
ar
X

iv
:2

30
5.

04
19

6v
1 

 [
cs

.D
C

] 
 7

 M
ay

 2
02

3
1

Handoff-Aware Distributed Computing in High

Altitude Platform Station (HAPS)–Assisted

Vehicular Networks
Qiqi Ren, Omid Abbasi, Senior Member, IEEE, Gunes Karabulut Kurt, Senior Member, IEEE,

Halim Yanikomeroglu, Fellow, IEEE, and Jian Chen, Member, IEEE

Abstract—Distributed computing enables Internet of vehicle
(IoV) services by collaboratively utilizing the computing resources
from the network edge and the vehicles. However, the computing
interruption issue caused by frequent edge network handoffs,
and a severe shortage of computing resources are two problems
in providing IoV services. High altitude platform station (HAPS)
computing can be a promising addition to existing distributed
computing frameworks because of its wide coverage and strong
computational capabilities. In this regard, this paper proposes
an adaptive scheme in a new distributed computing framework
that involves HAPS computing to deal with the two problems
of the IoV. Based on the diverse demands of vehicles, network
dynamics, and the time-sensitivity of handoffs, the proposed
scheme flexibly divides each task into three parts and assigns
them to the vehicle, roadside units (RSUs), and a HAPS to
perform synchronous computing. The scheme also constrains the
computing of tasks at RSUs such that they are completed before
handoffs to avoid the risk of computing interruptions. On this
basis, we formulate a delay minimization problem that considers
task-splitting ratio, transmit power, bandwidth allocation, and
computing resource allocation. To solve the problem, variable
replacement and successive convex approximation–based method
are proposed. The simulation results show that this scheme
not only avoids the negative effects caused by handoffs in a
flexible manner, it also takes delay performance into account
and maintains the delay stability.

Index Terms—Internet of vehicles (IoV), High altitude platform
station (HAPS), distributed computing, edge network handoff.

I. INTRODUCTION

A. Background

With advances in technologies such as wireless commu-

nication, the Internet of things, and artificial intelligence

(AI), a concept of Internet of vehicles (IoV) has also gained
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great momentum, where autonomous driving is considered to

be the ultimate goal [1], [2]. An intelligent and connected

vehicle (ICV), which is the main component of the IoV, will

integrate sensing, decision-making, and control functions. In

the future, ICVs will realize the transformation of massive

information from physical space to information space, and this

transformation will depend on fine-grained data computation,

including various machine learning–based models of training

and inference [3], [4]. In the past few years, the field of

machine learning has undergone a major shift from a big-

data paradigm of centralized cloud processing to a small-data

paradigm of distributed processing by devices at a network

edge [5], [6]. The impetus for this shift is to synchronously

utilize locally available resources and nearby resources of

edge nodes to obtain real-time responses for AI-based task

computing, thereby facilitating the development of distributed

computing [7], [8]. Due to the advantages of distributed

computing, such as proximity, efficiency, scalability, and easy

collaboration, it is expected to play an important role in

realizing autonomous driving.

Autonomous driving is expected to produce terabytes of

data everyday [9]. In this context, the IoV of the future is

likely to face a continuous shortage of computing resources,

and this shortage will be more severe than for ordinary user

networks. This prediction is driven by two reasons: First,

unlike ordinary users, which only occupy resources when

they are in use, ICVs are generally online for a long time,

and therefore they occupy computing resources continuously.

Secondly, IoV services require a higher level of security

than ordinary user services. Providing good IoV services is

directly related to road and personal safety, which means

that a shortage of computing resources will present serious

security problems [10]. To address this problem, a variety of

solutions have been proposed, including vehicle collaborative

computing, unmanned aerial vehicle (UAV) computing and

satellite computing to complement edge computing and form

new distributed computing frameworks [11]–[14]. However,

interruptions between vehicle-to-vehicle connections, short

and unreliable UAV dwelling times, prohibitive satellite trans-

mission delays, and complicated mobility management make

it difficult to meet the demands of IoV in terms of security,

stability, and reliability. This motivates us to explore other,

more feasible solutions. More recently, high altitude platform

station (HAPS) systems have been proposed as candidates for

6G networks [15], [16]. A HAPS is aerial platform, such as
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an airship or balloon, capable of long-term deployment as a

wireless communication station in the stratosphere, where it

has a bird’s-eye line-of-sight (LoS) view over a large ground

area (with a radius of 50-500 km) [17]. Since HAPSs have

large payloads (usually ≥ 100 kg), they can carry a variety

of resources (antennas, capacity, computation, storage, and

so on), which can play a powerful supplementary role for

ground computing systems [18], [19]. Besides, current and

future energy conversion techniques for solar energy and wind

power as well as battery techniques can provide HAPS with

a powerful energy supply potential [20]–[22]. Much work has

been done to demonstrate the gains for introducing HAPS

computing to IoT networks in terms of energy and delay

performances [23], [24]. Inspired by this, we introduced HAPS

computing into vehicular networks in our recent work [25] and

proposed a computation offloading scheme to accelerate IoV

services.

In addition to the prospect of severe shortages of computing

resources, the IoV of the future also faces the issue of

network handoffs. In practice, edge nodes usually have a

small communication coverage (less than 300 m [26]). To

ensure the connections of networks and the sustainability of

services, ICVs will inevitably trigger the network connection

handoff when they cross the coverage of different edge nodes.

However, when a network handoff occurs, the ICV may

experience a temporary interruption of the offloading process,

or it may be unable to directly receive computation results due

to being beyond the coverage of the computing target node. To

address this, researchers have proposed a series of computing

offloading solutions to cope with handoff issues [27]–[32]. The

authors in [27], [28] considered computational performance

metrics to design handoff schemes. In [27], they studied how

to maximize the connection time between vehicles and edge

servers while minimizing the number of handoff times. In [28],

while taking a shortage of edge server resources into consid-

eration, they used remote cloud computing resources to assist

in computing the tasks that could not be processed in time by

the connected edge servers on the basis of jointly optimized

network handoff and task migration decisions. However, the

issue of IoV handoffs can be affected by a variety of factors,

including received signal strength, vehicle speed, reliability,

efficiency. Moreover, considering multi-dimensional factors in

making handoff decisions complicates the problem-solving

process [33]–[35]. In this regard, [29]–[32] designed com-

puting migration schemes to adapt to network handoffs, and

eliminate their negative impact on computing performance.

