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Systems With Semi-Passive Elements
In-soo Kim, Mehdi Bennis, Jaeky Oh, Jaehoon Chung, and Junil Choi

Abstract—In this paper, we propose a Bayesian channel estima-
tor for intelligent reflecting surface-aided (IRS-aided) millimeter
wave (mmWave) massive multiple-input multiple-output (MIMO)
systems with semi-passive elements that can receive the signal in
the active sensing mode. Ultimately, our goal is to minimize the
channel estimation error using the received signal at the base
station and additional information acquired from a small number
of active sensors at the IRS. Unlike recent works on channel
estimation with semi-passive elements that require both uplink
and downlink training signals to estimate the UE-IRS and IRS-BS
links, we only use uplink training signals to estimate all the links.
To compute the minimum mean squared error (MMSE) estimates
of all the links, we propose a novel variational inference-sparse
Bayesian learning (VI-SBL) channel estimator that performs
approximate posterior inference on the channel using VI with
the mean-field approximation under the SBL framework. The
simulation results show that VI-SBL outperforms the state-of-
the-art baselines for IRS with passive reflecting elements in
terms of the channel estimation accuracy and training overhead.
Furthermore, VI-SBL with semi-passive elements is shown to
be more spectral- and energy-efficient than the baselines with
passive reflecting elements.

Index Terms—Channel estimation, intelligent reflecting surface
(IRS), semi-passive element, variational inference (VI), sparse
Bayesian learning (SBL).

I. INTRODUCTION

5G wireless communications support high data rates by

communicating in the millimeter wave (mmWave) band

[1]. The high carrier frequency in the range of 30-300 GHz

offers a large bandwidth, which results in a significant through-

put gain. The problem, however, is that the severe path loss

renders mmWave communications vulnerable to blockages. To

overcome such an issue, intelligent reflecting surface (IRS)
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was recently proposed [2], which is an array of metamaterial-

based passive reflecting elements capable of adjusting the

amplitude and phase of the impinging signal. For the IRS to

generate a favorable detour around a blockage, the reflection

amplitude and phase shift must align with the channel, which

necessitates accurate channel state information (CSI).

The distinct feature of channel estimation for IRS with

passive reflecting elements is that the UE-IRS link of size

NK and IRS-BS link of size MN form a UE-IRS-BS link

of size MNK where M , N , and K are the numbers of base

station antennas, IRS elements, and single-antenna users. Since

passive reflecting elements cannot observe the UE-IRS and

IRS-BS links, the UE-IRS-BS link must be estimated from

the reflected signal, which results in a significant training

overhead.

Next, we review prior works [3]–[11] on channel estimation

for IRS with passive reflecting elements that focus on training

overhead reduction. In [3], a three-phase channel estimator is

proposed inspired by the correlation between the channels of

different users. In particular, [3] exploits the fact that the UE-

IRS-BS links of different users share the same IRS-BS link.

As a result, the three-phase channel estimator proceeds by

estimating the UE-BS links of all the users in the first phase,

UE-IRS-BS link of a particular user in the second phase, and

UE-IRS-BS links of the remaining users in the third phase

where most of the training overhead reduction occurs. Moving

on to [4], channel estimation for IRS with discrete phase shifts

is considered, for which a reflection design is proposed. In

particular, the reflection design is optimized based on grouping

IRS elements to reduce the channel estimation error. In [5],

a channel estimator is proposed for the orthogonal frequency

division multiple access (OFDMA) scenario based on the line-

of-sight (LoS) assumption on the UE-BS link. Again, the

channel estimator exploits the fact that the UE-IRS-BS links

of different users share the same IRS-BS link to reduce the

training overhead as in [3]. In [6], the channel estimation

problem is reformulated as a matrix factorization problem,

which is solved using the message passing (MP) algorithm.

In [7], a dual link training signal-based channel estimator is

proposed. In particular, the dual link training signal transmits

downlink training signals to the IRS, whose reflected version

is used as uplink training signals to estimate the IRS-BS link.

In [8], an atomic norm minimization-based channel estimator

is proposed that extracts the angle parameters of the channel.

In [9], a channel estimator is proposed based on the single-

path approximation of the channel. In addition, [9] develops

http://arxiv.org/abs/2206.06605v2
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another channel estimator that exploits IRS phase shifts and

training signals. In [10], the mmWave channel estimation is

reformulated as a compressed sensing problem to capture the

channel sparsity. In [11], the double-structured orthogonal

matching pursuit (DS-OMP) channel estimator is proposed

that exploits the common IRS-BS link shared by all the users.

In particular, DS-OMP reduces the channel estimation error

and training overhead by identifying the common rows and

columns that the UE-IRS-BS links of all the users share by

taking into account the double sparsity structure inherent in

the IRS links.

The training overhead in [3]–[11] is still high because

estimating the UE-IRS-BS link with passive reflecting ele-

ments that cannot receive the signal is a challenging task.

To overcome such an issue, IRS with semi-passive elements

that can be switched to the active sensing mode was recently

proposed in [12], [13]. In particular, the received signal at the

active sensors is leveraged to estimate the UE-IRS and IRS-

BS links in the first coherence block. Then, [12], [13] can

replace UE-IRS-BS link estimation of size MNK with UE-

IRS link estimation of size NK in the subsequent coherence

blocks because the IRS-BS link remains constant over multiple

coherence blocks, which results in significant channel estima-

tion overhead reduction. The problem of [12], [13], however, is

that both uplink and downlink training signals are necessary to

estimate all the links. Furthermore, [12], [13] are semi-passive

element-driven rather than aided because only the received

signal at the active sensors is leveraged, while the received

signal at the base station is discarded.

In this paper, a Bayesian channel estimator is proposed for

IRS-aided mmWave massive multiple-input multiple-output

(MIMO) systems with semi-passive elements. In particular,

the semi-passive elements are activated to the active sensing

mode in the channel estimation phase and deactivated to the

passive reflecting mode in the data transmission phase. For

the first time in the literature, we estimate the UE-IRS and

IRS-BS links using only uplink training signals, which is in

contrast to recent works [12], [13] on channel estimation with

semi-passive elements that rely on both uplink and downlink

training signals to estimate all the links. To compute the

minimum mean squared error (MMSE) estimate of the channel

from the received signal at the base station and additional

information acquired from the active sensors at the IRS, we

perform posterior inference on the channel under the sparse

Bayesian learning (SBL) framework [14], [15]. Since exact

posterior inference is intractable, we use the variational infer-

ence (VI) approach with the mean-field approximation [16],

[17]. The proposed VI-SBL-based channel estimator enables

us to compute the approximate MMSE estimates of all the

links iteratively. In addition, we reduce the complexity of VI-

SBL by converting a large matrix inversion to many small

matrix inversions using the mean-field approximation. The

simulation results show that VI-SBL outperforms the state-

of-the-art channel estimators for IRS with passive reflecting

elements in terms of the channel estimation error, training

overhead, and energy efficiency, which is defined as the

spectral efficiency normalized by the total power consumption

to make a fair comparison between IRS with semi-passive
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Fig. 1. The uplink of an IRS-aided mmWave massive MIMO system with
semi-passive elements. The semi-passive elements act as active sensors in
the channel estimation phase and passive reflecting elements in the data
transmission phase.

elements and passive reflecting elements.

