. Otherwise, the IoT device
will restart the sensing process immediately regardless of the
sampling interval.

C. Transmission Model

When finishing the sensing procedure and generating a
new status update, the IoT devices need to further process
the status update to verify the validity of status update and
extract the status information. Since some IoT devices are
limited in computation capability, they need to transmit their
status updates to the edge server for further processing. Let
x = {x1, x2, ..., xN} be the transmission policies for all the
N IoT devices, in which the elements can be expressed as
follows.

xi =

{
1, IoT device i is transmitted to edge server.
0, otherwise.

(7)

When the IoT device decides to transmit its status update to
the edge server for processing, the transmission rate for the
status update can be written as

ri(x) = B log2

(
1 +

gi,spi
ω0 +

∑
m∈N ,m6=i xmgm,spm

)
, (8)

where B is the channel bandwidth allocated to the IoT device
i, gi is the channel gain between device i and the edge node, pi
represents the device i’s transmission power, and ω0 represents
the background interference power. Then, the transmission
latency is calculated as

T trans
i (x) =

di
ri(x)

. (9)

Besides, the transmission energy consumption can be ex-
pressed by

Etrans
i (x) = pi ×

di
ri(x)

. (10)

D. Computation Model

In this subsection, we introduce the computation model of
the status update. Dependent on the different computation
offloading strategies taken by the IoT devices, the time and
energy to execute the computation tasks of the status updates
are different. If the IoT device choose to process the status
update with its own local processor, the computation latency
is denoted as

T local
i =

ci
fi
, (11)

where fi represents the CPU frequency of the local processor
in IoT device i. Besides, processing the computation task
locally brings extra energy consumption to the IoT device
itself, which is calculated as

Elocal
i = ciδ. (12)

where δ is the energy consumption cost per CPU cycle. For the
edge computing approach, the computation task is transmitted
to the edge server for further processing and the computation
latency is expressed by

T edge
i =

ci
fe
. (13)

where fe denotes the CPU frequency of the edge server.

IV. AGE OF INFORMATION ANALYSIS

Note that the sensory information varies with time, so the
freshness of status information has an essential impact on the
accurate monitoring and controlling. We introduce the concept
of AoI to evaluate the freshness of the status update generated
by IoT devices. Let Ai(t) be the AoI of the IoT device i with
Ai(0) = 0, and the AoI is defined as the time elapse from the
last valid status update received by the control unit. One status
update is valid to the control unit when the sensing process of
the status update is success and the computation of the status
update is finished. The AoI of the status update grows from the
Beginning of the sensing, and keeps increasing until the next
valid status update received by the control unit. Let T j,prcs

i

be the processing time to conduct j processing operations,
and T j,prcs

i = j × T 1,prcs
i . Based on the different offloading

strategies, the processing time of one single process operation
is calculated as

T 1,prcs
i (si,x) = T ses

i (si) +
(
T trans
i (x) + T edge

i

)
∗ xi

+ T local
i ∗ (1− xi). (14)

However, the sensing time might be too short for IoT devices
to successfully generate a valid status update with only one
sensing operation. After finishing the computation execution,
the control unit may find the uploaded status update fail
to meet the requirement, i.e. the sensing processing is not
successful. Under such scenario, the status update will be
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Fig. 3. Example of AoI

dismissed and a request will be sent to the IoT device to repeat
the sensing process to generate another status update.

Theorem 1: For IoT device i, the average number of
processing time for IoT devices to finish a processing task
is T 1,prcs

i (si,x)

Pi
.

Proof: Please see Appendix A.
Next, we derive the AoI of the status updates. Note that the

information embedded in the status update makes sense after
processing. The AoI at time t of the i-th IoT device is denoted
as

∆i(t) = t− ai(t), (15)

where ai(t) is the time when the latest status update generated
by the IoT device i is successfully sensed and processed.
Without loss of generality, we assume the initial observing
time is t1 = 0, and the initial AoI is ∆0. As shown in the Fig.
3, the AoI grows linearly during the sensing and processing
procedure and reset to a smaller value when a new status
update is successfully accepted. Let tj be the time when the
j-th status update generated and finish processing at the time
t′j . Let Yj denote the system time of the status update j, which
is defined as

Yj = t′u − tj , (16)

where t′u is the time when the next status update is successfully
sensed and executed. Specifically, when the status update j is
valid, Yj = t′j , i.e. the finishing time of the status update j.
Besides, Xj denotes the time between the generation of two
continuous status update j and j + 1, which is given by

Xj = tj+1 − tj . (17)

Based on the definition above, the average AoI of the IoT
device i is denoted as

∆i =
1

T

∫ T

0

∆i (t) dt. (18)

For the sake of simplicity, we consider the time interval with
T = t′n which is displayed in Fig. 3. To calculate the average
AoI, the area is divided into several geometric parts which is

expressed by the concatenation of polygons Qj . Hence, the
average AoI is given by

