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Tony Q. S. Quek, Fellow, IEEE, and Zhu Han, Fellow, IEEE

Abstract—Under the organization of the base station (BS),
wireless federated learning (FL) enables collaborative model
training among multiple devices. However, the BS is merely
responsible for aggregating local updates during the training
process, which incurs a waste of the computational resource at
the BS. To tackle this issue, we propose a semi-federated learning
(SemiFL) paradigm to leverage the computing capabilities of both
the BS and devices for a hybrid implementation of centralized
learning (CL) and FL. Specifically, each device sends both local
gradients and data samples to the BS for training a shared global
model. To improve communication efficiency over the same time-
frequency resources, we integrate over-the-air computation for
aggregation and non-orthogonal multiple access for transmission
by designing a novel transceiver structure. To gain deep insights,
we conduct convergence analysis by deriving a closed-form
optimality gap for SemiFL and extend the result to two extra
cases. In the first case, the BS uses all accumulated data samples
to calculate the CL gradient, while a decreasing learning rate is
adopted in the second case. Our analytical results capture the
destructive effect of wireless communication and show that both
FL and CL are special cases of SemiFL. Then, we formulate
a non-convex problem to reduce the optimality gap by jointly
optimizing the transmit power and receive beamformers. Accord-
ingly, we propose a two-stage algorithm to solve this intractable
problem, in which we provide the closed-form solutions to the
beamformers. Extensive simulation results on two real-world
datasets corroborate our theoretical analysis, and show that the
proposed SemiFL outperforms conventional FL and achieves
3.2% accuracy gain on the MNIST dataset compared to state-of-
the-art benchmarks.

Index Terms—Semi-federated learning, communication effi-
ciency, convergence analysis, transceiver design.
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I. INTRODUCTION

As a thriving distributed learning framework, wireless fed-

erated learning (FL) enables multiple clients (e.g., devices) to

collaboratively train a shared model by iteratively exchanging

their local updates (e.g., model parameters or gradients) with

the parameter server (e.g., the base station (BS)) [2]–[4].

Compared to centralized learning (CL), FL features data

privacy preservation, reduced communication cost, and fast

inference [5], [6]. However, in the conventional FL paradigm,

only the distributed computational resources of local devices

are utilized to complete the model training [7]. The powerful

computing capability at the BS is insufficiently involved in the

learning task. This raises an intuitive problem: how to exploit

the underutilized computational resource at the BS to improve

the performance of FL? To solve this problem, one potential

strategy is to provide the BS with some data samples from

devices so that its computational resources can be utilized to

further promote the model performance [8], [9].

Apart from how to compute model, another critic issue of

FL is how to transmit local updates in wireless networks. In the

literature, there are three commonly adopted wireless commu-

nication schemes for transmitting local updates from devices

to the BS, including orthogonal multiple access (OMA) [10],

non-orthogonal multiple access (NOMA) [11], [12], and over-

the-air computation (AirComp) [13]–[15]. Specifically, in

OMA-based FL schemes, each device occupies a dedicated

resource block in the time or frequency domain to avoid

interference. However, the transmission bandwidth or time of

OMA decreases with the number of devices, which results in

a higher communication latency and thus taking more time to

reach the global convergence. By allowing all devices to share

the resource block, NOMA-based FL schemes are beneficial to

support massive connectivity and improve the throughput [16],

thus accelerating the training speed. However, the co-channel

interference introduced by NOMA brings new challenges for

the transceiver design and signal decoding. For instance, if the

transmit power of local devices is improperly allocated, it will

increase the inter-device interference when the BS decodes

individual signals, and even prevent the BS from decoding the

signals correctly, thereby reducing the achievable data rate of

uplink transmissions.

Note that both OMA- and NOMA-based schemes are

communication-centric paradigms, which do not directly

match the model aggregation process of FL tasks. Recently, by

aggregating local updates based on the superposition property

of the wireless channel [14], AirComp-based FL schemes

have drawn considerable attention for their unique advan-
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tages, such as exploiting interference for computation and

reducing latency. As mentioned previously, in order to make

full use of the computing resources of the BS, local devices

can upload some data samples to the BS while uploading

the local updates. However, AirComp-based schemes mainly

focus on function computation instead of decoding individ-

ual data streams, which makes it impossible for devices to

simultaneously upload data samples and local updates in a

spectrum-efficient manner. This raises a challenging problem:

how to design a spectral-efficient joint communication and

computation (JCC) scheme that supports the concurrent uplink

transmission of data samples and local updates using the

shared time-frequency resources? Intuitively, one can directly

incorporate communication-efficient NOMA and computation-

efficient AirComp into a harmonized multiple access scheme

so that their respective advantages can be sufficiently lever-

aged. Nevertheless, the transceiver structure for supporting

such an integrated scheme needs to be meticulously designed

to mitigate the severe co-channel interference.

When addressing the aforementioned problems, we en-

counter the following challenges. First, although utilizing the

computing capability of the BS for model training is expected

to accelerate the convergence, the involvement of the BS

complicates the convergence analysis of the training process

due to the need of rigorous mathematical knowledge and

skillful derivations [10], [17]. Second, since both the datasets

and local updates are transmitted over the non-ideal wireless

channels, their impacts on the convergence should also be

quantified precisely [18]. Third, existing resource allocation

schemes designed for conventional communication of FL sys-

tems are not applicable to the collaborative learning framework

requiring the concurrent transmission of data samples and

local updates. Therefore, it is imperative to develop new

transceiver control algorithms that can further improve both

the communication efficiency and learning performance of the

considered new learning framework.

A. Contributions and Organization

To leverage the underutilized computing resources at the

BS for improving learning performance, we propose a novel

semi-federated learning (SemiFL) paradigm by integrating the

conventional CL and FL into a two-tier framework. Since

many previous studies on FL solely focus on transmitting

local gradients, the existing communication strategies can

not directly satisfy the requirement of SemiFL for collect-

ing both local gradients and data samples. To address this

issue, we propose a novel JCC scheme to guarantee the

unique communication request of SemiFL in an efficient

manner. Specifically, at the devices, we combine AirComp

and NOMA techniques to enable the concurrent transmission

of data samples and local gradients. To gain deep insights

into SemiFL, we provide the theoretical analysis of SemiFL.

Then, we formulate an optimality gap minimization problem

by optimizing the transceivers. The main contributions of this

paper are summarized as follows:

• To improve the learning performance of existing FL, we

propose a harmonized SemiFL framework to orchestrates

CL and FL into a two-tier architecture. The global model

at the BS is updated by the hybrid gradient obtained from

both CL and FL. Different from conventional commu-

nication strategies for FL, we design a learning-centric

JCC transceiver structure to meet the unique transmission

requirement of SemiFL. At the transmitter, the devices

concurrently transmit local gradients and data samples via

a shared multiple access channel. At the receiver, the BS

first decodes the data samples for CL, and then aggregates

the local gradients over the air.

• We derive the optimality gap in closed form to char-

acterize the impact of wireless communication on the

convergence performance of SemiFL. We further extend

the result to two special cases, where the BS calculates

the CL gradient using all accumulated data sample in

the first case and adopts a decreasing learning rate in

the second case. By comparing the learning behaviors

between SemiFL, FL, and CL, we theoretically prove

that SemiFL is a more general learning paradigm than

the other two. To further accelerate the convergence of

SemiFL, we formulate a non-convex problem to minimize

the optimality gap by designing the transceivers while

satisfying the maximum transmit power of devices, the

communication latency of data transmission, and the

distortion of gradient aggregation.

• We propose a two-stage algorithm to solve the formu-

lated challenging problem. Specifically, we provide the

closed-form solution to the aggregation beamformer in

the single-antenna case. Moreover, the successive convex

approximation (SCA) method is employed to obtain the

decoding beamformers, where the closed-form optimal

solutions in each iteration are derived by solving the

Karush-Kuhn-Tucker (KKT) conditions.

Apart from the contributions, simulation results on two real-

world datasets confirm that:

1) The proposed two-stage algorithm outperforms bench-

marks in terms of aggregation mean square error (MSE)

and communication sum rate.

2) The proposed SemiFL achieves higher learning accuracy

and faster convergence than FL, which validates the

theoretical relation between SemiFL, FL, and CL.

3) Compared with state-of-the-art benchmarks, SemiFL

achieves up to 3.2% accuracy gain on the MNIST

dataset, and the effectiveness of the proposed two-stage

resource allocation algorithm is validated.

The rest of this paper is organized as follows. The system

model of SemiFL is described in Section II. Section III

presents the convergence analysis and formulates the prob-

lem. Section IV proposes the two-stage algorithm to jointly

optimize the transmit power and receive beamformers. Sec-

tion V presents simulation results, followed by conclusions in

Section VI.

Notations: Lower-case and upper-case boldface letters de-

note vectors and matrices, respectively. Lower-case letters and

upper-case cursive letters denote scalars and sets, respectively.

IN denotes the N × N identity matrix. | · | denotes the

cardinality of a set or the modulus of a complex scalar. (·)T,
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Fig. 1. A demonstration of the proposed SemiFL framework.

(·)H, and ‖·‖ denote transpose, conjugate transpose, and vector

2-norm, respectively. R, C, and ∅ denote real, complex, and

empty sets, respectively. ∇ denotes the gradient operator and

E[·] takes statistical expectation. ∪ and ∩ denote the union

and intersection of sets, respectively. log2(·) takes the base

two logarithm, and lim
x→∞

f(x) denotes the limit of f(x) as x

approaches infinity. Re{x} and ∠x denote the real part and

the angle of a complex scalar x, respectively.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a wireless network

comprising one Nr-antenna BS and K single-antenna devices.

Specifically, all devices that collect data samples and conduct

local computation form the first tier, while the BS performing

centralized computation serves as the second tier. The set of

devices is denoted by K = {1, 2, . . . ,K}.

A. SemiFL Framework

We consider a model training process with T communica-

tion rounds. In the t-th round, the k-th device collects multiple

data samples denoted by a dataset Dt,k, which is divided into

two disjoint subsets, i.e., Df,t,k containing Nf,k samples and

Dc,t,k containing Nc,k samples, satisfying Df,t,k ∪ Dc,t,k =
Dt,k and Df,t,k ∩Dc,t,k = ∅. Note that |Dt,k| = Nf,k+Nc,k.

