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Abstract

Grant-free multiple-access (GFMA) is a valuable research topic, since it can support multiuser

transmission with low latency. This paper constructs novel uniquely-decodable multi-amplitude sequence

(UDAS) sets for GFMA systems, which can provide high spectrum efficiency (SE) with low-complexity

active user detection (AUD) algorithm. First of all, we propose an UDAS-based multi-dimensional bit

interleaving coded modulation (MD-BICM) transmitter; then introduce the definition of UDAS and

construct two kinds of UDAS sets based on cyclic and quasi-cyclic matrix modes. Besides, we present

a statistic of UDAS feature based AUD algorithm (SoF-AUD), and a joint multiuser detection and

improved message passing algorithm for the proposed system. Finally, the active user error rate (AUER)

and Shannon limits of the proposed system are deduced in details. Simulation results show that our

proposed system can simultaneously support four users without additional redundancy, and the AUER

can reach an extremely low value 10−5 when Eb/N0 is 0 dB and the length of transmit block is larger

than a given value, i.e., 784, verifying the validity and flexibility of the proposed UDAS sets.

Index Terms

Multiple access, pilot sequence, adder channel, Shannon limit, active user detection (AUD).ar
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I. INTRODUCTION

Next generation multiple-access is expected to support massive users in the limited resources,

and many works have been done on this topic [1]–[3]. In general, the multiple-access tech-

nique can be categorized into uncoordinated multiple-access and coordinated multiple-access [4].

The uncoordinated multiple-access is absent coordination and generally viewed as unsourced

multiple-access, in which each user shares the same transmission protocol without allocated

signature before transmission. Conversely, the coordinated scenario is to administer the users by

a central processor, i.e., base station (BS), and each user is assigned some unique signature that

can be recognized by the receiver for detection.

The grant-free multiple-access (GFMA) can be viewed as a special case of the coordinated

multiple-access, where each user may access the BS randomly. The BS needs to detect both the

number of active users and their corresponding data sequences. The major difference between

a grant-free coordinated multiple-access and an uncoordinated multiple-access is relayed on

the dedicated signature [4]. The grant-free scenario generally allocates a pilot sequence (or

signature) to each user; thus, the receiver can separate and identify the users with the help of

pilot sequences. In contrast, the active users of the uncoordinated multiple-access case randomly

select pilot sequences without any coordination, and sometimes may lead to pilot collisions.

Therefore, it is important to design multiuser signatures for GFMA systems. The well-known

pseudo random sequences are composed of binary bits {0, 1}, e.g., m-sequence, golden sequences

[5], Reed-Muller codes [6], Walsh sequences, and etc. With the development of spreading

sequences, many papers discuss uniquely-decodable (UD) ternary code sets {−1, 0,+1} for

the overloaded synchronous code division multiple-access (CDMA) systems [7]–[12], which can

support larger number of users than the classical orthogonal spreading codes. Besides the binary

and ternary code sequences, Zad-Off Chu (ZC) sequences are also popular pilot sequences,

especially for channel estimation. It is found that the amplitude of ZC sequences is generally

a constant, and only phases are varied [14]–[16]. In addition, some papers are interested in

designing frameworks to avoid collisions for GFMA systems, e.g., paper [17] treats collisions as

interference and builds the statistical model with the aid of Poisson point processes. Moreover,

multiuser codebook design is also taken into consideration for GFMA. In [18], it presents multi-

dimensional (MD) codebooks of sparse code multiple access (SCMA) in a grant-free multiple-

access channel (MAC), where the data stream of each user is directly mapped to a codeword of
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the proposed MD codebook. Due to the sparsity of MD codebooks, the proposed scheme can

maintain overloaded information and enable massive connectivity. When these classical pilot

sequences (or MD codebooks) are used as multiuser signatures for a GFMA system, there exist

some challenges and/or drawbacks.

• The spectrum efficiency (SE) of spreading sequences based multiple-access systems is

generally low. For example, when a binary spreading sequence (e.g. Walsh sequence) is

utilized, the SE of each user is equal to the reciprocal of the spreading factor (SF), i.e.,
1
SF

, and the sum-rate of the multiuser system is equal to or smaller than one. When UD

ternary codes are utilized, the sum-rate can be larger than one, because of the overloaded

information; however, the SE of each user is still equal to 1
SF

.

• The designed multiuser codebooks cannot be flexibly extended to a general multiple-access

case. Most of the recent multiuser codebooks are designed based on multi-dimensional con-

stellations (or lattice, and etc.), which have strict constraints on transmit signals’ amplitudes

and phases [19]–[23]. Thus, the extension of the designed multiuser codebooks is generally

insignificant, especially for a massive random access system.

• Most of the recent active user detection (AUD) algorithms of GFMA systems are with

relatively high complexities, and few of them focus on the theoretical analyses of the AUD

processing. For example, the primary AUD methods are compressed sensing techniques

[24]–[26], successive joint decoding (SJD) [17], successive interference cancellation (SIC),

blind detections [18], and etc.

Regarding as the aforementioned challenges, it is interesting to design special sequences

for GFMA systems. Until now, most of the classical pilot sequences are designed based on

binary (or ternary, or phase) sets, few concerns on the multi-amplitude information. In [28],

we have proposed the concept of uniquely-decodable mapping (UDM). It is declared that, if

each user exploits 2ASK (amplitude shift keying) and the amplitudes of J users are respectively

{1, 21, . . . , 2J−1}, then the J users can be uniquely separated without ambiguity at the receiver.

For example, if there are two users and the transmit signals of the two users are respectively

{−1,+1} and {−2,+2}, the superimposed signal set is {−3,−1,+1,+3} that is a one-to-one

mapping between the two users’ transmit signals and the superimposed signals.

Based on the conception of UDM, this paper constructs a novel uniquely-decodable multi-

amplitude sequence (UDAS) for GFMA systems. The advantages of the proposed UDAS include
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three aspects. First of all, it presents a high SE without additional redundancy, likewise, some

designed non-orthogonal multiple-access (NOMA) codebooks. Following, it can be easily applied

to various multiple-access scenarios, with favoured flexible. Finally, the AUD algorithm can be

easily realized. The major contributions of this paper are four-fold:

1) This paper firstly proposes an UDAS-based multi-dimensional bit interleaving coded mod-

ulation (MD-BICM) transmitter, which is a combination of two channel encoders, one

interleaver and multi-dimensional modulation.

2) We define the conception of UDAS, and construct two kinds of UDAS sets based on cyclic

and quasi-cyclic matrix modes. Some important features of the cyclic/quasi-cyclic UDAS

sets are deduced in details.

3) We propose a statistic of UDAS feature based AUD algorithm (SoF-AUD), and a joint

multiuser detection (MUD) and improved message passing iterative decoding algorithm

for the proposed system.

4) Finally, we deduce the theoretical active user error rate (AUER) of the proposed system;

then, analyze and calculate the Shannon limits of the multiple-access adder channels in

details.

The remainder of this paper is organized as follows. In Section II, the UDAS-based MD-

BICM system is described. We present some definitions of UDAS, and construct two kinds of

UDAS sets with detailed features in Section III. Section IV proposes detection algorithms for

the proposed system. The theoretical analyses are presented in Section V. Simulation results are

discussed in Section VI, followed by concluding remarks drawn in Section VII.

II. SYSTEM MODEL

In this paper, a, a and A stand for a variable, a vector and a matrix, respectively. Denote

AT by the transpose of a matrix A. Let B, Z and C be the binary, integer and complex fields,

respectively. Re[a] and Im[a] are respectively the real part and image part of the complex number

a. 1i stands for an image number. E[.] is the function of expectation, and d.e denotes the ceiling

operator. ‖a‖2 denote the 2-norm of a vector a.

Suppose there are J users simultaneously access the BS. Obviously, the value of J should be

estimated for a GFMA system. Each user is equipped with a single antenna, and the BS holds

one antenna. The system model is shown in Fig. 1.
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Fig. 1. A diagram of the proposed UDAS-based MD-BICM system, where “Enc”, “Dec”, “Inter”, “De-inter”, and “Mod”

respectively stand for “encoder”, “decoder”, “interleaver”, “de-interleaver” and “modulation”.

The transmit bit information of the jth user is defined by u(j) ∈ B1×K , where 1 ≤ j ≤ J and

K is the number of bits of the jth user. u(j) is then passed to the first channel encoder whose

generator is a K × N1 matrix defined by G1 = [gk,n1 ]1≤k≤K,1≤n1≤N1 , and obtained an encoded

codeword v(j) = u(j) ·G1, where v(j) = (v
(j)
1 , v

(j)
2 , . . . , v

(j)
n1 , . . . , v

(j)
N1

). We can write v(j) into a

matrix V(j) column-by-column, given as

V(j) =




v
(j)
1 v

(j)
M+1 . . . v

(j)
(Nc−1)M+1

v
(j)
2 v

(j)
M+2 . . . v

(j)
(Nc−1)M+2

...
... . . . ...

v
(j)
M v

(j)
2M . . . v

(j)
NcM



,

which is an M×Nc matrix with the condition N1 ≤M ·Nc, and v(j)
n1 = 0 for all N1 < n1 ≤M ·Nc.