∆i =
1

T

n+1∑
j=1

Qj . (19)

The area of the polygons are calculated differently. For j = 1,
Q1 = ∆0(X1 + Y2). For 2 ≤ j ≤ n, the area of the trapezoid
Qj is calculated by the difference between two triangles,
which is

Qj =
1

2
(Xj−1 + Yj)

2 − 1

2
Y 2
j

=
1

2
X2
j−1 + YjXj−1. (20)

Besides, the area of the Qn+1 is the area of a triangle with a
width of Yn. Hence, the equation (19) can be rewritten as

∆i = lim
T→∞

Q1 +Qn+1 +
∑n
j=2Qj

T

= lim
T→∞

[
Q1 +Qn+1

T
+
n− 1

T

∑n
j=2( 1

2X
2
j−1 + YjXj−1)

n− 1

]
.

(21)

As T becomes larger, i.e. T →∞, the value of Q1+Qn+1

T can
be ignored consequently and n−1

T can be treated as the value
of 1

E[X] . From the analysis above, we have

∆i =
E[Q]

E[X]
=

1
2E[X2] + E[XY ]

E[X]
. (22)

Considering the sensing model mentioned above, the value of
E[X] is dependent on the the sampling interval, which is given
by E[X] = τi.

Besides, the value of E[Y ] is identical to the average
processing time of a successful status update E[T prcs

i ]. Since
Xj is independent of Yj , we derive the average AoI as

∆i (si, τi,x) =
1

2
E[X] + E[Y ]

=
1

2
τi +

T 1,prcs
i (si,x)

Pi(si)
. (23)

V. PROBLEM FORMULATION

A. Problem Formulation

For a IoT device, the freshness of the generated status
update plays a key role in accurate monitoring and controlling.
Hence, the AoI of the status update should be well considered
when evaluating the performance of the IoT device. Besides,
energy consumption is another significant performance metric
due to the physical constraint of IoT devices, and the sensing,
transmission and computation operations all consume the
energy during the IoT devices running procedure. The average
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value of IoT device i is dependent on the energy consumption
per time slot, which is given by

Ei (si, τi,x)

= lim
T→∞

∑n
j=1[Eses

i (si) + Etran
i (x) ∗ xi + Elocal

i ∗ (1− xi)]
T

=
Eses
i (si) + Etran

i (x) ∗ xi + Elocal
i ∗ (1− xi)

E[X]

=
Eses
i (si) + Etran

i (x) ∗ xi + Elocal
i ∗ (1− xi)

τi
. (24)

As discussed above, the overhead of the computation of-
floading problem includes both the average AoI and energy
consumption, which can be formulated as

Ci(si, τi,x) = µt∆i (si, τi,x) + µeEi (si, τi,x) , (25)

where µt and µe are the weight parameters of the AoI and
energy consumption respectively. For all the IoT devices, the
optimization objective is to minimize the total overhead, which
is expressed by

P : min
S,τ,x

N∑
i=1

Ci(si, τi,x) (26a)

s.t. 1 ≤ si ≤
⌊
τi
tunit
i

⌋
∀i ∈ N , (26b)

xi ∈ {0, 1} , ∀i ∈ N (26c)
τi ≥ τmin, ∀i ∈ N (26d)
Pi (si) ≥ pmin, ∀i ∈ N (26e)
N∑
i=1

xidi ≤ De. ∀i ∈ N (26f)

where De is the data threshold of the MEC server. Constraints
in (26b) ensure the sensing time for a IoT device will not
exceed the sampling interval. Constraint (26c) guarantees the
offloading decision for each IoT device is binary. Constraint
(26d) is the lower bound of the sampling interval for IoT
devices. Constraints (26e) is the lower bound of the successful
sensing probability. Constraint (26f) means the upper bound
of the data size of the MEC server.

B. Problem Decomposition

Considering s and x are both discrete variables, the feasible
set of Problem (26a) is non-convex. Besides, the variables con-
tains both continuous variables and discrete variables, which
makes the optimization problem NP-hard [32]. In this part,
we decompose the optimization problem into several subprob-
lems: sampling interval optimization, sensing optimization and
computation offloading optimization.