Accordingly, [29] proposed a scheme to migrate tasks among

multiple servers when a handoff occurred. [30] set a “hold on”

mode for tasks, where vehicles would suspend task scheduling

when tasks could not be processed before connecting to the

next available server. Given that task results might not reach a

vehicle due a handoff, H. Zhang et al. proposed to migrate the

results among multiple servers [31]. Based on the assumption

that path planning is predictable, [32] proposed a predictive

uploading and downloading of computing tasks and results to

improve the efficiency of result acquisition.

B. Motivation and contributions

From existing solutions, we know that the dominant ap-

proaches for adapting to edge network handoffs in distributed

computing involves computing migration among edge nodes.

However, these approaches are inflexible and their perfor-

mance cannot be guaranteed. Specifically, most approaches

have proposed to take compensatory measures for the com-

puting tasks affected by handoffs, such as task and result

migration, task re-offloading, and task postponement. While

these designs aim to ensure that tasks can be performed or

results successfully delivered, such approaches are passive

and inflexible. Moreover, since only edge node resources are

considered, tasks or their results usually need to be migrated

among multiple edge nodes, which will cause a long response

time or even unresponsiveness, thus resulting in a wildly

fluctuating performance or even computing failure. Therefore,

to cope with handoffs, the computing offloading scheme needs

to avoid the negative impact of handoff on computing, and at

the same time it needs to ensure the low-latency performance

of computing tasks in both handoff and non-handoff cases to

provide a smooth and stable service experience for ICVs.

Fortunately, a HAPS can help solve the above mentioned

problems. With its bird’s-eye view of the ground and pow-

erful computing resources, a HAPS can help absorb atypical

demand surges and avoid computing interruptions caused by

edge network handoffs. Therefore, the introduction of HAPS

computing into IoV systems can both alleviate computing

resource shortages and effectively deal with the handoff issue,

which makes perfect sense for ICVs. In view of this critical

observation, we follow the distributed computing framework

proposed in our recent work [25]. On this basis, we propose a

handoff-aware computing offloading scheme to deal with the

computing interruption problem. In this scheme, the task will

be dynamically split and distributedly assigned to the ICV,

RSU, and HAPS nodes for synchronous processing, which

means that an ICV’s task can be processed in parallel through

the coordination of these three node types. Accordingly, when

a network handover is about to happen, the RSU is only

responsible for a very small amount of data processing to

ensure that the task portion assigned to this node can be

computed before the handoff occurs, while the HAPS bears

most of the computational burden to smoothly complete the

computing of the task. The contributions of this work are as

follows:

1) We develop a handoff-aware computing scheme by

exploiting a distributed computing framework that in-

tegrates the computing resources of ICVs, RSUs, and

HAPS nodes. Different from the existing solutions in

edge network, this scheme utilizes the HAPS-assisted

distributed framework to deal with the computing in-

terruption issue caused by edge network handoffs in a

flexible manner. To the best of our knowledge, this is the

first work to investigate the benefits of HAPS computing

for this topic.1

1In this work, we follow the integrated three-layer computing framework in
the previous work [25], and also propose a new computing offloading scheme
to handle the computing interruption issue caused by edge network handoff.
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Fig. 1: Handoff-aware distributed computing in in a HAPS-assisted vehicular network.

2) Due to the diverse needs of ICVs, network dynamics,

and the time-sensitivity of handoffs, this scheme flexibly

divides the tasks of each user into three parts and assigns

them to ICVs, RSUs, and HAPS nodes to perform syn-

chronous computing. In addition, this scheme constrains

the computing of tasks at the RSUs so that they are

completed before a handoff is about to occur, thereby

avoiding the risk of a computing interruption.

3) With the objective of minimizing the delay in executing

ICVs’ tasks, we formulate an optimization problem

by finding task-splitting ratios, ICV transmit power,

bandwidth allocation, and computing resource alloca-

tion. Then, using variable replacement and successive

convex approximation (SCA) methods, we solve the

optimization problem.

II. HANDOFF-AWARE DISTRIBUTED COMPUTING MODEL

A. System Model

The handoff-aware distributed computing model considered

here for a HAPS-assisted vehicular network is shown in Fig.

1. A single HAPS at an altitude of 20 km provides coverage

for a one-way road [36]. The road is divided into M non-

overlapping segments, each covered by an edge network access

point, i.e., RSU. Each RSU is equipped with a computing

server to process vehicular computing tasks, and both RSUs

and their equipped computing resources can be considered as

edge network resources in the system. These RSUs are labeled

as M = {1, 2, . . . ,M} in order. We assume that the coverage

range of the RSUs is D (m). There are N ICVs, labeled as

N = {1, 2, . . . , N}, running at a speed of v (m/s) along the

road, and each ICV passes through the coverage range of the

RSUs in order. This means that a handoff occurs when an

ICV passes from one RSU coverage area to another. At the

beginning of each decision time slot, the ICV n runs from its

current position ln (m), and generates one task to be computed,

with the input data size εn (in bits) and computational density

λn (in CPU Cycle/bit). Assuming the task is splittable, we

consider a distributed parallel computing model, which is

shown in Fig. 2. In this model, the task can be split into three

portions and computed at three nodes simultaneously (i.e., at

the ICV’s onboard device, at the associated RSU, and at the

HAPS), which corresponds to three computing ways: local,

RSU, and HAPS computing, respectively. Local computing

can directly process the task portion it is assigned, while the

task portions that are assigned to the RSU and HAPS need

to be offloaded to the RSU and HAPS separately before the

computing can be performed on their servers. In this work,

we do not discuss the downloading of results because the

amount of such data is small compared to the input data. Given

that delay performance is critical for IoV services, and this

performance influences vehicle and road safety as well as the

driver’s experience, this work is dedicated to improving the

delay performance of ICVs in performing computing tasks.

Based on the model shown in Fig. 2, the data splitting

model is described as follows: for ICV n, the data splitting

ratio at its associated RSU node is indicated by xR
n , at the
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HAPS node is indicated by xH
n , and at its onboard device

is indicated by 1 − xR
n − xH

n . The task splitting strategy is

dynamically determined rather than using a fixed assignment.

It depends on real-time channel conditions, the association

between users and RSUs, variational task requirements (data

volume and computational density), and available bandwidth

and computing resource capacity [37]. In addition to these fac-

tors, the handoff issue of the edge network is also considered

by adjusting the data splitting ratios in a flexible manner so

that the task portion computed at the RSU is not interrupted

by a handoff. Fig. 3 provides an illustration of a handoff.