Denote Dk = ∪Tt=1Dk,t as the dataset that encompasses all

data samples collected by the k-th device over T rounds. Local

devices aim to collaboratively train a shared global model

w ∈ RQ by minimizing the global empirical loss function

F (w) on the global dataset D = ∪kDk, which is given by

F (w) =
1

N

∑K

k=1

∑

n∈Dk

f(w;xk,n,yk,n), (1)

where xk,n and yk,n are the feature vector and the label

vector of a data sample, respectively, f(w;xk,n,yk,n) is

the loss function with respect to (w.r.t.) a data sample, and

N = |D| = ∑K
k=1

∑T
t=1(Nf,k + Nc,k) is the total amount

of data samples collected by all K devices over T rounds.

Different from conventional FL where the global model w is

merely updated by the aggregated local gradients, we propose

a SemiFL framework to minimize the global empirical loss

function F (w). Specifically, FL over devices and CL of the

BS are coordinated in a unified manner, and the global model

is updated by a combination of the resultant FL gradient and

CL gradient.

In the t-th round, limited by the local computing capa-

bility, the k-th device calculates the local gradient g
f
t,k =

[gft,k,1, . . . , g
f
t,k,Q]

T ∈ RQ using the Nf,k data samples in

Df,t,k, given by

g
f
t,k =

1

Nf,k

∑

n∈Df,t,k

gt,k,n, ∀k ∈ K, (2)

where gt,k,n , ∇f(wt;xk,n,yk,n) is the sample-wise gradi-

ent at wt, and wt denotes the global model in the t-th round.

Note that the privacy of the data in Df,t,k can be preserved

naturally since the BS has no access to the raw data retained

by local devices. Apart from transmitting g
f
t,k for aggregation,

the k-th device also uploads the data samples in Dc,t,k to the

BS. To mitigate privacy leakage, we employ a mixup method,

originally proposed in [19], to preserving privacy when send-

ing data to third parties [20]–[22]. For an arbitrary sample

{xt,k,n,yt,k,n} in Dc,t,k, the k-th device mixes it with another

sample labeled differently using a mixed ratio ̟ ∈ (0, 1)
drawn from a Dirichlet distribution, and then adds noise to the

mixed sample to enhance privacy preservation. Specifically,

the mixed data sample {x̄t,k,n, ȳt,k,n} is generated by

x̄t,k,n =̟xt,k,n + (1−̟)xt,k,n′

+ n̄t,k,n, ∀k ∈ K, ∀n, n
′ ∈ Dc,t,k, (3)

ȳt,k,n =̟yt,k,n + (1−̟)yt,k,n′

+ n̄t,k,n, ∀k ∈ K, ∀n, n
′ ∈ Dc,t,k, (4)

where yt,k,n 6= yt,k,n′ , and n̄t,k,n denotes the Gaussian noise

whose strength can be adjusted to achieve a specific privacy

level [21]. Namely, the k-th device sends the mixed data

samples with noise to the BS so that the data privacy can

be preserved.

The BS accumulates all mixed data samples received, and

randomly selects Nc =
∑K

k=1Nc,k samples to form a dataset

Dc,t for calculating the CL gradient, given by

gc
t =

1

Nc

∑

n∈Dc,t

gt,n. (5)

Then, the BS aggregates the local gradients over the air. Let

ĝ
f
t ∈ RQ denote the aggregated gradient of FL. Next, the

BS calculates the global gradient ĝt for the t-th round as

a combination of the FL gradient and CL gradient, i.e., a

weighted average of ĝ
f
t and gc

t , given by

ĝt =
Nf

Nf +Nc
ĝ
f
t +

Nc

Nf +Nc
gc
t , (6)

where Nf =
∑K

k=1Nf,k is the total amount of data for FL

in the t-th round. Finally, the BS updates the global model

wt for the next round using the gradient descent method, i.e.,

wt+1 = wt − ηĝt, where η is the learning rate.

B. JCC Scheme

In order to meet the unique transmission requirement of

SemiFL, i.e., the collaborative transmission of local gradients
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Fig. 2. The block diagram of the designed JCC transceiver structure and signal processing flows for the SemiFL framework.

and data samples, we propose a JCC scheme which simultane-

ously implements AirComp and NOMA in a communication-

efficient manner. To this end, we design a novel transceiver

structure for supporting the combination of these two critical

techniques, as illustrated in Fig. 2. Specifically, the devices

transmit both local gradients and data samples over the same

time-frequency resources, while the BS first decodes the data

samples, and then aggregates the local gradients over the air.

In the t-th communication round, the signal pre-processing

of the k-th device is two-fold. Here, the local gradient g
f
t,k is

first normalized to a vector g̃
f
t,k = [g̃ft,k,1, . . . , g̃

f
t,k,Q]

T ∈ R
Q

yielding E[g̃ft,k,q] = 0 and E[(g̃ft,k,q)
2] = 1, ∀k ∈ K, and then

transformed to a signal vector st,k = [st,k,1, . . . , st,k,Q]
T ∈

RQ. Concretely, similar to [23], the normalization procedure

is illustrated as follows:

1) Before the transmission of local gradients and data

samples, the k-th device calculates and transmits

two parameters to the BS, i.e., 1
Q

∑Q
q=1 g

f
t,k,q and

1
Q

∑K
k=1 (g

f
t,k,q)

2, where gft,k,q denotes the q-th entry

of the local gradient g
f
t,k.

2) Upon receiving all 2K parameters uploaded

by K devices, the BS calculates the global

mean ḡt and the global variance σ̄2
t by

using ḡt = 1
K

∑K
k=1(

1
Q

∑Q
q=1 g

f
t,k,q) and

σ̄2
t = 1

K

∑K
k=1[

1
Q

∑Q
q=1(g

f
t,k,q)

2]− ḡ2t , respectively.

3) The BS stores ḡt and σ̄2
t for the de-normalization in the

post-processing, and broadcasts ḡt and σ̄2
t back to all

devices for the normalization in the pre-processing.

4) The k-th device normalizes the q-th entry of the local

gradient g
f
t,k according to

g̃ft,k,q =
gft,k,q−ḡt

σ̄t
, q = 1, 2, . . . , Q, ∀k ∈ K, (7)

where the normalized g̃ft,k,q yields E[g̃ft,k,q] = 0 and

E[(g̃ft,k,q)
2] = 1. Then, the k-th device constructs the

gradient signal vector as st,k =
Nf,k

Nf
g̃
f
t,k.

Note that the communication overhead of the normalization is

2K parameters in each round. For another, the Nc,k data sam-

ples in Dc,t,k for uploading, represented in bits, generally have

different dimensions compared to the local gradient. However,

the signal vector of the local gradient st,k and the signal vector

of the data samples dt,k = [dt,k,1, . . . , dt,k,Q]
T ∈ RQ should

be aligned to have the same number of symbols, as they share

the same time-frequency resources. As presented before, each

dimension of the local gradient is normalized to a symbol

of st,k. To align dt,k with st,k, devices appropriately map

multiple bits of the data samples to a symbol of dt,k, and then

apply a proper zero padding scheme [24]. The q-th entry of

dt,k yields E[dt,k,q ] = 0 and E[d2t,k,q ] = 1. For simplicity, we

assume that the entries of st,k and dt,k are independent of each

other [25], i.e., E[st,k,qdt,k,q] = 0, q = 1, 2, . . . , Q, ∀k ∈ K.

Each communication round is equally divided into Q slots.

In the q-th slot of the t-th communication round, the devices

transmit the superposition of {st,k,q} and {dt,k,q} to the BS

after being processed by the parallel-to-serial (P/S) conversion.

At the BS side, the superposition signal received by each

antenna in the q-th slot of the t-th communication round is

independently downconverted to form the baseband superpo-

sition signal vector yt,q , as given by

yt,q =
∑K

k=1
pt,f,kht,kst,k,q

︸ ︷︷ ︸

local gradients

+
∑K

k=1
pt,c,kht,kdt,k,q

︸ ︷︷ ︸

data samples

+nt,q
︸︷︷︸

noise

,

(8)

where pt,f,k ∈ C and pt,c,k ∈ C are the transmit power

allocation coefficients for local gradients and data samples,

respectively, nt,q ∼ CN (0, σ2INr
) is the additive white Gaus-

sian noise, and ht,k ∈ CNr is the channel coefficient vector

from the k-th device to the BS. We consider a block-fading

channel, where ht,k remains unchanged within a communi-

cation round but varies independently between rounds, and

assume the perfect channel state information is available [17].

As shown in Fig. 2, to decode data samples, the BS

performs receive beamforming [26] by multiplying yt,q with

a beamforming matrix containing K beamformers, i.e., Ft ,

[ft,1, ft,2, . . . , ft,K ] ∈ CNr×K , thereby generating K separated
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γt,k =
|fHt,k(pt,c,kht,k)|2

∑K
k′=1,k′ 6=k |fHt,k(pt,c,k′ht,k′)|2 +∑K

k′=1

N2
f,k′

N2
f

|fHt,k(pt,f,k′ht,k′)|2 + σ2‖ft,k‖2
, ∀k ∈ K. (10)

parallel data streams denoted by a vector d̂t,q = FH
t yt,q =

[d̂t,1,q, d̂t,2,q, . . . , d̂t,K,q]
T ∈ CK [25], [27]. The k-th data

stream for decoding the data samples from the k-th device

is given by

d̂t,k,q=fHt,kyt,q

=fHt,k(pt,c,kht,kdt,k,q)+fHt,k

(
∑K

k′=1
pt,f,k′ht,k′st,k′,q

)

︸ ︷︷ ︸

interference of local gradients

+ fHt,k

(
∑K

k′=1,k′ 6=k
pt,c,k′ht,k′dt,k′,q

)

︸ ︷︷ ︸

interference of other data samples

+ fHt,knt,q, ∀k ∈ K, (9)

which is independent of other data streams for decoding. As

a result, the signal-to-interference-plus-noise ratio (SINR) of

the k-th device, γt,k, is presented by (10) at the top of this

page. The decoded symbols are accumulated over Q slots to

recover signal vectors {dt,k} using the serial-parallel (S/P)

converter, and the uploaded data samples are recovered by

post-processing.