Actually, V(j) is utilized to show the interleaving process, since the encoded codeword v(j) will

be further processed row-by-row, and the number of columns in V(j) is directly related to the

length of the selected UDAS.

Then, each row of V(j) selects L − 1 bits, and passes the selected L − 1 bits to the second

encoder G2. In fact, G2 is designed for AUD, and it can be as simple as possible, e.g., single

parity-check code (SPC). For the mth row of V(j) for 1 ≤ m ≤ M , let the parity-check bit

generated by G2 be v(j)
m,pc, which is located at the end of the mth row of V(j). Thereafter, we

can achieve an M ×N matrix C(j), as

C(j) =




c
(j)
1

c
(j)
2

. . .

c
(j)
M




=




v
(j)
1 v

(j)
M+1 . . . v

(j)
(Nc−1)M+1 v

(j)
1,pc

v
(j)
2 v

(j)
M+2 . . . v

(j)
(Nc−1)M+2 v

(j)
2,pc

...
... . . . ...

...

v
(j)
M v

(j)
2M . . . v

(j)
NcM

v
(j)
M,pc



,
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where c
(j)
m =

(
v

(j)
m , v

(j)
M+m, . . . , v

(j)
(Nc−1)M+m, v

(j)
m,pc

)
is a 1×N vector, with N = Nc + 1.

Consequently, C(j) is modulated row-by-row. Take the mth row c
(j)
m as example to explain

the modulation mapping. Assume the multi-dimensional (MD) modulation index is M and the
length of an UDAS is L, under the assumption N = L · log2M. For further discuss convenience,
we rewrite c

(j)
m as

c(j)m =
(
{c(j)m,1,1, c

(j)
m,1,2, . . . , c

(j)
m,1,log2M

}, . . . , {c(j)m,l,1, c
(j)
m,l,2, . . . , c

(j)
m,l,log2M

}, . . . , {c(j)m,L,1, c
(j)
m,L,2, . . . , c

(j)
m,L,log2M

}
)

=
(
c
(j)
m,1, . . . , c

(j)
m,l, . . . , c

(j)
m,L

)

where c(j)
m,l,b ∈ B for 1 ≤ l ≤ L and 1 ≤ b ≤ log2M, and c

(j)
m,l = {c(j)

m,l,1, c
(j)
m,l,2, . . . , c

(j)
m,l,log2M}.

Then, every log2M bits of c(j)
m are modulated to one symbol, i.e., c(j)

m,l → x
(j)
m,l. We can achieve

a modulated M × L matrix X(j) as

X(j) =




x
(j)
1

x
(j)
2

. . .

x
(j)
M




=




x
(j)
1,1 x

(j)
1,2 . . . x

(j)
1,L

x
(j)
2,1 x

(j)
2,2 . . . x

(j)
2,L

...
... . . . ...

x
(j)
M,1 x

(j)
M,2 . . . x

(j)
M,L



,

where x(j)
m,l is an M1-dimensional modulated symbol, where M = 2M1, expressed as

(s
(j)
m,l, 0, 0, . . . , 0), (0, s

(j)
m,l, 0, . . . , 0), . . . , (0, 0, 0, . . . , s

(j)
m,l),

in which only one position of x(j)
m,l has value s(j)

m,l and the other M1 − 1 positions are all zeros,

for 1 ≤ m ≤ M and 1 ≤ l ≤ L. Note that M1-dimensional modulation can increase both the

flexibility and the minimum Euclidean distance, thus is appealing for GFMA. If the ith location

of x(j)
m,l is non-zero, we set the location index ρ

(j)
m,l,i = 1, and other location indexes ρ(j)

m,l,i′ = 0

for i′ 6= i and 1 ≤ i′ ≤ M1. The non-zero location is determined by the first log2M1 bits of

c
(j)
m,l.

Suppose the jth user utilizes ej = (ej,1, ej,2, . . . , ej,L) as its UDAS, then s(j)
m,l is calculated as

s
(j)
m,l =

(
2c

(j)
m,l,log2M − 1

)
· ej,l, (1)

which is determined by the last bit c(j)
m,l·log2M of c(j)

m,l and the lth symbol of ej .

Look back to the second encoder G2. Since G2 is used to assist AUD, the input (L− 1) bits

of G2 are set to be the last bit of c(j)
m,l for 1 ≤ l ≤ L, then

v(j)
m,pc = c

(j)
m,1,log2M ⊕ c

(j)
m,2,log2M ⊕ . . .⊕ c

(j)
m,L,log2M

= v
(j)
m+M ·(log2M−1) ⊕ v

(j)
m+M ·(2 log2M−1) ⊕ . . .⊕ v

(j)
m+M ·((L−1) log2M−1).
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For better understand, an example is presented to show the interleaving and encoding process.

Example 1: Assume v(j) = (0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1), which is a 1×21

vector and N1 = 21. Set M = 2, Nc = 11, M = 8 and M1 = 4, then v(j)’s corresponding

matrix V(j) is given by

V(j) =


 0 1 1 1 0 0 0 0 1 1 1

1 0 0 0 1 0 1 1 1 0 0


 ,

and v2,11 is set to be 0 (shown in red color). Then, SPC is done to each row of V(j), given by

v
(j)
1,p1

= v5 ⊕ v11 ⊕ v17 = 0 and v(j)
2,p1

= v6 ⊕ v12 ⊕ v18 = 1. Thus, it is obtained

C(j) =


c

(j)
1

c
(j)
2


 =


011 100 001 110

100 010 111 001


 ,

which is a 2× 12 matrix, where N = 12 and L = 4. End Example 1.

Then, X(j) is sent to the adder multiple-access channel row-by-row. At the receiver, the

received signal of the mth row ym is equal to

ym =
J∑

j=1

x(j)
m + zm, (2)

where 1 ≤ m ≤M , and zm is an additive white Gaussian noise (AWGN) vector. Each noise com-

ponent of zm is an independent and identically distributed (i.i.d) Gaussian random variable with

distribution N (0, N0/2). Set y = (y1,y2, . . . ,yM), where ym = (ym,1, ym,2, . . . , ym,l, . . . , ym,L)

includes L symbols. For the lth received symbol ym,l of ym, we have

ym,l = (ym,l,1, ym,l,2, . . . , ym,l,i, . . . , ym,l,M1),

which is an M1-dimensional signal, and

ym,l,i =
J∑

j=1

ρ
(j)
m,l,is

(j)
m,l + zm,l,i, (3)

where ρ
(j)
m,l,i = {0, 1}. Based on the received y, the AUD modular can detect the number of

arrival users and identify users’ signatures. Afterwards, by a joint detection algorithm, all the

users’ information bits can be recovered. It is noted that the two encoders (G1 and G2) can be

removed, and the system still works, which reflects the great flexibility of the proposed scheme.

In the following discussion, the subscripts “j”, “m”, “l”, “b” and “i” still stand for the jth user,

the mth row, the lth symbol, the bth bit of the symbol, and the ith location of theM1-dimension

modulation, where 1 ≤ j ≤ J, 1 ≤ m ≤M, 1 ≤ l ≤ L, 1 ≤ b ≤ log2M and 1 ≤ i ≤M1.
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III. DEFINITION, CONSTRUCTION, AND FEATURES OF UDAS SET

This section presents definition, construction and features of UDAS set in synchronous adder

multiple-access channels. A good designed UDAS set can separate multiuser without ambiguous.

A. Definition

According to [28], an uniquely-decodable mapping (UDM) element set is defined by ∆ =

{∆re,∆im}, where ∆re = {1, 2, . . . , 2p} and ∆im = {1i, 2i, . . . , 2pi} with p ∈ Z. This UDM

element set can maximum simultaneously support 2(p+1) users without ambiguous, if each user

selects one of the element, i.e., a, and its inverse, i.e., −a, as the user’s modulated symbols [28].

Denote |∆|, |∆re|, and |∆im| by the number of elements in sets ∆, ∆re, and ∆im, respectively.

Obviously, it is derived that |∆re| = |∆im| = p + 1 and |∆| = 2(p + 1), which are determined

by the parameter p.

Definition 1. An L-length UDAS is consisted of L sequential elements, which are selected from

an UDM element set ∆ with p as a parameter.

Let all the L-length UDAS belong to a space EL, and the total number of EL space is equal

to |EL| = |∆|L = [2(p+ 1)]L.

