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Abstract

High-resolution fully digital transceivers are infeasible at millimeter-wave (mmWave) due to their

increased power consumption, cost, and hardware complexity. The use of low-resolution converters is

one possible solution to realize fully digital architectures at mmWave. In this paper, we consider a setting

in which a fully digital base station with constant envelope quantized (CEQ) digital-to-analog converters

on each radio frequency chain communicates with multiple single antenna users with individual signal-

to-quantization-plus-interference-plus-noise ratio (SQINR) constraints over frequency selective channels.

We first establish uplink downlink duality for the system with CEQ hardware constraints and OFDM-

based transmission considered in this paper. Based on the uplink downlink duality principle, we present

a solution to the multi-user multi-carrier beamforming and power allocation problem that maximizes

the minimum SQINR over all users and sub-carriers. We then present a per sub-carrier version of the

originally proposed solution that decouples all sub-carriers of the OFDM waveform resulting in smaller

sub-problems that can be solved in a parallel manner. Our numerical results based on 3GPP channel

models generated from Quadriga demonstrate improvements in terms of ergodic sum rate and ergodic

minimum rate over state-of-the-art linear solutions. We also show improved performance over non-linear

solutions in terms of the coded bit error rate with the increased flexibility of assigning individual user

SQINRs built into the proposed framework.
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I. INTRODUCTION

Low-resolution analog to digital converters (ADCs) and digital to analog converters (DACs) are

the key to power-efficient fully digital massive multiple-input-multiple-output (MIMO) transceivers

operating at large bandwidths [1]–[3]. In addition to a reduction in the power consumption and

cost of the DACs, other components in the radio frequency (RF) chain can be tailored to low-

resolution DACs (such as power amplifiers and baseband processing) making the architecture

even more efficient. The distortion resulting from the low-resolution DACs can be compensated

by oversampling in time/space and advanced signal processing algorithms. In this paper, we

consider the setting where multiple single antenna users are communicating with a fully digital

base station (BS) with constant envelope quantizer (CEQ) DACs on each RF chain using the

orthogonal frequency division multiplexing (OFDM) waveform in the downlink (DL). We design

the frequency domain precoders and power allocation by maximizing the minimum signal-to-

quantization-plus-interference-plus-noise ratio (SQINR) across all users and sub-carriers. This

optimization criterion has not been considered before for CEQ OFDM based DL transmissions.

A. Prior work

Prior work on multi-user (MU) MIMO-OFDM DL under low resolution DAC constraints can

be grouped into linear methods [4]–[7] and non-linear methods [8]–[16]. In the linear framework,

information symbols are mapped to the antennas using a precoding matrix designed based on an

optimization criterion. Most of the existing prior work on linear methods (under low resolution

constraints) is limited to using precoders designed for the ideal ∞-resolution setting. The low-

resolution DAC constraint is enforced by quantizing the signal before transmission. Prior work on

MRT, ZF, and minimizing the mean square error (MMSE) based linear precoding has shown that

large sum rates are achievable for MU-MIMO-OFDM DL despite the extreme distortion caused

by 1-bit quanitzation [4]–[7]. Further improvement in terms of the achieved SQINR and uncoded

bit error rate (BER) for ZF precoding (for flat fading channels) was demonstrated by adding

optimized dithering to the transmit signal before quantization [17]. Nevertheless, linear methods

[4]–[7] have a significant performance gap from non-linear methods [8]–[16] particularly for

large number of active users. One exception to this observation is our prior work in [18], [19]

where we demonstrated performance comparable to non-linear methods for flat fading channels.

Non-linear methods directly map each set of information symbols to the quantized transmit

signal by solving a relaxed version of an NP-hard problem (due to CEQ constraints) based on
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some optimization criterion (such as MMSE). Non-linear methods for MU-MIMO-OFDM DL

with low-resolution quantized phase DAC constraints based on the semi-definite relaxation and

squared `∞-norm relaxation of the symbol error rate (SER) were proposed in [8]. A different

approach based on maximizing the safety margin (MSM) of the received symbols (drawn from

a phase shift keying (PSK) constellation) from the decision boundaries was demonstrated in [9],

[11] for frequency selective channels with 1-bit DAC constraints. That work was later generalized

to CEQs [10]. Another non-linear method for CEQ MU-MIMO-OFDM DL approximated the

solution to the MSE problem formulated in time domain using a greedy coordinate descent

algorithm [12]. A slightly different version of that algorithm where the greedy minimization is

replaced a round robin minimization has been reported recently [13]. Another efficient solution

to the MSE problem based on cyclic coordinate descent was proposed for constant envelope MU-

MIMO-OFDM [14]. A slightly different but closely related solution based on Gibbs sampling

optimized a linear combination of the MSE and out-of-band (OOB) radiated power and showed

a reduction in the OOB power by about 10 dB at the expense of reduced throughput [15], [16].

The performance of the non-linear methods in [8]–[16] is comparable in terms of coded and

uncoded BER. Some non-linear methods, however, result in a significant computational cost for

systems with larger dimensions due to exponential increase in their complexity with the system

dimensionality [20]. The focus of research in this direction [8]–[16] has been to solve the NP-hard

problem using various relaxations and approximations without sacrificing on the performance.

Another important aspect is that each non-linear method needs to solve an optimization problem

for every channel use during the coherence time. Lastly, most of the non-linear methods [8]–[16]

have hyperparameters that need to be appropriately chosen according to the operating conditions.

The prior work on CEQ MU-MIMO-OFDM DL (for both linear and non-linear methods) have

primarily focused on the MSE, the SER and the MSM optimization criterion. In this paper, we

introduce a per-user and per-subcarrier target SQINR framework and propose a linear precoding

solution based on maximizing the minimum (max-min) SQINR over all users and sub-carriers.

B. Contributions

In this paper, we provide a linear precoding based solution to the MU-MIMO-OFDM DL pre-

coding problem under CEQ hardware constraints at the BS. The BS communicates with multiple

single antennas users, with individual SQINR constraints, over frequency selective channels using
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OFDM. We linearize the resulting non-linear system using the Bussgang decomposition [5] to

derive the proposed linear solution. The main contributions of this paper can be summarized as:

• We establish UL-DL duality for the MU-MIMO-OFDM setting with CEQ ADC/DAC con-

straints under an uncorrelated quantization noise assumption. This is different from the ∞-

resolution setting because of the introduction of quantization noise into the DL/UL SQINR

expressions. Furthermore, this is different from the flat fading case because the quantization

noise depends on all the sub-carriers destroying the orthogonality inherent in OFDM.

• Making use of the UL-DL duality result, we propose an alternating minimization solution to

the MU-MIMO-OFDM DL beamforming (BF) problem with CEQ DAC constraints based

on the max-min SQINR criterion. The solution jointly optimizes the power allocated to each

user across all sub-carriers and the frequency domain DL BF matrix and does not have any

hyper-parameters that need to be tuned. We give theoretical justification and demonstrate

through numerical experiments that the bigger problem involving all sub-carriers can be

broken down into smaller decoupled problems for each sub-carrier in the large system limit.

• We introduce optimized dithering by adding dummy users in the system which operate in

the null space of the true system users. Optimized dithering ensures that the quantization

noise resulting from CEQs is uncorrelated, particularly when the number of users is small.

• We demonstrate the superiority of the proposed solution over other linear and non-linear

precoding solutions [4], [5], [8], [13] in terms of the ergodic sum rate, ergodic minimum

rate, and coded BER using numerical experiments carried out over 3GPP channel models.

The work in this paper generalizes our prior work [18], [19] to CEQs and frequency selective

channels. Our prior work [18], [19], limited to frequency flat channels and 1-bit DACs, was an

important step towards the development of the proposed framework. It was, however, not directly

applicable to large bandwidth signals being transmitted over frequency selective channels which

is the most probable use case for low-resolution DACs equipped fully digital architectures. The

ideas presented in our prior work were also limited to 1-bit quantization. This paper generalizes

the UL-DL duality principle proved in [19] to frequency selective channels and CEQs. With

this generalization, the alternating minimization algorithm proposed in [19] is applicable to the

frequency selective setting with a few minor changes in the structure of the involved matrices.

This, however, results in a large dimensional problem comprising of all sub-carriers of all users.

In this paper, we argue that this bigger problem can in fact be broken down into smaller sub-



5

problems for each sub-carrier and verify this using numerical experiments. Lastly, we highlight

a few important aspects of the precoding under hardware constraints problem that seem to have

been neglected in the prior work. The results from prior work [8]–[16] obtained on independent

and identically distributed (IID) Rayleigh fading channels show that all linear precoding strategies

hit a floor at a certain SNR/transmit power and are significantly outperformed by non-linear

precoding strategies. We demonstrate through our results that the non-linear precoding strategies

also floor out at a certain SNR/transmit power for realistic channel models considered in this

paper and are in fact outperformed by the proposed solution over a wide range of parameters.

The rest of this paper is organized as follows. In Section II, we describe the OFDM system

model and formulate the MU-DL-BF problem. In Section III, we establish the UL-DL duality

principle for frequency selective channels under CEQ constraints using the uncorrelated quanti-

zation noise approximation. In Section IV, we provide the details of the joint power allocation

and beamforming optimization algorithm for the MU-DL-BF problem. We present numerical

results in Section V before concluding the paper with directions for future work in Section VI.

Notation: B is a matrix, b is a vector and b is a scalar. Bi and Bij denotes the ith row and

ith, j th entry of the matrix B. bi denote the ith entry of b. The operator (·)T, (·)H, and (·)∗ denote

the transpose, conjugate transpose and conjugate of a matrix/vector. diag(B) denotes a diagonal

matrix containing only the diagonal elements of B. Bnd = B − diag(B) denotes the matrix

B with its diagonal set to 0. tr(B), ‖B‖F , and λmax(B) denote the trace, Frobenius norm, and

dominant eigenvalue of the matrix B. vec(B) represents the vectorization operation applied to

B. blkDiag(B1, . . .Bm) denotes a block-diagonal matrix with the matrices B1, . . .Bm on its

diagonal. FN is the FFT matrix of size N × N normalized by 1√
N

. IN represents the identity

matrix of size N ×N . The vector 1N (0N ) denotes a vector of all ones (zeros) of length N . The

matrix Rb denotes the covariance matrix of the signal b. ‖b‖p is the p-norm of b. ek denotes the

canonical basis vector with a 1 at the kth index and zeros elsewhere. Re(a) and Im(a) denote

the real and imaginary parts of a. The notations | · |, (·)k and ∠(·) denote the absolute value,

kth power and phase operation applied to a scalar or element-wise to a vector/matrix. N (µ, Σ)

denotes a complex Gaussian multi-variate distribution with mean µ and covariance Σ.