After removing all data sample signals from the superpo-

sition signal vector yt,q , the residual local gradients are free

from the interference of data samples. Then, the BS employs

another beamformer bt ∈ CNr to aggregate the local gradients

over the air, which is given by

ŝt,q=
∑K

k=1
pt,f,kb

H
t ht,kst,k,q + bH

t nt,q. (11)

Since the desired aggregation signal is st,q =
∑K

k=1 st,k,q , the

distortion between st,q and ŝt,q is measured by the MSE:

MSEt =E[|ŝt,q − st,q|2]

=
∑K

k=1

N2
f,k

N2
f

∣
∣pt,f,kb

H
t ht,k − 1

∣
∣
2
+ ‖bt‖2σ2. (12)

Similarly, the aggregated gradient signals accumulated over

Q slots are rearranged in an estimation signal vector ŝt =
[ŝt,1, . . . , ŝt,Q]

T ∈ CQ using the S/P converter. Finally, the

BS post-processes ŝt to obtain the aggregated gradient by de-

normalization, ĝft,q = σ̄tŝt,q + ḡt, i.e.,

ĝft,q =
∑K

k=1

Nf,k

Nf

(
1− pt,f,kbH

t ht,k

)
ḡt+σ̄tb

H
t nt,q

︸ ︷︷ ︸

de-normalization error due to the channel fading and noise

+
∑K

k=1

Nf,k

Nf
pt,f,kb

H
t ht,kg

f
t,k,q, q = 1, 2, . . . , Q, (13)

where ĝft,q is the q-th entry of the aggregated gradient of FL,

i.e., ĝ
f
t = [ĝft,1, . . . , ĝ

f
t,Q]

T.

III. CONVERGENCE ANALYSIS AND PROBLEM

FORMULATION

In this section, we provide the convergence analysis of the

proposed SemiFL by characterizing the optimality gap based

on commonly adopted assumptions. Then, we formulate a

problem to minimize the optimality gap by jointly optimizing

the transmit power allocation coefficients {pt,f,k} and {pt,c,k},
the aggregation beamformer bt, and the decoding beamform-

ers {ft,k}.

A. Convergence Analysis

To facilitate the convergence analysis, we impose the fol-

lowing standard assumptions on the global empirical loss

function F (w) and gradients, which have been extensively

employed by the works in [10], [17], [28]–[30].

Assumption 1 (µ-strongly convex). The global empirical loss

function F (w) is µ-strongly convex. Therefore, for any w,

w′ ∈ RQ and µ > 0, we have

F (w) ≥ F (w′) + (w −w′)
T∇F (w′) +

µ

2
‖w−w′‖2, (14)

where ∇F (w) is the gradient of the global empirical loss

function F (w) regarding w.

Assumption 2 (L-smooth). The global empirical loss function

F (w) is L-smooth. Therefore, for any w, w′ ∈ R
Q and L > 0,

we have

F (w) ≤ F (w′) + (w −w′)
T∇F (w′) +

L

2
‖w−w′‖2. (15)

Assumption 3 (Bounded gradients). The squared 2-norms of

any local gradient and any sample-wise gradient are bounded.

Therefore, for constants G2 ≥ 0, ξ1 ≥ 0 and ξ2 > 0, we have

E

[

‖gf
t,k‖2

]

≤G2, ∀k ∈ K, , ∀t, (16)

‖gt,k,n‖2≤ξ1+ξ2‖∇F (wt)‖2, ∀k ∈ K, ∀n ∈ D, ∀t. (17)

Assumption 1 can be the foundation for deriving the cele-

brated Polyak-Lojasiewicz (PL) inequality [31], which will be

utilized in Appendix C. Assumption 3 bounds the norms of

gradients to facilitate the scaling operations during derivation.

The convergence analysis starts with characterizing the error

of the global gradient ĝt in the t-th round. By rewriting ĝt as

ĝt = ∇F (wt) − e and plugging it into the gradient descent

method mentioned at the end of Section II-A, the global model

update is rewritten as

wt+1 = wt − η (∇F (wt)− e) , (18)

where e denotes the error of the global gradient, given by

e=a1(∇F (wt)−gf
t

︸ ︷︷ ︸
e1

)+a2(∇F (wt)−gc
t

︸ ︷︷ ︸
e2

)+a1(g
f
t−ĝf

t
︸ ︷︷ ︸

e3

). (19)
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Here, a1 =
Nf

Nf+Nc
, a2 = Nc

Nf+Nc
, g

f
t =

∑K
k=1

Nf,k

Nf
g
f
t,k is the

desired FL gradient without considering the aggregation error,

and ∇F (wt) = 1
N

∑K
k=1

∑

n∈Dk
gt,k,n is the ideal global

gradient of the global empirical loss function. One can find

that the global gradient error e can be decomposed into three

parts, i.e., e1, e2, and e3, which separately capture the primary

hostilities jeopardizing the convergence behavior of SemiFL.

Specifically, the error e1 is due to the limited computing

capabilities of devices, which restricts the amount of data

samples for calculating local gradients. Randomly selecting a

limited number of samples from all accumulated data samples

at the BS compromises the CL gradient and thus incurs the

error e2. The error e3 captures the impact of the undesirable

channel fading and noise on the aggregated gradient.

Based on [28] and [32], we now reveal how the error

e affects the convergence behavior of SemiFL between two

consecutive rounds in the following lemma.

Lemma 1. Suppose F (wt) satisfies Assumption 2, and let

learning rate η = 1/L. In the t-th round, we have

E [F (wt+1)] ≤E [F (wt)]−
1

2L
‖∇F (wt)‖2 +

2a21
L

E[‖e1‖2]

+
2a22
L

E[‖e2‖2] +
a21
L
E[‖e3‖2]. (20)

Proof: Please refer to Appendix A.

Next, we bound E[‖e1‖2], E[‖e2‖2] and E[‖e3‖2] based on

Assumption 3, as presented in the following lemma.

Lemma 2. Given Assumption 3, the squared 2-norms of

the errors, i.e., E[‖e1‖2], E[‖e2‖2], and E[‖e3‖2], are upper

bounded, respectively, by

E
[
‖e1‖2

]
≤N −Nf

Nf
(ξ1 + ξ2‖∇F (wt)‖2), (21)

E
[
‖e2‖2

]
≤N −Nc

Nc
(ξ1 + ξ2‖∇F (wt)‖2), (22)

E
[
‖e3‖2

]
≤4KG2

N2
f

∑K

k=1
N2

f,k

∣
∣1− pt,f,kbH

t ht,k

∣
∣
2

+G2σ2‖bt‖2. (23)

Proof: Please refer to Appendix B.

Finally, based on Lemmas 1 and 2, we characterize the

convergence behavior of SemiFL framework by deriving the

optimality gap in Theorem 1.

Theorem 1 (Optimality gap of SemiFL). Suppose Assump-

tions 1, 2, and 3 hold and set learning rate η = 1
L . Let w∗

denote the optimal global model. Then, the optimality gap of

SemiFL after T rounds is given by:

E[F (wT+1)−F (w∗)] ≤ ρT1 E [F (w1)− F (w∗)]+ρ2
1−ρT1
1−ρ1

+
∑T

t=1
ρT−t
1 ϕt ({pf,k},b) , ψSemiFL

T ({pf,k},b) , (24)

where ρ1 = 1 − µ
L + 4µξ2

Nf (N−Nf )+Nc(N−Nc)
L(Nf+Nc)2

,

ρ2 = 2ξ1
Nf (N−Nf)+Nc(N−Nc)

L(Nf+Nc)2
, and ϕt ({pf,k},b) =

4KG2 ∑
K
k=1 N2

f,k|1−pt,f,kb
H
t ht,k|2

L(Nf+Nc)2
+

N2
fG

2σ2‖bt‖
2

L(Nf+Nc)2
.

Proof: Please refer to Appendix C.

Remark 1 (The value range of ξ2). Note ξ2 should be

in the range (0,
(Nf+Nc)

2

4[Nf (N−Nf )+Nc(N−Nc)]
) to guarantee the

convergence of E[F (wT+1) − F (w∗)], while ensuring the

correctness of applying the PL inequality in (68). The reasons

are three-fold:

1) Since the stable convergence of ψSemiFL
T ({pf,k},b)

requires for 0 < ρ1 < 1, we have

(1− L

µ
)

(Nf +Nc)
2

4[Nf(N −Nf ) +Nc(N −Nc)]
< ξ2

<
(Nf +Nc)

2

4[Nf(N −Nf ) +Nc(N −Nc)]
. (25)

2) The term 1
2L − 2ξ2

Nf (N−Nf )+Nc(N−Nc)
L(Nf+Nc)2

in (68) should

be non-negative, which implies

ξ2 ≤
(Nf +Nc)

2

4[Nf(N −Nf) +Nc(N −Nc)]
. (26)

3) It is known from Assumption 3 that ξ2 > 0.

As a result, we have 0 < ξ2 <
(Nf+Nc)

2

4[Nf (N−Nf )+Nc(N−Nc)]
.

For a constant ξ2 greater than the threshold
(Nf+Nc)

2

4[Nf (N−Nf)+Nc(N−Nc)]
, one can enlarge the threshold

by increasing Nc to satisfy the condition.

We extend the result in Theorem 1 to a special case where

the BS calculates the CL gradient using all data samples

accumulated in previous rounds, as given in Corollary 1.

Corollary 1 (Optimality gap using all accumulated data).

Given Assumptions 1, 2, and 3 as well as the learning rate

η = 1
L , suppose the BS uses all accumulated N̄c,t = tNc data

samples till the t-th round to calculate the CL gradient. Then,

the optimality gap of SemiFL after T rounds is given by:

E[F (wT+1)− F (w∗)] ≤
(

T∏

t=1

ρ̄1,t

)

E [F (w1)− F (w∗)]

+

T∑

t=1

(
T∏

i=t+1

ρ̄1,i

)

ρ̄2,t +

T∑

t=1

(
T∏

i=t+1

ρ̄1,i

)

ϕ̄t ({pf,k},b)

, ψ̄SemiFL
T ({pf,k},b) , (27)

where ρ̄1,t = 1 − µ
L + 4µξ2

Nf (N−Nf )+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
,

ρ̄2,t = 2ξ1
Nf (N−Nf)+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
, and ϕ̄t ({pf,k},b) =

4KG2 ∑
K
k=1 N2

f,k|1−pt,f,kb
H
t ht,k|2

L(Nf+N̄c,t)2
+

N2
fG

2σ2‖bt‖
2

L(Nf+N̄c,t)2
.

Proof: Please refer to Appendix D.