The rest of the paper is organized as follows. The channel

model and signal model are introduced in Section II. In Section

III, the proposed VI-SBL-based channel estimator is devel-

oped, which is followed by the mean-field approximation-

based complexity reduction scheme. The performance of VI-

SBL is assessed in Section IV based on various performance

metrics, and a concluding remark follows in Section V.

Notation: a, a, and A denote a scalar, vector, and matrix.

The complex conjugate, transpose, and conjugate transpose

of A are written as A∗, AT, and AH. |a| and ∠a are the

magnitude and phase of a. The i-th element of a is ai, while

the (i, j)-th element and i-th column of A are [A]i,j and [A]:,i.
The elementwise product, Kronecker product, and Khatri-Rao

product of A and B are written as A ⊙ B, A ⊗ B, and

kr(A,B). The n× 1 all-zero vector, n× 1 all-one vector, and

n×n identity matrix are written as 0n, 1n, and In. vec(A) is

the vectorization of A, while diag(a) is the diagonal matrix

with a on the main diagonal. The probability density function

(PDF) of a complex Gaussian random vector x ∼ CN (m,C)
with mean m and covariance C is written as CN (x|m,C).
The probability measure of a random vector x is p(x). The

set difference between sets A and B is A \ B. JNK denotes

{1, ..., N}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of an IRS-aided mmWave massive

MIMO system with an M -antenna base station and K single-

antenna users as illustrated in Fig. 1. The IRS is equipped

with N elements to compensate for the path loss in the

mmWave band. In particular, Np passive reflecting elements

reflect the impinging signal as usual [18]–[20]. Meanwhile,

Na = N − Np ≪ N semi-passive elements act as active

sensors in the channel estimation phase and passive reflecting

elements in the data transmission phase. The active sensors

are capable of receiving the signal, whose quantized version

is forwarded to the base station. In practice, the active sensors
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are implemented by connecting the IRS elements to Na radio

frequency (RF) chains with B-bit analog-to-digital converters

(ADCs) [12], whose connection can be switched using base

station-controlled switching networks [21], [22]. In this paper,

a small number of active sensors and low-resolution ADCs

are considered to reduce the additional power consumed by

the IRS.

In essence, our goal is to exploit the received signal at

the base station and additional information acquired from the

active sensors at the IRS to estimate the UE-IRS and IRS-BS

links instead of the UE-IRS-BS link. Then, the base station

can avoid estimating the UE-IRS-BS link of size MNK and

only estimate the UE-IRS link of size NK in the subsequent

coherence blocks because the IRS-BS link remains constant

over multiple coherence blocks in practice [7]. As a result,

channel estimation overhead reduction in the long run is

attained from the reduced training overhead achieved by the

active sensors in the first coherence block, and replacing UE-

IRS-BS link estimation with UE-IRS link estimation in the

subsequent coherence blocks. In this paper, we focus on the

first coherence block where all the links are unknown.

A. Channel Model

The channel is composed of the UE-IRS link f̄k ∈ CN for

k ∈ JKK, IRS-BS link Ḡ ∈ CM×N , and UE-BS link h̄k ∈ CM

for k ∈ JKK. Since the scatterers are limited in the mmWave

band as the path loss is severe, the links are typically modeled

as [23]

f̄k =

√

NκUI,k

1 + κUI,k
αUI,k,0aI(θ

AoA
UI,k,0, θ

ZoA
UI,k,0)+

√

N

LUI,k(1 + κUI,k)

LUI,k∑

ℓ=1

αUI,k,ℓaI(θ
AoA
UI,k,ℓ, θ

ZoA
UI,k,ℓ),

Ḡ =

√

MNκIB

1 + κIB
αIB,0aB(θ

AoA
IB,0 )a

H
I (θ

AoD
IB,0 , θ

ZoD
IB,0)+

√

MN

LIB(1 + κIB)

LIB∑

ℓ=1

αIB,ℓaB(θ
AoA
IB,ℓ )a

H
I (θ

AoD
IB,ℓ , θ

ZoD
IB,ℓ ),

h̄k =

√

MκUB,k

1 + κUB,k
αUB,k,0aB(θ

AoA
UB,k,0)+

√

M

LUB,k(1 + κUB,k)

LUB,k∑

ℓ=1

αUB,k,ℓaB(θ
AoA
UB,k,ℓ) (1)

where a uniform linear array (ULA) geometry at the base

station and uniform planar array (UPA) geometry at the IRS

with half-wavelength spacings are assumed without loss of

generality. For each link, αℓ ∼ CN (0, 1/PL) is the ℓ-th path

gain where PL is the distance- and frequency-dependent path

loss, θℓ is the ℓ-th azimuth/zenith angle of arrival/departure,

κ is the Rician K-factor, and L is the number of non-LoS

(NLoS) paths. In addition, aB(·) ∈ C
M and aI(·, ·) ∈ C

N are

the array response vectors of the base station and IRS.

B. Signal Model

Let Ω[t] ∈ {0, 1}N and Ωc[t] = 1N − Ω[t] denote the

index vectors of the active sensors and passive reflecting

elements that constitute the IRS at time t. In addition, define

F̄ = [f̄1, . . . , f̄K ] and H̄ = [h̄1, . . . , h̄K ] for notational

simplicity.

Then, the received signal y[t] ∈ CM at the base station is

y[t] = Ḡ




Ωc[t]⊙ v[t]
︸ ︷︷ ︸

=s[t]

⊙F̄x[t]




 + H̄x[t] + nB[t] (2)

where v[t] ∈ CN is the passive reflection vector with the

reflection amplitude |vn[t]| ≤ 1 and phase shift ∠vn[t] ∈
[0, 2π), x[t] ∈ C

K is the transmit signal of the users un-

der the transmit power constraint E{|xk[t]|2} ≤ Pk[t], and

nB[t] ∼ CN (0M , σ2
BIM ) is the additive white Gaussian noise

(AWGN) at the base station. Likewise, the quantized received

signal z[t] ∈ CN at the active sensors forwarded to the base

station is

z[t] = Ω[t]⊙Q(F̄x[t] + nI[t]) (3)

where nI[t] ∼ CN (0N , σ2
I IN ) is the AWGN at the active

sensors. The B-bit quantizer Q(·) is applied to the real and

imaginary parts elementwise as

z = Q(u) ⇐⇒
{

Re(zlo) ≤ Re(u) < Re(zup)

Im(zlo) ≤ Im(u) < Im(zup)
(4)

where zlo ∈ C and zup ∈ C are the lower and upper

thresholds associated with z ∈ C. In other words, the real

and imaginary parts of z, zlo, and zup correspond to one of

the 2B quantization intervals.

A coherence block of length Tc in the uplink consists of the

channel estimation phase of length T and data transmission

phase of length Tc − T . To proceed, let Tc = JT K and Td =
JTcK \ JT K be the time slots for the channel estimation phase

and data transmission phase. Then, the received signals Y ∈
CM×T and Z ∈ CN×T at the base station and active sensors

over the channel estimation phase of length T are expressed

as

Y =
[

y[1] · · · y[T ]
]

= Ḡ(S⊙ F̄X) + H̄X+NB, (5)

Z =
[

z[1] · · · z[T ]
]

= Ω⊙Q(F̄X+NI) (6)

using the notations S = [s[1], . . . , s[T ]],
Ω = [Ω[1], . . . ,Ω[T ]], X = [x[1], . . . ,x[T ]],
NB = [nB[1], . . . ,nB[T ]], and NI = [nI[1], . . . ,nI[T ]].