Definition 2. Assume a set Ψ contains T sequences, as

Ψ = {e1, e2, . . . , et, . . . , eT},

with et = (et,1, et,2, . . . , et,l, . . . , et,L) ∈ EL, where et,l ∈ ∆ and 1 ≤ l ≤ L. There are T users,

and each user is assigned a sequence, i.e., et, and the transmit vector of the tth user is defined

by c(t) = (c
(t)
1 , c

(t)
2 , . . . , c

(t)
l , . . . , c

(t)
L ) where c(t) ∈ B1×L for 1 ≤ t ≤ T . The modulated symbol of

the lth symbol of the tth user is equal to (2c
(t)
l −1)·et,l, thus the sum-pattern of T users wl can be

given as wl =
∑T

t=1(2c
(t)
l −1) ·et,l, where wl ∈ ΩT

l and |ΩT
l | = 2T for 1 ≤ l ≤ L. Then, the sum-

pattern vector of the entire L symbols of the T users is defined by w = {w1, w2, . . . , wl, . . . , wL}
that belongs to the sum-pattern set ΩT , i.e., w ∈ ΩT , where ΩT = {ΩT

1 ,Ω
T
2 , ...,Ω

T
l , . . . ,Ω

T
L}. If

the sequences in Ψ satisfy the following conditions:

1) When t 6= t′ and 1 ≤ t, t′ ≤ T , we have et,l 6= et′,l for all 1 ≤ l ≤ L;

2) All the vectors in ΩT are different from each other;

3) It is a one-to-one mapping between the sum-pattern vector and the transmit vectors of T

users, i.e., w↔ {c(1), c(2), . . . , c(t), . . . , c(T )}; and
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4) The power constraint satisfies limL→∞ P (|Pt − Pavg| < ε) = 0, where Pt = 1
L

∑L
l=1 e

2
t,l

stands for the average power of the tth UDAS, Pavg = 1
T

∑T
t=1 Pt is the average power of

the entire UDAS set, and ε is a positive small number;

then, the set Ψ is defined by a T -size UDAS set.

The former three conditions are used to ensure the superimposed signals of T users can be

uniquely separated. The last condition anticipates the average power of each user keeps as a

constant. For a multiple-access network, we hope the average transmit power of each user is

almost the same, so that to keep fairness among users. Besides the aforementioned conditions,

there are some supplementary conditions, for example, ‖et‖∞√
Pavg

< ε, which is used to make the

peak-to-average power ratio (PAPR) of one user within an acceptable range.

B. Construction

There are many approaches to construct a T -size UDAS set. This paper presents two of them,

which are cyclic and quasi-cyclic (QC) matrix based construction schemes.

1) Cyclic matrix mode: Let Ecyc be a cyclic matrix, and the subscript “cyc” indicates “cyclic”.

The first row of Ecyc is viewed as a generator of Ecyc, denoted by a 1 × T vector, i.e., a =

(a1, a2, . . . , at, . . . , aT ), where at is an element in ∆. Each element of a is shifted to the rightward

and downward one position, and the last element of a is moved to the first position, achieving

the second row of Ecyc. Repeat this processing, until the first element a1 of a has researched

the last position of the T th row. Ecyc is a T × T matrix, given by

Ecyc =




e1

e2

...

eT




=




a1 a2 . . . aT

aT a1 . . . aT−1

...
... . . . ...

a2 a3 . . . a1



. (4)

Because of the cyclic structure, the rows of Ecyc, i.e., e1, e2, . . . , eT , are formed a T -size

UDAS set Ψ. Moreover, it is easy to derive that Pavg = Pt = 1
L

∑L
l=1 a

2
l , where 1 ≤ t ≤ T and

L = T . We give an example to show the construct processing.
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Example 2: Assume L = 4, and the generator a = (1, 1i, 2, 2i). Then,

Ecyc =




e1

e2

e3

e4




=




1 1i 2 2i

2i 1 1i 2

2 2i 1 1i

1i 2 2i 1



, (5)

The average power Pavg equals to 2.5. End Example 2.

Recall Example 1, we have obtained c
(j)
1 = {011 100 001 110} and c

(j)
2 = {100 010

111 001}. Assume ‘00’, ‘01’, ‘10’ and ‘11’ are respectively mapped to four different locations,

suppose ej = (1, 1i, 2, 2i), it is able to obtain

x
(j)
1,1 = (0,+1, 0, 0), x

(j)
1,2 = (0, 0,−1i, 0), x

(j)
1,3 = (+2, 0, 0, 0), x

(j)
1,4 = (0, 0, 0,−2i),

x
(j)
2,1 = (0, 0,−1, 0), x

(j)
2,2 = (0,−1i, 0, 0), x

(j)
2,3 = (0, 0, 0,+2), x

(j)
2,4 = (+2i, 0, 0, 0),

and the modulated x
(j)
1 and x

(j)
2 are transmitted to the channel.

2) Quasi-cyclic matrix mode: A T -size UDAS set with quasi-cyclic (QC) structure is defined

by Eqc, where the subscript “qc” stands for “quasi-cyclic”. Refer to the QC structure of QC-

LDPC codes [29], let Eqc be an S × Q array, and each position of Eqc is corresponding to a

matrix, as

Eqc =




A1,1 A1,2 . . . A1,Q

A2,1 A2,2 . . . A2,Q

...
... . . . ...

AS,1 AS,2 . . . AS,Q



, (6)

where As,q is an L×L cyclic matrix. Hence, Eqc is an (L·S)×(L·Q) quasi-cyclic matrix. Denote

the generator of As,q by as,q, i.e., as,q = (as,q,1, as,q,2, . . . , as,q,ι, . . . , as,q,L), where 1 ≤ s ≤ S,

1 ≤ q ≤ Q and 1 ≤ ι ≤ L. Given q and ι, if s 6= s′, as,q,ι 6= as′,q,ι, then the rows of Eqc can

form an (L · S)-size UDAS set, in which each sequence is with length L = L ·Q.

Equation (6) is a general expression of the QC structure, and it can be extended to a block-wise

cyclic structure, given by

Eb,qc =




A1,1 A1,2 . . . A1,Q

A1,Q A1,1 . . . A1,Q−1

...
... . . . ...

A1,2 A1,3 . . . A1,1



, (7)

where A1,q is an L × L cyclic matrix.
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It is seen that the first row-block is shifted to the rightward and downward one position and

the last block is moved to the first position, leading to a new row-block. Each row-block of (7)

has cyclic structure, thus Eb,qc is an (L · Q) × (L · Q) block-wise cyclic square matrix, where

“b” stands for “block-wise”.

Example 3: Let Q = 3, and the generators of A1,1,A1,2 and A1,3 are respectively a1,1 =

(1, 1i), a1,2 = (2, 2i) and a1,3 = (4, 4i). Then, the block-wise QC structure Eb,qc is given by

Eb,qc =




1 1i 2 2i 4 4i

1i 1 2i 2 4i 4

4 4i 1 1i 2 2i

4i 4 1i 1 2i 2

2 2i 4 4i 1 1i

2i 2 4i 4 1i 1




. (8)

Each row of Eb,qc is an UDAS, with average power Pavg = 7. End Example 3.

C. Features of the proposed cyclic/quasi-cyclic UDAS set

As aforementioned definition, the sum-pattern vector set of T -size UDAS set Ψ is ΩT =

{ΩT
1 ,Ω

T
2 , . . . ,Ω

T
l , . . . ,Ω

T
L}. However, for a random multiple access scenario, not all the T users

are simultaneously transmission. Now, we consider a general case.

Assume τ (1 ≤ τ ≤ T ) different sequences of Ψ are selected for multiuser transmission,

i.e., Ψ(τ,µ) = {et1 , . . . , etν , . . . , etτ}, where tν ∈ {1, 2, . . . , T} and µ is the τ -size combination

index. Actually, there are totally Cτ
T combinations, indicating 1 ≤ µ ≤ Cτ

T . At this moment,

the sum-pattern of the lth symbol of the µth combination index is wl =
∑τ

ν=1(2c
(ν)
l − 1) · etν ,l,

where wl ∈ ω(τ,µ)
l , and the number of elements in ω(τ,µ)

l equals to |ω(τ,µ)
l | = 2τ .

Define the sum-pattern vector set of τ users by Ωτ = {Ωτ
1,Ω

τ
2, ...,Ω

τ
l , . . . ,Ω

τ
L}, where Ωτ

l =

ω
(τ,1)
l ∪ω(τ,2)

l ∪ . . . ω(τ,µ)
l . . .∪ω(τ,CτT )

l and the number of elements in Ωτ
l satisfies |Ωτ

l | ≤ Cτ
T · 2τ .

When τ = T , it is found that |ΩT
l | = 2T , equaling to the T -size case.

Moreover, define the maximum values of the real and image parts of ω(τ,µ)
l by

κ
(τ,µ)
l,re = max

{
Re[ω

(τ,µ)
l ]

}
, κ

(τ,µ)
l,im = max

{
Im[ω

(τ,µ)
l ]

}
.