As we can see, at the beginning of a decision time slot,

the ICV n moves from position A to network boundary B
and is about to enter the coverage of the next RSU, which

triggers a network handoff. According to the ICV’s initial

speed v (m/s) and its position ln, the handoff timestamp can

be given by T handoff
n = D−|ln mod D|

v
, where |ln mod D|

is the remainder of dividing ln by D, which indicates ICV n’s

relative position from its associated RSU2 T handoff
n describes

the time it takes for ICV n to run out of the RSU coverage

boundary. During this journey, ICV n offloads a partial task

with a splitting ratio xR
n to the RSU, and then the RSU server

computes the assigned task portion. To ensure that the data

processing will not be interrupted by the network handoff,

the delay experienced must be guaranteed not to exceed the

timestamp when the handoff occurs, i.e., T handoff
n , which

can be viewed as a hard time limit. If the processing delay

of the task portion at RSU is greater than T handoff
n , the

corresponding portion will be dropped.

B. Communication Model

In this system, we consider that both RSUs and ICVs are

equipped with a single antenna, while the HAPS is equipped

with multiple antennas. Based on this assumption, there are

a very high number of spotbeams in HAPS network and that

2The model is formulated according to the distance-based handoff protocol
rules.

D
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Task n

R

nx

B A
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nl

D  mod Dnhandoff

n

l
T

v

Fig. 3: Illustration of handoff.

the target area is within a spotbeam [25]. At each time slot,

the ICV n needs to offload the input data of the task portion

with size xR
n εn to the associated RSU, while offloading the

input data of the task portion with size xH
n εn to the HAPS

at the same time. Therefore, the communication links are of

two types: links between ICVs and RSUs; and links between

ICVs and the HAPS. We consider a carrier frequency of

2 GHz for all links, and these links work on orthogonal

channels. Given the available bandwidth Bmax, the bandwidths

for these orthogonal links are optimally allocated. For ICV n,

the bandwidth ratios allocated to the links from the ICV to

the RSU and from the ICV to the HAPS are indicated by bRn
and bHn , respectively. The bandwidth allocation should satisfy

the compacity constraint
∑

n∈N
bRn + bHn ≤ 1. In addition, due

to the limitations of the transmit power of ICVs, the power

allocation is also investigated with the given Pmax. For ICV

n, the power allocation ratios for the links from ICV n to

the RSU and from ICV n to the HAPS are indicated by pRn
and pHn , respectively. Here, we use pRn + pHn ≤ 1, ∀n ∈ N to
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TABLE I: Notation Definitions

Notation Definition

M,M The RSU set and the number of RSUs

N , N The ICV set and the number of ICVs

ε Volume of input data (Kbits)

λ Computation density (CPU cycle/bit)

xR
n , xH

n The data splitting ratio at RSU node, and HAPS node

D The coverage range of RSU (m)

FL, FR, FH Computational capability of ICV, RSU and HAPS (CPU cycle/s)

GR, GH , G Link channel gain of RSU, link channel gain of HAPS, and directional antenna gain

dR, dH The link distance of RSU and HAPS (m)

c, fc, α, β0 Light speed (m/s), carrier frequency (Hz), NLoS link path loss factor, and NLoS link reference path loss

hR, hH LoS link small-scale fading coefficient and NLoS link small-scale fading coefficient

N0 Gaussian noise power spectrum density (dBm/Hz)

Bmax, RR, RH Bandwidth limitation (MHz), transmission rate from ICV to RSU, and transmission rate from ICV to HAPS (bit/s)

f, b Computing resource allocation ratio and bandwidth allocation ratio

Pmax Transmitter power limitation of ICV (dBm)

TL, TR, TH Delay under local, RSU, and HAPS computing (s)

Thandoff
n The time to triger handoff (s)

constrain the power allocation for the ICVs. We consider non-

line-of-sight (NLoS) communication for the link from ICV n
to the RSU, and the channel gain is modeled as

GR
n =

β0(fc)
∣

∣hR
n

∣

∣

2

(dRn )
α , (1)

where β0(fc) is the path loss at the reference distance 1

m, hR
n is the small-scale fading coefficient of the NLoS

link following a Rayleigh distribution, dRn is the distance

from ICV n to the RSU, and α is the path-loss ex-

ponent. The corresponding transmission rate is given by

RR
n = bRnBmaxlog2

(

1 +
pR
nPmaxG

R
n

bRnBmaxN0

)

, where N0 is the Gaus-

sian noise power spectrum density.

Since the HAPS hovers in a high altitude and the highway

is usually in a remote area, we consider the links from the

ICVs to the HAPS to be LoS with their large-scale fading

path loss following free-space path loss. The channel gain can

be modeled by [38]:

GH
n = G

(

c

4πdHn fc

)2
∣

∣hH
n

∣

∣

2
, (2)

where c is the speed of light, dHn is the distance from ICV n
to the HAPS. fc is the carrier frequency, which in this work

we consider to be 2 GHz. Since environmental effects are

negligible for the frequencies under 10 GHz, environmental

attenuations are not considered in this work [39]. G is the

directional antenna gain, and hH
n is the small-scale fading

coefficient corresponding to Rice fading that considers the LoS

component. The corresponding transmission rate is given by

RH
n = bHn Bmaxlog2

(

1 +
pH
n PmaxG

H
n

bHn BmaxN0

)

. With the transmission

rate, the delay for offloading the task portion of ICV n with

size xR
n εn to the RSU can be modeled as

xR
n εn
RR

n
, and the delay

for offloading the task portion of ICV n with size xH
n εn can

be modeled as
xH
n εn
RH

n
. In addition, the propagation delays taken

for the ICV’s signals to reach the RSU and HAPS are given

by
dR
n

c
and

dH
n

c
.

C. Computing Model

It is assumed that at each decision time slot, each ICV gen-

erates one task to compute that can be split into three portions

and computed at three nodes in parallel. The available com-

puting resources for ICVs doing local, RSU, and HAPS com-

puting are indicated by FL, FR, and FH (in CPU Cycle/s),

respectively. After the splitting, the task portion assigned to the

RSU with workloads xR
n εnλn will be computed at the RSU

server, the task portion assigned to the HAPS with workloads

xH
n εnλn will be computed at the HAPS, and the task portion

assigned to the ICV with workloads (1 − xR
n − xH

n )εnλn

will be computed locally. The computing resources will be

optimized at the RSU servers and HAPS server. For RSU

computing, the computing resources will be allocated among

the ICVs in the RSU’s covered segment. We let Φm denote

the ICV index set of RSU m, m ∈ M. Let fR
n indicate the

computing resource ratio allocated for ICV n at its associated

RSU server, so the computing resource allocation limitation at

RSU m is given by
∑

n∈Φm

fR
n ≤ 1, ∀m ∈ M. Let fH

n indicate

the computing resource ratio allocated at the HAPS server

for ICV n, and the computing resource allocation limitation

at HAPS is constrained by
∑

n∈N

fH
n ≤ 1. Furthermore, the

computational delays can be expressed as
(1−xR

n−xH
n )εnλn

FL for

local computing,
xR
n εnλn

fR
n FR for RSU computing, and

xH
n εnλn

fH
n FH for

HAPS computing, respectively.