II. SYSTEM MODEL

We consider a DL scenario where a single BS with NBS antennas and RF chains, each equipped

with a b-bit CEQ DAC, communicates with K single antenna users using the OFDM waveform
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Fig. 1: Functional block diagram of the system model where a fully digital BS with NBS antennas

and a b-bit CEQ ADC/DAC on each RF chain communicates with K single antenna users using

the OFDM waveform with NSC sub-carriers.

with NSC sub-carriers, as illustrated in Fig. 1. The quantization operation of the b-bit CEQ is

represented byQb. The b-bit CEQ takes values in the set Xb = {ej(π+2πm)/2b} for m ∈ {0, . . . , 2b−

1} and can be efficiently implemented using polar amplifier based transmitter structures [21].

For the ∞-bit CEQ, X∞ equals the complex unit-magnitude circle and the CEQ returns the

unit-norm normalized version of its input. Note that b = 2 corresponds to the 1-bit DAC setting.

We let S ( G) denote the set of occupied (guard) subcarriers with |S| = NS (|G| = NG) and

NSC = NS +NG . Each OFDM symbol has a cyclic prefix (CP) of length NCP to ensure that the

linear convolution over the wireless channel can be replaced by circular convolution. For ease

of exposition, all scalars/vectors/matrices defined in the frequency domain are in the san serif

font (e.g. X). Similarly, vectorized version of matrices and block-diagonal matrices have a (̄·)

on top of them. Furthermore, we describe the system model and other development under the

assumption that G = ∅, i.e. all NSC sub-carriers are active for ease of exposition. The analysis

and algorithm development presented in this work can be mapped to any arbitrary S.

The `th-tap of the L-tap channel from the BS to all K users is denoted by H` ∈ CNBS×K .

The frequency domain channel on the nth sub-carrier, Hn ∈ CNBS×K , is obtained by taking an

NSC-size FFT of H` over the channel tap dimension. The kth column of Hn, hk,n, denotes the

frequency domain channel of the kth user on the nth sub-carrier. The BS sends the IID N (0, 1)

signal sk,n to the kth users on the nth sub-carrier for 1 ≤ k ≤ K and 1 ≤ n ≤ NSC. With sn =

[s1,n, . . . sk,n, . . . sK,n]T ∈ CK denoting the symbols on the nth sub-carrier, the information symbol

matrix for all NSC sub-carriers is given by S = [s1, . . . sNSC ] ∈ CK×NSC . During the DL stage, the

symbols sn are mapped to the antenna array using the BF matrix Tn = [t1,n, . . . , tK,n] ∈ CNBS×K ,

where ‖tk,n‖2 = 1. The BS has a total transmit power constraint of PBS Watts.
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We also describe the corresponding UL scenario (with b-bit ADCs at the BS) where the K

users send information symbols to the BS. The b-bit ADCs are not a requirement and can be

thought of as a mathematical construct for the purpose of this paper. During the UL stage, the

symbols sn are resolved at the BS using the BF matrix Un = [u1,n, . . . ,uK,n] ∈ CNBS×K . The

K users transmit under a sum power constraint of PBS Watts equal to the total power constraint

of the BS during the DL stage. We conclude this Section by introducing the proposed max-min

problem formulation and the small angle approximation which will be used in Section III for

proving UL-DL duality under CEQ constraints.

A. Downlink SQINR for CEQ DACs

With qn = [q1,n, . . . , qK,n]T denoting the DL power allocation vector over the nth sub-carrier

for all K users, let q = [qT
1 , . . .qT

NSC
]T. With Qn , diag(

√
qn) ∈ CK×K , let xn = TnQnsn ∈ CNBS

denote the beamformed signal of the nth sub-carrier at the BS just prior to cyclic prefix addition

and conversion to time domain. Defining Xd = [x1, . . . xNSC ] ∈ CNBS×NSC , the ∞-resolution

time domain signal matrix (which comprises one OFDM symbol without explicitly accounting

for the CP) after the IFFT operation is given by Xd = [x1, . . .xNSC ] = XdF
H
NSC
∈ CNBS×NSC .

This signal is sent over the wireless channel and received at the K users corrupted by additive

IID N (0,σ2) noise Wd = [w1, . . .wNSC ] ∈ CK×NSC . The received time domain signal (after

discarding the CP) Yd = [y1, . . .yNSC ] ∈ CK×NSC is converted to the frequency domain using

the FFT operation as Yd = [y1, . . . yNSC
] = YdFNSC . The noise statistics of the frequency domain

noise Wd = [w1, . . .wNSC ] = WdFNSC are preserved under the unitary FFT operation. After this

transformation, the signal received and sent on the nth sub-carrier are related by yn = HT
nxn+wn.

Define H̄ = blkDiag(H1, . . .HNSC), Q̄ = blkDiag(Q1, . . .QNSC), T̄ = blkDiag(T1, . . .TNSC),

ȳd = vec(Yd), x̄d = vec(Xd), x̄d = vec(Xd), w̄d = vec(Wd) and s̄ = vec(S). Using the matrix

identity vec(ABC) =
(
CT ⊗ A

)
vec(B), it can be shown that

ȳd = H̄
T
x̄d + w̄d = H̄

T
(FNSC ⊗ INBS)

(
FH
NSC
⊗ INBS

)
T̄Q̄s̄︸ ︷︷ ︸

time domain signal x̄d

+w̄d = H̄
T
T̄Q̄s̄ + w̄d. (1)

The block-diagonal nature of the matrices in (1), which corresponds to the OFDM input-output

system model with ∞-resolution DACs and has been used in prior work [5], emphasizes that

each sub-carrier can be treated independently of the others.

Next we introduce CEQ in the system model and linearize the resulting non-linearity using

Bussgang decomposition. The vectorized time domain signal after the CEQ operation is given



8

by z̄d , vec(Zd) = vec(Qb(Xd)) = Qb(x̄d). Using (1), the received symbols are now given by

ȳd = H̄
T

(FNSC ⊗ INBS)Qb
((

FH
NSC
⊗ INBS

)
T̄Q̄s̄

)
+w̄d. The orthogonal nature of the sub-carriers is

destroyed due to the CEQ operation since the FFT and IFFT operations can not cancel each other

out. The Bussgang theorem [22] can be used to decompose the signal into a useful linear part and

an uncorrelated distortion η̄ηηd with the covariance Rη̄ηηd
. Using (1), the covariance matrix of the DL

signal x̄d before CEQ quantization is given by Rx̄d =
(
FH
NSC
⊗ INBS

)
T̄Q̄Q̄

H
T̄

H (
FH
NSC
⊗ INBS

)H.

The Bussgang gain is defined as [22]

Ād = ζbdiag (Rx̄d)
− 1

2
(a)
= INSC ⊗ ζbdiag

(
1

NSC

NSC∑
n=1

TnQnQ
H
nT

H
n

)− 1
2

︸ ︷︷ ︸
Ad

, (2)

where (a) follows from the block-diagonal structure of the matrices involved in Rx̄d . Here

ζb is a constant that depends on the statistical properties of the b-bit CEQ and is given by

ζb = 2b

2
√
pi

sin
(
π
2b

)
[23]. Note that ζb =

√
2
π

for b = 2 and ζb =
√

π
4

for b =∞. The signal after

the CEQ DAC can be rewritten as z̄d = Ād
(
FH
NSC
⊗ INBS

)
T̄Q̄s̄ + η̄ηηd.

Power allocation done across users and sub-carriers before the CEQ DAC, captured by Q̄, will

be wiped out due to the quantization operation (due to multiplication by Ād). Power allocation

has to be done again on a per-antenna basis in analog after the CEQ DAC operation. This

is achieved by multiplication with the non-negative diagonal matrix Q̄PA ∈ CNBSNSC×NBSNSC . It

can be seen from the form of diag (Rx̄d) in (2) that the resulting per-antenna power (for the

∞−resolution case) across the NBS antennas for each time instant n ∈ {1, . . . NSC} is dependent

on the beamformers and power allocation for all NSC sub-carriers. Furthermore, because of the

Kronecker structure, the resulting per-antenna power is the same for n ∈ {1, . . . NSC}. Hence

we take the matrix Q̄PA to have a Kronecker structure as well of the the form INSC⊗QPA, where

QPA ∈ CNBS×NBS is the per-antenna power allocation at any time instant n within the OFDM

symbol. The total per-antenna power allocation at each time instant is constrained to be equal to

the DL transmit power given by forcing PBS = tr(QPAQH
PA). The linearized signal model of the

symbols received at the K users after incorporating the per-antenna power allocation is given by

ȳd = H̄
T
Q̄PAĀdT̄Q̄s̄ + H̄

T
(FNSC ⊗ INBS) Q̄PAη̄ηηd + w̄d. (3)

We note here that the first K columns of the block-diagonal matrix H̄ correspond to the first

sub-carrier, the next K columns to the second sub-carrier and so on. Let h̄k,n / t̄k,n denote the

((n − 1)K + k)th column of H̄ / T̄ which corresponds to the channel / beamformer of the kth
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user on the nth sub-carrier. Similarly let qk,n denotes the ((n − 1)K + k)th entry of q which

corresponds to the power allocated to the kth user on the nth sub-carrier. With R̄k,n = h̄k,nh̄
H
k,n,

the DL SQINR for the kth user at the nth sub-carrier, γDL
k,n(T̄, Q̄PA,q), is given by

γDL
k,n(T̄, Q̄PA,q) =

qk,nt̄
T
k,nĀdQ̄PAR̄k,nQ̄

H
PAĀH

d t̄
∗
k,n∑K

i=1
i 6=k

qi,nt̄
T
i,nĀdQ̄PAR̄k,nQ̄

H
PAĀH

d t̄
∗
i,n︸ ︷︷ ︸

MUI

+ σ2︸︷︷︸
IID

+ tr
(

(FNSC ⊗ INBS) Q̄PARη̄ηηd
Q̄H

PA (FNSC ⊗ INBS)
H R̄
∗
k,n

)
︸ ︷︷ ︸

QN

.

(4)

The MUI term in the denominator of (4) contains only the (K − 1) interfering terms of the nth

sub-carrier whereas the quantization noise term has contributions from all NSC sub-carriers. The

DL SQINR for the kth user on the nth sub-carrier in (4) is thus a function of the beamformer

matrix T̄, the per-antenna power allocation matrix Q̄PA, and the power allocation vector q.

B. Uplink SQINR for CEQ ADCs

Next we develop the system model for an OFDM based UL. Let p = [pT
1 , . . .pT

NSC
]T, with

pn = [p1,n, . . . , pK,n]T denoting the UL power allocation vector over the nth sub-carrier. With

Pn , diag(
√
pn) ∈ CK×K , let xn = Pnsn ∈ CK denote the signal on the nth sub-carrier at

the K users just prior to time domain conversion. Defining Xu = [x1, . . . xNSC ] ∈ CK×NSC , the

time domain signal matrix (for one OFDM symbol without the CP) after the IFFT operation is

given by Xu = [x1, . . .xNSC ] = XuF
H
NSC
∈ CK×NSC . The time domain signal received at the BS

(after discarding the CP) denoted by Vu = [v1, . . .vNSC ] ∈ CNBS×NSC is perturbed by additive

IID N (0,σ2) noise Wu = [w1, . . .wNSC ] ∈ CNBS×NSC . The BS transforms the time domain signal

into the frequency domain using the FFT operation denoted by Vu = [v1, . . . vNSC ] = VuFNSC .