Sampling Interval Optimization: Due to the constraint
(26b), the upper bound of the sensing time is dependent on the
sampling interval of IoT devices. Hence, to obtain the optimal
sensing time, the sampling period should be determined first.
Note that the sampling interval has a great influence on the AoI
and energy consumption of IoT devices. When the IoT devices
generates status updates more frequently, i.e. the smaller τi
for IoT device i, the AoI decreases accordingly. However, the

energy consumption will increase greatly due to the frequent
sampling action. In this subproblem, we study the optimal
sampling interval for IoT devices to achieve the trade-off
between the AoI and energy consumption, which is denoted
as

P1 : min
T

N∑
i=1

Ci(τi)

s.t. (26d). (27)

Sensing Time Optimization: Based on the result of the
sampling interval optimization, the upper bound of sensing
time is fixed. With the more sensing times, the sensing suc-
cessful probability is greatly improved. However, the excessive
sensing operation may lead to unnecessary sensing latency and
extra sensing energy consumption. To determine the suitable
sensing time for IoT devices, the problem P is rewritten as

P2 : min
S

N∑
i=1

Ci(si)

s.t. (26b), (26e). (28)

Computation Offloading Optimization: After solving P1

and P2, our goal is to find an optimal computation offloading
policy for all the IoT devices to minimize the system overhead.
The problem can be expressed as

P3 : min
x

N∑
i=1

Ci(x)

s.t. (26c), (26f). (29)

Although the MEC server is equipped with powerful com-
putation capability, the more IoT devices choose to transmit
computing tasks to MEC server will cause severe interference
which may lead to extra time consumption. Based on the
observations, we aim to optimize the computation offloading
strategies for IoT devices to minimize the system overhead.

VI. JOINT OPTIMIZATION OF SENSING AND COMPUTATION

In this section, we optimize the sampling interval, sensing
time, and computation offloading optimization respectively by
solving the subproblems proposed above. Then, we design an
iterative algorithm to solve the problem P to minimize the
system overhead jointly.

A. Sampling Interval Optimization

In this part, we solve the sampling interval optimization
problem P1 mentioned in (27). Given the fixed sensing time
and computation offloading policy, the value of T 1,prcs

i

Pi
remains
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unchanged. Therefore, for sake of simplicity, the expression
of P1 can be rewritten as

P1 : min
T

N∑
i=1

Cti (τi)

=

N∑
i=1

(
µtτi

2
+

µe
Eses
i (si) + Etran

i (x) ∗ xi + Elocal
i ∗ (1− xi)

τi

)
s.t. (26d). (30)

Since τi is the continuous variable, we calculate the the
derivative directly to discuss the variation trend to address
the optimization problem. Then, the derivative of Cti (τi) is
calculated as

∂Cti (τi)

∂τi
=
µt
2
− µeE

total
i

τ2i
, (31)

where Etotal
i = Eses

i (si) +Etran
i (x) ∗ xi +Elocal

i ∗ (1− xi) is a
constant. By solving ∂Cti (τi)

∂τi
= 0, we derive

τ∗i =

√
2µeE

total
i

µt
. (32)

Due to the derivative of Cti (τi) are positive when τi > τ∗i and
Cti (τi) is monotonic increasing, the optimal sample interval
will be the lower bound if τ∗i < τmin. Hence, the optimal
sampling interval is expressed as

τ∗i =

{ √
2µeEtotal

i

µt
, if
√

2µeEtotal
i

µt
> τmin,

τmin, otherwise.
(33)

B. Sensing Time Optimization

In this part, the subproblem (28) is considered to determine
the optimal number of the sensing time. Note that the value
of T 1,prcs

i and Pi increases with si and the value of Ci(si)
increases with T 1,prcs

i and decreases with Pi. Besides, when
the offloading policy is fixed, the cost of transmission and
processing is determined. From the analysis above, the value
of system overhead is rewritten with respect to the sensing
time as

P2 : min
S

N∑
i=1

Csi (si)

=

N∑
i=1

(
µt
T ses
i (si) + T ex

i

Pi(si)
+ µe

Eses
i (si) + Eex

i

τi

)

=

N∑
i=1

(
µt

tunit
i si + T ex

i

1− (1− pi)si
+ µe

eidisi + Eex
i

τi

)
s.t. (26d). (34)

where T ex
i =

(
T trans
i (x) + T edge

i

)
∗ xi + T local

i ∗ (1 − xi) and
Eex
i = Etran

i (x) ∗ xi + Elocal
i ∗ (1− xi) are constant when the

sampling interval and computation offloading policy remain
unchanged.

Algorithm 1 Enumerating for Sensing Time Optimization
Input: x,T.
Output: Optimal sensing times S.

1: for each IoT device i ∈ N do
2: Initialization: si = 1;

3: Computing Ci(si)
∣∣∣∣
si=1

;

4: while si ≤
⌊
τi
tunit
i

⌋
do

5: if Ci(si + 1) < Ci(si) then
6: si = si + 1;
7: else
8: break;
9: end if

10: end while
11: end for

To minimize the system overhead, the variation trend of the
objective function needs to be considered. To change the non-
convex feasible set into a convex set, we relax the discrete
variable si into real value variable as si ∈ [0,+∞]. It can
be verified that the function of Csi (si) is convex. Therefore,
the value of Csi (si) first decreases with si and increases with
the increment of si and there is only one optimal solution for
si. However, it is hard to achieve the optimal sensing time by
directly solving ∂Csi (si)