While, (κ
(τ,µ)
l,re , κ

(τ,µ)
l,im ) are used for finding ω(τ,µ)

l . The average power of the sum-patterns in ω(τ,µ)
l ,

defined by λ(τ,µ)
l , is equal to

λ
(τ,µ)
l = 1

2τ

∑
wl∈ω(τ,µ)

l
‖wl‖2 =

∑τ
ν=1 e

2
tν ,l
,
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1
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ν
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= ∑

Fig. 2. An illustration of Example 4, where Ψ = {e1, e2, e3, e4} = {(1, 1i, 2, 2i), (2i, 1, 1i, 2), (2, 2i, 1, 1i), (1i, 2, 2i, 1)}.

The upper part of the figure is for the case of τ = 2, and the lower part of the figure is for the case of τ = 3.

relaying on the values of {et1,l, et2,l, . . . , etν ,l, . . . , etτ ,l}. For a given τ , define the average power

of ω(τ,µ)
l of the total L locations by Λ(τ,µ) = {λ(τ,µ)

1 , λ
(τ,µ)
2 , . . . , λ

(τ,µ)
l , . . . , λ

(τ,µ)
L }, assisting AUD

and multiuser detection. It is easy to derive that the sum of λ(τ,µ)
l is

λτsum =
L∑

l=1

λ
(τ,µ)
l =

τ∑

ν=1

L∑

l=1

e2
tν ,l = τ · LPavg,

which is a constant for a given τ , independent of the selection of sequences, i.e., combination

index µ. This interesting result can help us quickly detect the number of arrival users. To illustrate

this result, let us have a look at another example.

Example 4: Recall (5) of Example 2, there are four sequences, Ψ = {e1, e2, e3, e4} =

{(1, 1i, 2, 2i), (2i, 1, 1i, 2), (2, 2i, 1, 1i), (1i, 2, 2i, 1)}, with Pavg = 2.5 and L · Pavg = 10.
If we select any τ = 2 sequences from the given Ψ for multiuser transmission, there are totally

C2
4 = 6 combinations, i.e., Ψ(2,1) = {e1, e2}, Ψ(2,2) = {e1, e3}, Ψ(2,3) = {e1, e4}, Ψ(2,4) =

{e2, e3}, Ψ(2,5) = {e2, e4}, and Ψ(2,6) = {e3, e4}. The size of the sum-pattern set ω(τ,µ)
l is
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|ω(τ,µ)
l | = 22 = 4, where 1 ≤ µ ≤ C2

4 . When l = 1, we have

{1, 2i} → ω
(2,1)
1 = {1 + 2i, 1− 2i,−1 + 2i,−1− 2i} → λ

(2,1)
1 = 5;

{1, 2} → ω
(2,2)
1 = {−3,−1, 1, 3} → λ

(2,2)
1 = 5;

{1, 1i} → ω
(2,3)
1 = {1 + 1i, 1− 1i,−1 + 1i,−1− 1i} → λ

(2,3)
1 = 2;

{2i, 2} → ω
(2,4)
1 = {2 + 2i, 2− 2i,−2 + 2i,−2− 2i} → λ

(2,4)
1 = 8;

{2i, 1i} → ω
(2,5)
1 = {−3i,−1i, 1i, 3i} → λ

(2,5)
1 = 5;

{2, 1i} → ω
(2,6)
1 = {2 + 1i, 2− 1i,−2 + 1i,−2− 1i} → λ

(2,6)
1 = 5.

It is found that ω(2,µ)
l ∩ω(2,µ′)

l = ∅, when µ 6= µ′. Moreover, it is able to derive that λτ=2
sum = 20,

which equals to 2× (L · Pavg).

Observe Λ(2,µ), it is found that Λ(2,2) = Λ(2,5), i.e., (5, 5, 5, 5); thus, Ψ(2,2) and Ψ(2,5) can-

not be separated based on their Λ. However, observe ω
(2,2)
1 and ω

(2,5)
1 again, it is found that

(κ
(2,2)
l,re , κ

(2,2)
l,im ) = (3, 0) and (κ

(2,5)
l,re , κ

(2,5)
l,im ) = (0, 3), indicating that Ψ(2,2) and Ψ(2,5) can be

separated based on their corresponding (κ
(τ,µ)
l,re , κ

(τ,µ)
l,im ).

If we pick any τ = 3 sequences from Ψ for multiuser transmission, there are C3
4 = 4

combinations, i.e., Ψ(3,1) = {e1, e2, e3}, Ψ(3,2) = {e1, e2, e4}, Ψ(3,3) = {e1, e3, e4}, and Ψ(3,4) =

{e2, e3, e4}. At this time, the sum-pattern sets of the µth combination of the lth symbol can be
given. Take l = 1 as an example, they are

{1, 2i, 2} → ω
(3,1)
1 = {−3 + 2i,−3− 2i,−1 + 2i,−1− 2i, 1 + 2i, 1− 2i, 3 + 2i, 3− 2i} → λ

(3,1)
1 = 9;

{1, 2i, 1i} → ω
(3,2)
1 = {1− 3i,−1− 3i, 1− 1i,−1− 1i, 1 + 1i,−1 + 1i, 1 + 3i,−1− 3i} → λ

(3,2)
1 = 6;

{1, 2, 1i} → ω
(3,3)
1 = {−3 + 1i,−3− 1i,−1 + 1i,−1− 1i, 1 + 1i, 1− 1i, 3 + 1i, 3− 1i} → λ

(3,3)
1 = 6;

{2i, 2, 1i} → ω
(3,4)
1 = {2− 3i,−2− 3i, 2− 1i,−2− 1i, 2 + 1i,−2 + 1i, 2 + 3i,−2 + 3i} → λ

(3,4)
1 = 9.

For this scenario, we can know λτ=3
sum = 30 that is equal to 3× (L ·Pavg). Moreover, it is found

that ω(3,2)
l ∩ω(3,3)

l = {1−1i,−1−1i,−1 + 1i,−1−1i}, indicating that there exists constellation

overlap. Observe the four sets Λ(3,1),Λ(3,2),Λ(3,3) and Λ(3,4), they are different from each other,

thus it is a one-to-one mapping between Λ(3,µ) and Ψ(3,µ), i.e., Λ(τ,µ) → Ψ(τ,µ). For this scenario,

we can calculate Λ(τ,µ), and then obtain the corresponding Ψ(τ,µ). End Example 4.

IV. ACTIVE USER DETECTION AND MULTIUSER DETECTION

This section presents a statistic of UDAS feature based active user detection (SoF-AUD), and

a joint multiuser detection (MUD) and improved iterative message passing algorithm (MPA) for

the proposed system. Assume that the users are assigned different sequences from the T -size
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UDAS set Ψ. The receiver will detect the number of arrival users and recover their individual

data information.

A. MAP detection

First of all, we introduce the maximum a posterior (MAP) detection algorithm, which is an

optimal solution for the proposed system. Take (1) into (3), ym,l,i is rewritten as

ym,l,i =
J∑

j=1

ρ
(j)
m,l,i ·

(
2c

(j)
m,l,log2M − 1

)
· ej,l + zm,l,i = wm,l,i + zm,l,i, (9)

where wm,l,i =
∑J

j=1 ρ
(j)
m,l,i ·

(
2c

(j)
m,l,log2M − 1

)
· ej,l is the received superimposed signal (or

called sum-pattern). For further discussion, set w = (w1,w2, . . . ,wm, . . . ,wM), and wm =

(wm,1,wm,2, . . . ,wm,l, . . . ,wm,L), where wm,l = (wm,l,1, wm,l,2, . . . , wm,l,i, . . . , wm,l,M1).

Equation (9) includes variables J , ρ(j)
m,l,i, c

(j)
m,l,log2M and ej,l. Actually, ρ(j)

m,l,i and c
(j)
m,l,log2M

together are corresponding to c
(j)
m,l. Based on the MAP criterion, it is able to derive that

(
J,C,Ψ(J,µ)

)
= argmax

[
PJ · exp

{
−‖y −w‖2

N0

}]
, (10)

where C = {C(1), . . . ,C(J)} is the set of transmit bits of all J users, Ψ(J,µ) is the selected

UDAS set, and PJ is probability of J-user simultaneously access the receiver. Assume the

receiver can maximum detect Jmax users. When J > Jmax, the detection is interrupted and

all the users’ packets are lost. Considering the application of the T -size UDAS set Ψ, in the

following discussion, we assume Jmax = T and J = τ .

Although the MAP detection is the optimal algorithm, the complexity is extremely high for the

proposed system, i.e., O
((
L · MML

)T). Thereby, regarding as the features of the cyclic/quasi-

cyclic UDAS set, we firstly introduce a SoF-AUD algorithm, whose complexity is extremely

low.