The frequency domain noise Wu = WuFNSC has the same statistics as Wu. At this point, the

signals sent and received on the nth sub-carrier are related by vn = Hnxn + wn which follows

from the well-known orthogonality of OFDM sub-carriers. The K symbols on the nth sub-

carrier are then resolved by the beamformer Un given by yn = UT
nvn. The received frequency

domain symbols on all active sub-carriers can be collected in the matrix Yu = [y1, . . . yNSC
].

Define P̄ = blkDiag(P1, . . .PNSC), Ū = blkDiag(U1, . . .UNSC), ȳu = vec(Yu), v̄u = vec(Vu),

v̄u = vec(Vu) and w̄u = vec(Wu). Using the vectorization identity from Section II-A, ȳu is

ȳu = Ū
T
v̄u = Ū

T
(FNSC ⊗ INBS)

(
FH
NSC
⊗ INBS

) (
H̄P̄s̄ + w̄u

)︸ ︷︷ ︸
time domain signal v̄u

= Ū
T
H̄P̄s̄ + Ū

T
w̄u. (5)
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Like its DL counterpart, it can be seen from the block-diagonal structure of (5) that each sub-

carrier can be treated independently under the ∞-resolution assumption.

Now we introduce CEQ quantization to the UL model and linearize it using

the Bussgang decomposition. Using (5), the final symbols are given by ȳu =

Ū
T

(FNSC ⊗ INBS)Qb
((

FH
NSC
⊗ INBS

) (
H̄P̄s̄ + w̄u

))
. The covariance matrix of the UL signal v̄u

before CEQ quantization is given by Rv̄u =
(
FH
NSC
⊗ INBS

)
H̄P̄P̄

H
H̄

H (
FH
NSC
⊗ INBS

)H
+σ2INSCNBS .

The Bussgang gain is defined as

Āu = ζbdiag (Rv̄u)
− 1

2
(a)
= INSC ⊗ ζbdiag

(
1

NSC

NSC∑
n=1

(
HnPnP

H
nH

H
n + σ2INBS

))− 1
2

︸ ︷︷ ︸
Au

, (6)

where (a) follows from the block-diagonal structure of the matrices involved in Rv̄u . Like its

DL counterpart, the UL signal can be decomposed into a linear signal part and an uncorrelated

distortion η̄ηηu with covariance Rη̄ηηu
using the Bussgang decomposition. The linearized signal model

of the symbols received at the BS during UL is given by

ȳu = Ū
T
ĀuH̄P̄s̄ + Ū

T
Āuw̄u + Ū

T
(FNSC ⊗ INBS) η̄ηηu. (7)

Let ūk,n denotes the ((n− 1)K + k)th column of Ū and pk,n denote the ((n− 1)K + k)th entry

of p. The UL SQINR for the kth user at the nth sub-carrier, γUL
k,n(ūk,n,p), is given by

γUL
k,n(ūk,n,p) =

pk,nūT
k,nĀuR̄k,nĀ

H
u ū
∗
k,n

ūT
k,n

(∑K
i=1
i 6=k

pi,nĀuR̄i,nĀ
H
u︸ ︷︷ ︸

MUI

+σ2ĀuĀ
H
u︸ ︷︷ ︸

IID

+ (FNSC ⊗ INBS) Rη̄ηηu
(FNSC ⊗ INBS)

H︸ ︷︷ ︸
QN

)
ū∗k,n

.

(8)

We note here that the UL SQINR in (8) for the kth-user depends only on the power allocation

vector p and the combiner for the kth-user ūk,n. This is in contrast to the DL SQINR in (4) which

depends on the power allocation vector q and the beamformer matrix T̄ of all K users. We will

make use of this observation in Section IV-B to replace the MU-MIMO-OFDM DL problem by

its equivalent UL counterpart by making use of the UL-DL duality proved in Section III.

C. Problem formulation

In this paper, we maximize the minimum of the achieved DL SQINR to target SQINR ratio

of all users and sub-carriers over the choice of the BF matrix T̄ and power allocation vector q.

This optimization criterion has not been considered before for MU-MIMO-OFDM DL precoding

under CEQ hardware constraints. This formulation bridges the performance gap between linear
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and non-linear methods and provides more flexibility in terms of the ability to allocate individual

user targets. With γk,n denoting the target SQINR for the kth user on the nth sub-carrier, the

MU-MIMO-OFDM DL precoding problem with individual SQINR constraints is given by

RDL
opt(PBS) = max

T̄,q
min

1≤k≤K
1≤n≤NSC

γDL
k,n(T̄, Q̄PA,q)

γk,n

s.t. ‖q‖1 ≤ PBSNSC

||tk,n||2 = 1, 1 ≤ k ≤ K, 1 ≤ n ≤ NSC.

(9)

Dropping the maximization over T̄ in (9) results in the power allocation problem where the

minimum achieved to target SQINR ratio has to be maximized only over all admissible power

allocation vectors for a fixed DL-BF matrix T̄
?

RDL
opt(PBS, T̄

?
) = max

q
min

1≤k≤K
1≤n≤NSC

γDL
k,n(T̄

?
, Q̄PA,q)

γk,n

s.t. ‖q‖1 ≤ PBSNSC.

(10)

The corresponding MU-MIMO-OFDM UL problems are given in the same manner as (9) and

(10) with γDL
k,n replaced by γUL

k,n. The solution to these problems for ∞-resolution converters are

obtained by exploiting the UL-DL duality principle to cast the MU-DL-BF problem in terms of

the easier-to-solve MU-UL-BF problem [24]. The UL-DL duality principle does not hold for the

system with CEQ constraints due to the quantization noise. The quantization noise matrices Rη̄ηηd

in (4) and Rη̄ηηu
in (8) depend on the DL beamforming matrix and channel realization respectively

and prevent a straightforward extension of the UL-DL duality principle. We show in Section

III that the UL-DL duality principle can be extended to CEQ constraints and an OFDM signal

model under certain conditions and then use that result to find the solution to (9). Towards that

end, we next introduce an approximation that will later be used for proving the duality principle.

D. Small angle approximation

With x̄d and z̄d denoting the DL time-domain signal before and after CEQ, the covariance

matrix of the uncorrelated distortion η̄ηηd = z̄d − Ādx̄d resulting from the Bussgang decomposi-

tion is

Rη̄ηηd
= Rz̄d − ĀdRx̄dĀ

H
d . (11)

Using the definition of the Bussgang gain ζb from Section II-A, define X̂d = Re
(

1
ζ2b

ĀdRx̄dĀ
H
d

)
and Ŷd = Im

(
1
ζ2b

ĀdRx̄dĀ
H
d

)
. The diagonal entries of X̂d and Ŷd are equal to 1 and 0. It is

known [23] that the correlation matrix of the b-bit CEQ signal z̄d is given by
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Rz̄d =
2b

π
sin2

( π
2b

) 2b−1−1∑
∆b=0

ej(2∆bπ/2b)sin−1
(

Re
((

X̂d + jŶd

)
e−j(2∆bπ/2b)

))
, (12)

where the sin−1 operation is applied element-wise on its matrix argument. For b =∞,

Rz̄d =
1

2

∫ π

0

ejφsin−1
(

Re
((

X̂d + jŶd

)
e−jφ

))
dφ. (13)

It can be verified from (12) and (13) that diag (Rz̄d) = INSCNBS for all values of b. This also

makes intuitive sense since the diagonal corresponds to the variance of b-bit CEQ entries with

unit norm. We now approximate the non-linear sin−1(·) function using the first-order Taylor

expansion sin−1(x) = x+o(x3) for Rnd
z̄d

. The approximation is justified because the off-diagonal

entries of Rx̄d will be forced to be small by adding optimized dithering to the signal before

quantization as will be explained in Section IV-E. Under this approximation, Rnd
z̄d

for b 6=∞ is

Rnd
z̄d

=
2b

π
sin2

( π
2b

) 2b−1−1∑
∆b=0

cos2
(
2∆bπ/2b

)
︸ ︷︷ ︸

ζ̄b

X̂nd
d + j

2b

π
sin2

( π
2b

) 2b−1−1∑
∆b=0

sin2
(
2∆bπ/2b

)
︸ ︷︷ ︸

ζ̄b

Ŷnd
d . (14)

For b =∞, ζ̄b = π
4

using (13). The off-diagonal entries of Rη̄ηηd
are then given by

Rnd
η̄ηηd

= ζ̄b

(
X̂nd

d + jŶnd
d

)
− ζ2

b

(
X̂nd

d + jŶnd
d

)
. (15)

It can be verified from the definition of ζ̄b and ζ2
b (defined in Section II-A) that they are equal for

all values of b. Hence, all off-diagonal entries of Rη̄ηηd
, i.e. Rnd

η̄ηηd
in (15), are zero. We are left with

the diagonal part of the matrix and hence Rη̄ηηd
= (1− ζ2

b ) I. The sin−1(x) ≈ x approximation

thus makes the quantization noise η̄ηηd uncorrelated. The same approximation can also be applied

to the UL quantization noise η̄ηηu. It will be shown in Section III that the resulting uncorrelated

quantization noise is crucial for proving UL DL duality under CEQ ADC and DAC constraints.

III. UL-DL DUALITY WITH HARDWARE CONSTRAINTS

In this section, we generalize the UL-DL duality principle to the MU-MIMO-OFDM system

with CEQ DACs/ADCs. We show that the same SQINR constraints can be achieved in both DL

and UL by appropriately relating the linear beamforming and combining matrices and separately

optimizing the DL/UL power allocation vectors under the same sum power constraint. This result

is summarized in Theorem 3.1.
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Theorem 3.1: Consider a BS equipped with CEQ DACs communicating with K users

over NSC sub-carriers with target SQINR values [γ1,1 . . . γk,n . . . γK,NSC ] using the beam-

forming matrix T̄, DL power allocation vector q and per-antenna power allocation matrix

Q̄PA = INSC ⊗ diag
(

1
NSC

∑NSC
n=1 TnQnQ

H
nT

H
n

) 1
2
. The same set of SQINR values can be

achieved in the UL under CEQ ADC constraints by letting t̄k,n = Āuūk,n/‖Āuūk,n‖2 and

p = σ2

ζ2b

(
IKNSC − D̄(T̄)Ψ̄T(T̄)− D̄(T̄)Φ̄T(T̄)

)−1
D̄(T̄)1KNSC for the same sum power constraint

in the UL stage as the total BS transmit power in the DL stage.