∂si
= 0. Considering the sensing time is

discrete and has a upper bound, an enumerating algorithm is
proposed to find the optimal sensing time, which is shown
in Algorithm 1. For each IoT device, the sensing time is
initially set as si = 1. The number of sensing operations keeps
increasing until the system overhead is no longer decreasing.
Considering the computation complexity of Algorithm 1 is
dependent on the sampling interval which is a constant and
the number of IoT devices. Let τ be the average value of the
sampling interval. The optimal sensing time s∗i can be derived
with the complexity no more than O (τN),

C. Computation Offloading Optimization

In this part, subproblem P3 is solved to determine the opti-
mal computation offloading policy with the aim of minimizing
the system cost. From the conclusion of [33], the computation
offloading decision-making problem can be transformed into
the maximum cardinality bin packing problem, which is NP-
hard. Therefore, finding a central solution to the subproblem
P3 is NP-hard. In view of the complexity of the offloading
computation optimization problem, game theory is introduced
to provide the decentralized way to conduct the computation
offloading decision making.

Before solving the offloading desicion making problem, the
data size constraint of the MEC server need to be considered.
Since the computation capacity of the MEC server is limited
in practise, the number of data which can be processed at the
same time is finite. When the data size of the MEC server
exceed the threshold, the MEC server will not be able to
serve the IoT devices any more. To meet the data constraint
proposed in (26f), we design a MEC server availability request
mechanism, which can be utilized to request for the computing
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resource before offloading the computing task to the MEC
server for processing. By virtue of the MEC server availability
request mechanism, IoT devices can perform rational decision
making without violating the data constraint of the MEC
server.

Specifically, when an IoT device finishes the sensing op-
eration and generates a status update, the IoT device first
makes a preliminary offloading decision making based on the
requirement of its computing task and the network condition.
Then, the IoT device will send a computation capability
request with the data size of the status update to the MEC
server to apply for the equivalent computation capability of
the MEC server. When the MEC server receives the request,
the MEC server first summarize all its computation tasks to
determine whether its computation capacity upper bound is
exceeded and the amount of spare computation capacity to
be allocated to IoT devices. If

∑N
i=1 xidi ≤ De, the MEC

server will permit the computation offloading request and sent
the computation capacity fe to the IoT device. Otherwise, the
data size of computing tasks transmitted to the MEC server is
beyond the data threshold of the MEC server. To reasonably
allocate the computing resource of the MEC server, the MEC
server will list the IoT devices that are being served by the
MEC server and eliminate the computing task with the most
value of the data size continuously until the data threshold De

is satisfied again. For those IoT devices are eliminated from
the service list, the MEC server will send a message with
the assigned value 0 of computation capacity to the deleted
IoT devices. Consequently, the processing time for those IoT
devices is infinite with 0 allocated computation capacity, and
the IoT devices will choose the local processing instead. By
virtue of the MEC server availability request mechanism, the
MEC server unavailability is addressed and the subproblem P3

is transformed into the offloading decision making problem.
Due to the data size of messages is relatively small, the
communication overhead caused by the availability request
mechanism can be ignored.

Then, we formulate the computation offloading decision
making problem as a computation offloading game. Let x−i =
{x1, . . . , xi−1, xi+1, . . . , xN} be the computation offloading
policy of the other IoT devices except i. With the knowledge
of the offloading strategies of other IoT devices, the IoT device
i perform the offloading decision making to minimize the
system cost, i.e.

min
xi∈x

Ci(xi, x−i),∀i ∈ N . (35)

The offloading decision making problem can be formulated as
a strategic game Γ = {N ,x, Ci}, where the IoT device set N
is the set of players, x is the set of strategies taken by players,
and the system cost Ci(xi, x−i) is the objective function to
be minimized. Then, we define the Nash equilibrium of the
game Γ as

Definition 3: A computation offloading strategy x∗ =
{x∗1, ..., x∗N} is a Nash equilibrium if no IoT devices can
further reduce the system overhead by unilaterally changing
its own computation offloading strategy, i.e.,

Ci(x
∗
i , x
∗
−i) ≤ Ci(xi, x∗−i),∀xi ∈ {0, 1} ,∀i ∈ N . (36)

For a multi-user computation offloading game, the Nash
equilibrium guarantees that each IoT device at the Nash
equilibrium will achieve a mutually satisfactory policy and
have no incentive to deviate from its original strategy. The
property is because if any IoT device is about to change its
offloading policy, it should obtain lower system cost by updat-
ing offloading policy, which is contradictory to the definition
the Nash equilibrium. Then, we define the best response for
each IoT device:

Definition 4: For IoT device i, the strategy x∗i is the best
response based on the policies of other users x−i, if the system
cost satisfies that

Ci(x
∗
i , x
∗
−i) ≤ Ci(xi, x∗−i),∀xi ∈ {0, 1} . (37)

To achieve the Nash equilibrium, all the IoT devices tend to
take the best response strategy.

