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Networks with Vehicle Platoons
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Abstract

Vehicular platooning is a promising way to facilitate efficient movement of vehicles with a shared

route. Despite its relevance, the interplay of platooning and the communication performance in the

resulting vehicular network (VN) is largely unexplored. Inspired by this, we develop a comprehensive

approach to statistical modeling and system-level analysis of VNs with platooned traffic. Modeling the

network of roads using the by-now well-accepted Poisson line process (PLP), we place vehicles on each

road according to an independent Matérn cluster process (MCP) that jointly captures randomness in

the locations of platoons on the roads and vehicles within each platoon. The resulting triply-stochastic

point process is a PLP-driven-Cox process, which we term the PLP-MCP. We first present this new

point process’s distribution and derive several fundamental properties essential for the resulting VN’s

analysis. Assuming that the cellular base-stations (BSs) are distributed as a Poisson point process (PPP),

we derive the distribution of the loads served by the typical BS and the BS associated with the typical

user. In deriving the latter, we also present a new approach to deriving the length distribution of a tagged

chord in a Poisson Voronoi tessellation. Using the derived results, we present the rate coverage of the

typical user while considering partial loading of the BSs. We also provide a comparative analysis of

VNs with and without platooning of traffic.

I. INTRODUCTION

Vehicular platooning refers to the cooperative movement of closely located vehicles having

a shared route or a part of route. As part of intelligent transportation systems, platooning has

enormous potential for collision avoidance among vehicles, optimization of the road capacity and

fuel consumption, and reduction in pollutant gases including CO2 emissions [1], [2]. Platooning
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and vehicular communication have a two way relationship. On one hand, platooning almost

always ensures line-of-sight between two proximate vehicles, thereby improving the reliability

of vehicle-to-vehicle (V2V) communication between them compared to independently moving

vehicles [3]. Such V2V communications can help in collision and hazard warning and traffic

planning [4]. Further, if one vehicle in the platoon is able to receive information via vehicle-

to-infrastructure (V2I) communication, V2V communication can help relay this data to all

vehicles in the platoon. On the other hand, vehicular communication is also essential in enabling

platooning to reduce collision risks due to smaller intra-vehicular distance. Given the intertwined

nature of these two seemingly disparate ideas, it is essential to understand their synergism, which

we do here by carefully integrating platooning in the system-level analysis of vehicular networks.

A. Related work

Recently, there has been a significant interest in studying different types of vehicular com-

munication including V2V and V2I. Interested readers are advised to refer to [4], [5], and the

references therein, for a comprehensive survey of this research direction. In this paper, our specific

interest is on the system-level analysis of vehicular communications networks using stochastic

geometry, which has attracted significant attention recently, e.g, see [6]–[10]. However, the focus

of almost all of this prior work has been on conventional non-platooning traffic scenarios (N-

PTS), where vehicles do not form platoons and hence move without any coordination with each

other. For instance, in [6], [7] authors modeled the vehicular traffic on a fixed road by a 1D

Poisson point process (PPP). To incorporate multiple road vehicular traffic, [8], [9] considered

grid type urban roads (roads are either perpendicular, or parallel to the x-axis) modeled using

the Manhattan Poisson line process (MPLP). Each road has an independent vehicular traffic

distributed as 1D PPP. The authors analyzed the blockage and coverage in such networks. To

include the irregularity in the layout of roads, in [10], authors suggested to model roads as

Poisson line process (PLP) and vehicles as 1D PPP on each road. In this model, the combined

vehicular traffic across roads forms a Cox process that can be termed PLP-PPP (i.e. a PLP

driven PPP). A thorough investigation of various properties of PLP-PPP and its applications to

vehicular communications was presented in [11].

A vehicular communication network consists of vehicular traffic overlaid with a cellular

network to provide infrastructure connectivity to vehicular traffic. Such a network with N-PTS

can be modeled using PLP-PPP overlaid with an independent PPP modeling the locations of
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BSs, owing to the mathematical tractability of these processes. In [12]–[14], authors derived

the distribution of signal-to-noise-plus-interference ratio (SINR) for similar models. In [15]–[17]

authors derived the SINR distribution for vehicle-to-everything (V2X) networks consisting of

communications between different types of network entities, such as between BSs and vehicles,

and roadside units and vehicles. Another important metric dictating the overall performance of

a network is the rate distribution of the typical user. The achievable rate depends critically on

the per-BS load, i.e. the number of vehicles present in the BS’s serving region. In [15], authors

derived the distribution of the per BS load and per-user rate for N-PTS. In [18], the area spectral

efficiency for the N-PTS was presented. In [19], authors derived the rate coverage for cellular

vehicle-to-everything (V2X) networks for N-PTS.

Although past works have analyzed the vehicular communication network with N-PTS, ana-

lytical tools have not been fully explored yet to study the platooned vehicular traffic scenario

(PTS) and its impact on the performance of a vehicular communication. Consequently, there is

limited work focusing on the analysis of PTS [20]–[22]. For example, in [20], authors considered

a single road vehicular traffic consisting of independent vehicles and platoons, both modeled as

points of 1D PPP and derived the probability that vehicles can communicate with each other.

In [21], authors considered platooned traffic on a single road with BSs deployed on the side

of the road and derived approximate coverage. In [22], authors considered platooned traffic on

a single road with road side BSs and performed a joint communication and control analysis

to study the stability and delay in the network. One main limitation of the above works is

that they considered vehicular traffic on a single road. In practice, the “support” of a vehicular

network is a complicated layout of roads that needs to be accounted for and is one of the

key reasons for the popularity of the PLP-based models. A vehicular traffic on such a road

network is further complicated by the randomness in the number and locations of platoons and

locations of vehicles in each platoon. As indicated above, the wireless performance of a vehicular

user depends critically on the per BS load which has not been analyzed in the previous work

for PTS. Overall, the interplay of platooning and the vehicular network performance is largely

unexplored from the perspective of rigorous system-level analysis. This paper attempts to bridge

this gap. In particular, we try to explore how we can model a complete vehicular communication

network consisting of a 2D network of BSs and the vehicles moving in platoons and analyze

the performance of this network in terms of load and rate distribution.
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B. Contributions

In this paper, we develop an analytical framework for a vehicular communication system

(in particular, a V2I scenario) with platooned traffic. We propose a novel point process for

modeling the platoon movement of vehicles. We then examine the impact of platooning on V2I

communication by observing the load that appears on the infrastructure network. We present a

comparative study of the rate coverage for PTS and N-PTS. The important contributions of this

paper are listed below.

1) We propose a novel point process termed PLP-MCP for the modeling and analysis of the

platooned movement of the vehicles. It is a Cox process driven by the PLP that captures

three layers of randomness: (i) irregularity in the road layout, (ii) randomness in the locations

of the platoons, and (iii) randomness in the locations of vehicles within a platoon. In this

sense, this process can be thought of as a triply-stochastic process that generalizes doubly-

stochastic PLP-PPP used in the literature [11]. We present its distribution and key properties

essential for the analysis of the vehicular traffic.

2) We then present an analytical framework to characterize the performance of the typical user

in a V2I communication network consisting of BSs and platooned traffic.

3) We derive the load distribution for the typical and the tagged BSs along with the means

and variances. Here, tagged BS is the BS that serves the typical user. As a key intermediate

result, we derive a new expression for the distribution of the tagged chord in the Voronoi

cell of the tagged BS.

4) Using the derived results, we present the rate coverage of the typical user while considering

the partial loading of BSs. We perform a comparative analysis of load distribution and

rate coverage of communication systems with platooned movement with non-platooned

movement to understand the impact of vehicular platooning.

Notation: Vectors in R are denoted by bold italic style letters (e.g. x) with their norms as |x|.