Proof: The proof closely follows the proof of [19, Theorem 3.1] for frequency flat channels

under 1-bit hardware constraints. We present a brief version of that proof in Sections III-A and

III-B for completeness after making the changes required for CEQ DACs and the OFDM signal

model. Our goal is to show that the same SQINR values can be achieved in the DL and UL for

the same total power by simplifying the linearized DL and UL SQINRs from (4) and (8) using

the small angle approximation. �

A. Downlink SQINR

The choice of Q̄PA = INSC ⊗ diag
(

1
NSC

∑NSC
n=1 TnQnQ

H
nT

H
n

) 1
2

makes the per-antenna power

allocation after the quantization operation equal to the∞−resolution DAC setting. We equate the

target DL SQINR for user k at the nth sub-carrier, γk,n, to the achieved DL SQINR γDL
k,n(T̄, Q̄PA,q)

(under the small angle approximation) from (4) and choose the DL power allocation vector q

that achieves these target SQINRs as

γk,n =
qk,nt̄

T
k,nR̄k,nt̄

∗
k,n∑K

i=1
i 6=k

qi,nt̄
T
i,nR̄k,nt̄

∗
i,n + 1

ζ2b
σ2 +

(
1
ζ2b
− 1
)

tr
((

INSC ⊗ diag
(

1
NSC

∑NSC
n=1 TnQnQ

H
nT

H
n

))
R̄
∗
k,n

) .

(16)
We note here that all the variables in (16) with a (̄·) have a block diagonal structure, with only

the nth-block making a non-zero contribution to any multiplications/additions involving these

variables. For example, only the nth block on the diagonal of R̄k,n (Rk,n = hk,nh
H
k,n ∈ CNBS×NBS)

makes a non-zero contribution to any of the terms involving it. Using this observation and

the matrix identities tr (Adiag(B)) = tr (Bdiag(A)) and tr (ABC) = tr (BCA) = tr (CAB), the

KNSC equalities in (16) are simplified to

γk,n =
qk,ntT

k,nRk,nt∗k,n∑K
i=1
i 6=k

qi,ntT
i,nRk,nt∗i,n + 1

ζ2b
σ2 +

(
1
ζ2b
− 1
)

tr
(

1
NSC

∑K
i=1

∑NSC
j=1 qi,jt

T
i,jdiag

(
R∗k,n

)
t∗i,j

) .

(17)
The DL SQINR formulation γDL

k,n(T̄, Q̄PA,q) in Section II-A given by (4) is equivalently given by

the simplified expression γDL
k,n(T̄,q) on the right hand side (RHS) of (17) under the small angle
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approximation and Q̄PA = INSC ⊗ diag
(

1
NSC

∑NSC
n=1 TnQnQ

H
nT

H
n

) 1
2
. Next, we define the KNSC ×

KNSC diagonal SQINR matrix D̄(T̄) = blkDiag (D1(T1), . . .DNSC(TNSC)), where Dn(Tn) =

diag
(

γ1,n
(tT

1,nR1,nt∗1,n)
, . . .

γK,n

(tT
K,nRK,nt∗K,n)

)
. We also define the K×K MUI coupling matrix for the nth

sub-carrier, Ψn(Tn), as

Ψn(Tn) =


0 tT

2,nR1,nt∗2,n . . . tT
K,nR1,nt∗K,n

tT
1,nR2,nt∗1,n 0 . . . tT

K,nR2,nt∗K,n

... . . . . . . ...

tT
1,nRK,nt∗1,n tT

2,nRK,nt∗2,n . . . 0

 . (18)

The KNSC × KNSC MUI coupling matrix for all sub-carriers is defined as Ψ̄(T̄) =

blkDiag (Ψ1(T1), . . .ΨNSC(TNSC)). With R̃k,n = 1
NSC

(
1
ζ2b
− 1
)

diag (Rk,n), we also define the

KNSC ×KNSC quantization coupling matrix Φ̄(T̄) as

Φ̄(T̄) =


tT

1,1R̃1,1t∗1,1 . . . tT
K,1R̃1,1t∗K,1 tT

1,2R̃1,1t∗1,2 . . . tT
K,NSC

R̃1,1t∗K,NSC

tT
1,1R̃2,1t∗1,1 . . . tT

K,1R̃2,1t∗K,1 tT
1,2R̃2,1t∗1,2 . . . tT

K,NSC
R̃2,1t∗K,NSC

...
...

...
...

...
...

tT
1,1R̃K,NSCt

∗
1,1 . . . tT

K,1R̃K,NSCt
∗
K,1 tT

1,2R̃K,NSCt
∗
1,2 . . . tT

K,NSC
R̃K,NSCt

∗
K,NSC

 .

(19)

Using D̄(T̄), Ψ̄(T̄) and Φ̄(T̄), the KNSC equations in (17) can be written as

q = D̄(T̄)Ψ̄(T̄)q + D̄(T̄)Φ̄(T̄)q +
σ2

ζ2
b

D̄(T̄)1KNSC . (20)

Using (20), the DL power allocation vector q can be written as

q =
σ2

ζ2
b

(
IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)

)−1
D̄(T̄)1KNSC . (21)

Lemma 3.2 shows that the matrix inverse in (21) exists for any feasible target SQINR set {γk,n}.

Lemma 3.2: For any feasible target DL SQINR set {γk,n}, the matrix(
IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)

)
is invertible.

Proof: The proof follows from the proof of [19, Lemma 3.2 and Lemma 3.3] by replacing

D(T)Ψ(T) with D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄). �

The choice of DL power allocation vector q in (21) thus achieves the target SQINRs {γk,n} for

the given beamforming matrix T̄ .

B. Uplink SQINR

Now we show that the same target SQINRs {γk,n} can be achieved in the UL by choosing

the UL power allocation vector p under the sum power constraint equal to the BS DL power.
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Next, observe that ūT
k,nIū

∗
k,n can be replaced by ūT

k,nĀuĀ
−2
u Āuū∗k,n in (8) with Āu defined in (6).

Relating the DL beamformers and UL combiners as t̄k,n = Āuūk,n/‖Āuūk,n‖2 with tT
k,nt

∗
k,n = 1

and recalling the observation made in Section III-A about non-zero contribution from only the nth

block of all block-diagonal variables, the KNSC target SQINRs can be equated to the achieved

UL SQINR (8) under the small angle approximation as

γk,n =
pk,ntT

k,nRk,nt∗k,n∑K
i=1
i 6=k

pi,ntT
k,nRi,nt

∗
k,n + 1

ζ2b
σ2 +

(
1
ζ2b
− 1
)

tr
(

1
NSC

∑K
i=1

∑NSC
j=1 pi,jt

T
k,ndiag(Ri,j)t∗k,n

) .

(22)

The UL SQINR γUL
k,n(ūk,n,p) in (8) is equivalently given by the expression γUL

k,n(tk,n,p) on the

right hand side (RHS) of (22). Using D̄(T̄), Ψ̄(T̄) and Φ̄(T̄), the KNSC equations in (22) can

be rearranged in matrix form as

p = D̄(T̄)Ψ̄T(T̄)p + D̄(T̄)Φ̄T(T̄)p +
σ2

ζ2
b

D̄(T̄)1KNSC . (23)

The UL power allocation vector p is given by

p =
σ2

ζ2
b

(
IKNSC − D̄(T̄)Ψ̄T(T̄)− D̄(T̄)Φ̄T(T̄)

)−1
D̄(T̄)1KNSC . (24)

The existence of the matrix inverse in (24) follows from Lemma 3.2. Ignoring the scalar factor
σ2

ζ2b
, the total UL power allocation is given by

‖p‖1 = 1T
KNSC

(
IKNSC − D̄(T̄)Ψ̄T(T̄)− D̄(T̄)Φ̄T(T̄)

)−1
D̄(T̄)1KNSC

(a)
=
((

IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)
)−1

D̄(T̄)1KNSC

)T
1KNSC = ‖q‖1,

(25)

where (a) makes use of the push-through identity, the diagonal structure of D̄(T̄) and (AB)T =

BTAT. The same target SQINRs can be obtained in the UL and DL for equal sum power which

establishes the UL-DL duality principle for MU-MIMO-OFDM systems with CEQ ADCs/DACs.

IV. UL-DL DUALITY BASED PROPOSED SOLUTION

Based on the UL-DL duality result for MU-MIMO-OFDM with CEQ constraints established

in Section III, we extend the alternating minimization solution from [19] to the max-min

optimization problem presented in Section II-C. Due to the high-dimensional nature of this

solution which simultaneously deals with all active sub-carriers, we present a simplified solution

that can be independently applied to each sub-carrier analogous to the flat fading case presented

in [19]. We also comment on the convergence of the proposed algorithm and briefly justify the

small angle approximation presented in Section II-D.
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A. Optimal DL power allocation

With the vectorized definitions of the DL and UL SQINR in (17) and (22), the solution to

the optimal DL power problem (10) (and its UL analog) closely follows the solution for the flat

fading case given in Section IV-B of [19] with a few changes defined next. We define the extended

DL power allocation vector q?ext = [q? 1]T and the positive extended DL coupling matrix

Ῡ(T̄
?
,PBS) =

 D̄(T̄
?
)
(
Ψ̄(T̄

?
) + Φ̄(T̄

?
)
)

σ2

ζ2b
D̄(T̄

?
)1KNSC

1T
KNSC

PBSNSC
D̄(T̄

?
)
(
Ψ̄(T̄

?
) + Φ̄(T̄

?
)
)

σ2

ζ2bPBSNSC
1T
KNSC

D̄(T̄
?
)1KNSC

 . (26)

Following the development in [19], the solution to the DL power allocation problem (10) is

RDL
opt(PBS, T̄

?
) =

1

λmax
(
Ῡ(T̄

?
,PBS)

) . (27)

And the optimal DL power allocation vector q? is given by the first KNSC entries of the dominant

eigenvector of Ῡ(T̄
?
,PBS) scaled such that the last entry equals 1. Similarly, the maximizer p? of

the UL version of the problem (10) is given by the first KNSC entries of the dominant eigenvector

p?ext = [p? 1]T (last entry scaled to 1) of the positive UL extended coupling matrix defined as

Λ̄(T̄
?
,PBS) =

 D̄(T̄
?
)
(
Ψ̄(T̄

?
) + Φ̄(T̄

?
)
)T σ2

ζ2b
D̄(T̄

?
)1KNSC

1T
KNSC

PBSNSC
D̄(T̄

?
)
(
Ψ̄(T̄

?
) + Φ̄(T̄

?
)
)T σ2

ζ2bPBSNSC
1T
KNSC

D̄(T̄
?
)1KNSC

 . (28)

And the optimal achieved to target SQINR ratio of the UL power allocation problem is given by

RUL
opt(PBS, T̄

?
) =

1

λmax
(
Λ̄(T̄

?
,PBS)

) . (29)

The solutions of the DL and UL power allocation problems are equal, i.e. RUL
opt(PBS, T̄

?
) =

RDL
opt(PBS, T̄

?
). This follows directly from the duality result in Theorem 3.1. Hence, the same

target SQINR set {γk,n} (or a scalar multiple thereof) is achieved in both DL and UL using

this power allocation procedure. We will use this observation to cast the MU-MIMO-OFDM DL

problem in terms of the corresponding UL problem for a more efficient solution.