Since
Nf (N−Nf )+N̄c,t(N−N̄c,t)

L(Nf+N̄c,t)2
≤ Nf (N−Nf )+Nc(N−Nc)

L(Nf+Nc)2

and (Nf + N̄c,t)
2 ≥ (Nf + Nc)

2, ∀t ≥ 1, it

can be verified that ρ1 ≥ ρ̄1,t, ρ2 ≥ ρ̄2,t, and

ϕt ({pf,k},b) ≥ ϕ̄t ({pf,k},b) , ∀t ≥ 1. Hence, we have

ψ̄SemiFL
T ({pf,k},b) ≤ ψSemiFL

T ({pf,k},b). Corollary 1 in-

dicates that using all accumulated samples for calculating CL

gradient contributes to a smaller optimality gap of SemiFL.

Furthermore, we extend the optimality gap of SemiFL in

Theorem 1 to another specific case where a decreasing learning

rate is adopted [33], as given in Corollary 2.
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Corollary 2 (Optimality gap with a decreasing learning rate).

Given Assumptions 1 and 2, suppose the decreasing learning

rate in the t-th round is designed as ηt =
Λ

t+τ , where Λ > 1
µ ,

and τ ≥ ΛL. Then, the optimality gap of SemiFL after T
rounds is given by:

E[F (wT+1)− F (w∗)] ≤ θT
T + τ + 1

, (28)

where θT = max{Λ(T+τ)E[‖eT ‖2]
2(Λµ−1) ,E[F (wT ) − F (w∗)](T +

τ)} and eT = ∇F (wT )− ĝT . When T →∞, one can obtain

E[F (wT+1)− F (w∗)]→ 0.

Proof: Please refer to Appendix E.

From Corollary 2, it can be confirmed that the optimality

gap of SemiFL converges to 0 with the convergence rate O( 1
T )

when applying a decreasing learning rate for a sufficiently

large T . Based on Theorem 1, Corollary 1, and Corollary 2, the

convergence of the proposed SemiFL under different settings

is proved.

In order to provide thorough insights into the relation

between SemiFL, FL, and CL, we first capture the convergence

behavior of FL and CL, and then compare them with SemiFL

in Theorem 2. For comparison fairness, we stipulate that all

devices utilize Nf + Nc data samples to calculate the local

gradient in FL but transmits no data to the BS. Consequently,

the global model is trained by the aggregated gradient only.

For CL, we consider that all devices only upload Nf + Nc

data samples to the BS in each round but never perform local

training. Accordingly, the BS randomly selects Nf +Nc data

samples from its accumulated data to calculate the CL gradient

to update the global model.

Theorem 2 (Relation between SemiFL, FL, and CL). Given

Assumptions 1, 2, and 3 as well as the learning rate η = 1
L ,

the optimality gaps of FL and CL after T rounds are given by

(29) and (30), respectively.

E[F (wT+1)−F (w∗)] ≤ ρ̃T1 E [F (w1)−F (w∗)]+ρ̃2
1− ρ̃T1
1− ρ̃1

+
∑T

t=1
ρ̃T−t
1 ϕ̃t ({pf,k},b) , ψFL

T ({pf,k},b) , (29)

E[F (wT+1)−F (w∗)] ≤ ρ̂T1 E [F (w1)−F (w∗)]+ρ̂2
1− ρ̂T1
1− ρ̂1

, ψCL
T , (30)

where ρ̃1 = 1 − µ
L + 8µξ2

N−(Nf+Nc)
L(Nf+Nc)

, ρ̃2 =

4ξ1
N−(Nf+Nc)
L(Nf+Nc)

, ρ̂1 = 1 − µ
L + µξ2

N−(Nf+Nc)
L(Nf+Nc)

,

ρ̂2 = ξ1
N−(Nf+Nc)
2L(Nf+Nc)

, and ϕ̃t ({pf,k},b) = G2σ2‖bt‖
2

L +

4KG2 ∑K
k=1 (Nf,k+Nc,k)

2|1−pt,f,kb
H
t ht,k|2

L(Nf+Nc)2
. Then, we have the

following relation between SemiFL, FL, and CL:

ψCL
T ≤ψSemiFL

T ({pf,k},b)≤ψFL
T ({pf,k},b) . (31)

Proof: Please refer to Appendix F.

On the one hand, thanks to the CL empowered by the com-

puting capability of the BS, Theorem 2 proves that SemiFL

outperforms FL by achieving a smaller optimality gap. On the

other hand, CL achieves the smallest optimality gap among

the three learning frameworks, which can be regarded as a

performance upper bound. When retaining all Nc + Nf data

samples for local training, we obtain the optimality gap of

SemiFL, i.e., ψSemiFL
T ({pf,k},b), degenerates into that of

FL, i.e., ψFL
T ({pf,k},b). When dedicating all Nc + Nf data

samples to CL and ignoring the impact of wireless chan-

nels on gradient aggregation, the optimality gap of SemiFL,

i.e., ψSemiFL
T ({pf,k},b), reduces to that of CL, i.e., ψCL

T .

Therefore, Theorem 2 theoretically confirms that the proposed

SemiFL is a more general learning paradigm than FL and CL.

Remark 2 (Impact of wireless communication). Based on

Theorems 1 and 2, we have the following observations about

the impact of wireless communication on the optimality gaps.

• As T goes to infinity, the optimality gaps of SemiFL, FL,

and CL tend to the following three limits, respectively:

lim
T→∞

ψSemiFL
T ({pf,k},b) = lim

T→∞

T∑

t=1

ρT−t
1 ϕt({pf,k},b)

+
ρ2

1− ρ1
, (32)

lim
T→∞

ψFL
T ({pf,k},b) = lim

T→∞

T∑

t=1

ρ̃T−t
1 ϕ̃t({pf,k},b)

+
ρ̃2

1− ρ̃1
, (33)

lim
T→∞

ψCL
T =

ρ̂2
1− ρ̂1

. (34)

Due to the detrimental impact of the undesirable

wireless communication contained in ϕt ({pf,k},b)
and ϕ̃t ({pf,k},b), both ψSemiFL

T ({pf,k},b) and

ψFL
T ({pf,k},b) are fluctuating and can not converge

to a stable value even if T goes to infinity. This

reveals the significance and necessity of designing the

transceivers, i.e., the transmit power allocation and

receive beanformers, to reduce the optimality gap.

• The wireless factors in the distant past have marginal

impacts on the optimality gap than the recent ones. Since

0 < ρ1 < 1 and 0 < ρ̃1 < 1, it is obtained that

ϕ̃t ({pf,k},b) and ϕt ({pf,k},b) in early rounds have

much smaller weight coefficients based on (24) and (29).

This coincides with the observations in [17].

Furthermore, we also derive the optimality gaps of SemiFL

and FL over error-free wireless channels in the following

corollary. Note that the error-free wireless channels refer to the

case where there is no communication noise and the wireless-

related factors are perfectly designed such that local gradients

are aggregated without any error.

Corollary 3 (Optimality gaps over error-free channels). Given

Assumptions 1, 2, and 3 as well as learning rate η = 1
L ,

the optimality gap of SemiFL and FL over error-free wireless

channels are given, respectively, by

E [F (wT+1)−F (w∗)] ≤ ρT1 E [F (w1)−F (w∗)]+ρ2
1− ρT1
1− ρ1

,

(35)

E [F (wT+1)−F (w∗)] ≤ ρ̃T1 E [F (w1)−F (w∗)]+ρ̃2
1− ρ̃T1
1− ρ̃1

,

(36)
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Proof: In light of the description of error-free wireless

channels, we have ‖e3‖2 = 0. By plugging (21), (22) and

‖e3‖2 = 0 into (20), while recursively applying the result for

T times, we reach (35). Similarly, the optimality gap (36) can

be obtained by plugging (78) and ‖ẽ3‖2 = 0 into (77) and

recursively applying the result for T times.

Based on Corollary 3 and (34), we observe that, in the

error-free case, all three schemes of SemiFL, FL, and CL can

converge to the optimal model without any gaps under certain

conditions. Specifically, as T → ∞, we have the optimality

gaps without aggregation errors of SemiFL, FL, and CL tend to

be ρ2

1−ρ1
, ρ̃2

1−ρ̃1
, and ρ̂2

1−ρ̂1
, respectively. For SemiFL, if the rela-

tion between Nf and Nc satisfies (Nf−N
2 )

2
+(Nc−N

2 )
2
= N2

2 ,

we observe ρ2

1−ρ1
→0, i.e., the optimality gap of SemiFL tends

to be zero. For FL, as Nf +Nc→N , we have ρ̃2

1−ρ̃1
→0, i.e.,

the optimality gap of FL tends to be zero, which is consistent

with the theorem established in [10]. For CL, as Nf+Nc→N ,

we have ρ̂2

1−ρ̂1
→0, i.e., the optimality gap of CL tends to be

zero.

B. Problem Formulation

In the following, we aim to minimize the optimality gap

of SemiFL by optimizing the transmit power allocation co-

efficients {pt,f,k} and {pt,c,k}, as well as the aggregation

beamformer {bt} and decoding beamformers {ft,k}.
The transmit power of the k-th device is constrained by

E[|pt,f,kst,k,q + pt,c,kdt,k,q|2] =
N2

f,k

N2
f

|pt,f,k|2 + |pt,c,k|2

≤ Pmax, ∀k ∈ K, ∀t, (37)

where Pmax is the maximum transmit power at each device.

Suppose that each data sample has m bits. The k-th device

should complete the data transmission by the end of each

communication round. Thus, the communication latency of the

k-th device should not exceed the maximum allowable latency

Tc, given by

mNc,k

Wb1log2

(

1 +
γt,k

b2

) ≤ Tc, ∀k ∈ K, ∀t, (38)

where 0 < b1 < 1 and b2 > 1 are two constants standing for

the rate adjustment and the SINR gap [34], [35], respectively,

and W is the bandwidth.

To improve the convergence of SemiFL, we minimize

the optimality gap ψSemiFL
T ({pf,k},b) in Theorem 1 by

jointly optimizing the transmit power allocation and receive

beamformers. Since ρ1 and ρ2 in (24) are free from the

impact of transceiver design, it is equivalent to minimizing
∑T

t=1 ρ
T−t
1 ϕt ({pf,k},b). Therefore, we formulate the opti-

mization problem as

min
{pt,f,k},{pt,c,k},

{bt},{ft,k}

T∑

t=1

ρT−t
1 ϕt ({pf,k},b) (39a)

s.t. MSEt ≤ ǫ, ∀t, (39b)

(37), (38),

where ǫ denotes the MSE tolerance. Constraint (37) restricts

the transmit power of devices. Constraint (38) specifies the

latency requirement of NOMA-based data uploading. Con-

straint (39b) limits the distortion of AirComp-based gradient

aggregation.