Similarly, vectors in R2 are denoted by bold style letters (e.g. x) with their norms as ‖x‖. The

origin is o ≡ (0, 0). Let B1(x, r) and B2(x, r) denote a 1D and 2D ball centered at x and x

of radius r. Let ` = L(ρ, φ) denote a line in R2 in Hesse normal form, i.e. the normal segment

from origin to the line is of length ρ and makes angle φ with respect to the x-axis. The point

(ρ cosφ, ρ sinφ) is the nearest point on the line L(ρ, φ) from the origin termed the base. The line

L(ρ, φ) can also be represented as an element (ρ, φ) of the set C∗ ≡ R × [0, π). We term the
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element (ρ, φ) as L-atom and C∗ as L-space. Further, f`() denotes the transformation of L(0, 0)

to the line ` = L(ρ`, φ`) given as

f`(x) = (ρ` cosφ` + x sinφ`, ρ` sinφ` − x cosφ`) . (1)

This means that if x is a scalar quantity denoting the location of a point in the line ` relative

to its base, its 2D coordinates (i.e. absolute location in R2) are given as x = f`(x). For a set A,

|A| denotes its Lebesgue measure in its respective dimension, for example |B1 (o, r) | = 2r. The

volume A1(a, b, x) of the intersection of two 1D balls B1(o, a) and B1(x, b) is given as [23]

A1(a, b, x) =

2 min(a, b), if 0 ≤ x ≤ |a− b|

a+ b− x, if |a−b|<x≤a+b.
(2)

The PDF of the generalized Gamma distribution with parameters a1, b1, c1 is denoted by

g̃X(x; a1, b1, c1) = a1b
c1/a1

1 (Γ (c1/a1))−1 xc1−1e−b1x
a1 . (3)

Further, b(·) denotes the Bell’s polynomial [24]. For a point process (PP) Ψ, the notation Ψ(C)

denotes the number of points of Ψ falling inside set C. The PGF of any integer-valued random

variable (RV) X is denoted by PX(·). The expected value of RV X is denoted by E[X]. Further,

β(r) = 2 min(r, a). The notation (̃·) denotes the approximated variable and (̂·) denotes reduced

Palm version. If A and B are two RVs, the notation A
(d)
= B means that A and B have the same

distribution.

II. MODELING OF PLATOONED VEHICLES USING PLP-MCP

In this paper, we introduce a novel point process PLP-MCP to model platooned vehicles on

a network on roads. The system model is as follows.

A. Road network

The network of roads can be modeled by a PLP ΦL = {`1, `2, · · · } with density λL where `i

denotes the ith road [11]. The ith line `i ∈ ΦL can be denoted by the L-atom ai = (ρ`i , φ`i) in

the L-space C∗. The L-atoms ai’s form a PPP in C∗ with density λL. This means that the mean

number of lines hitting a convex body K with perimeter L(K) is λLL(K) [11].
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B. Platooned vehicles

For each road `i, vehicular platoons can be seen as the clusters of vehicles in a finite spread.

Since the vehicles are usually uniformly distributed in the respective platoons, it is natural to

model the resulting traffic on each road using MCPs. We model the vehicles on the road `i

by an independent MCP Ψi with parent PP density λP, mean number of points per cluster m

and cluster radius a. In particular, the platoon centers are distributed as the parent PP Ψ(p)

i . For

a platoon centered at xj,i ∈ Ψ(p)

i , the constituent vehicles are distributed as the PPP Ωxj,i in

a−neighborhood of it. Let µm denote the per-road vehicular density i.e. µm = mλP.

The locations of all vehicles form a new PP, which we term as PLP-MCP. It can be formally

defined as follows.

Definition 1 (PLP-MCP). Let ΦL = {`1, `2, · · · } be a PLP with density λL with the ith line

`i = L(ρ`i , φ`i). Let {Ψi} be a set of independent and identically distributed 1D MCP in R with

parameter (m,λP, a) such that

Ψi =
⋃

xj,i∈Ψ
(p)
i

Ωxj,i ,

where Ψ(p)

i is a PPP with density λP. Ψ(p)

i is called the parent point process of Ψi as it consists

of parent points xj,i ∈ R. Further, Ωxj,i denotes the daughter PP of xj,i and is a PPP with

density λd = m/(2a) in B1(xj,i, a). We assign ith MCP Ψi to the ith line `i and transform the

points of Ψi to be on the line to get

Ψ`i =
⋃

xj,i∈Ψ
(p)
i

{zk,j,i = f`i(zk,j,i) : zk,j,i ∈ Ωxj,i} =
⋃

xj,i∈Ψ
(p)
i

Ωxj,i , (4)

where Ωxj,i represents Ωxj,i transformed on line `i.

Now, a PLP-MCP Ψm is defined as the union of all Ψ`i’s i.e.

Ψm =
⋃

`i∈ΦL

Ψ`i , (5)

and includes all the points located on every line of ΦL.

Hence, the platoon vehicular traffic can be modeled using points of the proposed PLP-MCP

Ψm. The absolute location of kth vehicles in jth platoon of ith road is given as zk,j,i. The typical

point of the PLP-MCP Ψm denotes the typical vehicle [25]. A line `o of ΦL that passes through

the typical point of PP (Ψm) is termed as the tagged line. Here, `o = L(0, φ) with ρ = 0 and φ

is a uniform RV between 0 to π.
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C. Properties of PLP-MCP

We now describe some key properties of the PLP-MCP that are helpful in the analysis of

vehicular communication.

1) Stationarity: The PLP-MCP Ψm is a stationary PP. The stationarity of Ψm follows from the

stationarity of PLP and 1D MCP.

2) Density: The density λm of Ψm is mλPλL π. The density of Ψm can be derived by counting

the mean number of points in a unit area using the Campbell’s theorem [25].

3) It is a Cox process driven by a PLP.

For a stationary PP, we can take the typical point at the origin [25]. Further, if the typical point

is located at the origin, the tagged line `o passes through the origin.

III. CHARACTERIZATION OF PLP-MCP

In this section, we will present several key properties of the proposed PLP-MCP.

A. Extended Slivnyak Theorem

Since PLP-MCP is derived from PLP (which is a PPP in L-space), Slivnyak theorem can be

extended to describe the conditional distribution of PLP-MCP. Even though this extension is not

overly challenging, we decided to present it separately upfront so that we can easily refer to it

throughout the paper rather than repeating this same argument everywhere.

Lemma 1. (Extended Slivnyak Theorem.) Conditioned on the typical point zo, the distribution

of the rest of the PLP-MCP Ψm is equal to the distribution of an independent copy of Ψm

superposed with an independent copy of the MCP Ψ`o on the tagged line `o and an independent

copy of the cluster PPP Ωxo (which is Ωxo transformed on `o). Here, xo denotes the parent

point of the typical point and distributed uniformly in the 1D a−neighborhood of zo = f−1
`o

(zo).

In other words,
Ψ!

m|(zo ∈ Ψm)
(d)
= Ψm ∪Ψ`o ∪ Ωxo . (6)

Proof. Conditioning on the occurrence of the typical point fixes the tagged parent point xo and

the tagged line `o. Since PLP ΦL is a PPP in L-space, conditioned on `o, ΦL is equivalent to the

union of `o and an independent copy of ΦL (which generates an independent copy of Ψm). Now,

Ψ(p)

`o
is also a PPP containing xo, hence, conditioned on xo, it is equivalent to the union of xo

and an independent copy of Ψ(p)

`o
which generates Ψ`o . Again, Ωxo is a PPP, hence, conditioned

on zo, Ωxo is equivalent to the union of x0 and an independent copy of Ωxo .
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B. Laplace functional

Since the distribution of a PP is completely characterized by its Laplace functional (LF), we

now derive the LF for PLP-MCP. We will first require the PGFL of the MCP Ψ`i transformed

on the line `i which is given in Lemma 2. Let there be a function v : R2 → [0, 1].

Lemma 2. The PGFL of Ψ` on road ` is given as

GΨ`,` (v) = exp

(
−λP

∫
R

(1−Hx,`(v)) dx

)
, (7)

where Hx,`(v) = exp

(
−λd

∫
B1(o,a)

(1− (v ◦ f`) (x + y)) dy

)
. Under reduced Palm (i.e. con-

ditioned on occurrence of a point at zo excluding zo), PGFL of Ψ` on road ` is

G !zo
Ψ`,`

(v) = GΨ`,` (v) (2a)−1

∫
B1(f−1

` (zo),a)

H−xo,`(v)dxo. (8)

Here, xo denotes the untransformed center of the parent cluster of zo.

We now derive the LF for PLP-MCP which is given in the following two Theorems. See

Appendix A for the proofs.

Theorem 1. The LF for Ψm is given as

LΨm(v) = E
[
e−

∑
z∈Ψm

v(z)
]

= exp

(
−λL

∫
R

∫ π

0

(
1−GΨL(ρ,φ),L(ρ,φ)(e

−v)
)

dρ dφ

)
, (9)

where GΨ`,`(v) is given in (7).