B. Joint power allocation and precoder design

We now focus on the joint beamforming matrix and power allocation problem in (9). The

optimum solution to the power allocation problem (10) for a fixed BF matrix T̄
? is given by

the reciprocal of the dominant eigenvalue of the extended DL coupling matrix Ῡ(T̄
?
,PBS). The

joint power and beamforming optimization problem (9) can be equivalently stated as

RDL
opt(PBS) =

1

minT̄ λmax

(
Ῡ(T̄,PBS)

) . (30)



17

Making use of the duality result from Theorem 3.1, we replace (the motivation of doing this

will become clear later) the DL extended coupling matrix with the UL extended coupling matrix

RDL
opt(PBS) =

1

minT̄ λmax

(
Λ̄(T̄,PBS)

) . (31)

By the Perron-Frobenius theorem [24], λmax of the non-negative matrix Λ̄(T̄,PBS) is

λmax

(
Λ̄(T̄,PBS)

)
= max

x>0
min
y>0

xTΛ̄(T̄,PBS)y

xTy
. (32)

Next, we define an intermediate cost function

λ̄
(
T̄,PBS,pext

)
= max

x>0

xTΛ̄(T̄,PBS)pext

xTpext
, (33)

which allows us to rewrite (31) as(
RDL

opt(PBS)
)−1

= min
T̄

min
pext>0

λ̄
(
T̄,PBS,pext

)
. (34)

Similar to [19], [24], we take a two step alternating minimization approach to solve (34). In the

first step, we solve for the UL power allocation vector p? for a fixed beamforming matrix. In

the second step p is held fixed while solving for T̄?.

1) Power allocation step: Since the solution to the power allocation problem (10) was obtained

by maximizing the minimum, it follows from (29) that the optimal UL power allocation vector

p?ext minimizes the function λ̄
(
T̄,PBS,pext

)
for a fixed beamforming matrix T̄.

2) Beamformer optimization step: Next we fix the power allocation vector p(
with pext = [p 1]T

)
and optimize the beamforming matrix T̄ given by the problem

T̄
?

= arg min
T̄

λ̄
(
T̄,PBS,pext

)
. (35)

Lemma 4.1 (follows from [19, Lemma 4.3]) helps break down (35) into smaller decoupled

sub-problems.

Lemma 4.1: The cost function λ̄
(
T̄,PBS,pext

)
can equivalently be written as

max
x>0

xTΛ̄(T̄,PBS)pext

xTpext
= max

1≤k≤K
1≤n≤NSC

γk,n

γUL
k,n (tk,n,p)

. (36)

Lemma 4.1 transforms the minimization over T̄ into maximization over the UL SQINRs. Now we

recall from Section II-B that the UL SQINR for the kth user on the nth sub-carrier, γUL
k,n (tk,n,p),

is a function of only the beamforming vector tk,n. Hence each individual SQINR term can be

maximized independently of others and this is the primary reason for recasting the problem from

DL to UL by making use of the UL-DL duality. This is summarized in Corollary 4.1.1.
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Corollary 4.1.1: The solution to the problem (35) is given by independent maximization of

the KNSC UL SQINRs γUL
k,n (tk,n,p) for 1 ≤ k ≤ K and 1 ≤ n ≤ NSC.

Using the definition of the UL SQINR (22), the beamformer t?k,n maximizing γUL
k,n (tk,n,p) is

t?k,n = arg max
tk,n

pk,ntT
k,nRk,nt∗k,n

tT
k,nSk,n(p)t∗k,n

, s.t.‖tk,n‖2 = 1, (37)

where

Sk,n(p) =
K∑
i=1
i 6=k

pi,nRi,n +

(
1

ζ2
b

− 1

)
1

NSC

K∑
i=1

NSC∑
j=1

pi,jdiag(Ri,j) +
1

ζ2
b

σ2I. (38)

Since the matrices Rk,n and Sk,n are hermitian, the solution to (37) is given by the dominant

generalized eigenvector of the matrix pair (Rk,n,Sk,n) for 1 ≤ k ≤ K and 1 ≤ n ≤ NSC [24].

The alternating minimization algorithm iterates between the power allocation step and BF

optimization step till λ(t−1)
max

(
Λ̄(T̄

(t−1)
,PBS)

)
− λ(t)

max

(
Λ̄(T̄

(t)
,PBS)

)
< ε. The superscript (·)(t)

denotes the iteration index and ε is a predefined constant used to stop the optimization procedure.

After convergence, the DL power allocation vector q? is calculated using the precoder matrix T?

obtained in the final iteration. The proposed solution is summarized in Algorithm 1. vmax(·, ·)

denotes the dominant generalized eigenvector of its arguments and λ(t)
max , λ

(t)
max

(
Λ̄(T̄

(t)
,PBS)

)
.

Algorithm 1 Alternating minimization solution to (9)
1) Initialize: t = 0,p?(0) = 0KNSC ,PBSNSC, ε

2) while λ(t−1)
max − λ(t)

max ≥ ε

3) ∀k,n t?(t)k,n = vmax

(
Rk,n,Sk,n(p?(t−1))

)
4) ∀k,n t?(t)k,n = t?(t)k,n /‖t

?(t)
k,n ‖2

5) Λ̄(T̄
?(t)

,PBS)p?(t)ext = λ
(t)
maxp

?(t)
ext

6) p?(t) = p?(t)ext [1, . . . ,KNSC]/p?(t)ext [KNSC + 1]

8) end

9) Ῡ(T̄
?(t)

,PBS)q?ext = λ
(t)
maxq?ext

10) q?(t) = q?(t)ext [1, . . . ,KNSC]/q?(t)ext [KNSC + 1]

C. Convergence

Like the various methods in existing literature [8]–[14], our proposed method does not

guarantee global optimality of the solution given by Algorithm 1 to the MU-MIMO-OFDM DL

precoding problem which is NP-hard under CEQ constraints. Our simulations indicate that the
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proposed algorithm typically converges within 2− 5 iterations. We now show that the proposed

algorithm is indeed convergent to some point in the solution space. We know from the precoder

optimization step that T̄?(t) minimizes the cost function λ̄
(
T̄,PBS,p?(t−1)

ext

)
in the tth iteration

λ̄
(
T̄
?(t)

,PBS,p?(t−1)
ext

)
≤ λ̄

(
T̄
?(t−1)

,PBS,p?(t−1)
ext

)
= λ(t−1)

max . (39)

From the definition of λ(t)
max, we know that

λ(t)
max = max

x>0
min
y>0

xTΛ̄(T̄
?(t)

,PBS)y

xTy
≤ max

x>0

xTΛ̄(T̄
?(t)

,PBS)p?(t−1)
ext

xTp?(n)
ext

= λ̄
(
T̄
?(t)

,PBS,p?(t−1)
ext

)
.

(40)

It can be observed from (39) and (40) that the sequence λ
(t)
max is monotonically decreasing.

Combining this behavior with the non-negativity of λ(t)
max implies the existence of a limiting value

λ
(∞)
max. The parameter ε controls how far the algorithm stops from this point in the solution space.

D. Sub-carrier-wise algorithm

One big advantage of OFDM is the orthogonality of the sub-carriers which can each be treated

independently of others. As seen in Section II, this orthogonality is destroyed by the non-linear

CEQ operation. Under the assumptions introduced at the beginning of Section III, this loss of

orthogonality shows up in the linearized SQINR expressions in the form of the quantization

coupling matrix Φ̄(T̄) defined in (19). This is the only matrix which does not have a block-

diagonal structure and couples all sub-carrier together by making the distortion vector depend

on the beamformers of all NSC sub-carrriers. This causes all matrices involved in Algorithm 1

to have dimensions of KNSC × KNSC making it computationally expensive. We would like

to approximately maintain the orthogonality of the OFDM sub-carriers and come up with an

algorithm that can be applied to each sub-carrier individually without sacrificing the performance

(shown in Section V). Towards this end, we look closely at the structure of the matrix Φ̄(T̄) and

make an IID assumption about the involved variables that restores the sub-carrier orthogonality.

We want the quantization coupling matrix Φ̄(T̄) to have a block-diagonal structure similar

to the MUI coupling matrix Ψ̄(T̄). This will allow us to break all KNSC ×KNSC matrices in

Algorithm 1 into NSC K × K sub-matrices which can then be treated in a parallel manner. It

can be seen that each entry of Φ̄(T̄) is a positively weighted Euclidean norm squared of one of

the beamforming vectors tk,n for 1 ≤ k ≤ K and 1 ≤ n ≤ NSC. We know that ‖tk,n‖2
2 = 1 ∀k,n.

The weighting is through the matrices R̃k,n = 1
NSC

(
1
ζ2b
− 1
)

diag (Rk,n). At this point we make
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the assumption that each entry of the beamforming vector tk,n comes from some IID distribution

with second moment equal to α2. Similarly each entry of the channel vector hk,n comes from

some IID distribution with second moment β2. Ignoring the scalar constant
(

1
ζ2b
− 1
)

, each

entry of the matrix Φ̄(T̄) equals NBS
NSC

α2β2 in expectation under the IID assumption. We now

make the entries which are off each K × K block on the main diagonal equal to zero and

scale up the entries of each K ×K block by a factor of NSC. Now Φ̄(T̄) has a block-diagonal

structure similar to Ψ̄(T̄). The quantization coupling matrix for the nth sub-carrier, Φn(Tn), is

defined in the same way as the MUI coupling matrix Ψn(Tn) in (18) with Rk,n replaced by

R̃k,n =
(

1
ζ2b
− 1
)

diag (Rk,n). With this modification, the per sub-carrier algorithm is given in

Algorithm 2. Other minor differences in Algorithm 2 are listed below.

• Since Algorithm 2 runs on each sub-carrier independently, the total BS DL power PBSNSC

has to be divided among the NSC sub-carriers. We divide the power equally among the

sub-carriers enforced by setting the power budget for each sub-carrier equal to PBS.

• The extended DL and UL coupling matrices, Υ(Tn,PBS) and Λ(Tn,PBS), are now defined

separately for each sub-carrier using the nth SQINR matrix Dn(Tn), the nth MUI coupling

matrix Ψn(Tn) and the nth quantization coupling matrix Φn(Tn) by appropriately modifying

their definitions in (26) and (28) to not include the factor NSC.

• The matrix Sk,n is now defined as

Sk,n(pn) =
K∑
i=1
i 6=k

pi,nRi,n +

(
1

ζ2
b

− 1

) K∑
i=1

pi,ndiag(Ri,n) +
1

ζ2
b

σ2I. (41)

We point out here that the IID assumption used to simplify Algorithm 1 is not mathematically

accurate. Using (37) and (38), it can be seen that the precoder t?k,n does depend on Ri,j∀i,j . For

j 6= n, this dependence is weak because of the 1/NSC scaling. Our numerical results in Section

V demonstrate that this assumption is fairly accurate and does not affect the performance.