Although problem (39) is an optimization problem over

T rounds, we observe that both the objective and con-

straints corresponding to different rounds are independent.

As a result, problem (39) can be equivalently decomposed

into T one-round optimization problems [36]. We turn to

solve the decomposed problems independently for each round.

Note that the problem decomposition empowers SemiFL with

the practicability to be implemented over wireless channels

varying between rounds. After removing constant terms in

the objective function, the problem in an arbitrary round is

rewritten as follows, where the subscript t is omitted.

min
{pc,k},{pf,k},

b,{fk}

K∑

k=1

4KN2
f,k

(Nf+Nc)2
∣
∣1−pf,kbHhk

∣
∣
2
+
N2

fσ
2‖b‖2

(Nf+Nc)2
(40a)

s.t.
N2

f,k

N2
f

|pf,k|2 + |pc,k|2 ≤ Pmax, ∀k ∈ K, (40b)

γk ≥ γmin,k, ∀k ∈ K, (40c)

MSE ≤ ǫ, (40d)

where γmin,k = b2(2
(mNc,k/b1WTc) − 1), ∀k ∈ K. Problem

(40) is non-convex due to the non-convexity of (40c) and the

concave terms in (40d). To make problem (40) tractable, we

propose a two-stage algorithm to solve it in the next section.

IV. TRANSCEIVER OPTIMIZATION

Since the objective function of the formulated problem (40)

is independent of decoding beamformers {fk}, we decompose

problem (40) into two subprblems and propose a two-stage al-

gorithm to solve them for each communication round. We first

jointly optimize the aggregation beamformer and the transmit

power allocation coefficients. Then, the decoding beamformers

are obtained by employing SCA to solve the decomposed

K independent problems, where optimal solutions in closed

forms are provided by solving KKT conditions.

A. Optimizing Aggregation Beamformer and Transmit Power

Given decoding beamformers {fk}, the first subproblem

aims to jointly optimize the power allocation coefficients

{pf,k} and {pc,k} as well as the aggregation beamformer b,

given by

min
{pf,k},

{pc,k},b

∑K

k=1

4KN2
f,k

(Nf+Nc)2

∣
∣1−pf,kbHhk

∣
∣
2
+
N2

fσ
2‖b‖2

(Nf+Nc)2
(41)

s.t. (40b)− (40d).

Problem (41) is still non-convex due to the coupling of

optimization variables in the objective function and constraints

(40c) and (40d). We further decouple problem (41) into two

subproblems regarding the aggregation beamformer and the

transmit power allocation coefficients, respectively.
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1) Subproblem of Aggregation Beamformer Design: Given

decoding beamformers {fk} and the transmit power alloca-

tion coefficients {pf,k} and {pc,k}, the subproblem w.r.t. the

aggregation beamformer b is given by

min
b

bHA0b−2Re
{

bH
K∑

k=1

4KN2
f,kpf,k

(Nf +Nc)2
hk

}

(42a)

s.t. bHA1b−2Re
{

bH
K∑

k=1

N2
f,kpf,k

N2
f

hk

}

+ι−ǫ ≤ 0, (42b)

where ι =
∑K

k=1

N2
f,k

N2
f

, and A0 and A1 are given by

A0 =

K∑

k=1

4KN2
f,k|pf,k|2

(Nf +Nc)2
hkh

H
k +

N2
fσ

2

(Nf +Nc)2
INr

, (43)

A1 =

K∑

k=1

N2
f,k|pf,k|2
N2

f

hkh
H
k + σ2INr

. (44)

Problem (42) is convex w.r.t. b because of the positive

semidefinite matrices A0 and A1. Therefore, the problem can

be numerically solved using standard optimization toolboxes,

such as CVX [37]. In a special case where the BS has a single

antenna, we obtain the optimal aggregation beamformer in the

following Lemma by solving KKT conditions.

Lemma 3. When the BS is single-antenna, the optimal aggre-

gation beamformer is given by

b∗ =
ĥ1
ω1

+

√

| ĥ1
ω1
|2 − ι− ǫ

ω1
ei∠(ω1ĥ0−ω0ĥ1), (45)

where ω0 =
∑K

k=1

4KN2
f,k|pf,k|

2|hk|
2

(Nf+Nc)2
+

N2
fσ

2

(Nf+Nc)2
, ω1 =

∑K
k=1

N2
f,k|pf,k|

2|hk|
2

N2
f

+σ2, ĥ0 =
∑K

k=1

4KN2
f,k|pf,k|

2hk

(Nf+Nc)2
, ĥ1 =

∑K
k=1

N2
f,kpf,khk

N2
f

, and i =
√
−1.

Proof: Please refer to Appendix G.

2) Subproblem of Transmit Power Allocation: Given the

aggregation and decoding beamformers b and {fk}, the sub-

problem of transmit power allocation coefficients reduces to

min
{pf,k},{pc,k}

K∑

k=1

4KN2
f,k

(Nf +Nc)2

∣
∣1− pf,kbHhk

∣
∣
2

(46)

s.t. (40b)− (40d),

which is also non-convex due to the indefinite Hessian matri-

ces of (40c) and (40d).

With reference to [38], we have Re{pf,kbHhk} ≤
|pf,k||bHhk|. As a result, it is obtained that |1−pf,kbHhk|2 =
1+ |pf,k|2|bHhk|2− 2Re{pf,kbHhk} ≥ (1− |pf,k||bHhk|)2,

where the equality holds if ∠pf,k +∠(bHhk) = 0. Therefore,

we determine the angles of {pf,k} as

∠pf,k = −∠(bHhk), ∀k ∈ K. (47)

Consider that the angles of {pc,k} are independent of problem

(46). For simplicity, we determine the angles of {pc,k} by

∠pc,k = 0, ∀k ∈ K. (48)

Based on the obtained angles, we perform variable substitu-

tions by letting αk = |pf,k|, ∀k ∈ K and βk = |pc,k|2, ∀k ∈
K. Consequently, problem (46) is rewritten as

min
{αk},

{βk}

∑K

k=1

4KN2
f,k

(Nf +Nc)2
(
1− αk|bHhk|

)2
(49a)

s.t.
N2

f,k

N2
f

α2
k + βk − Pmax ≤ 0, ∀k ∈ K, (49b)

−βk
∣
∣fHk hk

∣
∣
2
+γmin,k(

∑K

k′=1

N2
f,k′

N2
f

α2
k′ |fHk hk′ |2

+
∑K

k′=1,k′ 6=k
βk′ |fHk hk′ |2+σ2‖fk‖2)≤0, ∀k ∈ K,(49c)

∑K

k=1

N2
f,k

N2
f

(1−αk|bHhk|)2+‖b‖2σ2−ǫ≤0, (49d)

βk ≥ 0, αk ≥ 0, ∀k ∈ K. (49e)

Due to positive semidefinite Hessian matrices of the objective

and constraints, problem (49) is jointly convex w.r.t. {αk} and

{βk}, and thus can be numerically solved. Finally, the transmit

power allocation coefficients are recovered by

p∗f,k = αke
i∠pf,k , ∀k ∈ K, (50)

p∗c,k =
√

βke
i∠pc,k , ∀k ∈ K. (51)

B. Optimizing Decoding Beamformers

Given the power coefficients {pf,k} and {pc,k}, as well

as the aggregation beamformer b, the second subproblem

attempts to find feasible decoding beamformers {fk}, which

is rewritten as

find
{fk}

{fk} (52a)

s.t. fHk A2,kfk ≤ 0, ∀k ∈ K, (52b)

where A2,k is given by

A2,k = −|pc,k|2hkh
H
k + γmin,k

(
∑K

k′=1

N2
f,k′

N2
f

|pf,k′ |2hk′hH
k′

+
∑K

k′=1,k′ 6=k
|pc,k′ |2hk′hH

k′ + σ2INr

)

, ∀k ∈ K. (53)

Considering the independence of constraints among devices,

we decompose (52) into K independent problems w.r.t. each

device. With the aim of increasing the individual data rate 1

, we introduce an auxiliary variable νk ≤ 0 to transform the

problem of the k-th device as follows [40]:

min
fk,νk≤0

νk (54a)

s.t. fHk A2,kfk − νk ≤ 0, (54b)

which is a non-convex problem due to the indefinite matrix

A2,k in constraint (54b).

1All devices ought to complete their data sample transmissions within the
same time duration when NOMA is employed [39]. However, increasing the
individual data rate might lead to misaligned transmission latency among
devices. To address this issue, the number of bits used to represent a data
sample at each device, i.e., m bits, should be carefully adjusted in terms of
the obtained individual data rate to align the data sample transmission latency
of different devices.
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Algorithm 1 A Two-Stage Algorithm for Solving (40)

1: Input: Feasible solutions ({p(0)f,k}, {p
(0)
c,k},b(0), {f (0)k }), the

maximum number of iterations N , the convergence accu-

racy ε, n = 0, and n′ = 0.

2: repeat

3: Update n← n+ 1.

4: Given {p(n−1)
f,k },{p(n−1)

c,k } and {f (0)k }, obtain b(n) by

solving problem (42).

5: Given b(n) and {f (0)k }, calculate ∠p
(n)
f,k, ∀k ∈ K by (47)

and ∠p
(n)
c,k , ∀k ∈ K by (48).

6: Given b(n), {f (0)k }, obtain {α(n)
k } and {β(n)

k } by solv-

ing problem (49).

7: Recover p
(n)
f,k, ∀k∈K by (50) and p

(n)
c,k , ∀k∈ K by (51).

8: until n ≥ N or
|U(n)−U(n−1)|

|U(n)|
≤ ε

9: repeat

10: Update n′ ← n′ + 1.

11: Given {p(n)f,k}, {p
(n)
c,k}, b(n) and {f (n

′−1)
k }, obtain

f
(n′)
k , ∀k ∈ K by (57) and ν

(n′)
k , ∀k ∈ K by (58).

12: until n′ ≥ N or
|νk

(n′)−νk
(n′−1)|

|νk(n′)|
≤ ε

13: Output: The solution ({p(n)f,k}, {p
(n)
c,k}, b(n), {f (n

′)
k }).