Lemma 1: An IoT device will achieve the lower system cost
by offloading computing task to the MEC server for processing
based on the offloading strategy x, if the received interference
meets

∑
m∈N ,m 6=i xmgm,spm ≤ Li, where Li is denoted as

Li =
gi,spi

2

µtdiτi+µepidiPi

B[µtτi(T local
i

−T edge
i )+µePiE

local
i ] − 1

− ω0.

Proof: Please see the appendix B.
Accordingly, the best response of the IoT device i can be

expressed as

x∗i =

{
1, if

∑
m∈N\{i},xm=1gm,spm ≤ Li,

0, otherwise.
(38)

Based on Lemma 1, the computation offloading strategy of
IoT device i is mainly dependent on its own received interfer-
ence. To prove that the existence of the Nash equilibrium in
our proposed computation offloading game, we introduce the
concept of the potential game [34].

Definition 5: A strategic game is called a potential game
only if the variation of the utility function is proportional to the
change of a certain function which is called potential function,
i.e. there exists a potential function Φ(x) satisfying that

Ci(xi, x−i) < Ci(x
′
i, x−i)

iff Φ(xi, x−i) < Φ(x′i, x−i) (39)

for each IoT device i ∈ N , and any xi, x′i ∈ x.
Theorem 2: The computation offloading decision making

game is a potential game and always has at least one Nash
equilibrium and possess the finite improvement property.
Proof: Please see Appendix C.

According to Theorem 2, we know that the computation
offloading decision making problem can achieve the Nash
equilibrium after finite iterations. Next, we propose a de-
centralized computation offloading decision making algorithm
in Algorithm 2 achieve the mutually satisfactory offloading
strategy for IoT devices.

To take the advantage of the finite improvement property of
the potential game, we propose a decentralized computation
offloading optimization algorithm to allow an IoT device
to update its offloading strategy at one iteration. For each
iteration slot, the update set is initialized as an empty set
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Algorithm 2 Decentralized Computation Offloading Opti-
mization Algorithm
Input: S,T.
Output: Optimal computation offloading strategy x∗.

1: Initialize the computation offloading strategy that each IoT
device chooses to process its task locally, i.e. xi = 0, ∀i ∈
N ;

2: repeat for each iteration slot t
3: Initialize the update set κ = ∅.
4: for each IoT device i ∈ N do
5: Compute the interference received by IoT device i

based on x−i;
6: Select the best response x∗i for i according to (38);
7: if xi 6= x∗i then
8: Add IoT device i into the update set κ to

compete for the updating opportunity;
9: else

10: Choose the original offloading strategy for next
iteration slot t+ 1;

11: end if
12: end for
13: if κ = ∅ then
14: break;
15: end if
16: for each IoT device i in the update set κ do
17: Compute the improvement in the system cost by

updating the offloading policy;
18: Broadcast a request message with ∆Ci to contend

for strategy update;
19: end for
20: for each IoT device i in the update set κ do
21: if i possesses the most improvement in the system

cost then
22: Update the offloading strategy xi = x∗i ;
23: Broadcast the decision update to all the other

devices;
24: else
25: Choose the original offloading strategy for next

iteration slot t+ 1;
26: end if
27: end for
28: until κ = ∅ for several consecutive slots
29: return x∗

to record the IoT devices that have the incentive to update
its offloading strategy. Based on the offloading strategies of
other IoT devices x−i, each IoT device computes its received
interference by

∑
m∈N ,m6=i xmgm,spm. Then, the IoT devices

will select the best response strategy according to (38) and
determine whether it needs to update its offloading strategy.
If the best response is different from its current strategy, the
device i will be added to the update set to compete for the
opportunity to update the offloading strategy. After all the
IoT devices decide their best responses, the devices in the
update set will evaluate the improvement range of updating

the offloading policy by

∆Ci = Ci(x
∗
i , x
∗
−i)− Ci(x∗i , x

∗
−i), (40)

where x∗i = 1 − x∗i is the original strategy of the device
i. To improve the convergence speed of the iteration, the
IoT device with the most improvement will win the compe-
tition and update its offloading strategy. The other devices
will sustain their original offloading strategy and wait for
the next iteration to contend for the updating opportunity.
The offloading strategy will be continuously iterated until
no device tends to update its offloading strategy for several
consecutive iterations, and the optimal offloading policy x∗ is
obtained. Since the most operations in Algorithm 2 are basic
mathematical calculations, the computational complexity of
one iteration is mainly dependent on the sort of the device with
the most improvement. Since each device needs to perform the
sorting operation, therefore the complexity of one iteration
is O (N logN). Assuming that I iterations are required to
achieve the Nash equilibrium, the complexity of Algorithm 2
is O (IN logN).