In addition, the semi-passive elements are configured as

‖Ω[t]‖0 =
{

Na for t ∈ Tc
0 for t ∈ Td

, (7)

which means that Na semi-passive elements are activated

to the active sensing mode in the channel estimation phase

and deactivated to the passive reflecting mode in the data

transmission phase. The switching performance of switching

networks that connect the IRS elements to RF chains is

determined by the switching period Tsn ≥ 1 defined as the

time required for the 0-1 pattern of Ω[t] to change such that

Ω[(i − 1)Tsn + 1] = · · · = Ω[iTsn] for i ∈ N, (8)
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and we define the switching frequency as fsn = 1/Tsn ≤ 1.

Therefore, the 0-1 pattern of Ω[t] can change according to (7)

and (8).

C. Problem Formulation via Virtual Channel Representation

We formulate the channel estimation problem using the

virtual channel representation in conjunction with the channel

model and signal model introduced in the previous subsec-

tions. To proceed, define the overcomplete dictionaries

AB =
[

aB(θ̂1) · · · aB(θ̂Mg
)
]

∈ C
M×Mg , (9)

AI =
[

aI(θ̂
A
1 , θ̂

Z
1 ) · · · aI(θ̂

A
Ng

, θ̂ZNg
)
]

∈ C
N×Ng (10)

over the predefined grids {θ̂m}m∈JMgK and {(θ̂An , θ̂Zn)}n∈JNgK

where Mg ≥ M and Ng ≥ N are the grid resolutions. Then,

the virtual channel representation admits the transformations

[24]

F̄ = AIF, (11)

Ḡ = ABGAH
I , (12)

H̄ = ABH (13)

where F ∈ CNg×K , G ∈ CMg×Ng , and H ∈ CMg×K are the

equivalent angular-domain channels. In practice, the angular-

domain channels are sparse because there are limited scatterers

that constitute the channels in the mmWave band [25], [26].

Now, we can reexpress (5) and (6) using the virtual channel

representation as

Y = ABGAH
I (S⊙AIFX) +ABHX+NB, (14)

Z = Ω⊙Q(AIFX+NI), (15)

and our goal is to estimate {F,G,H} from {Y,Z}. Since all

the links are sparse, (14) and (15) is a combination of low-rank

matrix factorization [27] and low-rank matrix completion [28]

problems, which are NP-hard in general. To the best of our

knowledge, our work is the first attempt to jointly exploit the

received signal at the base station and additional information

acquired from the active sensors at the IRS to estimate the

UE-IRS and IRS-BS links. In contrast, recent works [12],

[13] on channel estimation with semi-passive elements cannot

be considered as semi-passive element-aided but rather driven

because only the received signal at the semi-passive elements

is leveraged. As a result, [12], [13] require both uplink and

downlink training signals to estimate the UE-IRS and BS-IRS

links, whereas we only use uplink training signals to estimate

all the links.

III. PROPOSED VI-SBL-BASED CHANNEL ESTIMATOR

In this section, a VI-SBL-based channel estimator is

proposed that performs approximate posterior inference on

{F,G,H} from {Y,Z} under the SBL framework [14],

[15]. In particular, we solve SBL via the variational free

energy principle with the mean-field approximation [16], [17]

to derive the posterior distributions of {F,G,H}. Then,

we can compute the posterior means from the approximate

posterior distributions, or equivalently the MMSE estimates

that minimize the channel estimation error.

Fig. 2. The Bayesian network of a hierarchical Bayesian model where Y =
{Y, Ẑ} is the measurement and X = {F,G,H,ΓF,ΓG,ΓH,U} is the
hidden variable. The arrows represent the conditional dependence between
two random variables.

A. Pseudo-Measurement Model

To facilitate the analysis, we propose a pseudo-measurement

model

Ẑ = Q(U)

= Q(Ω⊙AIFX+NI) (16)

where the elements of Ẑ ∈ CN×T corresponding to the

nonzero pattern of Ω are equal to the nonzero elements

of Z. In addition, the lower and upper pseudo-thresholds

Ẑlo ∈ CN×T and Ẑup ∈ CN×T associated with Ẑ are defined

as in (4). The elements of Z and Ẑ corresponding to the

zeros of Ω, however, are not the same. Nevertheless, (15) and

(16) are statistically equivalent because the elements of Z and

Ẑ corresponding to the nonzero pattern of Ω bear the same

information about F, while those corresponding to the zeros of

Ω have no meaningful information about F as evident from

(15) and (16). Therefore, the elements of Ẑ, Ẑlo, and Ẑup

corresponding to the zeros of Ω—the elements that cannot

be determined from Z—can be assigned arbitrarily from the

2B quantization intervals of the B-bit quantizer without loss

of generality. Since the pseudo-measurement model is more

convenient to deal with, we estimate {F,G,H} from {Y, Ẑ}
in (14) and (16) in the sequel.

B. Hierarchical Bayesian Model of SBL Framework

To account for the interaction among {F,G,H,U,Y, Ẑ},

we treat all the variables as random variables that consti-

tute a hierarchical Bayesian model as shown in Fig. 2. In

addition, we introduce the random variables ΓF ∈ CNg×K ,

ΓG ∈ CMg×Ng , and ΓH ∈ CMg×K to capture the sparse

nature of {F,G,H}, which is the well-known SBL framework

[14], [15]. Before moving on, we introduce the equivalent

vector forms of the measurement Y = {y, ẑ}, hidden variable

X = {f ,g,h,γf ,γg,γh,u}, and pseudo-threshold {ẑlo, ẑup}
to facilitate the analysis. For example, f = vec(F), ẑlo =
vec(Ẑlo), and ẑup = vec(Ẑup).

In essence, the goal of SBL is to perform posterior in-

ference on X from Y where the interaction among {X ,Y}
is captured by the conditional distributions listed as follows.
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First, {f ,g,h} conditioned on {γf ,γg,γh} are assumed to be

Gaussian distributed as

p(f |γf ) = CN (f |0,Γ−1
f ), (17)

p(g|γg) = CN (g|0,Γ−1
g ), (18)

p(h|γh) = CN (h|0,Γ−1
h ) (19)

where Γf = diag(γf ), Γg = diag(γg), and Γh = diag(γh)
are the precision matrices of the Gaussian distributions

above. Meanwhile, the hyperpriors of the hyperparameters

{γf ,γg,γh} are modeled as independent and identically dis-

tributed (i.i.d.) Gamma distributions

p(γf ) =
∏

i

Gamma(γf ,i|a, b)

=
∏

i

ba

Γ(a)
γa−1
f ,i e−bγf,i , (20)

p(γg) =
∏

i

Gamma(γg,i|a, b)

=
∏

i

ba

Γ(a)
γa−1
g,i e−bγg,i , (21)

p(γh) =
∏

i

Gamma(γh,i|a, b)

=
∏

i

ba

Γ(a)
γa−1
h,i e−bγh,i (22)

where Γ(·) is the Gamma function, and a and b
are the shape and rate to be chosen. The reason

for choosing the Gaussian-Gamma distribution is because

{p(γf ), p(γg), p(γh)} are the conjugate priors for the like-

lihood functions {p(f |γf ), p(g|γg), p(h|γh)} that make pos-

terior inference tractable [29]. Furthermore, the Gaussian-

Gamma distribution captures the sparse nature of {f ,g,h}
by making the marginal priors {p(f), p(g), p(h)} Student’s-

t distributions, which are sparsity-promoting priors under the

appropriate choice of a and b [14], [15]. In the simulation, we

adhere to the convention that assumes uninformative priors by

setting a = b = 10−6.