E. Optimized dithering by dummy users

The UL-DL duality proof in Section III relied on the quantization noise being uncorrelated

resulting from the small angle approximation introduced in Section II-D. The small angle

approximation is accurate when the off-diagonal elements of the covariance matrix of the signal

before quantization are small compared to the diagonal entries. This is not true when the number

of users is small (in DL) or the per-antenna SQINR is high (in UL). This makes the quantization

noise correlated which in turn limits the achievable SQINR due to constructive interference. We
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ensure that this approximation remains true under all conditions by adding optimized dithering

to the system. Dithering is introduced in the form of dummy users operating in the null space

of the true users with their own individual SQINR constraints. The amount of dithering added is

proportional to the power allocated to the dummy users which depends on their target SQINRs.

We convert this into a scalar optimization problem by forcing the SQINR constraint of all dummy

users on all sub-carriers to be the same. This problem is solved using a simple line search method

by starting off from a small value for the dummy user SQINR constraint and then increasing it

in small increments till the minimum of all true user SQINRs is increasing. We do not focus on

this aspect of the problem in the results presented in this paper. We refer the reader to [19] for

a more detailed description of the benefits of adding dummy users to the system.

V. RESULTS AND DISCUSSION

In this section, we present numerical results for the proposed algorithm and compare it with

existing linear and non-linear precoding methods in terms of the achievable rate and coded BER.

A. Simulation setup

We consider a setting where individual users are uniformly distributed (IID across realizations)

in a 120◦ sector around a BS (located at the origin 25 m above the ground) from a minimum

distance of 50 m to a maximum distance of 150 m. We draw channel realizations from the 3GPP

Algorithm 2 Per sub-carrier solution to (9)
1) for n = 1 : NSC (parallelizable)

2) Initialize: t = 0,p?(0)
n = 0K ,PBS, ε

3) while λ(t−1)
max − λ(t)

max ≥ ε

4) ∀k t?(t)k,n = vmax

(
Rk,n,Sk,n(p?(t−1)

n )
)

5) ∀k t?(t)k,n = t?(t)k,n /‖t
?(t)
k,n ‖2

6) Λ(T?(t)
n ,PBS)p?(t)next = λ

(t)
maxp

?(t)
next

7) p?(t)n = p?(t)next [1, . . . ,K]/p?(t)next [K + 1]

8) end while

9) Υ(T?(t)
n ,PBS)q?next

= λ
(t)
maxq?next

10) q?(t)n = q?(t)next [1, . . . ,K]/q?(t)next [K + 1]

11) end for
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Urban-Macro line-of-sight and non-line-of-sight (3GPP 38.901 UMa LoS and 3GPP 38.901 UMa

NLoS) channel models implemented in Quadriga [25]. For some of our results, we limit the

minimum spatial separation (in degrees) between users. Quadriga implements underlying random

variables in way that they are correlated across space and time. Limiting the separation between

users hence limits the correlation between their channel coefficients. The channel coefficients and

delays for each channel realization are converted to a complex baseband channel with L = 8 taps

by sampling from a truncated sinc pulse. We empirically verified that L = 8 captures the delay

spread of the channel realizations for our considered bandwidth. Next, we obtain the frequency

domain channel for each sub-carrier from the complex baseband channel by taking its NSC-point

FFT. The important simulation parameters (unless stated otherwise) are given in Table I.

Quadriga channel model 3GPP 38.901 UMa LoS / NLoS

Number of antennas BS 32

Antenna element pattern 0 dBi omni-directional

Total transmit power PBS 40 dBm

Carrier frequency fc 60 GHz

Bandwidth B 100 MHz (LoS) / 20 MHz (NLoS)

Number of subcarriers NSC 32

Cyclic prefix length NCP 8

SQINR constraint {γk,n} { 3 dB }

CEQ resolution b { 2 , 3 , ∞}

TABLE I: Important simulation parameters.

B. Benchmark strategies

We compare with ZF precoding [5] as a benchmark for our proposed technique with the DL

precoding matrix given by T̄ = H̄
H
(H̄H̄

H
)−1. We choose two ways to allocate the per-antenna

power allocation matrix Q̄PA in the CEQ system given by

• ZF Opt-Pwr: The power allocation vector q is obtained using the optimal DL power allo-

cation procedure described in IV-A for T̄
?

= [̄t1,1 . . . t̄K,NSC ] with t̄k,n = tk,n/‖tk,n‖2. The

per-antenna power allocation is then given by Q̄PA = INSC⊗diag
(

1
NSC

∑NSC
n=1 T

?
nQnQ

H
nT

?H
n

) 1
2
.

• ZF Equal-Pwr: The BS divides the total transmit power equally across all the antennas

and all samples within one OFDM symbol. The per-antenna power allocation is given by

Q̄PA = diag
(
PBS
NBS

1NBSNSC

) 1
2
. This has been considered before in existing literature [5], [17].

For a fair comparison, we also add dithering to ZF precoding by projecting Gaussian noise with

variance σ2
d onto the null space of the channel matrix H̄ and adding it to the DL signal before
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the CEQ operation [17]. Appropriate value for σ2
d is found using a simple line search method

similar to what is described for the dummy users in Section IV-E. We also compare with the

unconstrained fully digital ZF and regularized ZF precoders (denoted by UnQZF and UnQRZF)

to establish a baseline for all low-resolution algorithms.

As mentioned in Section I, all non-linear methods [8]–[14] perform roughly the same. We

choose SQUID [8] and MAGIQ [13] as the representative non-linear methods to compare with

the proposed solution. SQUID is based on Douglas-Rachford splitting of a squared `∞-norm

relaxation of the symbol MMSE problem. MAGIQ is based on a coordinate wise minimization

of the time domain MSE. We refer the reader to [8] and [13] for a more detailed description

of the algorithms. The hyperparameters involved in the implementation of SQUID were chosen

according to the guidelines given in [8]. In the results that follow, the proposed Algorithm 1 and

its per sub-carrier version Algorithm 2 are denoted as ‘Max-min’ and ‘Max-min SC’. ‘Max-min

SC Equal-Pwr’ denotes Algorithm 2 with equal per-antenna power allocation.

C. SQINR results

We use the ergodic sum rate given by E
[

1
NSC

∑K
k=1

∑NSC
n=1 log2(1 + γDL

k,n)
]

and the ergodic

minimum rate given by E[min1≤k≤K
1
NSC

∑NSC
n=1 log2(1 + γDL

k,n)] as the metrics of choice for our

results. The expectation is computed by averaging across IID channel realizations each of which

corresponds to an IID user location realization. γDL
k,n is calculated using (4) with the exact arcsine

law and without the small angle approximation. It should also be pointed out that our definitions

of the sum and minimum rate do not account for the loss due to the CP.

The ergodic sum rate is shown in Fig. 2 as a function of the number of active users. It can be

observed that the proposed strategy and ZF (with optimal power allocation) perform similarly

when the number of users is small. All variants of the proposed solution, however, perform

increasingly better than ZF with the number of active users. For K = 14, the performance in

terms of the sum rate differs by about 6-7 b/s/Hz depending on the CEQ resolution. Another

important takeaway from Fig. 2 is that the per sub-carrier version of the proposed algorithm (Max-

min SC) achieves the same performance as that of Algorithm 1 thus justifying the assumption

made in Section IV-D. Lastly, the performance difference between b = 3 and b = ∞ is not

significant for both ZF and the proposed solution.

The linearity of the power amplifier over the dynamic range of the input signal is a critical

issue especially for OFDM due to its high peak to average power ratio (PAPR). The design of
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Fig. 2: Ergodic sum rate versus number of users. All versions of the proposed algorithm

increasingly outperform ZF as the number of users increases. Max-min SC and Max-min

SC Equal-Pwr achieve performance similar to Max-min. Lastly, the difference in performance

between b = 3 and b =∞ is not significant.

linear amplifiers with a large dynamic range is further exacerbated at mmWave frequencies. The

optimal power allocation described in Section IV-A requires amplifiers which are linear over

large bandwidths which contradicts the motivation of using low-resolution quantizers. In this

context, an equal per-antenna power allocation is a useful solution to further reduce hardware

complexity. With this design choice, amplifiers can be made to operate in their saturation region

at a fixed power point without any back-off and further reduce the total power consumption. Fig.

2 also illustrates the ergodic sum rate for the proposed solution and ZF with equal per-antenna

power allocation versus number of users. Looking at the equal per-antenna power allocation

curves in Fig. 2, it can be observed that the performance is significantly deteriorated for ZF

based precoding compared to optimal power allocation. The proposed solution on the other

hand performs the same as optimal per-antenna power allocation. This is another advantage of

the proposed method from a power amplifier and circuit design perspective.

The ergodic minimum rate is shown in Fig. 3. It can be seen that the performance of the

ZF precoding (including UnQZF) deteriorates more than that of the proposed solution for larger

number of users. For K = 14, the two solutions differ by 0.5-1 b/s/Hz. The improvement

in terms of the minimum rate might seem small but can be very important from an outage

probability and fairness perspective. Similar to Fig. 2, the per sub-carrier and equal per-antenna

power allocation versions of the proposed solution perform the same as the version considering

all sub-carriers together whereas the performance of ZF with equal per-antenna power allocation

drops sharply. From here onwards, we are only going to consider the equal per-antenna power



25

0 2 4 6 8 10 12 14
Number of users

0

2

4

6

8

10

Er
go

di
c 

m
in

im
um

 ra
te

 (b
/s

/H
z)

𝑏 = 2 𝑏 = 3 𝑏 = ∞

ZF Equal-Pwr
ZF Opt-Pwr

Max-min SC

UnQZF
Max-min SC Equal-Pwr

Max-min

Fig. 3: Ergodic minimum rate versus number of users. The performance of ZF deteriorates more

as number of users increase. As observed in Fig. 2, Max-min SC and Max-min SC Equal-Pwr

perform the same as Algorithm 1. Furthermore, b = 3 and b =∞ achieve similar performance.

allocation per sub-carrier version (Max-min SC Equal-Pwr) of the proposed solution and ZF

with equal per-antenna power due to their practical importance.

D. BER results

Now we look at the coded BER results for transmit symbols drawn from unit-norm normalized

QPSK and 16-Quadrature Amplitude Modulation (16-QAM) constellations in an IID manner.

For each channel realization, the BER is calculated by generating data bits that span 60 OFDM

symbols. The data bits are encoded using a convolution encoder and then randomly interleaved

across the sub-carriers. On the receive side, we first use the blind estimation method from [26]

in which a block of received symbols is used to estimate the appropriate scaling factor before

sending the symbols to a max-log detector. The soft output is then fed into a max-log BCJR

decoder made available by Christoph Studer in the process of his work in [8] which we are also

comparing against. The resulting BER is then further averaged over multiple channel realizations.