B. Step 1: SoF-AUD

The SoF-AUD includes two parts, one is to detect the number of arrival users τ (1 ≤ τ ≤ T ),

and the other is to find the selected UDAS set Ψ(τ,µ).

For the lth received symbol of ym, define the ith location of the lth received symbol of all

M rows by yloc
l,i = (y1,l,i, y2,l,i, . . . , ym,l,i, . . . , yM,l,i). If we ignore the effect of noise and M is



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, X 2022 14

large enough, yloc
l,i can traverse all the constellations of ω(τ,µ)

l , including (κ
(τ,µ)
l,re , κ

(τ,µ)
l,im ). Actually,

the proposed SoF-AUD algorithm is relayed on the statistical properties of yloc
l,i .

The sum power γsum of the entire L symbols can be calculated as

γsum =
L∑

l=1

γl =
L∑

l=1

{
1

M

M∑

m=1

M1∑

i=1

‖ym,l,i‖2

}
, (11)

where γl = 1
M

∑M
m=1

[∑M1

i=1 ‖ym,l,i‖2
]

is the average power of the lth symbol.

Thus, for a given number of arrival users τ , the statistical mean of γsum can be deduced as

γτsum = E

[
L∑

l=1

{
1

M

M∑

m=1

M1∑

i=1

‖ym,l,i‖2

}]
= E

[
L∑

l=1

M1∑

i=1

‖wm,l,i + zm,l,i‖2

]

=
L∑

l=1

M1∑

i=1

E
[
‖wm,l,i + zm,l,i‖2] = λτsum + LM1 ·N0

, (12)

since E [wm,l,i · zm,l,i] = 0 and E [‖zm,l,i‖2] = N0. Equation (12) is the sum of λτsum and LM1·N0,

indicating γτsum is a constant for a given τ . Here, λτsum = τ · (LPavg), and LPavg is a constant

for a given cyclic/quasi-cyclic UDAS set Ψ.

Since we utilize M1-dimensional modulation, the constellation with the maximum power of

the lth symbol in yloc
l,i can be calculated as

ζl,re =

M1∑

i=1

[
max

1≤m≤M

{
Re[yloc

l,i ]
}]

, ζl,im =

M1∑

i=1

[
max

1≤m≤M

{
Im[yloc

l,i ]
}]

.

At this time, we can estimate the number of arrival users based on minimum square error

(MSE) criterion as

(τ̂ , µ̃) = arg min
1≤τ≤T

‖γsum − γτsum‖ = arg min
1≤τ≤T

‖γsum − (λτsum + LM1 ·N0)‖ ,

s.t. C1 : µ̂ = arg min
µ′=µ̃

L∑

l=1

d
(τ,µ′)
l ,

(13)

where d
(τ,µ′)
l = ‖ζl,re − κ

(τ,µ′)
l,re ‖2 + ‖ζl,im − κ

(τ,µ′)
l,im ‖2. Consider there are more than one µ̃ can

satisfy (13), C1 is used to find the only one UDAS set.

According to (13), it is able to obtain the number of arrival users τ̂ and the selected UDAS

set Ψ(τ̂ ,µ̂). The complexity of the AUD modular is O(ML2).
C. Step 2: MUD

Based on the τ̂ and Ψ(τ̂ ,µ̂) obtained by SoF-AUD, we begin to detect and separate the

superimposed signals. Actually, we have taken into consideration the connection (or statistics)

among the received signals of M rows (i.e.,y1,y2, . . . ,yM ) during the AUD process. Now, we

can deal with the received signals row-by-row to reduce the complexity.
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1) M1 = 1: When M1 = 1, x(j)
m,l is equivalent to s(j)

m,l. The detected results ŵm,l,1 is selected

from the set Ψ(τ̂ ,µ̂), expressed as

ω̂m,l,1 = arg min
ωm,l,1∈Ψ(τ̂ ,µ̂)

‖ym,l,1 − ωm,l,1‖2,

s.t. C2 : Ψ(τ̂ ,µ̂) → ω̂m,l,1 → {c(1)
m,l,1, c

(2)
m,l,1, . . . , c

(τ̂)
m,l,1},

C3 : 0 = c
(j)
m,l,1 ⊕ c

(j)
m,2,1 ⊕ . . .⊕ c(j)

m,L,1.

(14)

C2 stands for the one-to-one mapping between ω̂m,l,1 and {c(1)
m,l,1, c

(2)
m,l,1, . . . , c

(τ̂)
m,l,1}. C3 reflects

the SPC constraint, where 1 ≤ j ≤ τ̂ .

It is remarkable that (14) is a hard decision processing, which helps fast realize MUD with

acceptable BER. It can be applied to the scenario without G1.

2) M1 > 1: When M1 > 1, the detection processing becomes a little complex. Define

the sum-pattern set of the ith location of the M1-dimensional modulation by Ψ(τ̂i,µ̂i), where

τ̂i and µ̂i are respectively τ̂i users and the µ̂ith combination at the ith location. Let the set

of M1-dimensional sum-pattern be Θ(τ̂ ,µ̂) = (Ψ(τ̂1,µ̂1),Ψ(τ̂2,µ̂2), . . . ,Ψ(τ̂i,µ̂i), . . . ,Ψ(τ̂M1
,µ̂M1

)), the

detected results are then expressed as

ω̂m,l = arg min
θm,l∈Θ(τ̂ ,µ̂)

‖ym,l − θm,l‖2,

s.t. C4 : τ̂ =

M1∑

i=1

τ̂i,

C5 : µi ⊆ µ,

C6 : ω̂m,l → {c(1)
m,l, c

(2)
m,l, . . . , c

(τ̂)
m,l},

C7 : 0 = c
(j)
m,1,log2M ⊕ c

(j)
m,2,log2M ⊕ . . .⊕ c

(j)
m,L,log2M.

(15)

where ω̂m,l = (ω̂m,l,1, ω̂m,l,2, . . . , ω̂m,l,M1), θm,l = (ωm,l,1, ωm,l,2, . . . , ωm,l,M1) and ωm,l,i ∈ Ψ(τ̂i,µ̂i)

for 1 ≤ i ≤ M1. C4 is to keep the sum of the detected number of users be a constant. C5

indicates that the users are from the same selected UDAS set. C6 shows the one-to-one mapping

between ω̂m,l and {c(1)
m,l, c

(2)
m,l, . . . , c

(τ̂)
m,l}. C7 also stands for the SPC constraint of G2, where

1 ≤ j ≤ τ̂ .

Actually, (15) can be viewed as an extension of (14) to multi-dimensional case. The mainly

difference is that the referred set is from Ψ(τ,µ) to Θ(τ,µ), with complexity O
(
MML·τ̂).
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Fig. 3. A joint Tanner graph of the two encoders G, where G1 and G2 are Tanner graphs of encoder one and encoder two,

respectively.

D. Step 3: Improved MPA

When a LDPC code is utilized as the first encoder G1, it is important to find the initial LLR

(log likelihood ratio) according to the received signals for further message passing decoding. In

other words, we should calculate the LLRs from the MUD process.

1) Initial LLRs: The probability of ω̂m,l can be calculated as

P (ω̂m,l) =
1√
πN0

exp

{
−‖ym,l − ω̂m,l‖

2

N0

}
, (16)

where ω̂m,l ∈ Θ(τ̂ ,µ̂). Since ω̂m,l is corresponding to log2M bits of τ̂ users, i.e.,

ω̂m,l → {c(1)
m,l, c

(2)
m,l, . . . , c

(τ̂)
m,l} = {(c(1)

m,l,1, c
(1)
m,l,2, . . . , c

(1)
m,l,log2M), (c

(2)
m,l,1, c

(2)
m,l,2, . . . , c

(2)
m,l,log2M), . . . ,

(c
(τ̂)
m,l,1, c

(τ̂)
m,l,2, . . . , c

(τ̂)
m,l,log2M)},

the LLR of each bit, i.e., c(j)
m,l,b for 1 ≤ b ≤ log2M, is calculated based on (16). We have

P
(
c

(j)
m,l,b

)
=

∑

ω̂m,l,i→c(j)m,l,b

P (ω̂m,l,i) , (17)

indicating that the probability of the bth bit of c(j)
m,l is decided by the mapping relationship among

c
(j)
m,l, x

(j)
m,l, and ω̂m,l, e.g., c(j)

m,l → x
(j)
m,l → ω̂m,l and vice versa.

Then, we can obtain the initial LLR of c(j)
m,l,b as

LLR
(
c

(j)
m,l,b

)
= Log



P
(
c

(j)
m,l,b = 0

)

P
(
c

(j)
m,l,b = 1

)


 , (18)

where 1 ≤ b ≤ log2M, 1 ≤ l ≤ L and 1 ≤ m ≤M . Thereafter, the LLRs of C(j) are obtained.