Moving on to the measurement model, the conditional

distribution of y is

p(y|f ,g,h) =
CN (y|vec(ABGAH

I (S⊙AIFX) +ABHX), σ2
BI), (23)

which follows from (14). Likewise, the conditional distribu-

tions of u and ẑ in the pseudo-measurement model are

p(u|f) =CN (u|vec(Ω⊙AIFX), σ2
I I), (24)

p(ẑ|u) =I(ẑ = Q(u))

=I(Re(ẑlo) � Re(u) ≺ Re(ẑup))×
I(Im(ẑlo) � Im(u) ≺ Im(ẑup)) (25)

where (24) and (25) come from (16) and (4). The indicator

function I(·) is equal to one if the argument is true and zero

otherwise.

Now, recall that the goal of SBL is to perform exact

posterior inference on X from Y using (17)-(25). The problem,

however, is that computing p(X|Y) = p(X ,Y)/
∫
p(X ,Y)dX

is intractable in general. Therefore, we focus on finding the

approximate posterior distribution using the VI approach.

C. VI Approach to SBL

First, we explain the idea behind VI with the mean-field

approximation [16], [17]. Then, we derive the approximate

posterior distributions, which enable us to compute the pos-

terior means. To proceed, consider the decomposition of the

log-evidence

log p(Y) =
∫

q(X ) log
q(X )

p(X|Y)dX
︸ ︷︷ ︸

=DKL(q‖p)

+

∫

q(X ) log
p(X ,Y)
q(X )

dX
︸ ︷︷ ︸

=L(q)

(26)

where q(X ) is any probability distribution that approximates

p(X|Y), DKL(q‖p) is the Kullback–Leibler (KL) divergence

that measures the distance between q(X ) and p(X|Y), and

L(q) is known as the negative variational free energy. Then, we

can minimize DKL(q‖p) with respect to q(X ) by maximizing

L(q) because log p(Y) is constant.

In general, the variational free energy minimization problem

is intractable for a general class of q(X ). Therefore, we adopt

the mean-field approximation by considering the class of q(X )
that assumes independence among the partition of X such that

q(X ) =
∏

i q(Xi). Then, {q(Xi)}∀i is the global minimum of

the variational free energy minimization problem if and only

if [16], [17]

q(Xi) =
1

Zi
exp







E∏
j 6=i

q(Xj){log p(Y|X )p(X )}
︸ ︷︷ ︸

=〈log p(Y|X )p(X )〉Xi







for ∀i

(27)

where Zi is the normalization constant that makes q(Xi) a

valid probability distribution. Here, 〈·〉Xi
indicates the expec-

tation with respect to
∏

j 6=i q(Xj). In addition, we use the

notation 〈·〉 to indicate the expectation with respect to q(X )
in the sequel.

Then, our goal is to derive the functional forms of {q(Xi)}∀i
from (27) that enable us to deduce the distributions of

{q(Xi)}∀i by inspection. Since the distributions of {q(Xi)}∀i
are coupled in an intertwined manner as evident from (27),

however, q(Xi) is updated for fixed {q(Xj)}j 6=i by cycling

through i, which leads us to a local minimum. Now, we

derive the functional forms of {q(Xi)}∀i to determine the

approximate posterior distributions for the partition X =
{f ,g,h,γf ,γg,γh,u}.

1. Derivation of q(u): To derive q(u), we only need to

plug in (24) and (25) to (27). The reason for not plugging in

(17)-(23) to (27) is because the expectations of (17)-(23) with

respect to 〈·〉u are constants that do not affect the functional

form of q(u). In the posterior inference jargon, {f , ẑ} is said

to be the Markov blanket of u [30]. In the sequel, we identify

the Markov blanket by inspection without further explanation.

To proceed, define

buf = vec(Ω⊙AIFX)

= diag(vec(Ω))(XT ⊗AI)f (28)
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from (24). Then, plugging in (24) and (25) to (27) yields

q(u) ∝ exp{log p(ẑ|u) + 〈log p(u|f)〉u}
∝ I(ẑ = Q(u)) exp{〈−‖u− buf‖22/σ2

I 〉u}
∝ I(ẑ = Q(u)) exp{−‖u− 〈buf 〉‖22/σ2

I }
∝ I(ẑ = Q(u))CN (u|〈buf 〉, σ2

I I), (29)

or equivalently

q(Re(ui)) ∝

I(Re(ẑloi ) ≤ Re(ui) < Re(ẑupi ))N
(

Re(ui)|Re(〈buf ,i〉),
σ2
I

2

)

for the real as well as the imaginary part, from which we rec-

ognize that u is truncated Gaussian distributed. The posterior

mean of u has a well-known form [31]–[33]

〈Re(ui)〉 =

Re(〈buf ,i〉) −
σI

2
× φ(Re(βi))− φ(Re(αi))

Φ(Re(βi))− Φ(Re(αi))
, (30)

〈Im(ui)〉 =

Im(〈buf ,i〉)−
σI

2
× φ(Im(βi))− φ(Im(αi))

Φ(Im(βi))− Φ(Im(αi))
(31)

where φ(·) and Φ(·) are the standard normal PDF and cumula-

tive distribution function (CDF), αi = (ẑloi −〈buf ,i〉)/(σI/
√
2),

and βi = (ẑupi −〈buf ,i〉)/(σI/
√
2). To compute the expressions

above, we need 〈buf 〉, which we can obtain from (28) by

replacing f with 〈f〉.
2. Derivation of q(f): First, define Afg, bfh, and Af from

(23) and (24) as (32) and (33) at the bottom of the next

page. Then, plugging in (17), (23), and (24) to (27) with some

straightforward but tedious algebra leads to

q(f) ∝ exp{〈log p(y|f ,g,h) + log p(u|f) + log p(f |γf )〉f}
∝ exp{〈−‖y− bfh −Afgf‖22/σ2

B〉f}×
exp{〈−‖u−Af f‖22/σ2

I 〉f}×
exp{〈−fHΓf f〉f}

∝ exp{−(f −mf )
HC−1

f (f −mf )}, (34)

which is a Gaussian distribution with

mf = Cf

(
1

σ2
B

〈Afg〉H(y − 〈bfh〉) +
1

σ2
I

AH
f 〈u〉

)

, (35)

Cf =

(
1

σ2
B

〈AH
fgAfg〉+

1

σ2
I

AH
f Af + 〈Γf 〉

)−1

. (36)

The posterior mean and covariance above require 〈Afg〉,
〈bfh〉, and 〈AH

fgAfg〉 to be computed, from which the first

two can be obtained from (32) by substituting G and h with

〈G〉 and 〈h〉. The expression for 〈AH
fgAfg〉 is provided in

Appendix A as the derivation is more involved.