Theorem 2. The LF for Ψm under the reduced Palm distribution is

L!o
Ψm

(v) = E!o
[
e−

∑
z∈Ψm

v(z)
]

= LΨm(v)

∫ π

0

π−1G!o
ΨL(0,φ),L(0,φ)(e

−v) dφ. (10)

C. Distribution of number of points (vehicles) of Ψm in a set

The PP Ψm can also be characterized by the distribution of the number of its points in a set

which is crucial in computing the load distribution in vehicular communication network which

will be discussed in the next section. To derive this distribution, we will first require the PGF

of the number N` of points of the MCP Ψ` on the line ` which is given in Lemma 3.

Lemma 3. Let Ψ` denotes a 1D MCP on line ` = L (ρ, φ). The PGF for the number N` of

points of Ψ` falling inside B2(o, r) is

PN`(s, r) = exp
(
g(s,

√
r2 − ρ2)

)
, (11)

where g(s, t) = 2λP

[
|t− a| eλdβ(t)(s−1) − (t+ a) + (eλd(s−1)β(t) − 1)/(λd(s− 1))

]
. (12)
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Note that ρ = 0 gives the PGF of N` when the line passes through the origin with an angle

of φ. The kth derivative of g(s, t) with respect to s is given as

g(k)(s, t) = 2λP

[
(λdβ(t))k|t− a|e(s−1)λdβ(t)

+
1

λd

(
k∑
j=0

(
k

j

)
j!(−1)j

(s− 1)j+1
(λdβ(t))k−je(s−1)λdβ(t) − k!(−1)k

(s− 1)k+1

)]
. (13)

To derive the mean and variance, we need lims→1 g
(k)(s, t). Let lims→1 g

(k)(s, t) = κ(t, k) which

is given as

lim
s→1

g(k)(s, t) = κ(t, k) = 2λP (λdβ(t))k [|t− a|+ β(t)/(k + 1)] . (14)

We now present the distribution of the number S(r) of points of Ψm in a 2D ball of radius r

i.e. S(r) = Ψm(B2(o, r)) in terms of its PGF and PMF along with its mean and variance. Note

that the PMF, the mean and the variance of a discrete RV X can be computed from its PGF

using the following relation

pX(k) = P[X = k] =
1

k!

[
P(k)
X (s, r)

]
s=0

∀k (15)

E[X] =
[
P(1)
X (s)

]
s=1

, Var[X] =
[
P(2)
X (s)

]
s=1

+ E [X]− (E [X])2 . (16)

Therefore, we get the following result. See Appendix B for the proofs of the following results.

Theorem 3. The PGF of the number S(r) of points of Ψm inside B2(o, r) is

PS(r)(s) = exp

(
−2πλL

(
r −

∫ r

0

exp(g(s, t))t√
r2 − t2

dt

))
, (17)

where g(s, t) is given in (12).

Corollary 3.1. The PMF of S(r) is given by

P[S(r) = n] =
1

n!
PS(r)(0) b

(
f (1)

m (r), · · · , f (n)
m (r)

)
, (18)

with f (k)
m (r) = 2πλL

∫ r

0

exp (g(0, t))√
r2 − t2

b
(
g(1)(0, t), · · · , g(k)(0, t)

)
tdt, (19)

and g(k)(0, t) can be evaluated from (13).

Corollary 3.2. The mean and variance of S(r) is

E [S(r)] =
[
P(1)
S(r)(s)

]
s=1

= λmπr
2, (20)

Var(S(r)) =


λmπr

2 + 2πλL

[
32
3

(aλPλd)2 r3 + 8λPλ
2
d

(
2
3
ar3 − 1

16
πr4
)]
, a > r

λmπr
2 +

(
8λPλda

3

)2
πλLr

3 + 4πλLλPλ
2
d

(
r3
(

8a
3
− πr

4

)
+
√
r2−a2

(
−a3

3
− 13ar2

6

)
+
(

2a2r2 + r4

2

)
sin−1

(√
r2−a2

r

))
. a < r,

(21)
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D. Distribution of number of points of Ψm in a set under Palm distribution

We also present the distribution of number of points inside a set under Palm distribution

(conditioned on occurrence of a point at the origin i.e. o ∈ Ψm). Similar to previous section, we

can compute the PMF and the mean of Ŝ(r) from its PGF. See Appendix C for the proof of the

following results.

Theorem 4. The PGF of the number Ŝ(r) of points of Ψm \{o} conditioned on o ∈ Ψm, falling

inside B2(o, r) is

PŜ(r)(s) = PS(r)(s) exp (g(s, r)) a−1

∫ a

0

e(s−1)λdA1(r,a,x)dx, (22)

where PS(r)(s) is presented in Theorem 3, g(s, ·) is given in (12).

Corollary 4.1. The PMF of Ŝ(r) is

P
[
Ŝ(r) = n

]
=

1

n!

∑
k1+k2+k3=n

[(
n

k1, k2, k3

) ∏
1≤t≤3

f
(kt)
t (0, r)

]
, (23)

where f (k)
1 (0, r) = P(k)

S(r)(0) = PS(r)(0) b
(
f (1)

m (0, r), · · · , f (k)
m (0, r)

)
(24)

f
(k)
2 (0, r) = eg(0,r) b

(
g(1)(0, r)...g(k)(0, r)

)
(25)

f
(k)
3 (0, r) =

∫ a

0

(λdA1(r, a, x))k a−1e−λdA1(r,a,x)dx, (26)

with g(·) is given in (12) and f (k)
m (0, r) in (19).

Corollary 4.2. The expected value of Ŝ(r) is E
[
Ŝ(r)

]
= λmπr

2 + 2λPmr+λd (2r − r2/(2a)) .

In this section, we have presented several key properties of PLP-MCP. These properties are

PGFL, density, LF under the reduced palm distribution, the PGF (and PMF) for the number of

points falling inside ball B2(o, r) both under normal and Palm distributions. In the next section,

we introduce the vehicular communication network providing connectivity to the platooned

vehicles and present the distribution for the length of the typical and the tagged chord of the

typical cell, and 0-cell respectively of a homogeneous 2D PPP. These distributions are essential

to derive the load distribution on the typical and tagged BS.

IV. VEHICULAR COMMUNICATION NETWORK

The complete vehicular communication network consists of vehicular traffic (as defined in

Section II) overlaid with the BSs forming a cellular network. The role of the cellular BS network
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is to provide cellular V2I connectivity to vehicular users. We model the locations of BSs as a

2D PPP Φb ≡ {yi, : yi ∈ R2, ∀i ∈ N} with density λb [25]. Each BS transmits with the same

power. The user association is based on the maximum average received power from the BSs and

each user is connected to its nearest BS. Fig. 1 shows the complete vehicular communication

network.

Furthermore, we assume that the BS without any associated user will stay silent and not create

interference. The active BSs point process Φ
′

b can be approximated as PPP with the active BS

density ponλb where pon is the active probability [26]. Now, the signal to interference ratio (SIR)

at the typical vehicle is given by

SIR =
h0R

−α∑
y∈Φ

′
b
hy‖y‖−α

, (27)

where R denotes the distance of the nearest BS, α is path loss exponent, h0 denotes the fading

gain of the typical receiver link and hy denotes the fading gains of the rest of the links. Further,

we have assumed that the fading coefficients h(·) are exponentially distributed with unit mean.

Due to the considered association policy, the serving region of each BS is its Voronoi cell.

For a BS located at y, its Voronoi cell Vy is

Vy =
{
x ∈ R2 : y = arg minyi∈Φb

‖x− yi‖
}
. (28)

Let Xb denote the union of Voronoi edges. The users connected to any BS constitute the load

on that BS.

(a) (b)

Fig. 1: (a) An illustration showing the complete vehicular network with platooned vehicles. The vehicles (shown as blue circles)

on the road (shown as dotted line). Each BS (presented by red points) has an associated serving area (bounded by the red lines).

As shown in the figure, the cluster movement of vehicles may assist them in connecting with the nearby vehicles for data, and

content sharing. (b) A vehicular communication network with independently moving vehicles is shown for comparison.



12

Let the typical Voronoi cell be Vt. Its area |Vt| is empirically distributed as a generalized

gamma RV [27] with parameters a1 = 1.07950, b1 = 3.03226 and c1 = 3.31122 [28]. Hence, its

PDF is

g|Vt|(vt) = λbg̃X (λbvt; a1, b1, c1) . (29)

Similarly, the perimeter of Z = L(Vt) has the empirical distribution [27]

pZ=z(z) =
√
λb/4 g̃X

(√
λbz/4; 2.33609, 2.97006, 7.588060

)
. (30)

Now, let us consider the typical vehicle at the origin. The Voronoi cell in which the origin

falls is known as the 0-cell [29] i.e.