Fig. 4 illustrates the coded BER for the proposed algorithm and benchmark strategies for

symbols drawn from the QPSK constellation with a rate 1/2 convolution code, NS = 24, K = 10

and PBS = 36 dBm against the minimum spatial separation between active users. It can be seen

that the proposed solution outperforms all CEQ precoding algorithms including the UnQZF (for

b = 3). Furthermore, when the minimum separation between users is not limited, all algorithms

(including the unquantized setting) deteriorate in performance due to the increased correlation.

Next, we look at the performance for a fixed minimum angle separation of 2◦ as the ratio

of number of BS antennas to the number of users is varied. The solid (dashed) set of lines in
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Fig. 4: Coded BER for QPSK constellation with a rate 1/2 convolution code for K = 10,

PBS = 36 dBm and NS = 24 against the minimum angle separation between users. The proposed

solution outperforms all other techniques and even performs better than UnQZF for b = 3.

Fig. 5 illustrates coded BER against the number of BS antennas for K = 10 (K = 5), QPSK

constellation with a rate 1/2 convolution code, NS = 24, PBS = 40 dBm and b = 3. It can be seen

that the proposed solution achieves the best performance out of all CEQ precoding solutions. At

relatively higher ratios of the number of BS antennas to the number of users (i.e. for K = 10),

both SQUID and MAGIQ are not able to achieve acceptable values of coded BER (≈ 10−4).

Next, we look at the performance for the 3GPP 38.901 UMa NLoS channel model as the

transmit power is varied. Fig. 6 illustrates the uncoded BER for the proposed algorithm and

benchmark strategies for symbols drawn from a QPSK constellation with a rate 1/2 convolution

code, K = 10 and NS = 24 versus the transmit power PBS. The first thing to observe is that the

power value where the BER goes to 0 or stagnates (≈ 51 dBm) is relatively higher compared to

the previous results. This difference can be attributed to the NLoS channel model. We observed
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Fig. 5: Coded BER for K = 5 and K = 10 (for a fixed minimum angle separation of 2◦) with

QPSK constellation with a rate 1/2 convolution code, NS = 24, PBS = 40 dBm and b = 3 versus

the number of BS antennas. The proposed solution achieves the best performance.
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Fig. 6: Coded BER for QPSK constellation with a rate 1/2 convolution code for K = 10 and

NS = 24 against the transmit power PBS for the 3GPP 38.901 UMa NLoS channel model. The

proposed solution operates close to the unquantized benchmarks. SQUID and MAGIQ floor out

at BERs close to 10−2 due to the relatively low number of BS antennas to number of users ratio.

that the highest mode of the NLoS channel model generated by Quadriga was a factor of 10 or

so less compared to the LoS channel model. Nevertheless, the proposed solution outperforms

the non-linear algorithms and operates quite close to the unquantized benchmarks. SQUID and

MAGIQ outperform the Max-min solution only at the lower end of the transmit power but that

is not of interest due to the high BER. Furthermore, SQUID and MAGIQ floor out at BERs

close to 10−2 due to the relatively low number of BS antennas to number of users ratio.

In this paper, we assumed the availability of channel state information at the BS and did not

explicitly account for the loss due to the channel estimation error. Similar to [5], [13], [20], we

look at the performance of all algorithms as the normalized channel estimation error is varied

from 0 to 1 to bridge this gap. Channel estimation with low-resolution ADCs is a completely

separate topic with a rich existing literature [27], [28] and can not be addressed in this paper due

to limited space. The dashed (solid) lines in Fig. 7 illustrate the coded BER for the proposed

algorithm and benchmark strategies for symbols drawn from the QPSK (16QAM) constellation

with a rate 1/2 convolution code, K = 5, NS = 16, PBS = 55 dBm (40 dBm) and b = 2 (b = 3)

for the NLoS (LoS) channel model. It can be observed that the proposed method achieves the

best performance over a wide range of the normalized channel estimation error for both LoS

and NLoS channel models with lower and higher order constellations.

The results presented in Section V-C and V-D demonstrate that the proposed solution improves

considerably on existing linear precoding techniques and even outperforms the benchmark non-

linear precoding methods [8], [13]. This is in contrast to the results published in existing literature
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Fig. 7: Dashed (solid) lines illustrate coded BER for QPSK (16QAM) constellation with a rate 1/2

convolution code for K = 5, NS = 16, PBS = 55 dBm (40 dBm) and b = 2 (b = 3) on the NLoS

(LoS) channel model. This result demonstrates that the proposed solution outperforms existing

algorithms over both LoS and NLoS channel models for lower and higher order constellations

over a wide range of the normalized channel estimation error.

[8]–[14] which (with the exception of one result in [13]) have been obtained on channels with

IID Gaussian entries. Our experiments on IID Gaussian channels (not presented in this paper)

confirm the results published in prior work. Various factors, however, limit the performance of

the non-linear precoding methods when using the realistic channel models presented in this work.

The self-correlation of a user’s channel entries across the antenna elements adversely affects all

methods as also observed in [13]. The cross-correlation between channels of different users is

another limiting factor that seems to affect the non-linear methods more especially at lower

number of BS antennas to users ratio as seen in Fig. 4 and 5. Another factor that limits the

performance of non-linear methods is the mismatch between channels of different users. A user

with a weaker channel is adversely affected a lot more by [8], [13] bringing down the average

performance significantly whereas max-min tries to maximize the performance of the weak user.

The flexibility to assign per user/sub-carrier SQINRs makes the proposed solution even more

attractive. These constraints were all set equal in the results presented in this manuscript. Further

improvement might be possible by tweaking these constraints in favor of users/sub-carriers with

better channel quality. For example, a lot of power might be wasted if two users cause significant

interference to each other. In that setting, the SQINR constraint of one of the users can be reduced

lowering its achievable SQINR/BER but improving the SQINR/BER performance of all other

users. This is a scheduling problem that can be dealt with by the system operator at a higher

level and then integrated into the presented framework using the individual SQINR constraints.
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VI. CONCLUSION

In this paper, we presented a linear precoding based solution to the MU-MIMO-OFDM DL

precoding problem under CEQ DAC constraints at the BS and per-user SQINR constraints.

Our proposed solution, based on UL-DL duality, maximized the minimum ratio of the achieved

SQINR to target SQINR over all sub-carrier of all users. We further reduced the complexity of

the proposed algorithm by parallelizing it over the individual sub-carriers. Our results in terms of

the ergodic sum and minimum rate showed that the proposed solution outperforms existing linear

precoding strategies. Furthermore, we showed that the max-min solution performs better than

the non-linear methods in terms of coded BER for the channel models considered in this paper.

The analysis carried out in this paper complements our prior work by generalizing the UL-

DL duality principle under 1-bit hardware constraints from flat fading channels to frequency

selective channels for CEQs. The key insight in both these results was that the quantization

noise has to be uncorrelated. This was enforced by adding optimized dithering to the system in

the form of dummy users which operate in the null space of the active users. Our future work

in this direction will incorporate ideas from this paper, such as optimized dithering and per-user

SQINR constraints, to improve the performance of non-linear algorithms. Another interesting

line of work is to conduct a detailed study about the various factors mentioned in this paper that

limit the performance of non-linear methods. A detailed evaluation of the proposed and existing

approaches from a circuits implementation point of view is another exciting avenue of work.
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VII. SUPPLEMENTARY RESULTS

In this supplementary note, we present numerical results similar to those presented in Section

V but for a larger system. The simulation setup and comparison strategies/metrics stay the same.

In this set of results, we only compare with the non-linear algorithm SQUID from [8]. The other

non-linear comparison algorithm from the original manuscript, MAGIQ [13], takes an infeasible

amount of time to run for this larger system. We, however, expect its performance to be similar

to SQUID as observed from the results presented in Section V and as demonstrated in [13].

A. Simulation setup

The important simulation parameters (unless stated otherwise) are given in Table II.

Quadriga channel model 3GPP 38.901 UMa LoS / NLoS

Number of antennas BS 64

Antenna element pattern 0 dBi omni-directional

Total transmit power PBS 35 dBm

Carrier frequency fc 60 GHz

Bandwidth B 100 MHz (LoS) / 50 MHz (NLoS)

Number of subcarriers NSC 128

Cyclic prefix length NCP 32

SQINR constraint {γk,n} { 3 dB }

CEQ resolution b { 2 , 3 }

TABLE II: Important simulation parameters.

B. Benchmark strategies

As mentioned before, we will compare with the same strategies as the original paper with the

exception of MAGIQ [13].

C. SQINR results

The ergodic sum rate is shown in Fig. 8 as a function of the number of active users. It can be

observed that the gap between proposed strategy and ZF is small when the number of users is

small. The proposed solution, however, performs increasingly better than ZF with the number of

active users. For K = 14, the performance in terms of the sum rate differs by about 2-4 b/s/Hz

depending on the CEQ resolution.
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Fig. 8: Ergodic sum rate versus number of users. The proposed algorithm increasingly outper-

forms ZF as the number of users increases. Max-min SC and Max-min SC Equal-Pwr achieve

similar performance.

Fig. 8 also illustrates the ergodic sum rate for the proposed solution and ZF with equal

per-antenna power allocation versus number of users. Looking at the equal per-antenna power

allocation curves in Fig. 8, it can be observed that the performance is deteriorated for ZF

based precoding compared to optimal power allocation. The proposed solution on the other

hand performs the same as optimal per-antenna power allocation. This is another advantage of

the proposed method from a power amplifier and circuit design perspective.
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Fig. 9: Ergodic minimum rate versus number of users. The performance of ZF deteriorates more

as number of users increase.

The ergodic minimum rate is shown in Fig. 9. It can be seen that the performance of the

ZF precoding deteriorates more than that of the proposed solution for larger number of users.

For K = 14, the two solutions differ by 0.25-0.5 b/s/Hz. The improvement in terms of the

minimum rate might seem small but can be very important from an outage probability and
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Fig. 10: Coded BER for 16QAM constellation with a rate 1/2 convolution code for K = 10,

PBS = 42 dBm, NS = 96, and b = 3 against the minimum angle separation between users. The

proposed solution outperforms all other techniques.

fairness perspective. Similar to Fig. 8, the optimal per-antenna and equal per-antenna power

allocation versions of the proposed solution perform the same. The performance of ZF with

equal per-antenna power allocation suffers more degradation.

D. BER results

Fig. 10 illustrates the coded BER for the proposed algorithm and benchmark strategies for

symbols drawn from the 16QAM constellation with a rate 1/2 convolution code, NS = 96,

K = 10, PBS = 52 dBm, and b = 3 against the minimum spatial separation between active

users. It can be seen that the proposed solution outperforms all ZF based precoding as well as

the non-linear algorithm SQUID. Furthermore, when the minimum separation between users is

not limited, all algorithms (including the unquantized setting) deteriorate in performance due to

the increased correlation among the user channels.