3. Derivation of q(g): First, we define Agf and bgh from

(23) as (37) at the bottom of the next page. Then, expanding

(27) after plugging in (18) and (23) gives

q(g) ∝ exp{〈log p(y|f ,g,h) + log p(g|γg)〉g}
∝ exp{〈−‖y− bgh −Agfg‖22/σ2

B〉g}×
exp{〈−gHΓgg〉g}

∝ exp{−(g−mg)
HC−1

g (g −mg)}, (38)

which is recognized as a Gaussian distribution associated with

the posterior mean and covariance

mg = Cg

(
1

σ2
B

〈Agf 〉H(y − 〈bgh〉)
)

, (39)

Cg =

(
1

σ2
B

〈AH
gfAgf 〉+ 〈Γg〉

)−1

. (40)

Again, computing the expressions above requires 〈Agf 〉 and

〈bgh〉 as well as 〈AH
gfAgf 〉, from which the terms correspond-

ing to the first moment are given by (37) after replacing F and

h with 〈F〉 and 〈h〉. The explicit form of 〈AH
gfAgf 〉 with a

detailed derivation is provided in Appendix B.

4. Derivation of q(h): First, define Ah and bhfg from (23)

as (41) at the bottom of the next page. By plugging in (19)

and (23) to (27), we arrive at

q(h) ∝ exp{〈log p(y|f ,g,h) + log p(h|γh)〉h}
∝ exp{〈−‖y− bhfg −Ahh‖22/σ2

B〉h}×
exp{〈−hHΓhh〉h}

∝ exp{−(h−mh)
HC−1

h (h−mh)}, (42)

which implies that h is Gaussian distributed parameterized by

mh = Ch

(
1

σ2
B

AH
h (y − 〈bhfg〉)

)

, (43)

Ch =

(
1

σ2
B

AH
hAh + 〈Γh〉

)−1

. (44)

The posterior mean and covariance above require 〈bhfg〉 to be

computed, which can be obtained from (41) by substituting F

and g with 〈F〉 and 〈g〉.
5. Derivation of q(γf ): Let us plug in (17) and (20) to (27)

to obtain

q(γf ) ∝ exp{〈log p(f |γf )〉γf
+ log p(γf )}

∝ exp{log det(Γf )− 〈fHΓf f〉γf
+ log p(γf )}

∝
∏

i

γf ,i × exp{−〈|fi|2〉γf ,i} × γa−1
f ,i exp{−bγf ,i}

∝
∏

i

γ
(a+1)−1
f ,i exp{−(b+ 〈|fi|2〉)γf ,i}, (45)

which is recognized as a product of Gamma distributions

associated with the same posterior shape ā = a + 1 and

different rates b̄f ,i = b + 〈|fi|2〉 = b + [Cf + mfm
H
f ]i,i.

Therefore, the posterior mean of γf is

〈γf ,i〉 =
ā

b̄f ,i
. (46)

6. Derivation of q(γg): Since the priors {p(f |γf ), p(g|γg)}
as well as the hyperpriors {p(γf ), p(γg)} are i.i.d., the deriva-

tion of q(γg) leads to the same functional form, which is

a product of Gamma distributions with the same posterior

shape ā = a + 1 and different rates b̄g,i = b + 〈|gi|2〉 =
b+ [Cg +mgm

H
g ]i,i. Therefore, the posterior mean of γg is

〈γg,i〉 =
ā

b̄g,i
. (47)

7. Derivation of q(γh): By the same argument as in the

derivation of q(γg), we conclude that q(γh) is a product
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Algorithm 1 VI-SBL-based channel estimator

Input: y, ẑ

Output: mf , mg, mh, or equivalently 〈f〉, 〈g〉, 〈h〉
1: Set the parameters a and b for the hyperpriors

2: Initialize mf , Cf , mh, Ch, 〈γf 〉, 〈γg〉, 〈γh〉, and 〈u〉
3: while termination condition do

4: Update mg and Cg according to (39) and (40)

5: Update 〈γg〉 according to (47)

6: Update mh and Ch according to (43) and (44)

7: Update 〈γh〉 according to (48)

8: Update mf and Cf according to (35) and (36)

9: Update 〈γf 〉 according to (46)

10: Update 〈u〉 according to (30) and (31)

11: end while

of Gamma distributions parameterized by the same posterior

shape ā = a + 1 and different rates b̄h,i = b + 〈|hi|2〉 =
b + [Ch + mhm

H
h ]i,i, from which the posterior mean of γh

is deduced as

〈γh,i〉 =
ā

b̄h,i
. (48)

The VI-SBL-based channel estimator developed until now

is summarized in Algorithm 1. In essence, Algorithm

1 performs approximate posterior inference by updating

{q(f), q(g), q(h), q(γf ), q(γg), q(γh), q(u)} iteratively. The

MMSE estimates of all the links are given by

ˆ̄F = AIreshape(mf , [Ng,K]), (49)

ˆ̄G = ABreshape(mg, [Mg, Ng])A
H
I , (50)

ˆ̄H = ABreshape(mh, [Mg,K]) (51)

where reshape(a, [m,n]) reshapes a to a matrix of size m×n
that preserves the columnwise ordering. To investigate the

convergence of Algorithm 1, recall that Algorithm 1 tackles

(27) by solving q(Xi) for fixed {q(Xj)}j 6=i in a cycling

manner instead of jointly solving for {q(Xi)}∀i. Since (27)

defines the global minimum of the variational free energy

minimization problem [16], [17], each line in Algorithm 1

at least reduces the variational free energy. By noting that the

variational free energy is lower-bounded by the negative log-

evidence as evident from (26), we conclude that Algorithm 1

converges to a local minimum of the variational free energy

problem.

The problem, however, is that poor initialization can result

in a bad local minimum. The simulation results showed that

a good initialization strategy is to perform “initial” posterior

inference on a subset of the parameters in advance, and then

use the coarse estimates obtained in this stage to initialize

the parameters. The initial posterior inference we consider is

the UE-RIS link estimation and UE-BS link estimation. In

particular, the UE-IRS link initialization proceeds by perform-

ing initial posterior inference on {f ,γf ,u} based only on the

measurement ẑ to initialize {mf ,Cf , 〈γf 〉, 〈u〉} via Lines 8-

10. For the UE-BS link initialization, we first turn off the

passive reflecting elements for a short duration during the

channel estimation phase as shown in (57). Then, the UE-

BS link initialization proceeds by performing initial posterior

inference on {h,γh} based on a subset of y corresponding to

the time slots the passive reflecting elements were turned off

as in (57) to initialize {mh,Ch, 〈γh〉} via Lines 6-7. Since

each initial posterior inference is equivalent to the conventional

direct link channel estimation, i.e., UE-IRS link and UE-BS

link, the initial posterior inference can be performed without

much difficulty (even though the estimates obtained in this

stage are very coarse due to the extremely small size of the

measurements used, thus using them only for initialization

and preventing us from using them as final estimates). The

remaining parameter 〈γg〉, which is not associated with neither

the UE-IRS nor UE-BS link initialization, can be initialized

as its prior mean E{γg} = a/b × 1. By adopting the

proposed initialization strategy, Algorithm 1 was demonstrated

to produce good results.

D. Complexity Reduction via Mean-Field Approximation

The complexity of VI-SBL is mainly attributed to the

matrix inversions in (36), (40), and (44) where the matrices

to be inverted are of sizes NgK × NgK , MgNg × MgNg,

and MgK × MgK . Therefore, the complexity of VI-SBL is

O(N3
gK

3+M3
gN

3
g+M3

gK
3). To reduce the complexity of VI-

SBL, a mean-field approximation-based solution is proposed

that converts a large matrix inversion to many small matrix

inversions.