Vo =

{
x ∈ R2 : arg min

yi∈Φb

‖x− yi‖ = arg min
yi∈Φb

‖yi‖
}
. (31)

The BS yo associated with the 0-cell denotes the BS with which the typical vehicle at the origin

connects and is termed the tagged BS.

Owing to Ext-Slivnyak theorem (Lemma 1), the load on the tagged BS consists of users of an

independent copy of PLP-MCP falling in the tagged cell, plus a set of additional users falling on

a part of the tagged line inside the tagged cell. As mentioned earlier, the tagged line or the road

is the line on which the typical vehicle lies. The part of the tagged line falling inside the tagged

cell is termed the tagged chord Co i.e. Co = `o∩Vo. The tagged chord can also be defined as the

chord of the tagged cell passing through the origin. Since the tagged chord’s length Co plays an

important role in the BS’s load distribution, we derive its distribution fCo(co) next. While this

specific result exists in [15] within the context of the load distribution in a PLP-PPP, we derive

it using a new approach that yields an easy-to-use expression that does not involve higher-order

derivatives. We emphasize here that this chord length distribution is not our main contribution

but just an important intermediate result that will facilitate further analysis.

A. Distribution of tagged chord length in the Voronoi tessellation

We adapt an approach presented in [30] to derive the joint PDF of the length of the residual

chords in both sides of the origin. Using the joint PDF, we derive the PDF of the length of the

tagged chord. We draw two lines from the origin in two opposite directions, (can be taken as

positive and negative x-axis without loss of generality). Further, the points Q1 and Q2 where

these two lines intersect Xb, are the two endpoints of tagged chord (as shown in Fig. 2). Let l1

and l2 be the distance of Q1 and Q2 from the origin. We first require the following result.
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Fig. 2: (a) An illustration showing approach to find the PDF of the tagged chord length Q1Q2. Here, Pi denotes the BS. (b)

The PDF obtained using the proposed method, along with the length bias result from [15].

Lemma 4. The radii r1 and r2 of two circles B2((0, l1), r1) and B2((0,−l2), r2) such that they

intersect at a point y = y∠θ (see Fig. 2) are given as r1 = r(l1) =
√
l21 + y2 − 2l1y cos θ, r2 =

r(l2) =
√
l22 + y2 + 2l2y cos θ with angles α1(l1) and α2(l2) as cosα1(l1) = l1−y cos θ

r(l1)
, cosα2(l2) =

l2+y cos θ
r(l2)

. The area of the union of these two 2D disks is given as

V(l1 + l2, r(l1), r(l2)) = v1(l1) + v2(l2), (32)

where vi(li) = r2(li) (π − αi(li) + 0.5 sin 2α1(l1)). Its partial derivative are

∂V
∂li

= v
(1)
i (li) = 2(li + y cos θ)(π − αi(li)) + 2y sin θ.

Using the above result, we now derive the distribution of the tagged chord length which is

given in the following theorem. See Appendix D for the proof.

Theorem 5. The joint PDF of the length of the two chord segments in the Voronoi tesselation is

fL1,L2(l1, l2) = 8λb
3

∫ π

0

∫ ∞
0

e−λbV(l1+l2,r(l1),r(l2))v
(1)
1 (l1)v

(1)
2 (l2)ydydθ, (33)

where V(l1 + l2, r(l1), r(l2)) is given in (32). The PDF of the length of the tagged chord in the

Voronoi tesselation is

fCo(co) =

∫ co

0

fL1,L2(co, co − l2)dl2. (34)

For completeness, note that we derived an expression for the tagged chord length in [15] using

a length-biased sampling argument that provided the following expression,

fCo(co) =
cofC(co)

E[C]
=

4
√
λb

π
cofC(co) (35)

=
4
√
λb

π
co
π

2
λb

3
2

∫ π

0

∫ ∞
0

[
λb

(
V(1)(c, y, r(c))

)2 − V(2)(c, y, r(c))
]
e−λbV(c,y,r(c))ydydθ,
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which involved higher-order partial derivatives. The expression given above in Theorem 5 is

slightly simpler in that sense. Further, since this specific proof idea involving the joint distribution

of two chords segments has not appeared in the literature, we decided to include it here. Another

advantage of the proposed approach is that it can also be extended to the case where the BS

locations are distributed as a non-homogeneous PPP.

Equipped with the expressions of PDF of the tagged chord length and the number of vehicles

in a set, we now analyze the vehicular communication networks in terms of the load per BS.

V. LOAD DISTRIBUTION IN A PLATOONED VEHICULAR COMMUNICATION NETWORK

In this section, we present the per-BS load distribution. The per-BS load in a communication

system refers to the number of vehicles served by the BS which is defined as the number

of vehicles falling inside its Voronoi region. The distribution of per-BS load is an important

performance metric as it critically affects the distribution of SINR, per-user available resources

and finally the rate in the following way. If a particular BS does not have any user associated

with it, it may stay silent which reduces interference to the users of other BSs, and improves

their SINR distribution. Conversely, as the time-frequency resources are split across the users

associated with the serving BS, the load on the tagged BS reduces the resources available to the

typical user. As the rate distribution depends on the per-user resources and the SINR distribution,

the load on both the typical and the tagged BS plays a key role in the system’s performance.

Hence, we will focus on distribution of the following important metrics:

1) Sm = Ψm(Vt): Load on the typical BS.

2) Mm = Ψm(V0): Load on the tagged BS.

The load distribution may help us decide the size of platoon and/or the number of vehicles in

a platoon to improve performance. It may also provide us insights into the load distribution

across the BSs that may help in optimizing the resource allocation, bandwidth sharing, and BS

association. This is especially important in the case of PTS that may exhibit larger disparity in

the per-BS load, especially for smaller values of a. Since vehicles in a platoon drive in close

proximity of each other, it is highly likely that vehicles in a given platoon are served by the

same BS. This may lead to situations in which one BS serves multiple platoons and hence a

large number of vehicles, whereas another BS does not serve any platoon and hence no vehicle.

Therefore, it is crucial to understand the nature of load distribution on BSs. As mentioned already,
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we will assume that the BS remains silent (and hence does not create interference) if its load is

zero.

We will look at an approximation (S̃m and M̃m respectively) of these variable. To approximate

the load in a Voronoi cell of area |Vt|, we will replace the cell with a 2D ball of equal area,

i.e. the radius of this ball is
√
|Vt|/π and instead compute the load in this ball. The PDF of the

radius corresponding to the typical and tagged cell is respectively given as

fRt(rt) = 2πrtg|Vt|(πr
2
t ). (36)

f o
Ro

(ro) = 2πrog|Vo|(πr
2
o) = 2πroλbπr

2
o g|Vt|(πr

2
o). (37)

A. Load distribution on the typical BS

Theorem 6. The PGF of the load Sm on typical Voronoi Vt is (see Appendix E for proof)

PSm(s) =

√
λb

4

∫ ∞
z=0

exp

(
−λLz

(
1−

∫ ∞
0

exp (g (s, .5c))fC(c)dc

))
g|Vt|

(√
λb

4
z

)
dz, (38)

where g(s, ·) is given in (12). The PMF of Sm is

P [Sm = k] =
1

k!

[
P(k)
Sm

(0)
]

=

√
λb

4

1

k!

∫ ∞
z=0

P(k)
Sm|Z=z(0)g|Vt|

(√
λb

4
z

)
dz,

=

√
λb

4

1

k!

∫ ∞
0

PSm|Z=z(0)b
(
g(1)

m (0), . . . , g(k)
m (0)

)
g|Vt|

(√
λb/4z

)
dz,

where PSm|Z=z(0) = exp

(
−λLz

(
1−

∫ ∞
0

exp (g (0, c/2))fC(c)dc

))
g(k)

m (0) = λLz

∫ ∞
0

exp (g (0, c/2)) b
(
g(1) (0, c/2) , . . . , g(k) (0, c/2)

)
fC(c)dc,

where g(s, ·) is given in (12). Further, g(k)(s, ·) provided in (13) can be evaluated at s = 0.

Note that the mean load is equal to vehicular density times the mean size of the typical cell.