Next, we look at the performance for a fixed minimum angle separation of 2◦ as the ratio of

number of BS antennas to the number of users is varied. Fig. 11 illustrates coded BER against

the number of BS antennas for K = 10, QPSK constellation with a rate 1/2 convolution code,

NS = 96, PBS = 36 dBm and b = 3. It can be seen that the proposed solution achieves the best

performance out of all CEQ precoding solutions. At very high ratio of number of BS antennas

to the number of users (i.e. for small number of BS antennas), SQUID does slightly better than

the proposed solution but those numbers are not meaningful due to the coded BER being greater

than 0.1 for all strategies being compared (including the unquantized setting).
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Fig. 11: Coded BER for K = 10 (for a fixed minimum angle separation of 2◦) with QPSK

constellation with a rate 1/2 convolution code, NS = 96, PBS = 36 dBm and b = 3 versus the

number of BS antennas. The proposed solution achieves the best performance.

Next, we look at the performance as the transmit power is varied. Fig. 12 illustrates the

uncoded BER for the 3GPP 38.901 UMa LoS channel model for symbols drawn from a QPSK

constellation with a rate 1/2 convolution code, K = 7, NS = 96, and b = 2 versus the transmit

power PBS. It can be observed that the proposed solution operates quite close to the unquantized

setting and outperforms both SQUID and ZF based CEQ precoding.
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Fig. 12: Coded BER for QPSK constellation with a rate 1/2 convolution code for K = 7, NS =

96, and b = 2 against the transmit power PBS for the 3GPP 38.901 UMa LoS channel model.

The proposed solution operates close to the unquantized benchmarks outperforming SQUID and

ZF.

Fig. 13 illustrates the uncoded BER for the 3GPP 38.901 UMa NLoS channel model for

symbols drawn from a QPSK constellation with a rate 1/2 convolution code, K = 10, NS = 96,

and b = 2 versus the transmit power PBS. The first thing to observe is that the power value
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Fig. 13: Coded BER for QPSK constellation with a rate 1/2 convolution code for K = 10,

NS = 96 and b = 2 against the transmit power PBS for the 3GPP 38.901 UMa NLoS channel

model. The proposed solution operates close to the unquantized benchmarks. SQUID and ZF

floor out at BERs close to 10−2.

where the BER goes to 0 or stagnates (in case of SQUID and ZF ≈ 60 dBm) is relatively higher

compared to the previous results. This difference can be attributed to the NLoS channel model.

We observed that the highest mode of the NLoS channel model generated by Quadriga was a

factor of 10 or so less compared to the LoS channel model. Nevertheless, the proposed solution

achieves the performance closet to the unquantized precoders. SQUID outperforms the max-min

solution only at the lower end of the transmit power but that is not of interest due to the high

BER. Furthermore, SQUID floors out at BERs close to 10−2.

This last set of results in Fig. 14 and Fig. 15 illustrates the performance of the proposed

solution and the benchmark strategies as the normalized channel estimation error is varied from

0 to 1. Fig. 14 plots the coded BER for symbols drawn from the 16QAM constellation with a

rate 1/2 convolution code, K = 5, NS = 64, PBS = 40 dBm, and b = 3 for the LoS channel

model. Fig. 15 plots the coded BER for symbols drawn from the QPSK constellation with a

rate 1/2 convolution code, K = 5, NS = 64, PBS = 51 dBm, and b = 3 for the NLoS channel

model. It can be observed from Fig. 14 and Fig. 15 that the proposed method achieves the best

performance over a wide range of the normalized channel estimation error for both LoS and

NLoS channel models with lower and higher order constellations. The proposed solution also

outperforms the unquantized precoders when the CSI is not perfect demonstrating its robustness

to channel estimation errors.

The results presented in this note supplement the results presented in Section V of the original
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Fig. 14: Coded BER for 16QAM constellation with a rate 1/2 convolution code for K = 5,

NS = 64, PBS = 40 dBm and b = 3 on the LoS channel model. This result demonstrates that the

proposed solution outperforms existing algorithms for higher order constellations over a wide

range of the normalized channel estimation error.
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Fig. 15: Coded BER for QPSK constellation with a rate 1/2 convolution code for K = 5,

NS = 64, PBS = 51 dBm, and b = 2 on the NLoS channel model. This result demonstrates that

the proposed solution outperforms existing algorithms over NLoS channel models as well over

a wide range of the normalized channel estimation error.

manuscript and demonstrate that the proposed max-min formulation and the resulting solution

significantly outperforms existing precoding strategies over a wide range of system parameters.
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VIII. SUPPLEMENTARY APPENDICES

In this supplementary note, we give the proofs of Lemma 3.2 and Lemma 4.1 for ease of

reviewers. These proofs closely follow the proofs of [19, Lemma 3.2 and Lemma 3.3] and [19,

Lemma 4.3] in philosophy with a few changes accounting for the OFDM signal model and

CEQs.

APPENDIX A

PROOF OF LEMMA 3.2

By dropping the noise term on the RHS of (17), let us define the signal-to-quantization-plus-

interference ratio (SQIR) for the nth sub-carrier of the kth user as

γ̂DL
k,n(T̄,q) =

qk,ntT
k,nRk,nt∗k,n∑K

i=1
i 6=k

qi,ntT
i,nRk,nt∗i,n +

(
1
ζ2b
− 1
)

tr
(

1
NSC

∑K
i=1

∑NSC
j=1 qi,jt

T
i,jdiag

(
R∗k,n

)
t∗i,j

) (42)

It can be observed from (42) that the SQIR is a constant function of scalar multiples of the DL

power allocation vector q i.e.

γ̂DL
k,n(T̄,λq) = γ̂DL

k,n(T̄,q), (43)

for all positive λ. It can also be observed from (17) that the DL SQINR, γDL
k,n(T̄,q), is a

monotonically increasing function of scalar multiples of the DL power allocation vector q i.e.

γDL
k,n(T̄,λq) > γDL

k,n(T̄,q), (44)

for λ > 1. Furthermore by comparing (17) and (42), it can be seen that

lim
||q||2→∞

γDL
k,n(T̄,q) = lim

||q||2→∞
γ̂DL
k,n(T̄,q). (45)

For a target DL SQINR set {γk,n} to be feasible

1 ≤ min
1≤k≤K

1≤n≤NSC

γDL
k,n(T̄,q)

γk,n

(44)
< max
||q||2→∞

 min
1≤k≤K

1≤n≤NSC

γDL
k,n(T̄,q)

γk,n

 , R?.

(46)

Making use of (43) and (45), the upper bound (46) is equivalently given by

R? (45)
= max
||q||2→∞

 min
1≤k≤K

1≤n≤NSC

γ̂DL
k,n(T̄,q)

γk,n


(43)
= max
||q||2=1

 min
1≤k≤K

1≤n≤NSC

γ̂DL
k,n(T̄,q)

γk,n

 .

(47)
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The solution to the optimization problem (47) results in equal achieved SQIR to target SQIR

ratio for all KNSC channels given by

R? =
γ̂DL

1,1(T̄,q?)

γ1,1

= · · · =
γ̂DL
K,NSC

(T̄,q?)

γK,NSC

, (48)

where q? is the power allocation vector which solves (47). This claim is proved in Appendix B.

The KNSC equations in (48) can be written in matrix form as

q?
1

R?
= D̄(T̄)Ψ̄(T̄)q? + D̄(T̄)Φ̄(T̄)q?. (49)

It can be observed from (49) that the achieved SQIR to target SQIR balance value, R?, equals

the reciprocal of an eigenvalue of the matrix D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄) and the optimal power

allocation vector is given by the corresponding eigenvector. It is also known from Perron-

Frobenius theory [19], [24] that the optimal eigenvalue/eigenvector pair correspond to the

maximal eigenvalue of the non-negative matrix D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄). Hence

λmax
(
D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄)

)
=

1

R?

(46)
< 1. (50)

This establishes that for any feasible target SQINR set {γk,n}, λmax
(
D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄)

)
<

1.

Next, assume that the matrix
(
IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)

)
is not invertible. This must

mean that for some vector b(
IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)

)
b = 0KNSC

⇒
(
D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄)

)
b = b.

(51)

This implies that the matrix D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄) has an eigenvalue equal to 1. We know

from (50) that λmax
(
D̄(T̄)Ψ̄(T̄) + D̄(T̄)Φ̄(T̄)

)
< 1. Hence this is a contradiction and the matrix(

IKNSC − D̄(T̄)Ψ̄(T̄)− D̄(T̄)Φ̄(T̄)
)

is invertible for any feasible target DL SQINR set {γk,n}.

APPENDIX B

PROOF OF (48)

Let (i, j) be the user-subcarrier index such that

γ̂DL
i,j (T̄,q?)

γi,j
> R? = min

1≤k≤K
1≤n≤NSC

γ̂DL
k,n(T̄,q?)

γk,n

. (52)

It can be seen from (42) that the DL SQIR γ̂DL
k,n(T̂,q) is an increasing function of qk,n and a

decreasing function of q`,m for ` 6= k and n 6= m. The power allocated to the (i, j) user-subcarrier
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pair, qi,j , can be decreased without reducing the objective function min1≤k≤K,1≤n≤NSC

γ̂DL
k,n(T̄,q?)

γk,n
.

This excess power can then be allocated to the (`,m) user-subcarrier pair whose achieved to

target SQIR ratio equals R? thus resulting in a larger optimum value of the objective function

min1≤k≤K,1≤n≤NSC

γ̂DL
k,n(T̄,q?)

γk,n
. Consequently, the initial assumption was a contradiction and all NSC

sub-carriers of the K users achieve the same achieved SQIR to target SQIR ratio.

APPENDIX C

PROOF OF LEMMA 4.1

It was shown in [24] that for any positive N -dimensional vectors b and c

max
x

xTb

xTc
= max

1≤n≤N

bn
cn

. (53)

Using (53) and the non-negativity of Λ̄(T̄,PBS)pext, it follows that

λ̄
(
T̄,PBS,pext

)
= max

1≤n≤KNSC+1

eT
nΛ̄(T̄ ,PBS)pext

eT
npext

. (54)

Using (23) and (28), the first KNSC equations in (54) can be written as

max
1≤n≤KNSC

eT
nΛ̄(T̄,PBS)pext

eT
npext

= max
1≤n≤KNSC

γk,n

γUL
k,n (tk,n,p)

. (55)

It also follows from (23) and (28) that

eT
KNSC+1Λ̄(T̄,PBS)pext

eT
KNSC+1pext

=
1

PBSNSC

K∑
k=1

NSC∑
n=1

pk,nγk,n

γUL
k,n (tk,n,p)

(a)

≤

 max
1≤k≤K

1≤n≤NSC

γk,n

γUL
k,n (tk,n,p)

 1

PBSNSC

K∑
k=1

NSC∑
n=1

pk,n

= max
1≤k≤K

1≤n≤NSC

γk,n

γUL
k,n (tk,n,p)

.

(56)

(a) follows because the max is greater than the average. This shows that the (KNSC + 1)th

equation in (54) is smaller than or equal to the first KNSC equations. Hence

λ̄
(
T̄,PBS,pext

)
= max

1≤k≤K
1≤n≤NSC

γk,n

γUL
k,n (tk,n,p)

. (57)
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