In particular, we consider the mean-field approximation

that splits {f ,γf}, {g,γg}, and {h,γh} to Sf , Sg, and Sh

subvectors. For example, the partition of {f ,γf} can be written

as fT = [fT[1], . . . , f
T
[Sf ]

] and γ
T
f = [γT

f [1], . . . ,γ
T
f [Sf ]

] where

f[i] ∈ CNgK/Sf and γf [i] ∈ CNgK/Sf , and the same logic holds

vec(ABGAH
I (S⊙AIFX) +ABHX) = (IT ⊗ABGAH

I )diag(vec(S))(X
T ⊗AI)

︸ ︷︷ ︸

=Afg

f + (XT ⊗AB)h
︸ ︷︷ ︸

=bfh

, (32)

vec(Ω⊙AIFX) = diag(vec(Ω))(XT ⊗AI)
︸ ︷︷ ︸

=Af

f , (33)

vec(ABGAH
I (S⊙AIFX) +ABHX) = ((ST ⊙XTFTAT

I )A
∗
I ⊗AB)

︸ ︷︷ ︸

=Agf

g+ (XT ⊗AB)h
︸ ︷︷ ︸

=bgh

, (37)

vec(ABGAH
I (S⊙AIFX) +ABHX) = (XT ⊗AB)

︸ ︷︷ ︸

=Ah

h+ ((ST ⊙XTFTAT
I )A

∗
I ⊗AB)g

︸ ︷︷ ︸

=bhfg

(41)
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for {g,γg} and {h,γh}. Then, VI-SBL performs posterior

inference on the partition

q(X ) =

q(u)

Sf∏

i=1

q(f[i])q(γf [i])

Sg∏

j=1

q(g[j])q(γg[j])

Sh∏

k=1

q(h[k])q(γh[k])

(52)

from {y, ẑ}.

Now, we present how the update rules in (35), (36), (39),

(40), (43), and (44) are modified after the proposed mean-field

approximation is applied. As a preliminary, let us introduce

some shorthand notations. First, f c[i] is defined as the vector

obtained by removing f[i] from f . Likewise, Af [i]g and Ac
f [i]g

are defined as the matrices obtained by retaining the columns

of Afg in (32) corresponding to f[i] and f c[i]. The same

logic can be extended to denote any vectors and matrices

obtained by pruning. As an exception, the pruned versions

of the precision matrices are denoted by Γf [i] = diag(γf [i]),
Γg[i] = diag(γg[i]), and Γh[i] = diag(γh[i]).

Then, the new update rules for (35), (36), (39), (40), (43),

and (44) are given by (53)-(55) at the bottom of the page.

Since (53) repeats an NgK/Sf ×NgK/Sf matrix inversion Sf

times, the overall complexity is O(N3
gK

3/S2
f ). The same logic

applies to (54) and (55). As a result, the overall complexity of

VI-SBL reduces to O(N3
gK

3/S2
f +M3

gN
3
g /S

2
g+M3

gK
3/S2

h).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-

posed VI-SBL-based channel estimator based on the channel

estimation error and energy efficiency. The baselines are state-

of-the-art compressed sensing-based channel estimators for

IRS-aided mmWave massive MIMO systems with passive

reflecting elements. To implement the baselines, the UE-

IRS-BS link estimation problem is reformulated as a sparse

recovery problem as proposed in [10]. Then, the problem

is solved using the generalized approximate MP (GAMP)

[34], vector approximate MP (VAMP) [35], SBL [14], and

generalized expectation consistent-signal recovery (GEC-SR)

[36] algorithms, which are compressed sensing algorithms

widely adopted in the mmWave channel estimation domain

[32], [37], [38]. In addition, we also adopt the DS-OMP

channel estimator as our baseline, which is an algorithm

that exploits the double sparsity structure of the UE-IRS-BS

link by taking into account the fact that all the users share

a common IRS-BS link. DS-OMP attempts to improve the

channel estimation accuracy by identifying the common rows

and columns that the UE-IRS-BS links of all the users share.

The channel parameters in (1) are as follows. The bandwidth

and path loss are W = 80 MHz and

PL =

{

31.4 + 20 log10 d for LoS

42 + 29.2 log10 d for NLoS
(56)

in dB where d is the distance of the link in meters. The Rician

K-factors are κUI,k = κIB = 13.2 dB for the UE-IRS and IRS-

BS links in LoS and κUB,k = −∞ dB for the UE-BS link in

NLoS. The number of NLoS paths is LUI,k = LIB = LUB,k =
4 for all the links.

In addition, the system parameters are configured as speci-

fied in the Dense Urban-eMBB scenario in ITU-R M.2412-

0 [39]. In particular, the transmit power is Pk[t] = 23
dBm. Meanwhile, the noise figure of the base station and

active sensors is NF = 7 dB. Therefore, the noise power is

σ2
B = σ2

I = W × N0 × NF where N0 = −174 dBm/Hz is

the noise spectral density. There are M = 16 antennas at the

base station, N = 8 × 8 elements at the IRS with Na = 4
semi-passive elements, and K = 4 users. The parameters for

the active sensors are B = 4 bit for the ADC resolution and

fsn = 1 for the switching frequency. In addition, the uniform

B-bit quantizer proposed in [37], [40] is adopted. The passive

reflecting elements are initially turned off for UE-BS link

estimation and turned on as

|vn[t]| =
{

0 for t ∈ J50K

1 for t ∈ JT K \ J50K
(57)

with random phase shifts in the channel estimation phase. The

base station and IRS are at (0, 0) m and (20, 10) m, while the

users are around the circle with center (40, 0) m and radius 5

m. The lengths of the coherence block and channel estimation

phase are Tc = 1800 and T = 400. Throughout the simulation,

the system parameters are fixed unless stated otherwise. In

addition, the parameters for VI-SBL are Mg = M,Ng = N ,

Sf = 1, Sg = 8, Sh = 1, and a = b = 10−6. To understand

the reason behind Sg = 8, recall that the complexity of

VI-SBL is O(N3
gK

3/S2
f + M3

gN
3
g /S

2
g + M3

gK
3/S2

h). Since

massive MIMO and IRS imply large Mg ≥ M and Ng ≥ N ,

mf [i] = Cf [i]

(
1

σ2
B

{

〈Af [i]g〉H(y − 〈bfh〉)− 〈AH
f [i]gA

c
f [i]g〉〈f c[i]〉

}

+
1

σ2
I

AH
f [i](〈u〉 −Ac

f [i]〈f c[i]〉)
)

,

Cf [i] =

(
1

σ2
B

〈AH
f [i]gAf [i]g〉+

1

σ2
I

AH
f [i]Af [i] + 〈Γf [i]〉

)−1

for i ∈ JSf K, (53)

mg[i] = Cg[i]

(
1

σ2
B

{

〈Ag[i]f 〉H(y − 〈bgh〉)− 〈AH
g[i]fA

c
g[i]f 〉〈gc

[i]〉
})

,

Cg[i] =

(
1

σ2
B

〈AH
g[i]fAg[i]f 〉+ 〈Γg[i]〉

)−1

for i ∈ JSgK, (54)

mh[i] = Ch[i]

(
1

σ2
B

AH
h[i](y − 〈bhfg〉 −Ac

h[i]〈hc
[i]〉)

)

, Ch[i] =

(
1

σ2
B

AH
h[i]Ah[i] + 〈Γh[i]〉

)−1

for i ∈ JShK (55)
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TABLE I
POWER CONSUMPTION PARAMETERS

Parameter Value Parameter Value

B∞ 10 bit PT [41] 0.25 W/Gbps

FOM [42] 1432.1 fJ/conversion-step PLO [43] 22.5 mW

fs 80 MHz PRF [43] 31.6 mW

TABLE II
PER-ITERATION COMPLEXITIES OF VARIOUS CHANNEL ESTIMATORS

Algorithm Complexity

Proposed O(N3
gK

3/S2
f
+M3

gN
3
g /S

2
g +M3

gK
3/S2

h
)

GAMP O(MTMgNgK)

VAMP O(MTMgNgK)

SBL O(M3
gN

3
gK

3)

GEC-SR O(M3
gN

3
gK

3)

DS-OMP O(MTK +NTKLIBL
3
UI,k

)

most of the complexity comes from (54) that repeats an

MgNg/Sg×MgNg/Sg matrix inversion Sg times. Therefore,

we convert a large matrix inversion to many small matrix

inversions by setting Sg = 8.