Since the mean area of typical cell is 1/λb, we get

E [Sm] = λm/λb.

We can approximate Sm by S̃m = Ψm(B2(o, Rt)). Note that conditioned on Rt, PS̃m(Rt)|Rt=rt
(s) =

PS(rt)(s). Deconditioning using the distribution of fRt(rt), we get the following result.

Theorem 7. The approximate PGF and PMF of the typical BS load are

PS̃m
(s) =

∫ ∞
rt=0

PS(rt)(s) fRt(rt)drt = 2π

∫ ∞
rt=0

PS(rt)(s) rtg|Vt|(πr
2
t )drt. (39)

P[S̃m = k] = 2π

∫ ∞
rt=0

P [S(rt) = k] rtg|Vt|(πr
2
t )drt, (40)
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where PS(·)(·), and P [S(rt) = k] are given in Theorem 3 and (18), respectively. The PDF g|Vt|(·)

is given in (29).

Corollary 7.1. The mean of S̃m is E[S̃m] = λmπE [r2
t ] = λm/λb, where E [r2

t ] = 1
πλb

. Similarly,

to find the variance of S̃m, we need the second derivative of PGF conditioned on s = 1 which

is given as

lim
s→1
P(2)

S̃m
(s) =

∫ ∞
r=0

(
(F 1

m(r))2 + F 2
m(r)

)
fRt(r)dr

F 1
m(r) = 2πλL

∫ r

t=0

κ(t, 1)tdt√
r2 − t2

, F 2
m(r) = 2πλL

∫ r

t=0

(κ2(t, 1) + κ(t, 2)) tdt√
r2 − t2

,

where κ(t, k) is given in (14). Using the second derivative, mean and variance equation present

in (16), we get the variance of S̃m.

Corollary 7.2. The active probability (or the on probability) of the typical BS is given as

pon = 1− P [Sm = 0] = 1− 2π

∫ ∞
rt=0

P [S(rt) = 0] rtg|Vt|(πr
2
t )drt

with P [S(rt) = 0] = exp

(
−2πλL

(
r −

∫ r

0

exp (g (0, t)) t√
r2 − t2

dt

))
.

The off probability poff = 1− pon.

B. Load distribution on the tagged BS

In this section, we derive the approximate additional load M̃m on the tagged cell. Unlike

Theorem 6, we will directly present the approximate load for the tagged cell. Here, the load

M̃m is equal to the sum of the number of vehicles on the tagged chord (of length Co) and the

number of vehicles falling inside a ball of radius Ro. From Lemma 1,

M̃m
(d)
= Ψ′m(B2(o, Ro)) + Ψ′`o(Co) + Ω′xo

(Co)

where ·′ denotes the independent unconditional instances of the processes. Note that the total

load counting the typical vehicle on tagged cell is M̃m + 1.

Theorem 8. The PGF PM̃m
(s) for the M̃m excluding the typical vehicle is

PM̃m
(s) =

∫ ∞
co=0

∫ ∞
ro=0

PM̃m|Ro,Co
(s, ro, co)f o

Ro
(ro)fCo(co)drodco, (41)

where,

PM̃m|Ro,Co
(s, ro, co) = PN`o

(
s,
co

2

)
PS(ro)(s)

∫ a

xo=−a

∫ co
2

xc=− co2

e(s−1)λdA1( co2 ,a,|xc−xo|)

co2a
dxcdxo,



17

where, PN`o
(
s, co

2

)
and PS(·)(s) is provided in (11) and (17).

Proof. See Appendix F.

Lemma 5. The PMF of M̃m is given as P
[
M̃m = n

]
=

1

n!

[∫ ∞
co=0

∫ ∞
ro=0

∑
k1+k2+k3=n

[(
n

k1, k2, k3

) ∏
1≤t≤3

h
(kt)
t (0)

]
f o
Ro

(ro)fCo(co)drodco

]
,

where h(k)
1 (0, ro) = P(k)

S (0, ro) is obtained in (24) and

h
(k)
2 (0, co/2) = exp (g (0, co/2)) b

(
g(1) (0, co/2) , . . . , g(k) (0, co/2)

)
,

h
(k)
3 (0, co/2) =

1

aco

∫ a

xo=0

∫ co/2

xc=−co/2
(λdA1 (co/2, a, |xc − xo|))k e(s−1)λdA1(co/2,a,|xc−xo|)dxcdxo,

and g(0, ·) is given in (12), g(k)(0, ·) is given in (13).

As the conditional PGF PM̃m|Ro,Co
(s, ro, co) is a product of three PGFs, the mean and variance

of M̃m can be written as summation of the mean and variance of the three individual RVs.

Corollary 8.1. The mean of M̃m conditioned on Co is

E
[
M̃m|Co = co

]
=

1.28λm

λb

+mλPco +
1

2aco

∫ a

xo=−a

∫ co
2

xc=− co2

λdA1

(co

2
, a, |xc − xo|

)
dxcdxo.

We can further decondition using the PDF of Co as given in (34). Similar to the variance of

S̃m, we first find the second derivative of the PGF of M̃m and then using the variance equation

present in (16), we find the variance of M̃m.

C. Load Distribution for the vehicular traffic under N-PTS

Since this paper also provides a comparative analysis of PTS with N-PTS, we also provide

the load distribution for a vehicular communication network with N-PTS for completeness. We

use the PGFs for load on the typical and the tagged cell presented in [31] to derive the mean

and the variance of load. Here, the vehicles on each road form an independent 1D PPP with

density λ. Hence, the overall vehicular traffic Ψp formed by taking the union of all the vehicles

on all roads is a PLP-PPP, as discussed earlier already. Its density is λi = πλLλ. Let µp denote

the per-road vehicular density i.e. µp = λ. The mean approximate load on the typical and tagged

BS in vehicular traffic under N-PTS is given as follows.
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Corollary 8.2. The mean and variance of the approximate load S̃p on the typical BS is

E
[
S̃p

]
= λiπE

[
r2

t

]
=
λi

λb

, Var
[
S̃p

]
= (λiπ)2 E

[
r4

t

]
+

16

3
πλLλ

2E
[
r3

t

]
+
λi

λb

−
(
λi

λb

)2

,

whereλi = πλLλ, E
[
r2

t

]
=

1

πλb

, and E
[
r3

t

]
=

∫ ∞
0

r3
t fRt(rt)drt =

Γ
(
c1+1
a1

)
b

3
2a1
1 (πλb)3/2Γ

(
c1
a1

) .
Corollary 8.3. The mean of the approximate load M̃p on the tagged BS is given as

E
[
M̃p

]
= E

[
E
[
M̃p|Co = co

]]
= λiπE

[
r2

o

]
+ λE [Co] .

Similarly, we can find the variance of M̃p.

VI. RATE COVERAGE IN A PLATOONED VEHICULAR COMMUNICATION NETWORK

The rate coverage is defined as the probability that the rate achievable by the typical user is

greater than a certain threshold i.e.

rc(τ) = P(R > τ).

Assuming that the available bandwidth B is equally shared by all user associated with the tagged

BS, the achievable rate of typical receiver is given by

R = B/(1 + M̃m) log2 (1 + SIR) ,

where M̃(·) is the load on the tagged BS. Also note that the SIR depends on the active BS density

which is further dependent on the load distribution on the typical cell. Hence, it is evident that

the rate coverage depends on the distributions of the user load on both the typical and the tagged

BS. Hence, the rate coverage is

rc(τ) = P
(
B/(1 + M̃m) log2 (1 + SIR) > τ

)
=
∞∑
k=0

P(M̃m = k)P
(
SIR > 2

(k+1)τ
B − 1

)
. (42)

Here, P (SIR > τ) is the coverage probability of the typical user of a cellular network. For the

channel and SIR model considered in (27), the coverage is given as [25], [26], P(SIR > τ)

= 2πλb

∫ ∞
0

r exp

(
−λbπr

2−pon

∫ ∞
r

2πλbτydy

τ + (y
r
)α

)
dr =

∫ ∞
0

exp

(
−v−pon

∫ ∞
v

du

1 + (u
v
)
α
2 τ−1

)
dv

=

∫ ∞
0

exp

(
−v
(

1 + pon

∫ ∞
1

dt

1 + tα/2τ−1

))
dv =

1

1 + pon

∫∞
1

dt
1+tα/2τ−1

,

where the first two steps are due to the substitutions πλby
2 = u and u = vt. Using (42), we get

the following result.
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Theorem 9. The rate coverage of the typical vehicular user in a vehicular communication

network with platooned vehicles is

rc(τ) =
∞∑
k=0

P
[
M̃m = k

](
1 + pon

∫ ∞
1

dt

1 + tα/2γ−1
k

)−1

, (43)

where γk =
(

2
(k+1)τ
B − 1

)
and pon is given in Corr. 7.2.