D. Algorithm Summary

In this subsection, we summarize the multi-variable iteration
system cost optimization algorithm (MISCO) for joint sensing
and processing optimization to minimize the system overhead.
To solve the overall optimization problem (26a), we execute
the iterations of the sensing, transmission and computation
offloading optimization. First, we solve the optimal sampling
period for each IoT device. Afterwards, based on the upper
bound of the samping interval, we utilize the enumeration
method to determine the optimal sensing time. Based on the
result of the sampling and sensing optimization, a game-
theoretic optimization algorithm is proposed to solve the
optimal computation offloading strategy. Iterations of the
sampling interval, sensing time and computation offloading
optimization terminate when the disparity of the overall system
cost Ĉ =

∑N
i=1 Ci between two consecutive iteration is below

the threshold ε. The details of the proposed algorithm is
summarized in Algorithm 3.

Based on the analysis above, the sampling interval set, the
sensing time set and the computation offloading strategy are
updated during the iteration process and the overall system
cost keeps decreasing in each iteration. Considering the system
cost has a lower bound and can only decrease finitely, the
proposed multi-variable iterative optimization algorithm is
convergent. Assuming K iterations are requisite to meet the
disparity threshold, the complexity of Algorithm 3 can be
expressed as O (KN +KτN +KIN logN).

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
system overhead minimization algorithm by numerical results.
We assume the coverage of the MEC server is a 50m×50m
area, and N IoT devices are randomly distributed in the
coverage area to execute the sensing tasks and generate the
status updates. For sensing process, the time for executing a
sensing task tunit

i = 0.2 s, the sensing parameter ε = 0.08 and
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Algorithm 3 Multi-Variable Iterative System Cost Optimiza-
tion Algorithm
Input: Status update set U , distance set D, computation

capacity fi and fe, ω0, channel gain g, transmission power
p, sensing time unit tunit

i .
Output: Sampling interval T∗, sensing time set S∗, optimal

computation offloading strategy x∗.
1: Set r = 0 as the iteration slot. Initialize the sampling in-

terval set T0, the sensing time set S0 and the computation
offloading strategy profile x0 randomly;

2: repeat for each iteration slot r
3: Given the fixed Sr and xr, solve the sampling interval

Tr+1 according to (33);
4: Given the Tr+1 and xr, solve the sensing time Sr+1

using Algorithm 1;
5: Given the Tr+1 and Sr+1, solve the computation

offloading strategy xr+1 using Algorithm 2;
6: Compute the overall system cost Ĉr+1 based on Tr+1,
Sr+1 and xr+1;

7: r = r + 1;
8: until |Ĉr − Ĉr−1| < ε
9: return x∗

the energy consumption for sensing data ei is 10−9 Joules/bit
[10]. The task size of the status update to be offloaded
di is 500 KB and the number of CPU cycles required to
process the status update ci is 1000 Megacycles. For wireless
communication, the channel bandwidth is set as B = 100
Mhz, the transmission power of the IoT device pi is 100 mW,
and the background interference ω0 is -100 dBm [33]. The
channel gain of each IoT device is calculated as gi,s = v−o,
where v is the distance between the IoT device and the MEC
server and o is path loss coefficient set as 4. The computation
capability for the IoT device fi is in a range of [0.8,1.0] Ghz,
and the computation capability of the MEC server is 20Ghz.
The processing power for IoT device to execute the computing
tasks locally per CPU cycle is δ = 10−11(fi)

2 [33].
To evaluate the effectiveness of our proposed algorithm, we

introduce four comparative algorithm as benchmark:
• Greedy Sensing Algorithm (GSA): The sampling interval

is decided according to (33). The IoT devices will execute
the least sensing operations to meet the sensing successful
probability to achieve the least sensing latency. Then, the
offloading decision-making is make by Algorithm 2.

• Instant Sampling Algorithm (ISA): Each time when the
previous status update finishes processing, the IoT device
will conduct another sampling process to generate a new
status update, which is similar to the zero-wait policy
in [35]. To minimize the time cost, the IoT device will
generate the status update instantly without waiting time.
The sensing time decision is made by Algorithm 1 and
the computation offloading strategy is made by Algorithm
2.

• Best Response Computation Offloading (BRCO) [28]:
The sampling interval is decided by (33), and the sensing
time is obtained from Algorithm 1. Each device chooses
the best-response strategy based on the computing cost of

Fig. 4. System cost vs. number of IoT devices.

the two processing ways and the offloading probabilities
of other devices in the previous stage. Then, each device
chooses its offloading strategy according to the converged
offloading possibility.

• All Edge Computation Offload (AECO): The sampling
interval and sensing time are determined in the same
way as our proposed optimization algorithm. Then, all
the computing tasks are offloaded to the MEC server for
processing.