Now, we explain the power consumption model that ac-

counts for the power dissipated at the base station, IRS, and

fronthaul link through which the received signal at the active

sensors is forwarded. Since the base station is equipped with

a local oscillator, M RF chains, and M pairs of B∞-bit

ADCs where B∞ ≫ 1, the power consumed by the base

station is modeled as PBS = PLO +M(PRF +2PADC(B∞)).
Here, PADC(B) = FOM × fs × 2B [44] is the power

consumption of a B-bit ADC where FOM and fs are the

figure of merit and sampling frequency. Likewise, the power

consumed by the active sensors at the IRS is modeled as

PIRS = PLO + Na(PRF + 2PADC(B)). Moving on to the

fronthaul link that forwards 2BNaW bits per second, the

power consumption model is PFH = 2BNaWPT [41] where

PT is the traffic-dependent power consumption. Then, the total

power consumption is PBS + T/Tc × (PIRS + PFH) under

the premise that the semi-passive elements become passive

reflecting elements in the data transmission phase. On the

other hand, the total power consumption of the baselines with

passive reflecting elements is PBS. The power consumption

parameters are shown in Table I.

The performance metrics for the channel estimation error

and energy efficiency are as follows. The channel estimation

error is measured based on the normalized MSE (NMSE). In

particular, the NMSEs for the UE-IRS, IRS-BS, and UE-BS

links are

NMSE(F̄) = E{‖ ˆ̄F− F̄‖2F/‖F̄‖2F}, (58)

NMSE(Ḡ) = E{‖ ˆ̄G− Ḡ‖2F/‖Ḡ‖2F}, (59)

NMSE(H̄) = E{‖ ˆ̄H− H̄‖2F/‖H̄‖2F}. (60)

Meanwhile, the spectral efficiency is evaluated based on the

sum rate obtained by optimizing the passive reflecting ele-

Fig. 3. NMSE of the UE-IRS-BS link vs. transmit power in the channel
estimation phase.

Fig. 4. Energy efficiency vs. transmit power in the channel estimation phase.
The transmit power in the data transmission phase is Pk[Td] = 23 dBm.

ments [45] and combiner at the base station [46] using the

estimates of the UE-IRS-BS link kr(F̄T, Ḡ) and UE-BS link.

Then, the energy efficiency is defined as the spectral efficiency

scaled by W and normalized by the total power consumption,

which is defined as such to make a fair comparison between

IRS with semi-passive elements and passive reflecting ele-

ments. Therefore, the energy efficiency is given by

EE =

{
W×SE

PBS+T/Tc×(PIRS+PFH) for Na > 0
W×SE
PBS

for Na = 0
(61)

where the first case corresponds to VI-SBL with semi-passive

elements, while the second case corresponds to the baselines

with passive reflecting elements. Throughout the simulation,

we mainly compare the NMSE of the UE-IRS-BS link because

the baselines can only estimate the UE-IRS-BS and UE-BS

links unlike VI-SBL that estimates all the links. Moreover,

the reason for omitting the UE-BS link is because the UE-BS
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Fig. 5. NMSE of the UE-IRS-BS link vs. T .

Fig. 6. Energy efficiency vs. T .

link estimation problem can be converted to the conventional

channel estimation problem as pointed out in [3].

In the first simulation, we compare the performance of VI-

SBL and the baselines in terms of the NMSE of the UE-IRS-

BS link and energy efficiency for various transmit powers in

the channel estimation phase. According to Fig. 3, VI-SBL

outperforms the baselines in terms of the channel estimation

accuracy. The superior performance of VI-SBL is expected

because VI-SBL exploits the additional information acquired

from a small number of active sensors at the IRS, whereas

only the received signal at the base station is available to the

baselines. As a result, we see a significant energy efficiency

gap from Fig. 4 due to the high channel estimation accuracy

of VI-SBL that outweighs the additional power consumption.

In the second simulation, we evaluate the performance of

various channel estimators for different T . According to Fig. 5,

T ≥ 200 is sufficient for VI-SBL to yield an accurate channel

estimate, whereas the baselines require at least T ≥ 400.

As a result, the energy efficiency gap is large in the low

training overhead regime as evident from Fig. 6. The reason

Fig. 7. NMSEs of all the links vs. Na. The baselines are not shown.

Fig. 8. Energy efficiency vs. Na. The baselines with passive reflecting
elements are shown as references.

for the dramatic training overhead gap comes from the fact

that the baselines cannot observe the UE-IRS link, whereas

VI-SBL has direct access to the UE-IRS link through a small

number of active sensors. Therefore, the training overhead

issue problematic in IRS-aided mmWave massive MIMO

systems incurred by the large size of the UE-IRS-BS link can

be resolved by adopting a small number of active sensors at

the cost of additional but marginal power consumption.

In the third simulation, we evaluate the performance of

VI-SBL in terms of the NMSEs of all the links and energy

efficiency for various Na. From Fig. 7, observe that the NMSE

of the UE-IRS link decreases as Na increases, which is not as

surprising. In contrast, the NMSE of the IRS-BS link increases

unlike the UE-IRS link. The reason for such a phenomenon is

because the IRS-BS link can only be observed through the

reflected signal. Therefore, more active sensors means less

passive reflecting elements, or equivalently less IRS-BS link

measurements. In addition, another interesting point is that the

NMSE of the UE-IRS-BS link composed of the UE-IRS and
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Fig. 9. NMSEs of all the links vs. B. The baselines are not shown.

Fig. 10. Energy efficiency vs. B. The baselines with passive reflecting
elements are shown as references.

IRS-BS links is lower-bounded by the worst NMSE of the

UE-IRS and IRS-BS links as evident from Fig. 7. From the

discussion until now, we recommend to keep Na small because

increasing Na results in additional power consumption, while

degrading the quality of the UE-IRS-BS link estimate. By

recalling that the impact of the UE-IRS-BS link on the spectral

efficiency is significant, we conclude that increasing Na offers

no benefit other than increasing the accuracy of the UE-IRS

link estimate. In fact, the energy efficiency falls below the

baselines as Na increases as evident from Fig. 8.