Note that the rate coverage for a typical user in N-PTS can also be computed using (43) by

replacing M̃m and S̃m with M̃p and S̃p, respectively.

VII. NUMERICAL RESULTS

In this section, we first present numerical results using the derived expressions. We will first

verify the accuracy of the PMFs of S̃m and M̃m by comparing them with the exact simulation

results. We also discuss the impact of various parameters on the load distribution. After that, we

will present a comparative analysis between PTS and N-PTS in terms of the energy efficiency,

load imbalance and their impact on the rate coverage. In all our numerical results, we use

the following parameters unless stated otherwise. The road density λL = 5/π km−1, λP = 1

platoons/km a = 250 m. For fair comparison we have taken λ in N-PTS such that the total

vehicular density λi in N-PTS is equal to λm.

5 10 15 20 25
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1

10 15 20 25 30

0.99

0.995
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Fig. 3: The BC for (a) the typical DBC(Sm, S̃m) and (b) the tagged load DBC(Mm, M̃m) for various values of m and λb.

Here, λL = 5/π km−1 , λP = 1 platoons/km a = 250 m. A value close to 1 implies that the approximation is accurate.

A. Validation

To test the accuracy of the derived distributions of the approximate load S̃m and M̃m, we

evaluate the Bhattacharyya coefficient (BC) [32] between the PMFs of the approximate load and

the respective exact PMFs obtained using simulations. Note that for any two PMFs p(ω) and

q(ω), the BC is defined as DBC(p, q) =
∑√

p(x)q(x). The BC DBC(p, q), lies between 0 to 1,
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and a value close to 1 indicates good approximation. Fig. 3 presents the BC for the load on the

typical
(
DBC(Sm, S̃m)

)
and the tagged cell

(
DBC(Mm, M̃m)

)
. From this result, we notice that

the approximation is remarkably close to the true result. The approximation improves further

with decrease in platoon size m and increase in the BS density.
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Fig. 4: The mean and variance of the load on (a) typical (S̃m, S̃p) and (b) tagged (M̃m, M̃p) cell with varying per-road vehicular

density µm = µp = µ. Here, for N-PTS, λ is varied as λ = µ per km, while for PTS, m is varied as m = µ/λP, while keeping

λP = 1 platoon/km. Here, λb = 5 BS/km2, λL = 5 /km, and a is in meters. As a increases, the variance of S̃m and M̃m

converges to variance of S̃p and M̃p, respectively.

B. Mean and variance of the load on the typical cell

Fig. 4(a) shows the mean and variance for the approximate load on the typical cell with respect

to per-road vehicular density µm = mλP for different values of the platoon radius a. From Cor.

7.1, the mean load on the typical cell depends linearly on density λm = µmλLπ but does not

depend on a. This is also evident from the numerical results. It can be observed further that the

variance grows quadratically with µm which is consistent with (21). For small a, vehicles are

concentrated close to the platoon centers because of which all the vehicles of a given platoon

will very likely contribute to the load of a single BS. However, as we increase a, vehicles are

more spread out, which decreases the variance of load on the typical BS. We also present the

respective metrics for N-PTS. Here, we keep µp = µm such that the mean load will be the same

for N-PTS and PTS. Further, the variance for the PTS case is higher than N-PTS, and it becomes

equal to N-PTS for very large a. This convergence is due to the fact that the MCP(λP,m, a)

converges to PPP(mλP), as a→∞ [33].

C. Mean and variance of the load on the tagged cell

Fig. 4(b) presents the mean and variance for the approximate load on the tagged cell with

respect to per-road vehicular density µm = mλP for different values of the platoon radius a.
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Here, mean and variance of M̃m are higher than those of M̃p. In PTS, the occurrence of the

typical point adds points of the associated platoon in the load. Therefore, the mean and the

variance of the load is higher in PTS compared to N-PTS. Further, as a→∞, the two scenarios

become equivalent and the effect of the additional factor vanishes.
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Fig. 5: (a) The variation of poff with respect to per-road vehicular density µm = µp = µ for PTS and N-PTS. Here, for N-PTS

λ is varied as λ = µ, and for PTS, m is varied as m = µ/λP while keeping λP = 1 platoon/km. The fraction of BSs being

switched off is higher in PTS as compared to N-PTS, indicating a better energy efficiency. (b) Variation of pu with savg. Here,

µ = 15 vehicles/km. N-PTS has better underload probability. Here, a = 250 m in PTS. λb is in /km2.

D. Impact of platooning on the energy efficiency of the typical cell

To further understand the typical BS load, we will evaluate two additional metrics savg and

pu. Here, savg is defined as the mean load of the typical BS when it is active, i.e.

savg = E
[
S̃·|S̃· > 0

]
= E [S·] /pon.

The second metric pu denotes the probability that the load on the typical active BS is less than

the savg i.e.

pu = P
[
S̃· ≤ kavg|S̃· > 0

]
.

Note that pu represents the fraction of time the system is in a very safe operational regime.

Fig 5(a) presents the off probability poff of the typical BS (which also represents the fraction

of BSs staying silent) in PTS and N-PTS scenario with respect to per-road vehicular density

µ = µm = µp. We observe that poff is higher in PTS as compared to the N-PTS indicating that

the energy consumption in PTS is less than N-PTS. Fig. 5(b) shows the variation of pu with

active load savg by varying λb from 2 − 30 BS/km2 while keeping the rest of the parameters

fixed. As expected, the load savg on active BSs decreases with λb. Further, savg is high in PTS

due to a lower fraction of BSs staying active as compared to N-PTS. Due to relatively higher
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Fig. 6: Variation of pu with respect to BS density, active BS density and off probability for N-PTS and PTS. Here, for N-PTS

λ is varied as λ = µ, and for PTS, m is varied as m = µ/λP while keeping λP = 1platoon/km. µ = 15 vehicles/km.

load in PTS, safe-operating probability pu gets lower in PTS. Fig. 6(a)-(c) presents variation of

pu with respect to BS density, active BS density and off probability for N-PTS and PTS. Here,

pu decreases with the densification of BSs which is intuitive. Small increments found in pu at

some densities are due to the discrete nature of summation in the definition of pu. Elaborating

further, first note that the S̃ can take only integer values. When savg decreases, the number of

individual PMF terms may not decrease if the change in savg is fractional. However due to a

decrease in the mean, the individual PMF terms increase, resulting in a net increase in pu. In

Fig. 6(c), we compare pu between PTS and N-PTS by equating the off probability. We can see

that for the same level of off probability, pu is almost the same in both the cases. In Fig. 6(c),

we compare pu between PTS and N-PTS by equating the active BS density. Since the active

probability is significantly lower in PTS, we can observe that at the same value of λfl = λb, pu

in N-PTS is lower.
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Fig. 7: (a) The variation of p1 with respect to per-road vehicular density µ = µm = µp, (b) mean load mavg on the tagged cell

with λb, and (c) safe-operating probability ps with respect to mavg. In (a), λL = 2km−1, for (b), and (c) the parameters are

λL = 5/π km−1, λ = mλP = 15 vehicles/km.

E. Load balance in the tagged cell

Note that the mean load is not the only criteria for comparing two systems. For instance, it

may not be optimal from the energy utilization perspective to activate a BS to just serve a single
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vehicle. In order to understand the effect of load distribution, we define the following metrics:

single user probability p1, the average load on tagged cell mavg, and tagged safe-operating

probability ps, as follows

p1 = P
[
M̃· = 1

]
, mavg = E

[
M̃·

]
, ps = P[M̃· ≤ mavg].

Note that, a high p1 represents that many BSs in the system are severely underloaded. From Fig

7(a), we can observe that p1 in lower in PTS. This indicates that it is more likely in PTS that

a BS is not wasting its power to just serve a single user. Fig 7(b) shows the variation of mean

load in the tagged cell which decreases with λb. Unlike the typical cell, the mean load on the

tagged cell differs in PTS and N-PTS. Fig. 7(c) shows ps with respect to mavg using the data

obtained from Fig. 7(b). We can observe that ps is higher in N-PTS for the same value of mavg.