We first evaluate the system cost of our proposed method.
Fig. 4 shows the system cost of different methods with the
different numbers of IoT devices. Compared with the other
benchmarks, our proposed MISCO achieve the lowest system
cost as the number of IoT devices increases. When the number
of IoT devices is relatively small, there is not much difference
between AECO and the other four comparative methods due to
the small interference caused by IoT devices. Compared with
the other two computation offloading optimization methods
BRCO and AECO, our proposed method has a better perfor-
mance in system cost as the number of IoT devices increases.
With the larger number of IoT devices, the bandwidth for IoT
devices to execute the task transmission is insufficient and
the transmission cost improves greatly. Therefore, our compu-
tation offloading method perform a more rational offloading
decision making.

Fig. 5 shows the system cost with the different numbers
of the CPU cycles required to process the status update. The
numerical result displays the system cost of MISCO is lower
than other benchmarks with more computation load of the
status update. The system cost of ISA rises greatly because
the longer process time of the status update make the status
sampling out of date, while the increment of system cost of
sensing optimization is relatively stable as the number of CPU
cycles increases. With the improvement of the CPU cycle, the
performance of MISCO will be closed to the AECO. Due to
the hard computation load, all the IoT devices will choose to
offload their tasks.

Fig. 6 depicts the sensing time-processing time ratio with
the different successful sensing probability under various com-
putation loads. Note that the processing time here consists
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Fig. 5. System cost vs. number of CPU processing cycles.

Fig. 6. Sensing time-processing time ratio vs. successful sensing probability
thresholds.

of the transmission time and the task processing time. When
the sensing successful probability threshold is relatively small,
the sensing time-processing time ratio remains a stable level.
Considering the threshold is easy to meet, the sensing time
is determined by the sensing optimization method. With the
requirement of the sensing successful probability threshold
increases, more sensing operations need to be performed to
satisfy the successful probability threshold, which causes more
sensing time for IoT devices. Specifically, when the CPU cycle
is 1000 Megacycles and the sensing successful probability
threshold is more than 0.65, the sensing successful probability
threshold has a great influence on the sensing-processing ratio.
That is, the processing time dominates the ratio the sensing
time-processing time ratio when the successful probability
requirement is not strict and then the sensing time dominates
with the high successful probability requirement. As the
processing CPU cycle increases, the sensing time dominates
at a higher level of successful probability due to the more
processing time for status update. When the the CPU cycle
is 1500 Megacycles, the sensing-processing ratio begin to
increase when the sensing successful probability threshold is
more than 0.7.

Fig. 7. Sensing time-processing time ratio vs. number of CPU processing
cycles.

The simulation result of the sensing time-processing time
ratio with the different CPU cycles is shown in Fig. 7. When
the computation load is small, the sensing time dominates the
sensing-processing ratio. With the higher sensing successful
probability threshold, the sensing time accounts for a higher
proportion of the total time cost. As the number of CPU cycles
increases, the sensing time as a percentage of total time de-
creases sharply. In the case of large number of CPU cycles, the
sensing successful probability has little effect on the ratio of
sensing time to processing time. The sensing-processing ratio
remains at the same level for different successful probability
thresholds, and it can be seen that processing time accounts
for the major part of the total time at high computation load.

Fig. 8 shows the impact of the different sensing successful
probability threshold on the system cost. When the threshold
value is at a low level, the system consumption will not be
limited by the threshold and can be optimized to get the
minimal system overhead directly by our proposed optimiza-
tion algorithm. Therefore, the system cost will be maintained
at a stable level. After the threshold value exceeds 0.7, the
optimization method will be limited to achieve the optimal
system overhead in order to meet the sensing successful rate
requirement. When the CPU cycles for the task execution
is small, the more obvious is the influence by the sensing
successful rate threshold and the system cost rises more
obviously. Therefore, the optimal threshold should be set to
about 0.7 to ensure the sensing quality as well as the value of
the system overhead.

In Fig. 9, the numerical result shows the system cost of
our proposed MISCO with different sampling intervals. With
the high sampling frequency limit, the system overheads for
different task computations load are sustained at a stable value.
When the sampling interval is greater than 1.4 s, the system
overhead all starts to gradually increase. This means that the
sampling interval limit at this point is greater than the optimal
sampling interval solved by our proposed algorithm, and the
excessively long sampling interval leads to an increase in the
AoI, resulting in an increase in system overhead. To reduce
the energy consumption of generating status updates and the
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Fig. 8. System cost vs. successful sensing probability thresholds.

Fig. 9. System cost vs. sampling interval thresholds.

AoI of status update, the sampling interval threshold should
be set lower than 1.4 s.

Fig. 10 depicts the number of iterations of our proposed
method with the different IoT devices numbers. Here the
number of iteration contains the iteration number of Algorithm
2 to achieve the Nash equilibrium and the iteration number of
Algorithm 3 to converge. The iteration number increases with
the increasing of the IoT device number, which illustrates the
convergence and scalability of our proposed MISCO. When
the number of IoT devices is getting larger, the network
resources are insufficient for the IoT devices. Therefore, all
the IoT devices tend to process its computing tasks locally
which makes the number of iterations reach an upper bound
due to all devices stop iterating after choosing local execution.