D. Delay Model

Using the above communication and computing models, the

delays for ICV n with local, RSU, and HAPS computing can

be given as follows:

1) Local computing:

TL
n =

(1 − xR
n − xH

n )εnλn

FL
. (3)

2) RSU computing:

TR
n =

dRn
c
+

xR
n εn

bRnBmaxlog2

(

1 +
pR
nPmaxGR

n

bRnBmaxN0

)+
xR
n εnλn

fR
n FR

.(4)



6

3) HAPS computing:

TH
n =

dHn
c
+

xH
n εn

bHn Bmaxlog2

(

1 +
pH
n PmaxGH

n

bHn BmaxN0

)+
xH
n εnλn

fH
n FH

.(5)

The delay for ICV n is ultimately determined by the maximum

value of TL
n , TR

n and TH
n

3.

III. SUM-DELAY MINIMIZATION

In this section, we first formulate the optimization problem

that minimizes the total delay of all ICVs in order to improve

the average delay performance of the system. Then, we provide

the problem transformation and solution for the formulated

problem.

A. Problem Formulation

We aim to optimize the sum-delay experienced by ICVs

for executing tasks by finding the optimal values for the

task-splitting ratios of RSU X
R= [xR

1 , ..., x
R
N ], the task-

splitting ratios of HAPS X
H= [xH

1 , ..., xH
N ], bandwidth al-

locations of the links from ICVs to RSU B
R= [bR1 , ..., b

R
N ],

bandwidth allocations of the links from ICVs to HAPS

B
H= [bH1 , ..., bHN ], power allocations of the links from ICVs

to RSU P
R= [pR1 , ..., p

R
N ], power allocations of the links from

ICVs to HAPS P
H= [pH1 , ..., pHN ], computing resource allo-

cations of RSU F
R= [fR

1 , ..., f
R
N ], and computing resource

allocations of HAPS F
H= [fH

1 , ..., fH
N ]. The optimization

problem can be formulated as follows:

min
xR,xH , bR, bH ,

pR,pH ,fR,fH

N
∑

n

max
{

TL
n , TR

n , TH
n

}

(6a)

s.t. TR
n ≤ T handoff

n , ∀n ∈ N , (6b)
∑

n∈N

bRn + bHn ≤ 1, (6c)

pRn + pHn ≤ 1, ∀n ∈ N , (6d)
∑

n∈Φm

fR
n ≤ 1, ∀m ∈ M, (6e)

∑

n∈N

fH
n ≤ 1, (6f)

xR
n , x

H
n , bRn , b

H
n , pRn , p

H
n , fR

n , fH
n > 0. (6g)

Since we consider parallel task computing, the ICV’s delay

is the maximum value of the delay to perform the task on

the local, RSU, and HAPS, i.e., max
{

TL
n , TR

n , TH
n

}

. In

Problem (6), the objective function (6a) is the total delay

of ICVs. The constraint (6b) indicates that the task portion

that is assigned to the RSU should be completed before the

handoff occurs. (6c) denotes the bandwidth constraint for all

links. (6d) denotes the transmit power constraint for each

3According to Tc = λ/v, in which λ is wavelength and v is vehicle
velocity, the coherence time in our scenario is 5 milliseconds. During the
coherence time, only 66.6 microseconds is assigned for the channel estimation
(under the assumption of a 15 KHz subcarrier, and allocation of one symbol
per each pilot signal), and the remaining time can be allocated for offloading.
This means that the channel estimation time is negligible compared to the
offloading time.

ICV. (6e) denotes the computing resource constraint for each

RSU, and (6f) denotes the computing resource constraint for

HAPS. Finally, (6g) indicates the non-negative requirements

for all variables. It is clear that Problem (6) is nonconvex

due to the non-smooth objective function, coupled variables,

and complicated formulations. This is a difficult problem to

solve directly, and there is no standard method to address this

problem. In the following, we transform the problem into a

tractable one.

B. Problem Transformation and Solution

First of all, we introduce auxiliary variable T= [T 1, ..., TN ]

to represent the individual delays, so that the original non-

smooth problem is transformed into a smooth one. Further, by

expanding the representation of TL
n , TR

n , and TH
n , Problem (6)

can be equivalently rewritten as

min
T,xR,xH , bR, bH ,

pR,pH ,fR,fH

N
∑

n

Tn (7a)

s.t.
(1− xR

n − xH
n )εnλn

FL
≤ Tn, ∀n ∈ N , (7b)

dRn
c

+
xR
n εn

bRnBmaxlog2

(

1 +
pR
nPmaxGR

n

bRnBmaxN0

) +
xR
n εnλn

fR
n FR

≤ Tn,

∀n ∈ N , (7c)

dHn
c

+
xH
n εn

bHn Bmaxlog2

(

1 +
pH
n PmaxGH

n

bHn BmaxN0

) +
xH
n εnλn

fH
n FH

≤ Tn,

∀n ∈ N , (7d)

dRn
c

+
xR
n εn

bRnBmaxlog2

(

1 +
pR
nPmaxGR

n

bRnBmaxN0

) +
xR
n εnλn

fR
n FR

≤ T handoff
n , ∀n ∈ N , (7e)

(6c), (6d), (6e), (6f), (6g). (7f)

Next, in order to handle the coupling between the

optimization variables in the constraints (7c), (7d), and

(7e), we introduce auxiliary variables τR= [τR1 , ..., τ
R
N ] and

τH= [τH1 , ..., τHN ] to respectively represent the delays of ICVs

offloading data to the RSU and HAPS, and relax the corre-

sponding constraints. Then, Problem (7) can be equivalently

rewritten as

min
T,xR,xH , bR, bH ,

pR,pH , τR, τH ,fR,fH

N
∑

n

Tn (8a)

s.t.
dRn
c

+ τRn +
xR
n εnλn

fR
n FR

≤ Tn, ∀n ∈ N , (8b)

dHn
c

+ τHn +
xH
n εnλn

fH
n FH

≤ Tn, ∀n ∈ N , (8c)

xR
n εn

bRnBmaxlog2

(

1 +
pR
nPmaxGR

n

bRnBmaxN0

) ≤ τRn , ∀n ∈ N , (8d)
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xH
n εn

bHn Bmaxlog2

(

1 +
pHn PmaxG

H
n

bHn BmaxN0

) ≤ τHn , ∀n ∈ N ,

(8e)

dRn
c

+ τRn +
xR
n εnλn

fR
n FR

≤ T handoff
n , ∀n ∈ N , (8f)