We employ the SCA method to solve problem (54). The

surrogate function of fHk A2,kfk, i.e., g(fk|f (n)k ), is created as

follows [41]:

g(fk|f (n)k ) =fHk Mkfk + 2Re{fHk (A2,k −Mk)f
(n)
k }

+ (f
(n)
k )H(Mk −A2,k)f

(n)
k , ∀k ∈ K, (55)

where the matrix Mk satisfies Mk � A2,k, ∀k ∈ K, and

f
(n)
k is the result obtained at the n-th iteration of SCA. By

substituting (55) into (54b), we convexify problem (54) as

min
fk,νk≤0

νk (56a)

s.t. g(fk|f (n)k )− νk ≤ 0, (56b)

By solving KKT conditions, the close-form optimal solutions

to problem (56) is provided in the following lemma.

Lemma 4. The optimal solutions to problem (56) are given

by

f∗k = M−1
k (Mk −A2,k)f

(n)
k , ∀k ∈ K (57)

ν∗k = (f
(n)
k )HA2,kM

−1
k (Mk −A2,k)f

(n)
k , ∀k ∈ K. (58)

Proof: Please refer to Appendix H.

C. Algorithm, Convergence and Complexity

The proposed two-stage algorithm for solving problem

(40) is summarized in Algorithm 1, where the superscript n
denotes the n-th iteration and U denotes the value of (40a).

In light of the non-increase and non-negativity of objective

(40a) over iterations, the convergence of Algorithm 1 can be

conformed based on the Monotone Bounded Theorem [42].

By adopting the standard interior-point (SIP) method when

invoking CVX, the worst-case complexity of Algorithm 1 is

given by O(NN1N
3
r + 8NN2K

3 +KN), where N1 and N2

are the permitted maximum iterations of SIP for problems (42)

and (49), respectively. Specifically, O(N1N
3
r ) and O(8N2K

3)
present the complexities of solving problems (42) and (49),

respectively. In terms of the closed-form solution in (57), the

complexity for solving fk is O(1).

V. SIMULATION RESULTS

A. Simulation Setup

We consider a SemiFL system with a radius of 100 m,

wherein K = 10 devices are randomly located. The BS

equipped with Nr = 16 antennas is located at the coordinate

(0, 0, 10) m. The large-scale fading coincides with that in [43],

and consider Rician factor κ = 2 for the small-scale fading.

The transmission bandwidth is W = 5 MHz. The noise power

is σ2 = −80 dBm, and the maximum transmit power is

Pmax = 30 dBm. The rate adjustment and the SINR gap are

set as b1 = 0.905 and b2 = 1.34 [34], respectively. Other

parameters are set as ǫ = 0.5, N = 200, and ε = 0.01.

We verify the performance of SemiFL by conducting

classification experiments on the MNIST and CIFAR-10

datasets [44]:

1) For the MNIST dataset, each data sample comprises a

28 × 28 gray-scale image and a 10-dimensional label.

Representing each entry by 16 bits, we set m= (28×
28 + 10) × 16 = 12, 704 bits. The global model is a

fully-connected multilayer perceptron (MLP) with a 50-

neuron hidden layer, which has Q = 39, 760 parameters

in total. When training the MLP using SemiFL, the MSE

loss function is adopted and the learning rate is η =
0.01.

2) For the CIFAR-10 dataset, each data sample consists of

a 32× 32× 3 color image and a 10-dimensional label,

which contains m = (32× 32× 3+ 10)× 16 = 49, 312
bits. We utilize a 9-layer convolutional neural network

(CNN) with Q = 116, 906 parameters as the global

model for classification. There are three convolutional

layers with ReLU activation, three max pooling layers

of size 3 × 3, two fully-connected layers with ReLU

activation, and one softmax output layer in the CNN.

The three convoltion layers contains 32, 32, and 64
kernels of size 5×5, respectively. There are 64 and 10
neurons in the two fully connected layers, respectively.

We adopt the cross-entropy loss function and set the

learning rate as η=0.1 to train the CNN using SemiFL.

For the above two classification experiments, we consider

T = 1, 000 training rounds with the maximum communication

allowable latency Tc = 500 ms. Each device independently

and randomly draws Nf,k+Nc,k =24 data samples from the

corresponding training set in each round. Then, Nf,k = 16
samples are retained locally for FL, and Nc,k = 8 samples

are uploaded to the BS for CL. The classification accuracy is

evaluated on the entire test set.

B. Evaluation of Communication Metrics

In Fig. 3, we plot the convergence behavior of Algorithm 1

in comparison with three benchmarks, including: i) the BS
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Fig. 3. Comparison of convergence behaviors. Fig. 4. Empirical CDF of the sum rate.

Fig. 5. MSE and sum rate versus the number of receive antennas under
different schemes.

Fig. 6. Cumulative objective value versus the number of communication
rounds under different schemes.

configures the aggregation beamformer as a minimum MSE

(MMSE) receiver [45]; ii) devices employ uniform-forcing

(UF) transmitters [46]; iii) the aggregation beamformer and

the transmission power allocation coefficients are solved using

alternating optimization (AO) [47]. It is seen that the objective

value of (40a) monotonously decreases with iterations and

finally reaches the stationary point. In particular, Algorithm 1

effectively reduces the optimality gap and outperforms the

benchmarks by converging to the lowest objective value.

In Fig. 4, we plot the empirical cumulative distribution

function (CDF) of the sum rate for 1, 000 trials. We employ

the sum rate as another metric to evaluate the performance of

data transmission, which is defined by the sum rates of each

device, i.e.,
∑K

k=1Wb1 log2

(

1 + γk

b2

)

(bps). We consider four

beamforming schemes as benchmarks: i) the difference-of-

convex-functions (DC) [14] method, where matrix lifting is

employed to solve fk and the rank constraint is approximated

by its linearization; ii) semidefinite relaxation (SDR) [48],

where the rank constraint is simply dropped; iii) maximum

ratio combining (MRC) [49], where fk is configured as hH
t,k;

iv) equal-gain combining (EGC), where fk is set as 1 ∈ CNr .

It is noticed that Algorithm 1 is the right-most among all

curves and achieves the highest sum rate. This is because SCA

circumvents the performance loss due to matrix approximation

and decomposition. Additionally, EGC even dissatisfies the

rate request because of the static configuration property.

In Fig. 5, we show the impacts of the number of receive

antennas on the sum rate and MSE, where the blue dashed

curves refer to the MSE performance and the brown solid

curves represent the sum rate performance. It is seen that

equipping the BS with more receive antennas results in a

lower MSE and a higher sum rate. Meanwhile, Algorithm 1

outperforms benchmarks in MSE and attains the highest sum

rate. Despite the comparable sum rate of SDR to Algorithm 1,

SDR confronts a quartic complexity regarding Nr [48], which

is much more time-consuming than the closed-form solution

to fk. This confirms the practicability of Algorithm 1 in terms

of the performance and cost.
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(a) Classification accuracy of training an MLP on the MNIST dataset. (b) Training loss of training an MLP on the MNIST dataset.

(c) Classification accuracy of training a CNN on the CIFAR-10 dataset. (d) Training loss of training a CNN on the CIFAR-10 dataset.

Fig. 7. Learning performance of SemiFL and benchmarks on the MNIST and CIFAR-10 datasets.

In Fig 6, we plot the cumulative objective value of

(40a) attained by Algorithm 1 and benchmarks, wherein a

lower cumulative objective value indicates a better conver-

gence behavior. To showcase the advantage of the proposed

power allocation method, two schemes are considered as

benchmarks: i) maximum available transmit power (MATP),

where pf,k =
√

(N2
f /N

2
f,k)(Pmax − |pc,k|2)e−i∠b

H
hk , ∀k ∈

K; ii) equal transmit power (ETP), where pf,k =
(Nf/Nf,k)

√

Pmax/2, ∀k ∈ K, pc,k =
√

Pmax/2, ∀k ∈ K,

b and {fk} are obtained by solving problems (42) and (56),

respectively. It can be observed that Algorithm 1 significantly

outperforms MATP and ETP by achieving a lower cumula-

tive objective value, thereby implying a smaller convergence

optimality gap. This is attributed to the effectiveness of

Algorithm 1 in adapting the transmit power of devices to

varying channel conditions synthetically, which achieves better

aggregation of local gradients for a reduced optimality gap.

C. Classification Experiments on Real-World Datasets

In this subsection, we examine the effectiveness of SemiFL

by conducting classification experiments on the MNIST and

CIFAR-10 datasets. We consider the following five learning

benchmarks for comparison:

1) FL: The devices merely transmit local gradients to the

BS over the same time-frequency resources in each

round, i.e., Nf,k = 24 and Nc,k = 0, ∀k ∈ K. The

BS aggregates local gradients over the air and updates

the global model with the aggregated gradient.

2) CL: The devices only transmit all collected data samples

in each round to the BS for CL, i.e., Nf,k = 0 and

Nc,k = 24, ∀k ∈ K. The BS calculates the gradient

using a batch of its accumulated data samples and

updates the global model accordingly.

3) Hybrid federated and centralized learning (HFCL) [9]:

The devices are divided into active and passive devices,

where the former uploads local models to the BS for
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Fig. 8. Training process comparison of SemiFL with state-of-the-art learning
frameworks on the MNIST dataset.

Fig. 9. Training process comparison between Algorithm 1 and resource
allocation benchmarks on the MINIST dataset.

FL while the latter sends the entire dataset for CL. The

learning process does not begin until all passive devices

finish uploading datasets to the BS. We set half of the

devices as active devices and the other half as passive

devices.

4) HFCL with increased computation-per-client (HFCL-

ICpC) [9]: The only difference between this scheme and

HFCL is that, during the data transmission of passive

devices, active devices train their own models locally

for multiple epochs.

5) HFCL with sequential data transmission (HFCL-

SDT) [9]: The only difference between this scheme and

HFCL is that, passive devices simultaneously transmit

a small part of their data sets to the BS for CL while

active devices uploading local models in each round.

The transmission of passive devices ceases once their

entire datasets have been transmitted.

To guarantee fairness, the transmit power coefficients of the

active devices and the aggregation beamformer are similarly

configured as the first half of the SemiFL devices, and the

uploaded data samples from the passive devices are also

perfectly decoded like SemiFL.