By de-interleaving C(j) column-by-column, we can achieve the soft LLRs of v(j) that are used

for further decoding.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, X 2022 17

2) Improved MPA: Assume the parity-check matrix of the first encoder is H1. Since the

second encoder utilizes SPC, encoders one and two can be jointly decoding.

Let the Tanner graph of the two encoders be G1 and G2, and the two graphs are connected

by some of the variable nodes (VNs) of G1 and the check nodes (CNs) of G2. Thus, the VNs

update and CNs update should take into consideration the joint Tanner graph G, as shown in

Fig. 3. The proposed improved decoding algorithm is based on the joint Tanner graph G, and

the major alterations are the VNs of G1 update and CNs of G2 update.

• VNs of G1 update. Since some of the VNs of G1 are connected by both the CNs of G1 and

CNs of G2, the update LLRs of these VNs should taken into consideration both CNs set.

• CNs of G2 update. For the CNs of G2, it connects both its own VNs and some VNs of G1,

thus, the update LLRs of the CNs of G2 are determined by the two VNs sets.

In the algorithm, there are some definitions of MPA. The VN and CN nodes of G1 are defined

by α1 and β1; similarly, the VN and CN nodes of G2 are set to be α2 and β2. Let N(α1),

N(α2), N(β1) and N(β2) be the sets that are respectively connected with VN node α1, VN

node α2, CN node β1 and CN node β2. Note that, there is no edge between α2 and β1, because

of the SPC structure.

In summary, the receiver should detect the number of arrival users, separate the superimposed

signals, and recover the transmit signals of all the users. The first step is to do SoF-AUD, followed

by the MUD and improved MPA steps. It is noted that, the initial soft LLR information of MPA

is decided by the MUD step. In other words, there is a close relationship between MUD and

MPA, sometimes, the MUD and MPA can be jointly considered. The entire detection algorithms

are summarized in Algorithm 1.

V. THEORETICAL ANALYSIS

In this section, we deduce theoretical AUER and Shannon limits for the proposed system.

The AUER is utilized to measure the performance of AUD. Moreover, Shannon limits of the

proposed system are derived, instead of the theoretical BER.

A. AUER

For a random access system, define active user error rate (AUER) by

Pe,AU = Pr[τ 6= τ̂ ], (19)
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Algorithm 1: Detection algorithms of the GFMA receiver.
Input: ym for 1 ≤ m ≤M , Nmax.

Output: u(j) for 1 ≤ j ≤ J .

Step 1: SoF-AUD: Obtain τ̂ and µ̂ by (13);

Step 2: MUD

if without encoder G1 then
Obtain ω̂m,l,1 by (14) when M1 = 1; and ω̂m,l by (15) when M1 > 1.

Output: Hard-decoding for c(j)
m , then obtain u(j);

end

Obtain initial LLRs of α1 and α2 by (18);

Step 3: Improved MPA

Set LLRα1→β1(orβ2) = LLRα1 ; LLRα2→β2 = LLRα2; Set Nsim = 0;

while Nsim < Nmax do
Update CNs:

LLRβ1→α1 = 2 tanh−1
[∏

α′1∈N(β1)−α1
tanh

(
1
2
LLRα′1→β1

)]
;

LLRβ2→α1 = 2 tanh−1
[∏

α′1∈N(β2)−α1
tanh

(
1
2
LLRα′1→β2

)]
;

LLRβ2→α2 = 2 tanh−1
[∏

α′2∈N(β2)−α2
tanh

(
1
2
LLRα′2→β2

)]
;

Update VNs:

LLRα1→β1 = LLRα1 +
∑

β′1∈N(α1)−β1 Lβ′1→α1
;

LLRα1→β2 = LLRα1 +
∑

β′2∈N(α1)−β2 Lβ′2→α1
; LLRα2→β2 = LLRα2;

Update LLR:

LLRα1 = LLRα1 +
∑

β∈N(α1) LLRβ1→α1 +
∑

β∈N(α2) LLRβ2→α1;

Set v(j)
n1 = 1 if LLRα1 > 0, otherwise, v(j)

n1 = 0;

if Nsim ≥ Nmax ‖ v(j) ·H1 = 0 then
Output: v(j) → u(j);

end

end

where τ and τ̂ respectively stand for the factual and detected numbers of arrival users.

In fact, the AUER of our proposed system is mainly determined by two aspects, one is the

detection error caused by noise, and the other is the error floor caused by insufficient information.

Our proposed detection algorithm is based on the sum power γsum, which is affected by several



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, X 2022 19

parameters that are the sum-pattern set of τ users Ωτ , the number of rows M , and multi-

dimensional order M1. Thus, the AUER can be derived as

Pe,AU =
T∑

τ=1

Pτ
∑

1≤τ ′≤T,τ ′ 6=τ

∫

Dτ ′

p(γsum|τ)dγsum, (20)

where Pτ is a priori probability of the number of arrival users, p(γsum|τ) is the conditional

probability density function (PDF) of γsum given by the number of arrival users τ for τ =

1, 2, . . . , T , and Dτ ′ is the decision region of τ ′.

Thereafter, the key issue is to derive the PDF of p(γsum|τ). Regarding as the sum-form of

γsum as shown in (11), p(γsum|τ) is determined by a sequence of noncentral Chi-Square random

variables, defined by

p(γsum|τ) =
∑

sa∈S
P (sa) · fχ2(sa), (21)

where fχ2(sa) is the PDF of a noncentral Chi-Square random variable γs, where γs = M · γsum,

given by

fχ2(sa) =
1

N0

(
γs
s2
a

)Nf−2

4

e
− s

2
a+γs
N0 · INf

2
−1

(
sa

N0/2

√
γs

)
, (22)

where Iα(r) =
∑∞

t=0
(r/2)α+2t

t!Γ(α+t+1)
and Γ(r) =

∫∞
0
tr−1e−tdt. γs is consisted of Nf independent

Gaussian variables with comment variance N0/2 and different means denoted by snf . Since

rm,l,i is a complex number, the degree of freedom is Nf = 2L ·M .

In (21), sa is defined by sa =
√∑Nf

nf=1 s
2
nf

, and all the values of sa are from the set S, i.e.,

sa ∈ S. The probability of sa in set S is defined by P (sa), thus,
∑

sa∈S P (sa) = 1.

Then, analyzing p(γsum|τ) is equivalent to finding the values of sa and P (sa), which can be

calculated by the sum-pattern set Ωτ . Let us review the expression of Ωτ , which is defined by

Ωτ = {Ωτ
1,Ω

τ
2, . . . ,Ω

τ
l , . . . ,Ω

τ
L} with Ωτ

l = ω
(τ,1)
l ∪ . . . ∪ ω(τ,µ)

l ∪ . . . ω(τ,CτT )

l .

Divide the complex number set ω(τ,µ)
l into two sets, the real number set ω(τ,µ)

l,re and the image

number set ω(τ,µ)
l,im . Evidently, snf belongs to the set ω(τ,µ)

l,re ∪ ω
(τ,µ)
l,im , i.e., snf ∈ ω

(τ,µ)
l,re ∪ ω

(τ,µ)
l,im ,

varying with the varied τ and µ, so to the variable sa. For example, if τ = 1, it is known that

sa =
√∑Nf

nf=1 s
2
nf

=
√
M
∑L

l=1 a
2
l =

√
ML · Pavg.

In general, sa and P (sa) are both affected by the ratio of the number of elements in ω
(τ,µ)
l

to the total number of elements in Ωτ
l . Therefore, different UDAS sets result in different sa and

P (sa), thus obtaining different p(γsum|τ).
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To explain the analysis processing of p(γsum|τ), we present an example. If we exploit the
UDAS set given by Example 2, as shown in (5), we have

p(γsum|τ = 1) = fχ2(
√
ML · Pavg),

p(γsum|τ = 2) =
2

3
fχ2(
√
20M) +

1

3

LM∑

k=0

[
p(k,

Nf
2

)fχ2(
√

9k + (LM − k))
]
,

p(γsum|τ = 3) =

LM∑

k=0

[
p(k,

Nf
2

)fχ2(
√

9k + (LM − k) + 10M)

]
,

p(γsum|τ = 4) =

Nf∑

k=0

[
p(k,Nf )fχ2(

√
9k + (Nf − k))

]
,

(23)

where p(k,Nf ) = Ck
Nf
· (1

2
)Nf is the probability of a binomial distribution that selects k from

Nf . The case of τ = 1 is accord with the aforementioned discussion.

When τ = 2, it is known that µ belongs to [1, Cτ
T ], and Ψ(2,µ) is given in Example 4.

Specifically, they can be divided into the following two cases.