(6c) − (6f), (7b),

xR
n , x

H
n , bRn , b

H
n , pRn , p

H
n , τRn , τHn , fR

n , fH
n > 0, (8g)

where (8d) guarantees that the communication delays ex-

perienced by the ICVs offloading data to the RSU cannot

exceed τRτRτR, and (8e) guarantees that the communication de-

lays experienced by the ICVs offloading data to the HAPS

cannot exceed τHτHτH . Then, to further address the variable

coupling issue, we make the exponential transformations for

variables xR,xH , τR, τH ,fR and fH . More specifically,

the above variables for ICV n can be converted as follows:

xR
n = exp(xR

n ), x
H
n = exp(xH

n ), τRn = exp(τRn ), τHn =
exp(τHn ), fR

n = exp(fR
n ) and fH

n = exp(fH
n ). Then, we can

obtain the following optimization problem:

min

T,xR,xH , bR, bH ,

pR,pH , τR, τH ,fR,fH

N
∑

n

Tn (9a)

s.t.
εnλn

FL

(

1− exp
(

xR
n

)

− exp
(

xH
n

))

≤ Tn, ∀n, (9b)

dRn
c

+ exp
(

τRn

)

+
εnλn

FR
exp

(

xR
n − fR

n

)

≤ Tn, ∀n ∈ N ,

(9c)

dHn
c

+ exp
(

τHn

)

+
εnλn

FH
exp

(

xH
n − fH

n

)

≤ Tn, ∀n ∈ N ,

(9d)

bRnBmaxlog2

(

1 +
pRnPmaxG

R
n

bRnBmaxN0

)

≥ εn exp
(

xR
n − τRn

)

,

∀n ∈ N , (9e)

bHn Bmaxlog2

(

1 +
pHn PmaxG

H
n

bHn BmaxN0

)

≥ εn exp
(

xH
n − τHn

)

,

∀n ∈ N , (9f)

dRn
c

+ exp
(

τRn

)

+
εnλn

FR
exp

(

xR
n − fR

n

)

≤ T handoff
n ,

∀n ∈ N , (9g)
∑

n∈Φm

exp
(

fR
n

)

≤ 1, ∀m ∈ M, (9h)

∑

n∈N

exp
(

fH
n

)

≤ 1, (9i)

xR
n , x

H
n , bRn , b

H
n , pRn , p

H
n , τRn , τHn , fR

n , fH
n > 0, (9j)

(6c), (6d). (9k)

Proposition 1: The resulting sets of constraints (9c)-(9i) are

convex.

Proof. In the following, the proofs relevant to constraints (9c),

(9d), (9g), (9h), as well as (9i) and (9e)-(9f) are developed

separately.

1) The left hand of constraints (9c), (9d), (9g), (9h), and

(9i) are in the form of a summation of positive terms

of exponential functions, so these constraints are all

convex.

2) Constraints (9e) and (9f) have similar expressions as

follows:

θylog2(1 +
ηz

θ
)− q exp(δ − ω) ≥ 0, (10)

where α, β, δ, and ω represent optimization variables,

and y, z, and q represent constants. The first term

e(α, β) = αylog2(1 + βz
α
) is the perspective form of

concave function log2(1 + βz) [40]. Accordingly, we

can say that e(α, β) is jointly concave in variables α
and β. Furthermore, it is easy to prove the second term

−q exp(δ − ω) is jointly concave in variables δ and ω.

Therefore, both the resulting sets of constraints (9e) and

(9f) are convex.

According to the proof, the exponential transformation of

variables can effectively remove the coupling between vari-

ables. However, Problem (9) is still non-convex because of

constraint (9b). To deal with this problem, we use the succes-

sive convex approximation (SCA) method. SCA is widely used

for iteratively approximating an originally non-convex prob-

lem by using first-order Taylor expansion, which can transform

the original problem into a series of convex versions [41], [42].

In this case, we first define gn = 1− exp(xR
n )− exp(xH

n ) for

any n ∈ N . Then, we define AiAiAi = {Ai
n

∣

∣n ∈ N}, wherein

Ai
n = {x̂R

n [i], x̂
H
n [i]} is the local point set in the i-th iteration.

Recalling that any concave function is globally upper bounded

by its first-order Taylor expansion at any given point [43], [44],

we can obtain the following inequality:

gn = 1− exp(xR
n )− exp(xH

n )

≤ 1− exp
(

x̂R
n [i]

)

− exp
(

x̂R
n [i]

)(

xR
n − x̂R

n [i]
)

− exp
(

x̂H
n [i]

)

− exp
(

x̂H
n [i]

)(

xH
n − x̂H

n [i]
)

= ĝn[i].

(11)

By applying the SCA method, the concave term of (9b) is

replaced by a series of linear terms with given local points.

As a consequence, Problem (9) is transformed into a series

of iteratively convex problem, and the i-th convex problem is

given by:

min

T,xR,xH , bR, bH ,

pR,pH , τR, τH ,fR,fH

N
∑

n

Tn[i] (12a)

s.t.
εnλn

FL
ĝn[i] ≤ Tn[i], (12b)

(6c), (6d), (9c) − (9j). (12c)

The SCA process is described in Algorithm 1 and its

computational complexity is presented here. At each iteration,

the computational complexity is determined by solving the

convex problem, where the convex problem can be solved

by using the interior point method. This method requires
log

(

NI

u0ρ

)

log(ξ) number of iterations (Newton steps), where NI is the
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number of constraints, u is the initial point used to estimate

the accuracy of the interior-point method, γ is the stopping

criterion, and ξ is the parameter for updating the accuracy

of the interior point method [45]. The number of constraints

in problem (12) is 2 +M + 4N , where M and N represent

the number of RSUs and ICVs in the system, respectively.

Therefore, the computational complexity of Algorithm 1 is

O

(

imax

log
(

NI

u0ρ

)

log(ξ)

)

, where imax is the maximum number of

iterations required for Algorithm 1 to converge 4.

Algorithm 1 The SCA-based method for solving Problem (9).

1: Initialize precision ζ, imax, A0A0A0, and set i = 0.