In Fig. 7, we plot the learning performance of SemiFL and

benchmarks when training an MLP on the MNIST dataset and

a CNN on the CIFAR-10 dataset. It is worth mentioning that all

schemes use the same number of data samples in each round

to guarantee the fairness. It is observed that SemiFL achieves

moderate classification accuracy and training loss between

FL and CL in both training settings. This validates that the

proposed SemiFL is a more general learning framework than

FL and CL, as demonstrated in Theorem 2. Moreover, it can

be seen that higher accuracy and lower loss can be achieved

if more data samples are uploaded to the BS for calculating

the CL gradient. The reason is that the detrimental impact

of the wireless channel in aggregation is compensated by the

increasing data samples for CL.

In Fig. 8, we compare the training process of SemiFL on

the MNIST dataset with three state-of-the-art hybrid learning

frameworks. For comparison fairness, active devices utilize the

same batch size as SemiFL devices to train their local models,

and the BS employs the gradient descent base on all samples

from passive devices. Despite the higher initial accuracy of

HFCL-ICpC due to the local updates in advance, SemiFL

eventually outperforms the benchmarks. It is seen that SemiFL

attains 1.3% accuracy gain regarding HFCL-ICpC, which can

be enlarged to 3.2% if more samples are dedicated for CL.

This verifies the learning superiority of the proposed SemiFL

in terms of the classification accuracy.

In Fig. 9, we plot the classification accuracy achieved

by Algorithm 1 and resource allocation benchmarks when

training an MLP on the MNIST dataset using SemiFL.

Apart from the aforementioned MATP and ETP schemes,

the following two resource allocation schemes are em-

ployed as benchmarks: i) random transmit power (RTP),

where pf,k is randomly drawn from the available range

(0,
√

(N2
f /N

2
f,k)(Pmax − |pc,k|2)], ∀k ∈ K, and b is obtained

by solving problem (42); ii) equal gain combination (EGC),

where b = 1 ∈ CNr . For comparison fairness, the allocation

of other resources except those specified above is the same

as Algorithm 1, and all schemes use the same amount of

data samples in each round. In Fig. 9, it is seen that Algo-

rithm 1 outperforms other benchmarks by obtaining higher

accuracy. The result verifies the advantage of Algorithm 1 in

terms of classification accuracy, which is credited to the joint

optimization of the transceivers. It is noteworthy that though

Algorithm 1 significantly outperforms MATP and ETP in

Fig. 6, the superiority in terms of classification accuracy is less

pronounced. This is because the decrease in convergence opti-

mality gap does not correspond strictly to the same degree of

increase in accuracy. Moreover, one can observe from MATP

and ETP schemes that simply exhausting all transmit power

for transmitting local gradients can result in reduced accuracy.

This is because poor power control aggravates the distortion

of the aggregated signal, which reflects the effectiveness of

Algorithm 1 in allocating transmit power again.
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VI. CONCLUSION

In this paper, we proposed SemiFL, a hybrid learning

paradigm in a two-tier framework. The conventional FL and

CL were integrated into a harmonized architecture for improv-

ing the learning performance. To satisfy the distinct transmis-

sion requirement of SemiFL, we designed a novel transceiver

structure that incorporated NOMA and AirComp to support

the JCC principle, which enabled the collaborative uploading

of local gradients and data samples. Then, our theoretical

analysis revealed the detrimental effect of poorly configured

wireless factors on the convergence of SemiFL, and proved

that SemiFL is more general than FL and CL. In particular, we

further extended the convergence analysis to two special cases,

and demonstrated that SemiFL over error-free channels could

converge to the optimum without any gap once the amount of

data samples satisfied specific conditions. Next, we formulated

a non-convex problem to minimize the optimality gap by

jointly optimizing the transmitters and receivers. To solve the

problem, we proposed a two-stage algorithm, where closed-

form optimal beamformers were provided. Experiment results

on real-world datasets confirmed the theoretical analysis, and

illustrated that SemiFL outperformed FL and state-of-the-art

benchmarks in learning performance. Moreover, the proposed

JCC principle validated its advantage by achieving smaller

MSE, higher sum rate, and better classification accuracy,

compared with classical transceiver configuration schemes.

APPENDIX A

PROOF OF LEMMA 1

By plugging w = wt+1 and w′ = wt into (15), we have

F (wt+1) ≤F (wt) + (wt+1 −wt)
T∇F (wt)

+
L

2
‖wt+1 −wt‖2

(a)
=F (wt)− η‖∇F (wt)‖2 + ηeT∇F (wt)

+
Lη2

2
‖∇F (wt)− e‖2

(b)
=F (wt)−

1

2L
‖∇F (wt)‖2 +

1

2L
‖e‖2, (59)

where (a) comes from plugging (18) into the right-hand side

of (59), and (b) stems from letting η = 1/L. From (19), it

follows that

‖e‖2 =‖a1(∇F (wt)− g
f
t ) + a2(∇F (wt)− gc

t )

+ a1(g
f
t − ĝ

f
t )‖2

(a)

≤2‖a1(∇F (wt)− g
f
t ) + a2(∇F (wt)− gc

t )‖2

+ 2a21‖gf
t − ĝ

f
t ‖2

(b)

≤4a21‖∇F (wt)− g
f
t ‖2 + 4a22‖∇F (wt)− gc

t‖2

+ 2a21‖gf
t − ĝ

f
t ‖2. (60)

Here, (a) and (b) come from the Cauchy-Schwarz inequality

and triangle inequality, respectively. Finally, we have (20) by

plugging (60) into (59) and taking the expectation on both

sides. This completes the proof.

APPENDIX B

PROOF OF LEMMA 2

Based on definitions of ∇F (wt) and g
f
t , we first bound

‖e1‖2 as follows:

‖e1‖2 =‖∇F (wt)− g
f
t ‖2

=

∥
∥
∥
∥

1

N

∑K

k=1

∑

n∈Dk

gt,k,n

− 1

Nf

∑K

k=1

∑

n∈Df,t,k

gt,k,n

∥
∥
∥
∥

2

(a)

≤ 1

NN2
f

[
∑

n∈(∪kDf,t,k)
(Nf −N)2‖gt,k,n‖2

+
∑

n∈D/(∪kDf,t,k)
N2

f ‖gt,k,n‖2
]

(b)

≤
Nf (Nf −N)2+(N −Nf)N

2
f

NN2
f

(
ξ1+ξ2‖∇F (wt)‖2

)

=
N −Nf

Nf
(ξ1 + ξ2‖∇F (wt)‖2), (61)

where (a) holds because of the triangle inequality and Cauchy-

Schwarz inequality, and (b) comes from Assumption 3. By

taking the expectation on both sides of (61), we reach (21).

Similarly, ‖e2‖2 can be bounded as follows:

‖e2‖2 =‖∇F (wt)− gc
t‖2

=‖ 1
N

∑K

k=1

∑

n∈Dk

gt,k,n −
1

Nc

∑

n∈Dc,t

gt,n‖2

≤ 1

NN2
c

[
∑

n∈Dc,t

(Nc−N)2‖gt,k,n‖2

+
∑

n∈D/Dc,t

N2
c ‖gt,k,n‖2

]

≤N −Nc

Nc
(ξ1+ξ2‖∇F (wt)‖2). (62)

We are able to obtain (22) by taking the expectation on both

sides of (62).

Based on g
f
t =

∑K
k=1

Nf,k

Nf
g
f
t,k and (13), we rewrite ‖e3‖2

as follows:

‖e3‖2 =‖gf
t − ĝ

f
t ‖2

=
∑Q

q=1

∣
∣
∣
∣

∑K

k=1
ζk(g

f
t,k,q − ḡt)− σ̄tbH

t nt,q

∣
∣
∣
∣

2

, (63)

where ζk = (Nf,k/Nf )(1 − pt,f,kbH
t ht,k). Taking the expec-

tation w.r.t. {nt,q} on both sides, we have

E[‖e3‖2] =
∑Q

q=1

∣
∣
∣
∣

∑K

k=1
ζk(g

f
t,k,q − ḡt)

∣
∣
∣
∣

2

+Qσ̄2
t σ

2‖bt‖2
(a)

≤
∑Q

q=1
(
∑K

k=1
|ζk|2)(

∑K

k=1
|gft,k,q − ḡt|2)

+Qσ̄2
t σ

2‖bt‖2
(b)

≤2(
∑K

k=1
|ζk|2)(

∑K

k=1

∑Q

q=1
|gft,k,q|2+KQ|ḡt|2)

+Qσ̄2
t σ

2‖bt‖2, (64)

where (a) and (b) are due to the Cauchy-Schwarz inequality.
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Based on definitions of ḡt and σ̄2
t in Section II-B, we bound

them as follows:

|ḡt|2
(a)

≤ 1

KQ

∑K

k=1

∑Q

q=1
(gft,k,q)

2

(b)
=

1

KQ

∑K

k=1
‖gf

t,k‖2, (65)

σ̄2
t ≤

1

KQ

∑K

k=1

∑Q

q=1
(gft,k,q)

2

=
1

KQ

∑K

k=1
‖gf

t,k‖2, (66)

where (a) comes from the Cauchy-Schwaz inequality, and (b)
holds because

∑Q
q=1 |g

f
t,k,q|2 = ‖gf

t,k‖2. Based on (65) and

(66), we further derive (64) as

E[‖e3‖2] ≤4
(
∑K

k=1
|ζk|2

)(
∑K

k=1
‖gf

t,k‖2
)

+
σ2‖bt‖2
K

∑K

k=1
‖gf

t,k‖2

(a)

≤ 4KG2

N2
f

∑K

k=1
N2

f,k|1− pt,f,kbH
t ht,k|2

+G2σ2‖bt‖2, (67)

where (a) comes from taking the expectation w.r.t. ‖gf
t,k‖2

on both sides of (67) while utilizing Assumption 3. This

completes the proof.

APPENDIX C

PROOF OF THEOREM 1

By plugging the three upper bounds in Lemma 2 into

Lemma 1, we have

E [F (wt+1)] ≤ E [F (wt)] + 2ξ1
Nf (N−Nf)+Nc(N−Nc)

L(Nf +Nc)2

+
4KG2

∑K
k=1N

2
f,k

∣
∣1−pt,f,kbH

t ht,k

∣
∣
2
+N2

fG
2σ2‖bt‖2

L(Nf+Nc)2

−
[
1

2L
−2ξ2

Nf(N−Nf)+Nc(N−Nc)

L(Nf+Nc)2

]

‖∇F (wt)‖2. (68)

Then, we minimize the left-hand side of (14) by plugging in

w = w∗, while minimizing the right-hand side of (14) by

setting w′ = wt and w = wt − 1
µ∇F (wt). As a result, we

have the following PL inequality [31]:

‖∇F (wt)‖2 ≥ 2µ (F (wt)− F (w∗)) . (69)

By plugging (69) into (68), we have

E [F (wt+1)] ≤ E [F (wt)] + ϕt ({pf,k},b) + ρ2

−
[
µ

L
− 4µξ2

Nf (N−Nf)+Nc(N−Nc)

L(Nf+Nc)2

]

(F (wt)−F (w∗)).