In the fourth simulation, we assess the performance of VI-

SBL in terms of the NMSEs of all the links and energy

efficiency for various B. According to Fig. 9, the NMSEs of all

the links except the UE-IRS link saturate at B ≥ 4. In contrast,

the NMSE of the UE-IRS link hits the floor at B ≥ 12. To

understand such a phenomenon, recall that the UE-IRS link is

observed through the quantized received signal at the active

sensors. Then, we conclude that the impact of B on the quality

of the UE-IRS link estimate must be significant. Also, another

Fig. 11. Energy-spectral efficiency as a function of B for various Na. At
each line, the markers correspond to B = 1, . . . , 8 from left to right. The
baselines with passive reflecting elements are shown as references.

interesting point is that the NMSE of the UE-IRS-BS link is

lower-bounded by the worst NMSE of the UE-IRS and IRS-

BS links as previously observed in Fig. 7. Moving on to Fig.

10, we see that there is a diminishing return beyond B ≥ 6 at

the cost of additional power consumption. Therefore, we can

find the most energy-efficient operating point as a function of

B, which is B = 6 in our simulation setup.

In the fifth simulation, we investigate the energy-spectral

efficiency of VI-SBL as a function of B for various Na.

According to Fig. 11, it is evident that increasing the ADC

resolution beyond a certain limit, i.e., approximately B ≥ 4
for any Na, yields only a small spectral efficiency gain at the

cost of large additional power consumption. Therefore, it is not

worth it to deploy high-resolution ADCs at the active sensors

of the IRS since the gain is marginal. In addition, an interesting

observation is that increasing the number of active sensors

at the IRS actually decreases the spectral efficiency. There-

fore, the combined effect of reduced spectral efficiency and

increased power consumption results in significantly degraded

system performance. This is in line with Figs. 7 and 8, and

this phenomenon can be attributed to the fact that increasing

the number of active sensors decreases the amount of signals

reflected at the IRS towards the base station, thus decreasing

the IRS-BS link measurements. Therefore, we conclude that an

energy-efficient architecture that attains high energy efficiency

requires both the number of the active sensors and ADC

resolution to be low.

Before moving on, we emphasize that the superior per-

formance of VI-SBL with active sensors over the baselines

with passive reflecting elements is due to the availability

of the additional information acquired at the active sensors.

That is, the simulation results until now do not imply that

VI-SBL proposed in this paper is algorithmically superior

over the existing compressed sensing algorithms. The main

contribution of the proposed VI-SBL is that it suggests a

systematic way of how to jointly process the pilots received

at the base station and active sensors effectively to yield
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〈AH
gfAgf 〉 = 〈(AT

I (S
∗ ⊙A∗

IF
∗X∗)⊗AH

B)((S
T ⊙XTFTAT

I )A
∗
I ⊗AB)〉

(a)
= 〈AT

I (S
∗ ⊙A∗

IF
∗X∗)(ST ⊙XTFTAT

I )A
∗
I ⊗AH

BAB〉

= AT
I 〈(S∗ ⊙A∗

IF
∗X∗)(ST ⊙XTFTAT

I )〉A∗
I ⊗AH

BAB (62)

good channel estimation accuracy/energy efficiency. This is in

contrast to the recent works on IRS with semi-passive elements

[12], [13] that only use the pilots received at the active sensors

due to the complicated nature of jointly exploiting the pilots

received at the base station and active sensors. The channel

estimators in [12], [13] indeed require a dedicated channel

estimator protocol involving both uplink and downlink pilots,

which make them to be only applicable to limited scenarios.

Next, we investigate the complexities of various channel

estimators. According to Table II, SBL and GEC-SR that

perform an MgNgK × MgNgK matrix inversion have the

highest complexities. In contrast, GAMP and VAMP have

relatively low complexities that involve a matrix-vector mul-

tiplication of size MT × MgNgK , while DS-OMP has the

lowest complexity slightly larger than that of the conventional

OMP algorithm [47]. Meanwhile, VI-SBL performs many

small matrix inversions, whose complexity is controlled by

Sf , Sg, and Sh as discussed earlier. The complexity of VI-

SBL is demanding but not as SBL and GEC-SR. Therefore,

we conclude that VI-SBL offers a significant performance gain

at the expense of not-so-low complexity.

V. CONCLUSION

A Bayesian channel estimator was proposed for IRS-aided

mmWave massive MIMO systems with semi-passive elements.

Unlike recent works on channel estimation with semi-passive

elements that require both uplink and downlink signals to

estimate the UE-IRS and IRS-BS links, the proposed channel

estimator aimed to estimate all the links using only uplink

training signals. To perform approximate posterior inference

on the channel, the channel estimation problem was recast as

an SBL framework. Then, SBL was solved using the vari-

ational free energy principle and mean-field approximation,

from which the VI-SBL-based channel estimator was obtained.

The simulation results showed that the proposed channel

estimator requires low training overhead by taking advantage

of the active sensors. Also, VI-SBL was capable of estimating

all the links, which reduces the channel estimation overhead

in the long run by replacing UE-IRS-BS link estimation with

UE-IRS link estimation as the IRS-BS link is quasi-static in

practice.

APPENDIX A

DERIVATION OF 〈AH
fgAfg〉 FOR UPDATING q(f)

As a preliminary, define Bf from

Afg = (IT ⊗ABGAH
I ) diag(vec(S))(X

T ⊗AI)
︸ ︷︷ ︸

=Bf

in (32). Then, expanding 〈AH
fgAfg〉 leads to

〈AH
fgAfg〉 = 〈BH

f (IT ⊗AIG
HAH

B)(IT ⊗ABGAH
I )Bf 〉

(a)
= 〈BH

f (IT ⊗AIG
HAH

BABGAH
I )Bf 〉

= BH
f (IT ⊗AI〈GHAH

BABG〉AH
I )Bf

where the mixed-product property of the Kronecker prod-

uct was used in (a). Meanwhile, the vectorized version of

〈GHAH
BABG〉 in the middle of the last equality can be

expressed as

vec(〈GHAH
BABG〉) = 〈GT ⊗GH〉vec(AH

BAB).

Now, let us focus on the conjugate transpose of 〈GT⊗GH〉, or

equivalently 〈G∗ ⊗G〉, which contains Mg ×Ng submatrices

of sizes Mg × Ng. The (i, j)-th submatrix of 〈G∗ ⊗G〉 can

be vectorized as

vec(〈g∗i+(j−1)Mg
G〉) = [Cg +mgm

H
g ]:,i+(j−1)Mg

,

which can be reshaped and assembled to compute 〈AH
fgAfg〉.

APPENDIX B

DERIVATION OF 〈AH
gfAgf 〉 FOR UPDATING q(g)

First, we expand 〈AH
gfAgf 〉 using (37) to obtain (62) at

the top of the page where the mixed-product property of the

Kronecker product was applied in (a). Now, let us focus on

the transpose of 〈(S∗ ⊙A∗
IF

∗X∗)(ST ⊙ XTFTAT
I )〉 in the

middle of the last line of (62). To proceed, we define Bg from

vec(S⊙AIFX) = diag(vec(S))(XT ⊗AI)
︸ ︷︷ ︸

=Bg

f .

Then, the (i, j)-th element of 〈(S⊙AIFX)(SH⊙XHFHAH
I )〉

is

[〈(S ⊙AIFX)(SH ⊙XHFHAH
I )〉]i,j =

T∑

k=1

[Bg〈ffH〉BH
g ]i+(k−1)N,j+(k−1)N =

T∑

k=1

[Bg(Cf +mfm
H
f )B

H
g ]i+(k−1)N,j+(k−1)N ,

which can be assembled and rearranged to compute

〈AH
gfAgf 〉.
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