2: repeat

3: According to the given local point set AiAiAi and the

expression (11), obtain ĝ[i]ĝ[i]ĝ[i].
4: Solve the convex Problem (12) and

find the optimal solution set Λ =
{TTT∗,xRxRxR∗,xHxHxH∗, bRbRbR∗, bHbHbH∗, pRpRpR∗, pHpHpH∗, τRτRτR∗, τHτHτH∗, fRfRfR∗, fHfHfH∗}.

5: Record the objective function value of the i-th iteration

as
N
∑

n

Tn[i] = φ∗, and updateAi+1Ai+1Ai+1 based on x̂R̂xR̂xR[i+1] =

xRxRxR∗ and x̂ĤxĤxH [i+ 1] = xHxHxH∗, then i = i+ 1.

6: until φ∗[i]− φ∗[i+ 1] ≤ ζ, or i > imax.

IV. MAXIMUM-DELAY MINIMIZATION

In this section, we discuss a new optimization problem

that focuses on the individual delay performance of ICVs

by optimizing the delay fairness between them. Indeed, in

delay-sensitive applications, we have to consider individual

delay performance by minimizing the maximum-delay value

for all ICVs. Assuming the same parameters as the sum-

delay minimization problem, the optimization problem can be

expressed as follows:

min
xR,xH , bR, bH ,

pR,pH ,fR,fH

max
n∈N

max
{

TL
n , TR

n , TH
n

}

(13a)

s.t. TR
n ≤ T handoff

n , ∀n ∈ N , (13b)
∑

n∈N

bRn + bHn ≤ 1, (13c)

pRn + pHn ≤ 1, ∀n ∈ N , (13d)
∑

n∈Φm

fR
n ≤ 1, ∀m ∈ M, (13e)

∑

n∈N

fH
n ≤ 1, (13f)

4Note that our system model of the terrestrial network can be generalized
into the multiple antenna system, in which each RSU is equipped with A
antennas and serves N singe-antenna ICVs. For this end, the N ICVs can
be divided into N

L
groups in which L is the number of ICVs in each group.

Assuming that A > N
L

, each RSU can create N
L

beams and each of these
beams is responsible to serve one group. Considering orthogonal frequency
resource blocks are allocated for the L ICVs inside each group, the proposed
bandwidth allocation can be applied to each group.

xR
n , x

H
n , bRn , b

H
n , pRn , p

H
n , fR

n , fH
n > 0. (13g)

Problem (13) minimizes the maximum-delay value of all ICVs

by finding the optimal solution of optimization variables.

These variables include the task-splitting ratios of RSUs, i.e.,

X
R= [xR

1 , ..., x
R
N ], the task-splitting ratios of HAPS, i.e.,

X
H= [xH

1 , ..., xH
N ], bandwidth allocations of the links from

ICVs to RSUs, i.e., BR= [bR1 , ..., b
R
N ], bandwidth allocations

of the links from ICVs to HAPS, i.e., B
H= [bH1 , ..., bHN ],

power allocations of the links from ICVs to RSUs, i.e.,

P
R= [pR1 , ..., p

R
N ], power allocations of the links from ICVs

to HAPS, i.e., P
H= [pH1 , ..., pHN ], computing resource al-

locations of RSUs, i.e., F
R= [fR

1 , ..., f
R
N ], and computing

resource allocations of HAPS, i.e., F
H= [fH

1 , ..., fH
N ]. In

addition, the constraint (13b) indicates that the delay for

computing task on the RSU cannot exceed the network hand-

off time. Similar to the sum delay minimization problem,

constraints (13c)-(13g) represent the basic constraints, includ-

ing bandwidth capacity, power threshold, RSU and HAPS

computational capabilities, and the non-negative conditions of

variables, respectively. Problem (13) is clearly a non-convex

problem. In order to solve it, similar to the solution of Problem

(6), we adopt the following transformation and solution pro-

cess: First, we introduce auxiliary variables T= [T 1, ..., TN ]

to transform the original objective function as: min max
n∈N

Tn.

Then, we further introduce variable T to replace max
n∈N

Tn.

Next, in order to deal with the coupling between optimization

variables, the auxiliary variables τRn and τHn are introduced

for ICV n ∈ N to represent the delays for offloading data

to the RSU and HAPS, respectively, and the corresponding

delay constraints for these newly introduced variables are

added. After that, we apply the exponential transformation for

the variables xR
n , x

H
n , τRn , τHn , fR

n and fH
n . In the transformed

optimization problem, the constraint for the local delay will

be εnλn

FL

(

1− exp
(

xR
n

)

− exp
(

xH
n

))

≤ Tn, where the left

term is a concave function. Therefore, the resulting set from

this constraint is non-convex. To address this issue, we use the

SCA method proposed in Algorithm 1 to transform the original

optimization problem into a series of convex sub-problems,

and we obtain the final result through the corresponding

iterations.

V. SIMULATION RESULTS

For our simulation, we consider a one-way road covered

by two RSUs and one HAPS. The HAPS is deployed in the

stratosphere at an altitude of 20 km and located horizontally

in the center of the road. All ICVs can communicate with the

HAPS instantly and offload their data to the HAPS’s server

for data processing. Two RSUs were deployed at positions of

80 m and 240 m, each covering a range of 160 m. The ICVs

covered by the RSUs can communicate with the RSUs and

offload data to their servers for data processing. When the ICV

travels beyond the coverage area of the RSU it is connected

to, a network handoff will occur. The ICV will then enter

the coverage area of the next RSU, establish communication,

and obtain services from it. In this simulation, ten ICVs were

initially randomly deployed on the road. At the beginning of
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TABLE II: Simultation Parameters

Definition Value

Speed of ICV (m/s) 30

Bandwidth capacity (MHz) 20

Noise power density (dBm/Hz) -174

NLoS Path-loss factor 3.7

Rician factor (dB) 10

Rayleigh distribution CN (0, 1)
Transmitter power of ICV (dBm) 23

Directional antenna gain of HAPS (dBi) 17 [46]

Computational density (CPU cycle/bit) 500, 1,000, 1,500, 2,000, or 2,500

Volume of input data (Kbits) 100, 300, 500, 700, or 900

Computational capability of
ICV, RSU, HAPS (CPU cycle/s) 2 G, 32 G, 100 G

Maximum iteration 50

Convergence precision 10−6

0 2 4 6 8 10 12 14

Iteration

40
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180

A
ve

ra
ge

 d
el

ay
 (

m
s)

Sum
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Fig. 4: The convergence of the SCA method with the proposed

scheme.

each decision time slot, each ICV randomly generated one task

to be computed, depending on the individual input data. If not

emphasized, the main parameters in this simulation were set

as in TABLE II.