(70)

Subtracting F (w∗) and taking the expectation on both sides

of (70), we have

E [F (wt+1)− F (w∗)] ≤ρ1E [F (wt)− F (w∗)]

+ ρ2 + ϕt ({pf,k},b) . (71)

Recursively applying (71) for t times, it holds that

E [F (wt+1)− F (w∗)] ≤ρt1E [F (w1)− F (w∗)]

+ ρ2
1− ρt1
1− ρ1

+
∑t−1

i=0
ρi1ϕt−i ({pf,k},b). (72)

We reach (24) by setting t = T . This completes the proof.

APPENDIX D

PROOF OF COROLLARY 1

When the BS uses all accumulated N̄c,t =

tNc = t
∑K

k=1Nc,k data samples till the t-th
round for CL, the CL gradient is calculated by

ḡc
t = (1/N̄c,t)

∑t
i=1

∑K
k=1

∑

n∈Dc,i,k
gi,k,n. Accordingly,

the global gradient of the t-th round is re-calculated by

ĝt = ā1,tĝ
f
t + ā2,tḡ

c
t , where ā1,t = Nf/(Nf + N̄c,t) and

ā2,t = N̄c,t/(Nf + N̄c,t). As a result, the gradient error e2
is rewritten as e2,t =∇F (wt)− ḡc

t for the t-th round, which

proves to be bounded as follows based on (62):

E[‖e2,t‖2] ≤
N − N̄c,t

N̄c,t
(ξ1 + ξ2‖∇F (wt)‖2), ∀t. (73)

By plugging ā1,t, ā2,t, and (73) into Lemma 1, we have

(27) after applying the same mathematical derivation in Ap-

pendix C. This completes the proof.

APPENDIX E

PROOF OF COROLLARY 2

By substituting w = wt+1 and w′ = wt into (15), we have

F (wt+1)− F (wt) ≤− ηtĝT
t ∇F (wt) +

Lη2

2
‖ĝt‖2

=
ηt
2
(Lηt − 1) ‖ĝt‖2 −

ηt
2
‖∇F (wt)‖2

+
ηt
2
‖et‖2

(a)

≤ − ηt
2
‖∇F (wt)‖2 +

ηt
2
‖et‖2, (74)

where (a) is because τ ≥ ΛL so that ηt = Λ
t+τ ≤ 1

L . By

applying the PL inequality in (69) to the right-hand side and

taking the expectation on both sides, while plugging ηt=
Λ

t+τ

and θt =max{Λ(t+τ)E[‖et‖
2]

2(Λµ−1) ,E[F (wt)−F (w∗)](t+τ)}, we

obtain

E[F (wt+1)− F (w∗)] ≤ t+ τ − 1

(t+ τ)2
θt

− Λµ−1
(t+τ)2

[

θt −
Λ(t+ τ)E[‖et‖2]

2(Λµ− 1)

]

(b)

≤ θt
(t+ τ + 1)

, (75)

where (b) is due to the definition of θt and t+τ−1
(t+τ)2 ≤ 1

t+τ+1 .

We have (28) by setting t = T .

With sufficient training rounds and careful optimization of

transceivers, one can suppose that limt→∞ E[‖et‖2] = 0. This

implies that there is a t̃ > 0 such that
Λ(t+τ)E[‖et‖

2]
2(Λµ−1) ≤
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E[F (wt)− F (w∗)](t + τ), ∀t ≥ t̃. Therefore, one can verify

that

E[F (wt+1)− F (w∗)] ≤E[F (wt)− F (w∗)](t+ τ)

t+ τ + 1

≤E[F (wt̃)− F (w∗)](t̃+ τ)

t+ τ + 1
, ∀t ≥ t̃.

(76)

Through replacing t with T , we have E[F (wT+1)−F (w∗)]→0
as T→∞. This completes the proof.

APPENDIX F

PROOF OF THEOREM 2

For FL, the BS only aggregates local gradients, which

implies ĝt = ĝ
f
t . The global gradient error reduces to

eFL = ẽ1+ ẽ3, where ẽ1 = ∇F (wt)−g
f
t and ẽ3 = g

f
t − ĝ

f
t .

Taking the expectation on both sides of (59), we have

E[F (wt+1)] ≤E[F (wt)]−
1

2L
E[‖∇F (wt)‖2]

+
4

L
E[‖ẽ1‖2] +

1

L
E[‖ẽ3‖2]. (77)

By separately substituting Nf with Nf + Nc and Nf,k with

Nf,k + Nc,k into Lemma 2, we have E[‖ẽ1‖2] and E[‖ẽ3‖2]
are bounded, respectively, by

E[‖ẽ1‖2] ≤
N − (Nf +Nc)

Nf +Nc
(ξ1 + ξ2‖∇F (wt)‖2), (78)

E[‖ẽ3‖2] ≤
4KG2

(Nf +Nc)2

K∑

k=1

(Nf,k +Nc,k)
2
∣
∣1−pt,f,kbH

t ht,k

∣
∣
2

+G2σ2‖bt‖2. (79)

After plugging (78) and (79) into (77) while subtracting

F (w∗) on both sides, we have

E [F (wt+1)− F (w∗)] ≤ρ̃1E [F (wt)− F (w∗)] + ρ̃2

+ ϕ̃t ({pf,k},b) . (80)

Recursively applying (80) for t times and letting t = T , (29)

can be obtained.

For CL, the BS calculates the global gradient based on

the randomly selected Nf + Nc data samples in Dc,t, i.e.,

ĝt =
1

Nf+Nc

∑

n∈Dc,t
gt,n. The global gradient error becomes

eCL = ∇F (wt)−ĝt. Similarly, taking the expectation on both

sides of (59), we have

E[F (wt+1)] ≤E[F (wt)]−
1

2L
E[‖∇F (wt)‖2]

+
1

2L
E[‖eCL‖2]. (81)

By substituting Nc in (22) with Nf +Nc, we have ‖eCL‖2 ≤
N−(Nf+Nc)

Nf+Nc
(ξ1 + ξ2‖∇F (wt)‖2). As a result, it holds that

E [F (wt+1)− F (w∗)] ≤ ρ̂1E [F (wt)− F (w∗)] + ρ̂2. (82)

Recursively applying (82) for t times and setting t = T , (30)

can be obtained.

To reveal the relation between SemiFL, FL, and CL, one can

find ρ̃1 ≥ ρ1, ρ̃2 ≥ ρ2, and ϕ̃t ({pf,k},b) ≥ ϕt ({pf,k},b),
since N ≫ Nf + Nc and

(Nf,k+Nc,k)
2

(Nf+Nc)2
≥ N2

f,k

(Nf+Nc)2
. Hence,

ψSemiFL
T ({pf,k},b) ≤ ψFL

T ({pf,k},b) holds. By separately

rewriting ρ1 and ρ2 as

ρ1 = ρ̂1 +
3µξ2(Nf +Nc)[N − (Nf +Nc)] + 8µξ2NfNc

L(Nc +Nf )2
,

(83)

ρ2 = ρ̂2 +
ξ1(Nf +Nc)[N − (Nf +Nc)] + 4ξ1NcNf

L(Nc +Nf)2
,

(84)

we find that ρ1 ≥ ρ̂1 and ρ2 ≥ ρ̂2. Since ϕt({pf,k},b) ≥ 0,

we have ψCL
T ({pf,k},b) ≤ ψSemiFL

T ({pf,k},b). This com-

pletes the proof.

APPENDIX G

PROOF OF LEMMA 3

When the BS has a single antenna, the aggregation beam-

former b degrades to a scalar b ∈ C. The Lagrange function

of problem (42) is given by

L(b, λ) =bH(ω0 + λω1)b− 2Re{bH(ĥ0 + λĥ1)}
+ λ(ι − ǫ), (85)

where λ ≥ 0 is the Lagrange multiplier. Then, KKT conditions

are given by






∂L(b, λ)
∂b

= 0, (86a)

λ ≥ 0, (86b)

λ(bHω1b− 2Re{bHĥ1}+ ι− ǫ) = 0. (86c)

By solving (86a), we obtain

b =
1

ω0+λω1

∑K

k=1

[

4KN2
f,k

(Nf +Nc)2
+
N2

f,k

N2
f

λ

]

pf,khk. (87)

We plug (87) into equation bHω1b − 2Re{bHĥ1} + ι− ǫ = 0
and solve it to obtain λ as

λ = −ω0

ω1
+

|ω0ĥ1 − ω1ĥ0|
ω1

√

|ĥ1|2 − ω1(ι− ǫ)
. (88)

Plugging (88) into (87), we reach (45). This completes the

proof.

APPENDIX H

PROOF OF LEMMA 4

The Lagrange function of problem (56) is given by

L(fk, νk, λ1, λ2) = λ1g(fk|f (n)k ) + (1− λ1 + λ2)νk, (89)

where λ1 and λ2 are Lagrange multipliers. Then, KKT con-

ditions are given by






∂L(fk, νk, λ1, λ2)
∂fk

= 0, (90a)

∂L(fk, νk, λ1, λ2)
∂νk

= 0, (90b)

λ1 ≥ 0, λ2 ≥ 0, (90c)

λ1(g(fk|f (n)k )− νk) = 0, (90d)

λ2νk = 0. (90e)
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By solving (90a) and (90b), we have

fk =
1

λ1
M−1

k (Mk −A2,k)f
(n)
k , (91)

λ2 − λ1 + 1 = 0. (92)

If λ2 > 0, we have νk = 0 based on (90e). However,

according to (90d), one can prove that there is no solution

for λ1 by solving equation g(fk|f (n)k ) = 0 when νk = 0. As

such, we have λ2 = 0. In terms of (91), λ1 can not be 0,

which implies λ1 > 0. By plugging λ2 = 0 into (92), we

have λ1 = 1 and reach (57). Considering the complementary

slackness condition (90d), we have g(fk|f (n)k )− νk = 0. By

plugging (57) into g(fk|f (n)k ), we reach (58). This completes

the proof.
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