Together with Fig. 4(b), which shows that the variance of the load on the tagged cell is higher

in PTS, we can see that the spread of load distribution is higher in PTS. This means that the

tagged BS may have to support a higher number of users in PTS compared to N-PTS.
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Fig. 8: Impact of the BS density and active BS density on the rate coverage and the active probability for two different values of

threshold τ in PTS and N-PTS. Here, α = 3.5, B = 20 MHz, and the per-road vehicular density λ = mλP = 15 vehicles/km.

Hence, the mean typical load (i.e. B/(mean-load on typical cell)) varies between .5 MHz/users to 8 MHz/users.

F. Rate coverage analysis

From the results thus far, we have observed that while the PTS has a higher off probability,

it also has a higher per-BS load. Hence, if the system bandwidth is enough to support the load,

the PTS is expected to perform better than N-PTS in terms of rate coverage. Fig. 8(a) shows the

variation of rate coverage with respect to BS density for PTS and N-PTS with equal vehicular

density (λm = λi). As expected, the rate coverage increases with the BS density. However, at any

BS density, the rate coverage in PTS and N-PTS is almost equal, which may appear counter-

intuitive. However, it must be noted that the active probability is significantly lower in PTS,
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which means that PTS can achieve almost the same rate coverage but at a much lower active BS

density. This effect can be observed in Fig. 8(b) which shows the variation of the rate coverage

with respect to the active BS density for PTS and N-PTS. Here, we can observe that PTS can

achieve significantly higher coverage than N-PTS. Further, the densification of BSs in PTS does

not impact the power budget, but still results in an improvement in the rate coverage.

VIII. CONCLUSION AND FUTURE SCOPE

In this paper, we have developed a comprehensive approach to the modeling and analysis of

platooned vehicular traffic. The approach relies on a novel point process that captures vehicular

platooning by explicitly capturing three layers of randomness: (i) irregular layout of the roads

by modeling them as a PLP, (ii) randomness in the placement of the platoons on each road by

modeling them as a PPP, and (iii) randomness in the location of each vehicle in a platoon by

modeling them collectively as an MCP. After deriving several foundational results for this triply

stochastic process, which we called PLP-MCP, we focused explicitly on the V2I communication

network for platooned traffic consisting of BSs that serve the platooned traffic. For this setting,

we present several key results related to the load distributions on the typical and the tagged

BSs. Using these results, we derived the per-user rate coverage of this network and provided a

detailed comparative analysis of the PTS and N-PTS cases to understand the effect of vehicular

platooning on the performance of the resulting vehicular network. While the rate coverage of

these two cases appear similar at the first glance, we defined and studied specific distributional

properties of the underlying setup to expose subtle performance trends. Our results collectively

demonstrated that the rate coverage of PTS is actually higher when we account for the active BS

density. Since this paper presents the very first comprehensive analytical approach to the study of

platooned vehicular traffic, there are naturally many extensions possible. Most importantly, it will

be interesting to consider an additional tier of roadside units, which are an important component

of the emerging vehicular networks. This will require an almost new analysis starting from the

distributional results for the load on the typical and the tagged cells. It will also be useful to

extend this framework to consider realistic scheduling algorithms.



25

APPENDIX

A. Proof of LF of Ψm: Unconditioned and under Palm

The LF of Ψm is

LΨm
(v) = EΨm

[
e

(
−
∑

zk,j,i∈Ψm
v(zk,j,i)

)]
(a)
= EΦL

[∏
`i∈ΦL

EΨ`i ,`i

[∏
zk,j∈Ψ`i ,`i

e−v(zk,j)

]]
(b)
= EΦL

[∏
`i∈ΦL

GΨL(ρ`i
,φ`i

),L(ρ`i ,φ`i )
(e−v)

]
,

where (a) is obtained conditioned on ΦL, and (b) is obtained by applying the PGFL of 1D
MCP located on a line `i. Finally, applying the PGFL of the PLP, we get the LF of Ψm. For
LF under Palm, we assume that the typical point of Ψm is located at the origin without loss of
generality. The LF under Palm consists of the product of two terms - the LF of an independent
and “unconditioned copy” of Ψm, and the LF of the MCP on the tagged line `o = L (0, φ).
Hence,

L!o
Ψm

(v) = E!o

[
exp

(
−
∑

zk,j,i∈Ψm\{o}
v(zk,j,i)

)]
= EΨm

[
exp

(
−
∑

zk,j,i∈Ψm

v(zk,j,i)

)]
Eo!

Ψ`,`
[exp (−v(zk,j,0))]

(a)
= LΨm

(v)Eo!
Ψ`,`

[∏
zk,j,0∈Ψ`\{o}

exp (−v(zk,j,0))

]
(b)
= LΨm

(v)EΦ

[
Eo!

Ψ`,`|φ

[∏
zk,j,0∈Ψ`\{o}

exp (−v(zk,j,0))

]]
(c)
= LΨm

(v)π−1

∫ π

0

G!o
Ψ`,`

(exp(−v))dφ.

Here, (a) is obtained by applying the PGFL for Ψm, (b) is due to conditioning on the orientation

of tagged line L (0, φ), and (c) is obtained by applying the PGFL of 1D MCP followed by

deconditioning over the RV φ, and G!o
Ψ`,`

(·) is given in (8).

B. Distribution of S(r)

Proof of Theorem 3: The number of vehicles S(r) inside ball B2(o, r) is

S(r) =
∑

`i∈ΦL,ρ`i∈[−r,r]
N`i .

Recall that N`i = Ψ`i (B2(o, r)) denotes the number of vehicles on `i = L (ρ`i , φ`i) falling inside
B2(o, r). The condition indicates that the distance of the line from the origin (ρ`i) needs to be
inside the range [−r, r] for that line to have at least one point inside B2(o, r) [29]. Now, RVs
{N`1 , N`2 , . . .} are independent and identically distributed (iid), hence PGF of S(r) is

PS(r)(s) = E
[∏

`i∈ΦL,ρ`i∈[−r,r]
PN`i (s, r)

]
= E

[∏
`i∈ΦL,ρ`i∈[−r,r]

exp
(
g
(
s,
√
r2 − ρ2

`i

))]
,

where the PGF of N`i is given by (11). Since ρ`i , φ`i are points of a PPP in C∗, using PGFL of

PPP [25], we get the desired result.
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To get probability P[S(r) = k], we require the kth derivative of PGF. If we define

fm(s, r) = 2πλL

∫ r

0

(
exp(g(s,

√
r2 − ρ2))− 1

)
dρ,

PGF PS(r)(s) takes the form of exp(fm(s, r)). Hence, we use the Faà di Bruno’s formula [34] to

get (18). To get kth derivative f (k)
m (r) of fm(s, r) at s = 0, we need to apply the Faà di Bruno’s

formula one more time to get (19).
Proof of Corollary 3.2: The first derivative of PS(r)(s) is

P(1)
S(r)(s) = 2πλLPS(r)(s)

d

ds

∫ r

0

(
exp

(
g(s,

√
r2 − ρ2)

))
dρ. (44)

Replacing s = 1 in (44) and solving further, we get the mean of S(r). Similarly, the second
derivative P(2)

S(r)(s) of PS(r)(s) is

= PS(r)(s)

(
d

ds

∫ r

0

2πλL

(
exp

(
g(s,

√
r2 − ρ2)

))
dρ

)2

+ PS(r)(s)
d2

ds2

∫ r

0

2πλL

(
exp

(
g(s,

√
r2 − ρ2)

))
dρ

= (E [S(r)])
2

+ 2πλL

∫ r

0

[(
g(1)(1,

√
r2 − ρ2)

)2

+ g(2)(1,
√
r2 − ρ2)

]
dρ.