Fig. 4 shows the convergence performance of Algorithm

1 in solving the sum-delay minimization problem (labeled

as ‘Sum’) and the maximum-delay minimization problem

(labeled as ‘Max.’) in our proposed scheme, where the delay

performance of the ‘Sum’ problem is measured by the average

delay of all ICVs, and the ‘Max.’ problem is measured by

the maximum-delay value of all ICVs. As we can see, the

performance of both delays converge to stable points within

ten iterations, thus confirming the convergence and efficiency

of the SCA method.

Fig. 5 (a), (b), and (c) respectively show the ICVs’ average

delay, maximum delay, and fairness index of the proposed

scheme under the premise of solving the ‘Sum’ problem and

the ‘Max.’ problem in five consecutive time slots. In this work,

the fairness is measured by the widely used Jain’s equation,

defined by J = (
∑N

n=1 yn)
2/(N×

∑N
n=1 y

2
n). As we can see,

the average delay of the ‘Sum’ problem is better than that of

the ‘Max.’ problem, but its maximum delay value is worse.

(a) Average delay
Time slot 

A
ve

ra
ge

 d
el

ay
 (

m
s)

   
   

  

Sum
Max.

(b) Maximum delay
Time slot

M
ax

im
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 d
el

ay
 

(m
s)

   
   

   
 

Sum
Max.

(c) Fairness

Time slot

F
ai

rn
es

s

Sum
Max.

Fig. 5: Average delay, maximum delay, and fairness of the

proposed scheme.

Under the ‘Max.’ problem, the ICVs can obtain higher fairness

values. This is because the goal of the ‘Sum’ problem is to

optimize the average delay performance of the ICVs, while the

purpose of the ‘Max.’ problem is to optimize the maximum

delay of the ICVs.

Fig. 6 – Fig. 9 show the effects of bandwidth capacity, ICV’s

transmit power threshold, HAPS computational capability, and

RSU computational capability settings on the average delay

performance of different schemes when solving the ‘Sum’ and

‘Max.’ problems. To distinguish these schemes, we use the

label ‘HRVIN’ to represent the proposed scheme within the

distributed computing framework of the HAPS-RSU-vehicle

integrated network, where the task of each ICV can be

processed at its onboard device, RSU server and HAPS server
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Fig. 6: Average delay vs. bandwidth.
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Fig. 7: Average delay vs. transmit power of ICV.

in parallel. We use the label ‘woRSU’ to represent the two-

layer computing scheme where there is no RSU computing,

and we use the label ‘woHAPS’ to represent the two-layer

computing scheme where there is no HAPS computing, which

can also be regarded as a traditional distributed computing

scheme.

Fig. 6 shows the impact of different bandwidth capacity

settings on delay performance. As we can see, the ‘HRVIN’

scheme with three layers of computing resources achieves bet-

ter performance compared to the other two baseline schemes,

which have only two layers of computing resources. This

shows that the ‘HRVIN’ scheme is more conducive to acceler-

ating the task computing. Besides, by comparing the ‘woRSU’

and ‘woHAPS’ schemes, we can see that only the HAPS-

assisted computing scheme ‘woRSU’ can also effectively

improve the delay performance greater than the ’woHAPS’

scheme, and this is because the HAPS can be equipped

with more computing resources than the RSU. Moreover,

the increase of bandwidth capacity can reduce the delay of

computing tasks. The reason for this is that the increase of

bandwidth enables ICVs to improve their ability to offload data
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Fig. 8: Average delay vs. computational capability of HAPS.

to the RSUs and HAPS. Benefiting from this, more data can be

offloaded to speed up the data processing, thereby improving

the ICVs’ perceived delays.

Fig. 7 shows the impact of different transmit power thresh-

old settings on delay performance. As we can see, increasing

the power threshold can reduce the delay. Similar to the

change of bandwidth capacity, the increase in power threshold

improves the ICV’s ability to offload data. This allows ICVs

to offload more data for processing, thus improving the delay

performance.

Fig. 8 shows the impact of different computational capa-

bility settings of the HAPS server on the delay performance.

We can observe that with the increase of the computational

capability, the delay can be gradually reduced. This suggests

that the increase in the computational capability of the HAPS

server can help ICVs to offload more data to the HAPS to

obtain more powerful computing resources, thus accelerating

the data processing.

Fig. 9 shows the impact of different computational capabil-

ity settings of the RSU server on the delay performance. On

the whole, the increase in the server’s computational capability

can speed up the execution of tasks.

As mentioned above, network handoffs between ICVs and

RSUs will negatively affect computation offloading, and this

problem will be more severe for high-speed mobile scenarios.

To illustrate the impact of a network handoff and mobility on

computing, Fig. 10 (a) and (b) show the total failed workloads

of ICVs under different speed settings when removing network

handoff constraint TR
n ≤ T handoff

n , ∀n ∈ N , for solving

the sum-delay optimization problem, and the maximum-delay

optimization problem, respectively. We count the averaged

one-minute failed workloads, where the workload is defined as

the product of the input data bits ε (bit) and the computational

density λ (CPU Cycle/bit). As both figures show, the total

failed workloads of ICVs increase as the speed increases on

the whole. According to equation T handoff
n = D−|ln mod D|

v
,

the handoff time is inversely proportional to the speed of

the ICV. This means that with the increase of speed, the

time to trigger the network handoff will be earlier, so the
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Fig. 9: Average delay vs. computational capability of RSU.

frequency of handoffs occurring during the driving will also

increase, and the cumulative failed workloads will increase.

Fig. 10 shows that considering the network handoff factor

when designing a computing strategy can effectively avoid

failures caused by handoff interruptions. Obviously, this is of

great significance for efficient and successful data processing,

especially for high-speed mobile scenarios. In addition, by

comparing the ‘woHAPS’ and ‘HRVIN’ schemes, we can

see that the failed workloads of the ‘woHAPS’ scheme are

higher than that of ‘HRVIN’ scheme. The reason is that when

we do not consider the handoff factor, most of the ICVs in

the ‘woHAPS’ scheme mainly rely on RSU computing, so

the failed workloads caused by handoffs exceed the ‘HRVIN’

scheme that can depend on both RSU computing and HAPS

computing. Although considering network handoffs in the

‘woHAPS’ scheme (i.e., adding the handoff constraint at

RSUs) can avoid computational interruptions, it will force

ICVs that encounter handoffs to rely only on their own local

computing, thus resulting in poor delay performance. This

fact will be verified in Fig. 11. In comparison, the ‘HRVIN’

scheme that does not consider the network handoff factor

reduces the computational burden on the RSU server to a

certain extent. Therefore, when encountering a handoff, the

interrupted workloads are fewer. Further, if the handoff factor

can be considered in the ‘HRVIN’ scheme when encountering

a handoff, a large amount of data can be offloaded to the

HAPS, which can yield a lower delay compared with the

‘woHAPS’ scheme that can only rely on local computing,

and in summary, the negative impact of network handoffs on

computing is avoided. Additionally, HAPS computing can help

to improve the efficiency of task computing significantly while

avoiding the adverse effects of network handoffs.