1) Case 1: µ = 1, 3, 4 or 6. At the moment, the sum-patterns of the two users include both

real and image numbers. Take µ = 1 as an example, we can get ω(2,1)
1 = {1 + 2i, 1 −

2i,−1 + 2i,−1 − 2i}, ω(2,1)
2 = {1 + 1i, 1 − 1i,−1 + 1i,−1 − 1i}, ω(2,1)

3 = {2 + 1i, 2 −
1i,−2 + 1i,−2 − 1i} and ω

(2,1)
4 = {2 + 2i, 2 − 2i,−2 + 2i,−2 − 2i}. Therefore, the

power of the sum-pattern always keeps as a constant. For example, the power values of

the four symbols (l = 1, 2, 3, 4) are respectively 5, 2, 5, and 8. Then, sa is calculated as

sa =
√
M · (5 + 2 + 5 + 8) =

√
20M . The cases of µ = 3, 4 and 6 are exactly the same

as the case of µ = 1.

2) Case 2: µ = 2 or 5. At the moment, the sum-patterns of the two users are all real

numbers (or image numbers). Obviously, we can get Ω(2,2) = {+3,+1,−1,−3} and

Ω(2,5) = {+3i,+1i,−1i,−3i}. Now, we take µ = 2 as an example to analyze. Since

the sum-patterns of µ = 2 are all real numbers, then LM Gaussian variables of the

totally Nf degrees are distributed as N (0, N0/2), and the others LM variables are in

probability distributed as N (±3, N0/2) or N (±1, N0/2). Assume k Gaussian variables are

distributed as N (±3, N0/2), and the rest LM − k Gaussian variables are with distribution

as N (±1, N0/2), where 0 ≤ k ≤ LM with probability Ck
LM(1

2
)LM . Thereafter, sa is

calculated as sa =
√
k · 9 + (LM − k) · 1 + LM · 0 =

√
9k + (LM − k).

Consider the probabilities of cases 1 and 2 are respectively 2/3 and 1/3, we can derive the final

PDF of p(γsum|τ = 2) as shown in (23). When τ > 2, the analysis processing is the same as
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the case of τ = 2, which will not be repeated described.

It is remarkable that the detection error probability of the UDAS set Ψ(τ,µ) can be ignored

compared to the AUER.

B. Shannon limit of the proposed system in an adder multiple-access channel

The computation of Shannon limit involves two steps, calculating the channel capacity and

solving the lowest Eb/N0, where Eb represents the bit energy of each user.

Assume Rj is the data rate of the jth user, and Pj is the transmit power of the jth user. Then,

the capacity of a MAC is given by [30]
J∑

j=1

Rj ≤ log2

(
1 +

P1 + P2 + . . .+ PJ
N0

)
. (24)

If all the users hold the same data rate, i.e., R1 = R2 = . . . = RJ = Rc, the last inequality

dominates the others. It is remarkable that the Shannon limit of the proposed system is deduced

based on this assumption. Besides, due to the cyclic UDAS set, it is able to known P1 = P2 =

. . . = PJ = Pavg. Thus, the relationship between Pavg and Eb is Pavg = Rc·log2(M)·Eb
Ts

, where Ts

is the symbol duration.

In the following discussion, assume the number of arrival users J = τ and the selected

UDAS set Ψ(τ,µ), i.e., Ψ(τ,µ) = {et1 , et2 , . . . , etν , . . . , etτ} with tν ∈ {1, 2, . . . , T}, have been

available. Denote {~χ(j)
l,ms

, 1 ≤ ms ≤ M} by the transmit constellation set of the lth symbol

of the jth user, including M possible M1-dimension transmit signals, expressed as ~χ
(j)
l,ms

={
χ

(j)
l,ms,1

, χ
(j)
l,ms,2

, · · · , χ(j)
l,ms,i

, · · · , χ(j)
l,ms,M1

}
, where χ(j)

l,ms,i
∈ {−etj ,l, 0, etj ,l}, with the assumption

that the jth user selects the UDAS etj in Ψ(τ,µ). Define Pr
(
~χ

(j)
l,ms

)
by the prior probability of

~χ
(j)
l,ms

.
When J users’ signals, i.e., ~χ(j)

l,ms
, are transmitted through a MAC, the PDF of the lth symbol

of the received signal ym,l is

p
(
ym,l|~χ(1)

l,ms
, ~χ

(2)
l,ms

, . . . , ~χ
(J)
l,ms

)
=

M∏

ms=1

. . .

M∏

ms=1
M−fold

1√
πN0

exp




−

(
ym,l −

∑J
j=1 ~χ

(j)
l,ms

)2

N0




. (25)

Note that the row index has no effect to the PDF.
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TABLE I

SHANNON LIMITS OF THE PROPOSED SYSTEM IN AN ADDER MULTIPLE-ACCESS CHANNEL, WHERE M1 = 1, J = 2, L = 4,

AND Ψ(2,1) = {(1, 1i, 2, 2i), (2i, 1, 1i, 2)}. THE UNIT OF (Eb
N0

)min IS DB.

Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min

0.001 -1.5858 0.151 -0.9594 0.435 0.4667 0.646 2.0022 0.794 3.6701 0.895 5.4437

0.006 -1.5682 0.175 -0.8524 0.459 0.6154 0.663 2.1577 0.804 3.8150 0.901 5.5703

0.013 -1.5392 0.226 -0.6215 0.483 0.7657 0.694 2.4673 0.814 3.9586 0.921 6.0639

0.022 -1.4992 0.250 -0.4985 0.506 0.9176 0.709 2.6212 0.823 4.1007 0.934 6.4212

0.054 -1.3716 0.305 -0.2394 0.550 1.2248 0.736 2.9263 0.840 4.3807 0.951 6.9939

0.066 -1.3185 0.330 -0.1042 0.571 1.3797 0.749 3.0774 0.856 4.6550 0.962 7.4329

0.106 -1.1538 0.384 0.1759 0.610 1.6907 0.773 3.3762 0.877 5.0556 0.981 8.4635

0.128 -1.0600 0.416 0.3566 0.628 1.8465 0.784 3.5238 0.883 5.1864 0.991 9.3165

Consider the transmit mode of each user, the channel capacity of the lth symbol in the adder

MAC can be calculated as

Cl = max I (Y ;X1,X2, . . . ,XJ) = max

∞∫

−∞

· · ·
∞∫

−∞
M−fold

p
(
ym,l|~χ(1)

l,ms
, ~χ

(2)
l,ms

, . . . , ~χ
(J)
l,ms

)
·

Pr
(
~χ

(1)
l,ms

)
· · ·Pr

(
~χ

(J)
l,ms

)
· log2



p
(
ym,l|~χ(1)

l,ms
, ~χ

(2)
l,ms

, . . . , ~χ
(J)
l,ms

)

p (ym,l)


 dym,l.

(26)

where Y is the the received signal’s variable, X1,X2, . . . , and XJ are the transmit signals’

variables of J users.

Since each user exploits an L-length UDAS, we define ergodic capacity as

C = E[Cl] =
1

L

L∑

l=1

Cl. (27)

Regarding as (24), it is known that

Rc · log2M · J ≤ C = f (Eb/N0) . (28)

When Rc · log2M · J = C, the utilization of communication resources is maximized. The

Shannon limit is defined as the minimum Eb/N0 that can realize reliable transmission with Rc,

which is denoted by (Eb/N0)min. Thus,

(Eb/N0)min = f−1 (Rc · log2M · J) . (29)

However, the integral in (26) is extremely complex, especially the inverse function. Since it

is one-to-one mapping between the code rate Rc and (Eb/N0)min, the corresponding code rate
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TABLE II

SHANNON LIMITS OF THE PROPOSED SYSTEM IN AN ADDER MULTIPLE-ACCESS CHANNEL, WHERE M1 = 1, J = 3, L = 4,

Ψ(3,1) = {(1, 1i, 2, 2i), (2i, 1, 1i, 2), (2, 2i, 1, 1i)}. THE UNIT OF (Eb
N0

)min IS DB.

Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min

0.001 -1.5840 0.214 -0.3740 0.499 1.6466 0.690 3.4298 0.813 4.8805 0.907 6.4123

0.006 -1.5609 0.237 -0.2279 0.518 1.8023 0.703 3.5688 0.822 5.0045 0.912 6.5236

0.013 -1.5229 0.261 -0.0785 0.536 1.9571 0.716 3.7063 0.830 5.1274 0.922 6.7438

0.022 -1.4706 0.284 0.0736 0.554 2.1106 0.728 3.8423 0.847 5.3699 0.931 6.9608

0.049 -1.3268 0.330 0.3839 0.587 2.4139 0.751 4.1100 0.862 5.6081 0.953 7.5932

0.065 -1.2371 0.353 0.5411 0.604 2.5635 0.763 4.2417 0.869 5.7258 0.956 7.6959

0.103 -1.0277 0.397 0.8575 0.634 2.8583 0.784 4.5011 0.883 5.9582 0.971 8.2967

0.167 -0.6532 0.439 1.1745 0.663 3.1471 0.803 4.7552 0.895 6.1870 0.990 9.5969

TABLE III

SHANNON LIMITS OF THE PROPOSED SYSTEM IN AN ADDER MULTIPLE-ACCESS CHANNEL, WHERE M1 = 1, J = 2, L = 6,

AND Ψ(2,1) = {(1, 1i, 2, 2i, 4, 4i), (4i, 1, 1i, 2, 2i, 4)}. THE UNIT OF (Eb
N0

)min IS DB.

Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min Rc (Eb
N0

)min

0.004 -1.5693 0.275 0.0848 0.574 2.9037 0.726 5.1081 0.914 9.1845 0.833 7.0888

0.016 -1.5033 0.312 0.3579 0.595 3.1718 0.739 5.3254 0.918 9.3288 0.841 7.2666

0.035 -1.3973 0.348 0.6377 0.615 3.4343 0.752 5.5379 0.922 9.4709 0.848 7.4413

0.090 -1.0846 0.415 1.2092 0.651 3.9415 0.775 5.9492 0.941 10.1529 0.863 7.7819

0.124 -0.8872 0.446 1.4972 0.668 4.1862 0.786 6.1485 0.950 10.5407 0.876 8.1111

0.198 -0.4309 0.502 2.0699 0.698 4.6582 0.806 6.5354 0.971 11.6227 0.894 8.5855

0.236 -0.1790 0.529 2.3521 0.713 4.8858 0.815 6.7233 0.981 12.2853 0.904 8.8895

Rc can be calculated for a given (Eb/N0)min. Then, we can obtain a sequence of data points

(Rc, (Eb/N0)min). In practice, the range of the integral and the accuracy of interpolation are

depended on the required accuracy of the Shannon limit.

Table I, Table II and Table III show the Shannon limits of the proposed system in an adder

multiple-access channel. When Rc and L are given, it is found that the required (Eb/N0)min of

the J = 3 case is larger than the J = 2 case. Moreover, for a given number of arrival users

J and a given Rc, a larger L indicates a larger (Eb/N0)min, because of the reduced minimum

distance of the constellation at the receiver.

VI. SIMULATION RESULTS

In this section, we simulate and compare the performances of the proposed system. The UDAS

sets are generated based on the cyclic matrix mode, with generators a = (1, 1i, 2, 2i) of L = 4,
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Fig. 4. AUER of the proposed system with various parameters, where M1 = 1, L = 4, and M = 20, 60, 102, 138 and 196.

and a = (1, 1i, 2, 2i, 4, 4i) of L = 6. Moreover, the first encoder exploits a (3,6)-regular QC-

LDPC (1016,508) with rate 0.5, and the second encoder is a SPC with rate R2 = 1− 1
L·log2M .

Thus, the total data rate of each user is equal to Rc = 0.5× (1− 1
L·log2M). For example, when

L = 4 and M = 2, it is found that Rc = 0.375.

First of all, we focus on the AUER performance, with the assumption that Pτ is uniform

distribution in [1, T ]. To observe the AUER performance, we set Rc = 1 and omit the two

encoders. The AUER performance of the proposed system is shown in Fig. 4.

It can be seen from Fig. 4 that the AUER decreases with the increased Eb/N0. When M is

small, e.g., M = 20, there exists a significantly error floor, because of the lack of statistical

information. With the increase of M , the AUER improves significantly, revealing that sufficient

statistical information may reduce both the influence of noise and error floor. Moreover, the

simulated results are perfect accord with our deduced theoretical results.

When we set Eb/N0 = 0 dB and AUER ≈ 10−3, 10−4 and 10−5, it is found that the minimum

required numbers of M are respectively 102, 138, and 196, whose corresponding transmit blocks

are with length 408, 552 and 784. Evidently, these block lengths satisfy the requirement of short

packet communications. Therefore, we can maximum simultaneously support 4 users with a 10−5

detected error rate, at this moment, the required Eb/N0 is only 0 dB. This result is appealing

for a random access network.

The BER performances of the proposed system are shown in Fig. 5, where the block length of

the transmit block is equal to or larger than 1016 that is the codeword length of the first encoder.
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Fig. 5. Average BER performances of the proposed system, where the maximum iteration number is 10. (a) M1 = 1 case, with

L = 4, 6, and τ = 1, 2, 3, 4. (b) M1 > 1 case, with L = 4, and τ = 1, 2, 3.

Therefore, we assume that the number of arrival users and UDAS set have been perfectly detected.

Fig. 5(a) shows the BER performance of the proposed scheme with parameterM1 = 1. When

L = 4, it is found that BER of the case τ = 1 provides the best performance, following by the

cases of τ = 2, τ = 3 and τ = 4. However, the BER differences among τ = 2, 3, 4 are small.

When BER is 10−4 and L = 4, the BER of τ = 3 is about 6.8 dB away from the Shannon

limit, and 6.7 dB away from the Shannon limit for the case of τ = 2. Therefore, there exists

an improvement space to further reduce the BER. For a given τ , e.g., τ = 2, the BER of the

case of L = 4 is much better than the case of L = 6, since the received superimposed signal

of the L = 4 case has a relative large minimum Euclidean distance. For example, when τ = 2

and BER is 10−4, the case of L = 4 is about 1.5 dB better than that of the case of L = 6. This

result is accord with our deduced Shannon limits.

The BER performance of the proposed scheme with various dimensionsM1 = 2, 4, 8 is shown

in Fig. 5(b). It can be seen that the BER performance is improved with the increased M1, due

to the statistic feature and larger Euclidean distance. For example, when τ = 2 and BER is 10−3,

the case of M1 = 4 provides about 0.7 dB gain than the case of M1 = 2.

Fig. 6 shows the BER comparisons among different systems. We compare our proposed system

with the classical CDMA system that exploits Walsh sequences whose SF is 4, and the SCMA

system that is based on the codebook given by [19]. Therefore, the SEs of the CDMA and SCMA
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Fig. 6. BER comparisons among different systems. The CDMA system utilizes Walsh sequences whose SF is 4, and SCMA

system is operated based on the codebook given by [19]. Both the schemes one and two of our proposed systems have the same

parameters, where L = 4, M1 = 1, and τ = 4. The scheme one is without any encoder; and scheme two is with two encoders.

Both cyclic and quasi-cyclic structures are taken into consideration.

systems are respectively 1 bit/resource and 1.5 bits/resource. Our proposed system considers two

schemes for comparisons. The scheme one is corresponding to the parameters of L = 4,M1 = 1,

τ = 4 without any encoders, indicating that the SE of case one is equal to 4 bits/resource. On

the other hand, the scheme two has the same parameters as that of the scheme one, and the only

difference is caused by the inserted encoders, resulting in the SE of scheme two becomes as 1.5

bits/resources.

It is found that, the BER of our proposed scheme one is worse than those of CDMA and SCMA

systems. However, our proposed scheme one provides much higher SE. Based on the inserted

channel codes, our proposed scheme two can provide much better BER performances than those

of CDMA and SCMA, when Eb/N0 is larger than 6.6 dB. At this time, our proposed scheme

two has the same SE as that of SCMA system, verifying the validity of our proposed system.

Moreover, both the cyclic and quasi-cyclic UDAS modes provide the same BER performances,

since they have the same UDAS set.

VII. CONCLUSION

This paper introduces UDAS for grant-free multiple-access systems. First of all, we present

an UDAS-based MD-BICM transmitter for each user, which is a combination of two channel

encoders, one interleaver and multi-dimensional modulation. The first encoder is used to improve
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the reliability of the system, and the second encoder is used for assisting AUD. Following, some

definitions of UDAS are introduced in details. Refer to the constructions of QC-LDPC, two kinds

of UDAS sets are presented, which are cyclic and quasi-cyclic matrix modes. The cyclic/quasi-

cyclic structure can help the receiver realize low-complexity AUD. Thirdly, we present a SoF-

AUD, and a joint MUD and improved MPA for the proposed system, where the Tanner graph of

the decoder is the combination of two encoders G1 and G2. Finally, both the theoretical AUER

and Shannon limits are deduced in details. We simulate and compare our proposed system with

various parameters and systems. When Eb/N0 = 0 dB and the length of transmit block is larger

than a given value, e.g., 784, the AUER of our proposed system can be an extremely low value

10−5, and the system can maximum detect four simultaneously arrival users. Essentially, we

can design the parameters of a UDAS-based transmitter, to satisfy the requirement of a GFMA

system. Our proposed system can provide high spectrum efficiency, which can compare with a

designed NOMA codebook. For example, when Eb/N0 = 7 dB and SE = 1.5, the BER of our

proposed system is about 10−4, which is much better than that of the SCMA system.

Actually, the proposed UDAS-based MD-BICM transmitter can be extended to a general ran-

dom access scenario, e.g., uncoordinated multiple-access. Moreover, there are many approaches

to construct various UDAS sets. These contents are left as the future works.
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