VIII. CONCLUSION

In this paper, we first formulate the joint sensing and
processing optimization problem to minimize the system
overhead including the information freshness of the status
updates and the energy consumption of IoT devices. The
optimization problem is decomposed into three subproblems
to optimize the sampling, sensing and computation offloading

Fig. 10. Number of iterations vs. Number of IoT devices.

respectively. The sampling and sensing optimization problem
are solved by extremum principles and game-theoretic method
is utilized to perform the computation offloading decision-
making. Afterwards, the multi-variable iterative optimization
algorithm is proposed to minimize the system cost jointly.
Numerical results depicts that the system cost achieved by
our proposed method is lower than other comparative methods
and the dominance of sensing and processing under different
scenarios. Besides, the impact of the sensing probability and
sampling interval thresholds are analyzed in the simulation.

APPENDIX A
PROOF OF THEOREM 1

The probability that IoT device i requires j sensing op-
erations to generate a valid status update is Pi (si) (1 −
Pi (si))

j−1. Thus the expectation of execution time can be
calculated as

E[T prcs
i ] = lim

j→∞
Pi (si) ∗ T 1,prcs

i (si,x)

+ Pi (si) ∗ (1− Pi (si))T
2,prcs
i (si,x)

+ Pi (si) ∗ (1− Pi (si))
2T 3,prcs
i (si,x) + ...

+ Pi (si) ∗ (1− Pi (si))
j−1T j,prcs

i (si,x)

= lim
j→∞

Pi (si) ∗ T 1,prcs
i (si,x)

j∑
n=1

n(1− Pi (si))
n−1.

(41)

Given the value of Pi (si) is in the range of (0,1), let 1−Pi (si)
be a single variable ρ and

∑∞
n=1 n(1 − Pi (si))

n−1 can be
further calculated as

∞∑
n=1

n(1− Pi (si))
n−1 =

∞∑
n=1

[(1− Pi (si))
n]
′

=

∞∑
n=1

(ρn)
′

= (
ρ

1− ρ
)
′

=
1

(1− ρ)2
=

1

Pi (si)
2 . (42)
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By substituting (42) into the expectation of execution time,
the average number of processing time for a successful status
update is calculated as

E[T prcs
i ] =

T 1,prcs
i (si,x)

Pi (si)
. (43)

APPENDIX B
PROOF OF LEMMA 1

According to (14), (23) and (24), the lower system cost of
transmitting computing task to the MEC server for processing
is equivalent to

µt
T local
i

Pi
+ µe

Elocal
i

τi
≥ µt

T edge
i + T tran

i (x)

Pi
+ µe

Etrans
i (x)

τi
That is

ri(x) ≥ µtdiτi + µepidiPi

µtτi

(
T local
i − T edge

i

)
+ µePiE

local
i

Then, we can derive the threshold of the interference that
achieves the lower system cost by offloading tasks to the MEC
server for execution∑
m6=i

xmgm,spm ≤
gi,spi

2

µtdiτi+µepidiPi

B[µtτi(T local
i

−T edge
i )+µePiE

local
i ] − 1

− ω0.

APPENDIX C
PROOF OF THEOREM 2

To prove the computation offloading decision making game
is a potential game, we define the potential function as

Φ(x) =
1

2

N∑
i=1

∑
m 6=i

gi,spixigm,spmxm

+

N∑
i=1

gi,spiLi(1− xi). (44)

We consider an IoT device chooses to update its offloading
policy with a lower system overhead, i.e. Ci(xi, x−n) <
Ci(x

′
i, x−n). From the definition of the potential game, the

decrease of the system cost will lead to the decrease of
the potential function. If the original offloading policy is to
process the task locally, i.e. x′i = 0, xi = 1, we derive
Ci(1, x−n) < Ci(0, x−n), and

∑
m∈N\{i},xm=1gm,spm ≤ Li

is meet. Then, we compute the change of the potential function
by updating the offloading policy:

Φ(1, x−i)− Φ(0, x−i)

=
1

2

∑
j 6=i

∑
m 6=i,m6=j

gj,spjxjgm,spmxm +
1

2
gi,spi

∑
j 6=i

gj,spjxj

+
1

2
gi,spi

∑
m6=i

gm,spmxm +
∑
j 6=i

gj,spjLj(1− xj)

− 1

2

∑
j 6=i

∑
m 6=i,m6=j

gj,spjxjgm,spmxm −
∑
j 6=i

gj,spjLj(1− xj)

− gi,spiLi
= gi,spi

∑
m 6=i

gm,spmxm − gi,spiLi < 0. (45)

For x′i = 1, xi = 0, the result is similar to the argument above.
According to the definition of the potential game, we conclude
that the computation offloading decision making problem is a
potential game.
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