Fig. 11 shows the average delays of two cases, one where

no handoff occurs and one where the handoff does occur,

indicated by ‘NoHandoff’ and ‘Handoff’, respectively. In

both sub-figures, we compare the delay performance of the

‘woHAPS’ and ‘HRVIN’ schemes to illustrate the importance

of HAPS computing to the handoff case. As we can see,

in each sub-figure, the edge computing scheme ‘woHAPS’
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Fig. 10: The total failed workloads caused by a handoff vs.

speed of ICV.
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Fig. 11: The effect of handoffs on delay performance.

has a delay increase of nearly 150 ms in the ‘Handoff’ case

compared to the ‘NoHandoff’ case, while the delay increase of

the ‘HRVIN’ scheme is only less than 10 ms. This is because,

in order to avoid a computation interruption caused by a

network handoff, the ICV in the ‘woHAPS’ scheme can only

offload a small amount of data to the edge, leaving most of

the data to be computed locally, thus resulting in a significant

increase in delay. However, in the ‘HRVIN’ scheme, the

ICV can send the data that the RSU cannot handle to the
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(a) Sum-delay optimization
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Fig. 12: The data splitting ratio for the NoHandoff and Handoff

cases vs. bandwidth.

HAPS, so the delay increase is slight and acceptable. From

the above comparison, we can see that the delay performance

of traditional edge computing in the handoff case will suddenly

deteriorate, which is obviously not conducive to the stability

and safety of ICV driving. By contrast, a HAPS can resolve

the negative impact of network handoff by completing task

computing within an acceptable increase in delay. Therefore,

introducing HAPS computing can help ICVs cope with the

network handoffs.

Fig. 12 shows the averaged ratio of a task performed in

three computing nodes: local, RSU, and HAPS with different

bandwidth settings for the proposed scheme. Fig. 12 (a) and

(b) show the comparison of data splitting in the two situations

of ‘NoHandoff’ and ‘Handoff’ with the premise of solving the

sum-delay optimization problem. Fig. 12 (c) and (d) reflect the

above situations of solving the maximum-delay optimization

problem. As we can observe in the ‘NoHandoff’ case in sub-

figures (a) and (b), when the bandwidth is 5 MHz, the data

is mostly processed locally or on the HAPS server. This is

because the small bandwidth limits the ability of ICVs to

offload data. Consequently, the data tends to be directly pro-

cessed by the ICV’s onboard device, or offloaded to the HAPS

that has more computing resources. As the bandwidth capacity

increases to 15 MHz, the throughput of offloading data to the

RSUs and HAPS significantly improves, effectively reducing

the corresponding communication delay, so the splitting ratio

of local computing decreases, and the splitting ratios of RSU

computing and HAPS computing increase. In addition, when

we compare the ‘NoHandoff’ and ‘Handoff’ cases, we can

observe that the splitting ratio of RSU computing significantly

drops from 25%-35% to 3%. This is because the data offloaded

to the RSUs needs to be successfully processed before the
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Fig. 13: The data splitting ratio for the NoHandoff and Handoff

cases vs. computational capability of the HAPS server.

network handoff is triggered. Hence, in the ‘Handoff’ case,

the data splitting ratio of the RSU is small. Meanwhile, the

splitting ratio of the HAPS increases significantly from 38%-

46% to 62%-78%, indicating that most of the RSU’s workload

has migrated to the HAPS to avoid computation interruptions.

This tells us that HAPS computing plays an important role

when the handoff occurs.

Similarly, Fig. 13 shows the averaged ratio of a task

performed in three computing nodes: local, RSU, and HAPS

under different computational capability settings of the HAPS

for the proposed scheme. As we can observe in the ‘NoHand-

off’ case in sub-figures (a) and (c), RSU computing plays a

crucial role when the computational capability of the HAPS is

set to 50 G CPU Cycle/s. This is because the computational

capacity of the HAPS is smaller than the total capabilities of

the two RSUs (each with 32 G CPU Cycle/s) in the system.

When the computing capacity of the HAPS server increases

to 100 G CPU Cycle/s, it is clear that HAPS computing plays

a significant role. In addition, by comparing the ‘NoHandoff’

and ‘Handoff’ cases, we can ascertain that the HAPS takes on

the majority of the workloads when the handoff occurs (i.e.,

about 70%-80%), while the RSU computing only handles a

fraction of the workload. By looking at Fig. 12 and Fig. 13

together, we can draw two conclusions: First, in the ‘Handoff’

case, most of the data has migrated from the RSU to the

HAPS, so the HAPS can play a crucial role in this case, which

confirms that HAPS computing in this distributed framework

can effectively deal with network handoffs. Second, according

to the data splitting ratios, the proposed distributed computing

scheme can indeed achieve more flexible and adaptive task

scheduling.
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VI. CONCLUSION

In this work, we proposed a distributed parallel computing

scheme with the assistance of HAPS to achieve a lower delay

performance of vehicular computing tasks and at the same time

provide a smooth and stable service experience for vehicles

by avoiding the negative impact of handoff. As we saw, the

scheme flexibly divides data into three parts and processes

it in parallel on ICVs, RSUs, and a HAPS. By setting the

task portion that is computed at the RSU to be completed

before the network handoff, the scheme effectively eliminates

the negative impact of the handoff on the computation. On

this basis, this work formulated a total delay optimization

problem and solved it using the SCA method. Then, we also

discussed the formulation and solution of the maximum-delay

optimization problem. Finally, extensive simulation results

confirmed the effectiveness of our proposed scheme.

The energy consumption issue for HAPS network is critical

because both hovering and computation require energy con-

sumption. The role of HAPS in computing will be weakened

when considering the energy issue of HAPS, which will make

the delay perceived by ICVs longer. In the future work, we

will discuss this comprehensive and interesting topic.
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