Using the second derivative of PGF of S(r), we derive the variance Var(S(r)) of S(r) as

Var(S(r)) = P(2)
S(r)(s) + E [S(r)]− (E [S(r)])

2

= 2πλL

∫ r

0

[(
g(1)(1,

√
r2 − ρ2)

)2

+ g(2)(1,
√
r2 − ρ2)

]
dρ+ λmπr

2. (45)

From (13), g(1)(1,
√
r2 − ρ2) and g(2)(1,

√
r2 − ρ2) is

g(1)(1,
√
r2 − ρ2) = 2λP

[
λdβ(

√
r2 − ρ2)× |

√
r2 − ρ2 − a|+ λd

2

(
β(
√
r2 − ρ2)

)2
]
, (46)

g(2)(1,
√
r2 − ρ2) = 2λP

[(
λdβ(

√
r2 − ρ2)

)2

|
√
r2 − ρ2 − a|+ λ2

d

3

(
β(
√
r2 − ρ2)

)3
]
. (47)

We can simplify the integrals presented in (45) based on the value of a as follows. Case I: If
a > r, β(

√
r2 − ρ2) = 2

√
r2 − ρ2. Hence,∫ r

0

(
g(1)(1,

√
r2 − ρ2)

)2

dρ =
32

3
(aλPλd)2r3,

∫ r

0

(
g(2)(1,

√
r2 − ρ2)

)
dρ = 8λPλ

2
d

(
2

3
ar3 − 1

16
πr4

)
.

Substituting the above values in (45), we get the variance of S(r) for a > r.
Case II: If a < r, for 0 < ρ <

√
r2 − a2, β(

√
r2 − ρ2) = 2a, and when

√
r2 − a2 < ρ < r,

β(
√
r2 − ρ2) = 2

√
r2 − ρ2. Hence,∫ r

0

(
g(1)(1,

√
r2 − ρ2)

)2

dρ =
8a2r3

3
,∫ r

0

(
g(2)(1,

√
r2 − ρ2)

)
dρ =

∫ √r2−a2

0

(
g(2)(1,

√
r2 − ρ2)

)
dρ+

∫ r

√
r2−a2

(
g(2)(1,

√
r2 − ρ2)

)
dρ.

On substituting β(
√
r2 − a2)’s value and further manipulations, we get the desired result.
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C. Distribution of Ŝm(r)

Proof of Theorem 4: From Theorem 1, we get

Ŝ(r) = Ψ!
m(B2(o, r))|o ∈ Ψm

(d)
= Ψm(B2(o, r)) + Ψ`o(B2(o, r)) + Ωxo(B2(o, r)), (48)

where the three RVs in RHS are independent. Hence, the PGF of Ŝm(r) is the product of 3 PGFs:
the PGF of S(r) f1(s) = PS(r)(s), the PGF of Ψ`o(B2(o, r)) which is f2(s) = exp (g(s, r)) and
the PGF of Ωxo(B2(o, r)) which is f3(s) = a−1

∫ a
0
e(s−1)λdA1(r,a,x)dx i.e.

PŜ(r)(s) = f1(s, r)f2(s, r)f3(s, r). (49)

Proof of Corollary 4.1: Applying generalized Leibniz rule [35] to compute the kth derivative
of (49) and then from (15), we get (23). The derivative of f (k)

2 (s, r) can be computed using Faà
di Bruno’s formula. Further,

f3(s, r) =

∫ a

0

a−1e(s−1)λdA1(r,a,x)dx, and f (k)
3 (s, r) =

∫ a

0

(λdA1(r, a, x))
k
a−1e(s−1)λdA1(r,a,x)dx.

D. Proof of Theorem 5: Distribution of the tagged chord length

The joint CCDF of the lengths L1 = oQ1 and L2 = oQ2 can be written as

FL1,L2
(l1, l2) = P(L1 > l1, L2 > l2) = P[A],

where event A = 1 (Q1,Q2 and o belong to the same cell). If we let Ai be the event that Q1,
Q2, and the origin o, all three locations lie in a single cell Vyi of point Pi located at yi, then

1 (A) =
∑

yi∈Φb

1 (Ai) .

Now, Ai = 1

(
B2(o, yi), B2(Q1, |PiQ1|) and B2(Q2, |PiQ2|) have no other point except Pi

)
= 1 (B2(Q1, r(l1)) and B2(Q2, r(l2)) have no point except Pi) .

Hence,

FL1,L2
(l1, l2) = P [A] = E

[∑
yi∈Φb

1 (Ai)
]

(a)
= λb

∫
R2

P (Φb has no point in B2(Q1, r(l1)) ∪ B2(Q2, r(l2))) dy

(b)
= λb

∫ 2π

0

∫ ∞
0

exp (−λbV(l1 + l2, r(l1), r(l2))) ydydθ,

where (a) is due to the Campbell-Mecke theorem [25] and (b) is due to conversion in polar
coordinates. Now, we can compute the joint PDF fL1,L2(l1, l2) from the joint CDF as

f
′′

L1,L2
(l1, l2) =

∂2FL1,L2
(l1, l2)

∂l1∂l2
,

which gives (33). Now, Since Co = L1 + L2, the PDF of Co can be derived by integrating the

joint PDF over the line.
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E. Proof of Theorem 6: Distribution of load on the typical cell

The number of points falling in the typical cell is

Sm =
∑

`i∈Φ
Ψ`i (Vt) .

Let N be the number of chords intersecting with the typical cell Vt. Here, N is a Poisson RV
with mean λLZ, where Z is also a RV denoting the perimeter of the typical cell. Since the
number of points on each chord is iid, the PGF of Sm conditioned on N is

PSm|N=n(s) = EΨm

[
sSm |N = n

]
=

[∫ ∞
0

exp
(
g
(
s,
c

2

))
fC(c)dc

]n
.

Deconditioning over n, we get

PSm|Z=z(s) = exp

(
−λLz

(
1−

∫ ∞
0

exp
(
g
(
s,
c

2

))
fC(c)dc

))
. (50)

Now, deconditioning over the distribution of Z (using the PDF of Z given in (30)), we obtain
the PGF. From (15), we can compute P[Sm = k] from the kth derivative of PGF PSm

(s). The
kth derivative of PSm|Z(s) is

P(k)
Sm|Z

(s) =
dk

dsk
(exp(gm(s))) , (51)

where gm(s) is given by

gm(s) =

(
−λLz

(
1−

∫ ∞
0

exp
(
g
(
s,
c

2

))
fC(c)dc

))
.

As it is in the form of f(h(s)), we use the Faà di Bruno’s formula [34] to get

P(k)
Sm|Z

(s) = exp (gm(s)) b
(
g(1)

m (s), . . . , g(k)
m (s)

)
, (52)

To find the kth derivative of gm(s), we apply the Faà di Bruno’s formula again and substitute

s = 0 to get the value of g(k)
m (s). Now, deconditioning over Z gives the desired result.

F. Proof of Theorem 8: Approximate tagged load distribution

Note that M̃m = Ψ′m(B2(o, Ro)) + Ψ′`o(Co) + Ω′xo
(Co), where Co = `o ∩ Vo = is the tagged

chord and xo is the parent point associated with the typical point. Further note that if the tagged
chord has length co, its center xco is distributed uniformly in [−co/2, co/2]. We also note that
xo is uniformly distributed in [−a, a] [33]. We already know the distribution of the first term.
From (17), the PGF for Ψm (B2(o, Ro)) is

PΨm(B2(o,Ro))(s) = PS(Ro)(s). (53)

For the second term, note that Co = `o∩Vo = B1(xco , co/2). Due to stationarity of Ψ′`o relative
to the line `o, Ψ′`o(B1(xco , co/2)) = Ψ′`o(B1(o, co/2)). The PGF of RV Ψlo (B1 (o, co/2)) is

PΨlo (B1(o,.5co))(s) = PN`o (s, co/2) , (54)
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where PN`o (s, co/2) is provided in (11).
For the third term, we note that Ω′xo

can have points only in B1(xo, a/2). Hence, Ω′xo
(Co)

(i.e. the number of points on the tagged chord due to the tagged platoon) varies depending
on xo and xco . It can be shown that conditioned on xco and xo, Ω′xo

is a PPP in the re-
gion B1(xo, a) ∩ B1(xco , co/2) with density λd. The mean number of points in this PPP is
λdA1 (co/2, a, |xco − xo|). Hence, its PGF is exp ((s− 1)λdA1(co/2, a, |xco − xo|)). Using the
law of total probability, deconditioning over xco , and xo, the PGF of the third term is given as

PΩ′
xo

(Co)(s|Co = co) =

∫ a

xo=−a

∫ co/2

xc=−co/2

1

2aco
e(s−1)λdA1(co/2,a,|xc−xo|)dxcdxo. (55)

Conditioned on Ro and Co, the three terms are independent. Therefore, the PGF of M̃m is the

product of the PGFs of these terms, namely (53), (54) and (55). Deconditioning over Ro and

Co, we get the PGF of M̃m.
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